1
|
Chauhan US, Kohale MG, Jaiswal N, Wankhade R. Emerging Applications of Liquid Biopsies in Ovarian Cancer. Cureus 2023; 15:e49880. [PMID: 38174205 PMCID: PMC10762500 DOI: 10.7759/cureus.49880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Liquid biopsy is a new diagnostic tool in precision oncology that can be used as a complementary or alternative method to surgical biopsies. It is a cutting-edge sampling technique that examines distinct cancer components, such as exosomes and circulating tumor cells discharged into the peripheral circulation, to identify tumor biomarkers through various methods, including polymerase chain reaction (PCR). Liquid biopsy has several benefits, including its non-invasiveness and practicality, which permit serial sampling and long-term monitoring of dynamic tumor changes. Ovarian cancer (OC), the most lethal gynecologic malignancy in the world, is typically diagnosed at stages II and III, which makes recovery and treatment extremely difficult. Relapsed OC and chemotherapy resistance of ovarian tumor cells are other clinical challenges. Although liquid biopsy is not a routinely used diagnostic test, it should be utilized in the diagnosis and prognosis of OC for early detection and treatment. It is less intrusive than conventional tissue biopsies, allowing for the continuous collection of serial blood samples to track cancer development in real time. Before therapeutic application, more investigation is required to pinpoint the particular release processes, the source tissue, and the biological significance of the bulk of liquid biopsy contents.
Collapse
Affiliation(s)
- Urvi S Chauhan
- Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Mangesh G Kohale
- Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Neha Jaiswal
- Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Rashmi Wankhade
- Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| |
Collapse
|
2
|
Karimi F, Azadbakht O, Veisi A, Sabaghan M, Owjfard M, Kharazinejad E, Dinarvand N. Liquid biopsy in ovarian cancer: advantages and limitations for prognosis and diagnosis. Med Oncol 2023; 40:265. [PMID: 37561363 DOI: 10.1007/s12032-023-02128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Ovarian cancer (OC) is a highly fatal gynecologic malignancy, often diagnosed at an advanced stage which presents significant challenges for disease management. The clinical application of conventional tissue biopsy methods and serological biomarkers has limitations for the diagnosis and prognosis of OC patients. Liquid biopsy is a novel sampling method that involves analyzing distinctive tumor elements secreted into the peripheral blood. Growing evidence suggests that liquid biopsy methods such as circulating tumor cells, cell-free RNA, circulating tumor DNA, exosomes, and tumor-educated platelets may improve early prognosis and diagnosis of OC, leading to enhanced therapeutic management of the disease. This study reviewed the evidence demonstrating the utility of liquid biopsy components in OC prognosis and diagnosis, and evaluated the current advantages and limitations of these methods. Additionally, the existing obstacles and crucial topics for future studies utilizing liquid biopsy in OC patients were discussed.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Omid Azadbakht
- Department of Radiology Technology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Ali Veisi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mohammad Sabaghan
- Department of Parasitology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | | | - Negar Dinarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
De Wispelaere K, Freson K. The Analysis of the Human Megakaryocyte and Platelet Coding Transcriptome in Healthy and Diseased Subjects. Int J Mol Sci 2022; 23:ijms23147647. [PMID: 35886993 PMCID: PMC9317744 DOI: 10.3390/ijms23147647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Platelets are generated and released into the bloodstream from their precursor cells, megakaryocytes that reside in the bone marrow. Though platelets have no nucleus or DNA, they contain a full transcriptome that, during platelet formation, is transported from the megakaryocyte to the platelet. It has been described that transcripts in platelets can be translated into proteins that influence platelet response. The platelet transcriptome is highly dynamic and has been extensively studied using microarrays and, more recently, RNA sequencing (RNA-seq) in relation to diverse conditions (inflammation, obesity, cancer, pathogens and others). In this review, we focus on bulk and single-cell RNA-seq studies that have aimed to characterize the coding transcriptome of healthy megakaryocytes and platelets in humans. It has been noted that bulk RNA-seq has limitations when studying in vitro-generated megakaryocyte cultures that are highly heterogeneous, while single-cell RNA-seq has not yet been applied to platelets due to their very limited RNA content. Next, we illustrate how these methods can be applied in the field of inherited platelet disorders for gene discovery and for unraveling novel disease mechanisms using RNA from platelets and megakaryocytes and rare disease bioinformatics. Next, future perspectives are discussed on how this field of coding transcriptomics can be integrated with other next-generation technologies to decipher unexplained inherited platelet disorders in a multiomics approach.
Collapse
|
4
|
Corvigno S, Johnson AM, Wong KK, Cho MS, Afshar-Kharghan V, Menter DG, Sood AK. Novel Markers for Liquid Biopsies in Cancer Management: Circulating Platelets and Extracellular Vesicles. Mol Cancer Ther 2022; 21:1067-1075. [PMID: 35545008 DOI: 10.1158/1535-7163.mct-22-0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 02/03/2023]
Abstract
Although radiologic imaging and histologic assessment of tumor tissues are classic approaches for diagnosis and monitoring of treatment response, they have many limitations. These include challenges in distinguishing benign from malignant masses, difficult access to the tumor, high cost of the procedures, and tumor heterogeneity. In this setting, liquid biopsy has emerged as a potential alternative for both diagnostic and monitoring purposes. The approaches to liquid biopsy include cell-free DNA/circulating tumor DNA, long and micro noncoding RNAs, proteins/peptides, carbohydrates/lectins, lipids, and metabolites. Other approaches include detection and analysis of circulating tumor cells, extracellular vesicles, and tumor-activated platelets. Ultimately, reliable use of liquid biopsies requires bioinformatics and statistical integration of multiple datasets to achieve approval in a Clinical Laboratory Improvement Amendments setting. This review provides a balanced and critical assessment of recent discoveries regarding tumor-derived biomarkers in liquid biopsies along with the potential and pitfalls for cancer detection and longitudinal monitoring.
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Maria Johnson
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Min Soon Cho
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Zhu JW, Charkhchi P, Akbari MR. Potential clinical utility of liquid biopsies in ovarian cancer. Mol Cancer 2022; 21:114. [PMID: 35545786 PMCID: PMC9092780 DOI: 10.1186/s12943-022-01588-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide. One of the main challenges in the management of OC is the late clinical presentation of disease that results in poor survival. Conventional tissue biopsy methods and serological biomarkers such as CA-125 have limited clinical applications. Liquid biopsy is a novel sampling method that analyzes distinctive tumour components released into the peripheral circulation, including circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs) and exosomes. Increasing evidence suggests that liquid biopsy could enhance the clinical management of OC by improving early diagnosis, predicting prognosis, detecting recurrence, and monitoring response to treatment. Capturing the unique tumour genetic landscape can also guide treatment decisions and the selection of appropriate targeted therapies. Key advantages of liquid biopsy include its non-invasive nature and feasibility, which allow for serial sampling and longitudinal monitoring of dynamic tumour changes over time. In this review, we outline the evidence for the clinical utility of each liquid biopsy component and review the advantages and current limitations of applying liquid biopsy in managing ovarian cancer. We also highlight future directions considering the current challenges and explore areas where more studies are warranted to elucidate its emerging clinical potential.
Collapse
Affiliation(s)
- Jie Wei Zhu
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Parsa Charkhchi
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
7
|
Lau E, Han Y, Williams DR, Thomas CT, Shrestha R, Wu JC, Lam MPY. Splice-Junction-Based Mapping of Alternative Isoforms in the Human Proteome. Cell Rep 2020; 29:3751-3765.e5. [PMID: 31825849 PMCID: PMC6961840 DOI: 10.1016/j.celrep.2019.11.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/24/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
The protein-level translational status and function of many alternative splicing events remain poorly understood. We use an RNA sequencing (RNA-seq)-guided proteomics method to identify protein alternative splicing isoforms in the human proteome by constructing tissue-specific protein databases that prioritize transcript splice junction pairs with high translational potential. Using the custom databases to reanalyze ~80 million mass spectra in public proteomics datasets, we identify more than 1,500 noncanonical protein isoforms across 12 human tissues, including ~400 sequences undocumented on TrEMBL and RefSeq databases. We apply the method to original quantitative mass spectrometry experiments and observe widespread isoform regulation during human induced pluripotent stem cell cardiomyocyte differentiation. On a proteome scale, alternative isoform regions overlap frequently with disordered sequences and post-translational modification sites, suggesting that alternative splicing may regulate protein function through modulating intrinsically disordered regions. The described approach may help elucidate functional consequences of alternative splicing and expand the scope of proteomics investigations in various systems. The translation and function of many alternative splicing events await confirmation at the protein level. Lau et al. use an integrated proteotranscriptomics approach to identify non-canonical and undocumented isoforms from 12 organs in the human proteome. Alternative isoforms interfere with functional sequence features and are differentially regulated during iPSC cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Edward Lau
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Yu Han
- Consortium for Fibrosis Research and Translation, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA; Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Damon R Williams
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Cody T Thomas
- Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Rajani Shrestha
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA; Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Maggie P Y Lam
- Consortium for Fibrosis Research and Translation, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA; Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
8
|
Extracellular RNA: Emerging roles in cancer cell communication and biomarkers. Cancer Lett 2020; 495:33-40. [PMID: 32916182 DOI: 10.1016/j.canlet.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/15/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Extracellular RNAs (exRNAs) are a type of RNA molecules that present in various biological fluids. exRNAs are heterogenous populations including small (e.g., miRNA) and long non-coding RNAs and coding RNAs (e.g., mRNA). They can exist in a free form or associate with carriers range from lipo- and ribo-proteins to extracellular vesicles such as exosomes in the extracellular fluids. exRNAs participate in cell-to-cell communication to regulate a broad array of physiological and pathological processes. exRNAs have been widely studied as a biomarker for cancer and other diseases. In this review, we will discuss the sorts of exRNAs with potential carriers as well as their roles in cancer.
Collapse
|
9
|
|
10
|
Xue L, Xie L, Song X, Song X. Identification of potential tumor-educated platelets RNA biomarkers in non-small-cell lung cancer by integrated bioinformatical analysis. J Clin Lab Anal 2018; 32:e22450. [PMID: 29665143 DOI: 10.1002/jcla.22450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Platelets have emerged as key players in tumorigenesis and tumor progression. Tumor-educated platelet (TEP) RNA profile has the potential to diagnose non-small-cell lung cancer (NSCLC). The objective of this study was to identify potential TEP RNA biomarkers for the diagnosis of NSCLC and to explore the mechanisms in alternations of TEP RNA profile. METHODS The RNA-seq datasets GSE68086 and GSE89843 were downloaded from Gene Expression Omnibus DataSets (GEO DataSets). Then, the functional enrichment of the differentially expressed mRNAs was analyzed by the Database for Annotation Visualization and Integrated Discovery (DAVID). The miRNAs which regulated the differential mRNAs and the target mRNAs of miRNAs were identified by miRanda and miRDB. Then, the miRNA-mRNA regulatory network was visualized via Cytoscape software. RESULTS Twenty consistently altered mRNAs (2 up-regulated and 18 down-regulated) were identified from the two GSE datasets, and they were significantly enriched in several biological processes, including transport and establishment of localization. Twenty identical miRNAs were found between exosomal miRNA-seq dataset and 229 miRNAs that regulated 20 consistently differential mRNAs in platelets. We also analyzed 13 spliceosomal mRNAs and their miRNA predictions; there were 27 common miRNAs between 206 differential exosomal miRNAs and 338 miRNAs that regulated 13 distinct spliceosomal mRNAs. CONCLUSION This study identified 20 potential TEP RNA biomarkers in NSCLC for diagnosis by integrated bioinformatical analysis, and alternations in TEP RNA profile may be related to the post-transcriptional regulation and the splicing metabolisms of spliceosome.
Collapse
Affiliation(s)
- Linlin Xue
- School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, University of Jinan, Jinan, Shandong, China.,Department of Clinical Laboratory, Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xingguo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Ansari J, Yun JW, Kompelli AR, Moufarrej YE, Alexander JS, Herrera GA, Shackelford RE. The liquid biopsy in lung cancer. Genes Cancer 2017; 7:355-367. [PMID: 28191282 PMCID: PMC5302037 DOI: 10.18632/genesandcancer.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incidence of lung cancer has significantly increased over the last century, largely due to smoking, and remains the most common cause of cancer deaths worldwide. This is often due to lung cancer first presenting at late stages and a lack of curative therapeutic options at these later stages. Delayed diagnoses, inadequate tumor sampling, and lung cancer misdiagnoses are also not uncommon due to the limitations of the tissue biopsy. Our better understanding of the tumor microenvironment and the systemic actions of tumors, combined with the recent advent of the liquid biopsy, may allow molecular diagnostics to be done on circulating tumor markers, particularly circulating tumor DNA. Multiple liquid biopsy molecular methods are presently being examined to determine their efficacy as surrogates to the tumor tissue biopsy. This review will focus on new liquid biopsy technologies and how they may assist in lung cancer detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Junaid Ansari
- Feist Weiller Cancer Center, LSU Health Shreveport, LA, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Jungmi W Yun
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | | | | |
Collapse
|
12
|
Sheynkman GM, Shortreed MR, Cesnik AJ, Smith LM. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:521-45. [PMID: 27049631 PMCID: PMC4991544 DOI: 10.1146/annurev-anchem-071015-041722] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.
Collapse
Affiliation(s)
- Gloria M Sheynkman
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; ,
- Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706;
| |
Collapse
|
13
|
Chakrabarti A, Halder S, Karmakar S. Erythrocyte and platelet proteomics in hematological disorders. Proteomics Clin Appl 2016; 10:403-14. [PMID: 26611378 DOI: 10.1002/prca.201500080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
Erythrocytes undergo ineffective erythropoesis, hemolysis, and premature eryptosis in sickle cell disease and thalassemia. Abnormal hemoglobin variants associated with hemoglobinopathy lead to vesiculation, membrane instability, and loss of membrane asymmetry with exposal of phosphatidylserine. This potentiates thrombin generation resulting in activation of the coagulation cascade responsible for subclinical phenotypes. Platelet activation also results in the release of microparticles, which express and transfer functional receptors from platelet membrane, playing key roles in vascular reactivity and activation of intracellular signaling pathways. Over the last decade, proteomics had proven to be an important field of research in studies of blood and blood diseases. Blood cells and its fluidic components have been proven to be easy systems for studying differential expressions of proteins in hematological diseases encompassing hemoglobinopathies, different types of anemias, myeloproliferative disorders, and coagulopathies. Proteomic studies of erythrocytes and platelets reported from several groups have highlighted various factors that intersect the signaling networks in these anucleate systems. In this review, we have elaborated on the current scenario of anucleate blood cell proteomes in normal and diseased individuals and the cross-talk between the two major constituent cell types of circulating blood.
Collapse
Affiliation(s)
- Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Suchismita Halder
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Shilpita Karmakar
- Biophysics and Structural Genomics Division, Saha institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
14
|
Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, Schellen P, Verschueren H, Post E, Koster J, Ylstra B, Ameziane N, Dorsman J, Smit EF, Verheul HM, Noske DP, Reijneveld JC, Nilsson RJA, Tannous BA, Wesseling P, Wurdinger T. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015; 28:666-676. [PMID: 26525104 PMCID: PMC4644263 DOI: 10.1016/j.ccell.2015.09.018] [Citation(s) in RCA: 594] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/02/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based "liquid biopsies".
Collapse
Affiliation(s)
- Myron G Best
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Nik Sol
- Department of Neurology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Irsan Kooi
- Department of Clinical Genetics, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Jihane Tannous
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Bart A Westerman
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - François Rustenburg
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Pepijn Schellen
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; thromboDx B.V., 1098 EA Amsterdam, the Netherlands
| | - Heleen Verschueren
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; thromboDx B.V., 1098 EA Amsterdam, the Netherlands
| | - Edward Post
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; thromboDx B.V., 1098 EA Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Josephine Dorsman
- Department of Clinical Genetics, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - David P Noske
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - R Jonas A Nilsson
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; thromboDx B.V., 1098 EA Amsterdam, the Netherlands; Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Pathology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; thromboDx B.V., 1098 EA Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Fisher S, Witkowska HE. Protein Biomarkers for Detecting Cancer. THE MOLECULAR BASIS OF CANCER 2015:331-346.e5. [DOI: 10.1016/b978-1-4557-4066-6.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Qayyum R, Becker DM, Yanek LR, Faraday N, Vaidya D, Mathias R, Kral BG, Becker LC. Greater collagen-induced platelet aggregation following cyclooxygenase 1 inhibition predicts incident acute coronary syndromes. Clin Transl Sci 2014; 8:17-22. [PMID: 25066685 DOI: 10.1111/cts.12195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Greater ex vivo platelet aggregation to agonists may identify individuals at risk of acute coronary syndromes (ACS). However, increased aggregation to a specific agonist may be masked by inherent variability in other activation pathways. In this study, we inhibited the cyclooxygenase-1 (COX1) pathway with 2-week aspirin therapy and measured residual aggregation to collagen and ADP to determine whether increased aggregation in a non-COX1 pathway is associated with incident ACS. We assessed ex vivo whole blood platelet aggregation in 1,699 healthy individuals with a family history of early-onset coronary artery disease followed for 6±1.2 years. Incident ACS events were observed in 22 subjects. Baseline aggregation was not associated with ACS. After COX1 pathway inhibition, collagen-induced aggregation was significantly greater in participants with ACS compared with those without (29.0 vs. 23.6 ohms, p < 0.001). In Cox proportional hazards models, this association remained significant after adjusting for traditional cardiovascular risk factors (HR = 1.10, 95%CI = 1.06-1.15; p < 0.001). In contrast, ADP-induced aggregation after COX1 inhibition was not associated with ACS. After COX1 pathway inhibition, subjects with greater collagen-induced platelet aggregation demonstrated a significant excess risk of incident ACS. These data suggest that platelet activation related to collagen may play an important role in the risk of ACS.
Collapse
Affiliation(s)
- Rehan Qayyum
- GeneSTAR Research Program, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schubert S, Weyrich AS, Rowley JW. A tour through the transcriptional landscape of platelets. Blood 2014; 124:493-502. [PMID: 24904119 PMCID: PMC4110657 DOI: 10.1182/blood-2014-04-512756] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023] Open
Abstract
The RNA code found within a platelet and alterations of that code continue to shed light onto the mechanistic underpinnings of platelet function and dysfunction. It is now known that features of messenger RNA (mRNA) in platelets mirror those of nucleated cells. This review serves as a tour guide for readers interested in developing a greater understanding of platelet mRNA. The tour provides an in-depth and interactive examination of platelet mRNA, especially in the context of next-generation RNA sequencing. At the end of the expedition, the reader will have a better grasp of the topography of platelet mRNA and how it impacts platelet function in health and disease.
Collapse
Affiliation(s)
| | - Andrew S Weyrich
- The Molecular Medicine Program and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Jesse W Rowley
- The Molecular Medicine Program and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
18
|
Wang X, Zhang B. Integrating genomic, transcriptomic, and interactome data to improve Peptide and protein identification in shotgun proteomics. J Proteome Res 2014; 13:2715-23. [PMID: 24792918 PMCID: PMC4059263 DOI: 10.1021/pr500194t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Mass spectrometry (MS)-based shotgun
proteomics is an effective
technology for global proteome profiling. The ultimate goal is to
assign tandem MS spectra to peptides and subsequently infer proteins
and their abundance. In addition to database searching and protein
assembly algorithms, computational approaches have been developed
to integrate genomic, transcriptomic, and interactome information
to improve peptide and protein identification. Earlier efforts focus
primarily on making databases more comprehensive using publicly available
genomic and transcriptomic data. More recently, with the increasing
affordability of the Next Generation Sequencing (NGS) technologies,
personalized protein databases derived from sample-specific genomic
and transcriptomic data have emerged as an attractive strategy. In
addition, incorporating interactome data not only improves protein
identification but also puts identified proteins into their functional
context and thus facilitates data interpretation. In this paper, we
survey the major integrative bioinformatics approaches that have been
developed during the past decade and discuss their merits and demerits.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Biomedical Informatics, ‡Vanderbilt-Ingram Cancer Center, and §Department of Cancer Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | |
Collapse
|
19
|
Zhu Y, Hultin-Rosenberg L, Forshed J, Branca RMM, Orre LM, Lehtiö J. SpliceVista, a tool for splice variant identification and visualization in shotgun proteomics data. Mol Cell Proteomics 2014; 13:1552-62. [PMID: 24692640 DOI: 10.1074/mcp.m113.031203] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing is a pervasive process in eukaryotic organisms. More than 90% of human genes have alternatively spliced products, and aberrant splicing has been shown to be associated with many diseases. Current methods employed in the detection of splice variants include prediction by clustering of expressed sequence tags, exon microarray, and mRNA sequencing, all methods focusing on RNA-level information. There is a lack of tools for analyzing splice variants at the protein level. Here, we present SpliceVista, a tool for splice variant identification and visualization based on mass spectrometry proteomics data. SpliceVista retrieves gene structure and translated sequences from alternative splicing databases and maps MS-identified peptides to splice variants. The visualization module plots the exon composition of each splice variant and aligns identified peptides with transcript positions. If quantitative mass spectrometry data are used, SpliceVista plots the quantitative patterns for each peptide and provides users with the option to cluster peptides based on their quantitative patterns. SpliceVista can identify splice-variant-specific peptides, providing the possibility for variant-specific analysis. The tool was tested on two experimental datasets (PXD000065 and PXD000134). In A431 cells treated with gefitinib, 2983 splice-variant-specific peptides corresponding to 939 splice variants were identified. Through comparison of splice-variant-centric, protein-centric, and gene-centric quantification, several genes (e.g. EIF4H) were found to have differentially regulated splice variants after gefitinib treatment. The same discrepancy between protein-centric and splice-centric quantification was detected in the other dataset, in which induced pluripotent stem cells were compared with parental fibroblast and human embryotic stem cells. In addition, SpliceVista can be used to visualize novel splice variants inferred from peptide-level evidence. In summary, SpliceVista enables visualization, detection, and differential quantification of protein splice variants that are often missed in current proteomics pipelines.
Collapse
Affiliation(s)
- Yafeng Zhu
- From the ‡Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Lina Hultin-Rosenberg
- From the ‡Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Jenny Forshed
- From the ‡Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Rui M M Branca
- From the ‡Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Lukas M Orre
- From the ‡Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Janne Lehtiö
- From the ‡Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
20
|
Tavares R, de Miranda Scherer N, Pauletti BA, Araújo E, Folador EL, Espindola G, Ferreira CG, Paes Leme AF, de Oliveira PSL, Passetti F. SpliceProt: A protein sequence repository of predicted human splice variants. Proteomics 2014; 14:181-5. [DOI: 10.1002/pmic.201300078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 10/03/2013] [Accepted: 11/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Raphael Tavares
- Bioinformatics Unit; Clinical Research Coordination; Instituto Nacional de Câncer (INCA); Rio de Janeiro Brazil
| | - Nicole de Miranda Scherer
- Bioinformatics Unit; Clinical Research Coordination; Instituto Nacional de Câncer (INCA); Rio de Janeiro Brazil
| | - Bianca Alves Pauletti
- Laboratório de Espectrometria de Massas; Laboratório Nacional de Biociências (LNBio); CNPEM; Campinas Brazil
| | - Elói Araújo
- Faculdade de Computação; Universidade Federal de Mato Grosso do Sul; Campo Grande Brazil
| | - Edson Luiz Folador
- Bioinformatics Unit; Clinical Research Coordination; Instituto Nacional de Câncer (INCA); Rio de Janeiro Brazil
| | - Gabriel Espindola
- Bioinformatics Unit; Clinical Research Coordination; Instituto Nacional de Câncer (INCA); Rio de Janeiro Brazil
| | - Carlos Gil Ferreira
- Clinical Research Coordination; Instituto Nacional de Câncer (INCA); Rio de Janeiro Brazil
| | - Adriana Franco Paes Leme
- Laboratório de Espectrometria de Massas; Laboratório Nacional de Biociências (LNBio); CNPEM; Campinas Brazil
| | | | - Fabio Passetti
- Bioinformatics Unit; Clinical Research Coordination; Instituto Nacional de Câncer (INCA); Rio de Janeiro Brazil
| |
Collapse
|
21
|
Sheynkman GM, Shortreed MR, Frey BL, Smith LM. Discovery and mass spectrometric analysis of novel splice-junction peptides using RNA-Seq. Mol Cell Proteomics 2013; 12:2341-53. [PMID: 23629695 DOI: 10.1074/mcp.o113.028142] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human proteomic databases required for MS peptide identification are frequently updated and carefully curated, yet are still incomplete because it has been challenging to acquire every protein sequence from the diverse assemblage of proteoforms expressed in every tissue and cell type. In particular, alternative splicing has been shown to be a major source of this cell-specific proteomic variation. Many new alternative splice forms have been detected at the transcript level using next generation sequencing methods, especially RNA-Seq, but it is not known how many of these transcripts are being translated. Leveraging the unprecedented capabilities of next generation sequencing methods, we collected RNA-Seq and proteomics data from the same cell population (Jurkat cells) and created a bioinformatics pipeline that builds customized databases for the discovery of novel splice-junction peptides. Eighty million paired-end Illumina reads and ∼500,000 tandem mass spectra were used to identify 12,873 transcripts (19,320 including isoforms) and 6810 proteins. We developed a bioinformatics workflow to retrieve high-confidence, novel splice junction sequences from the RNA data, translate these sequences into the analogous polypeptide sequence, and create a customized splice junction database for MS searching. Based on the RefSeq gene models, we detected 136,123 annotated and 144,818 unannotated transcript junctions. Of those, 24,834 unannotated junctions passed various quality filters (e.g. minimum read depth) and these entries were translated into 33,589 polypeptide sequences and used for database searching. We discovered 57 splice junction peptides not present in the Uniprot-Trembl proteomic database comprising an array of different splicing events, including skipped exons, alternative donors and acceptors, and noncanonical transcriptional start sites. To our knowledge this is the first example of using sample-specific RNA-Seq data to create a splice-junction database and discover new peptides resulting from alternative splicing.
Collapse
Affiliation(s)
- Gloria M Sheynkman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
22
|
Helmy M, Sugiyama N, Tomita M, Ishihama Y. Mass spectrum sequential subtraction speeds up searching large peptide MS/MS spectra datasets against large nucleotide databases for proteogenomics. Genes Cells 2012; 17:633-44. [PMID: 22686349 DOI: 10.1111/j.1365-2443.2012.01615.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/14/2012] [Indexed: 01/18/2023]
Abstract
We have developed a novel bioinformatics method called mass spectrum sequential subtraction (MSSS) to search large peptide spectra datasets produced by liquid chromatography/mass spectrometry (LC-MS/MS) against protein and large-sized nucleotide sequence databases. The main principle in MSSS is to search the peptide spectra set against the protein database, followed by removal of the spectra corresponding to the identified peptides to create a smaller set of the remaining peptide spectra for searching against the nucleotide sequences database. Therefore, we reduce the number of spectra to be searched to limit the peptide search space. Comparing MSSS and conventional search approach using a dataset of 27 LC-MS/MS runs of rice culture cells indicated that MSSS reduced the search queries to 50% and the search time to 75% on average. In addition, MSSS had no effect on the identification false-positive rate (FPR) or the novel peptide sequences identification ability. We used MSSS to analyze another dataset of 34 LC-MS/MS runs, resulting in identifying additional 74 novel peptides. Proteogenomic analysis with these additional peptides yielded 47 new genomic features in 24 rice genes plus 24 intergenic peptides. These results show that the utility of MSSS in searching large databases with large MS/MS datasets for proteogenomics.
Collapse
Affiliation(s)
- Mohamed Helmy
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | | | | | | |
Collapse
|
23
|
Ezkurdia I, del Pozo A, Frankish A, Rodriguez JM, Harrow J, Ashman K, Valencia A, Tress ML. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol Biol Evol 2012; 29:2265-83. [PMID: 22446687 PMCID: PMC3424414 DOI: 10.1093/molbev/mss100] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of “novel” and “putative” protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and strongly suggests that the translation of alternative transcripts may be subject to selective constraints.
Collapse
Affiliation(s)
- Iakes Ezkurdia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Frankish A, Mudge JM, Thomas M, Harrow J. The importance of identifying alternative splicing in vertebrate genome annotation. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012; 2012:bas014. [PMID: 22434846 PMCID: PMC3308168 DOI: 10.1093/database/bas014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While alternative splicing (AS) can potentially expand the functional repertoire of vertebrate genomes, relatively few AS transcripts have been experimentally characterized. We describe our detailed manual annotation of vertebrate genomes, which is generating a publicly available geneset rich in AS. In order to achieve this we have adopted a highly sensitive approach to annotating gene models supported by correctly mapped, canonically spliced transcriptional evidence combined with a highly cautious approach to adding unsupported extensions to models and making decisions on their functional potential. We use information about the predicted functional potential and structural properties of every AS transcript annotated at a protein-coding or non-coding locus to place them into one of eleven subclasses. We describe the incorporation of new sequencing and proteomics technologies into our annotation pipelines, which are used to identify and validate AS. Combining all data sources has led to the production of a rich geneset containing an average of 6.3 AS transcripts for every human multi-exon protein-coding gene. The datasets produced have proved very useful in providing context to studies investigating the functional potential of genes and the effect of variation may have on gene structure and function. Database URL:http://www.ensembl.org/index.html, http://vega.sanger.ac.uk/index.html
Collapse
Affiliation(s)
- Adam Frankish
- Human and Vertebrate Analysis and Annotation Team, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | |
Collapse
|
25
|
[Application of capillary electrophoresis in analysis of disease specific proteins]. Se Pu 2011; 29:298-302. [PMID: 21770237 DOI: 10.3724/sp.j.1123.2011.00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
One of the most urgent things in life science is to find out special proteins related to human diseases. Capillary electrophoresis (CE) shows many advantages in protein analysis, such as high separation efficiency, high speed, low cost, etc. Furthermore, there are many different separation modes and multifarious detectors can be chosen in CE for the analysis of different samples. In this paper, the applications of CE in the analysis of specific proteins, which might associate with some serious diseases, such as tumor, neurodegenerative disease and transfusion transmitted infections, are summarized.
Collapse
|
26
|
Helmy M, Tomita M, Ishihama Y. OryzaPG-DB: rice proteome database based on shotgun proteogenomics. BMC PLANT BIOLOGY 2011; 11:63. [PMID: 21486466 PMCID: PMC3094275 DOI: 10.1186/1471-2229-11-63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 04/12/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND Proteogenomics aims to utilize experimental proteome information for refinement of genome annotation. Since mass spectrometry-based shotgun proteomics approaches provide large-scale peptide sequencing data with high throughput, a data repository for shotgun proteogenomics would represent a valuable source of gene expression evidence at the translational level for genome re-annotation. DESCRIPTION Here, we present OryzaPG-DB, a rice proteome database based on shotgun proteogenomics, which incorporates the genomic features of experimental shotgun proteomics data. This version of the database was created from the results of 27 nanoLC-MS/MS runs on a hybrid ion trap-orbitrap mass spectrometer, which offers high accuracy for analyzing tryptic digests from undifferentiated cultured rice cells. Peptides were identified by searching the product ion spectra against the protein, cDNA, transcript and genome databases from Michigan State University, and were mapped to the rice genome. Approximately 3200 genes were covered by these peptides and 40 of them contained novel genomic features. Users can search, download or navigate the database per chromosome, gene, protein, cDNA or transcript and download the updated annotations in standard GFF3 format, with visualization in PNG format. In addition, the database scheme of OryzaPG was designed to be generic and can be reused to host similar proteogenomic information for other species. OryzaPG is the first proteogenomics-based database of the rice proteome, providing peptide-based expression profiles, together with the corresponding genomic origin, including the annotation of novelty for each peptide. CONCLUSIONS The OryzaPG database was constructed and is freely available at http://oryzapg.iab.keio.ac.jp/.
Collapse
Affiliation(s)
- Mohamed Helmy
- Institute for Advanced Biosciences, Keio University, 403-1 Daihoji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 403-1 Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Yasushi Ishihama
- Institute for Advanced Biosciences, Keio University, 403-1 Daihoji, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Devine DV, Schubert P. Proteomic applications in blood transfusion: working the jigsaw puzzle. Vox Sang 2010; 100:84-91. [DOI: 10.1111/j.1423-0410.2010.01433.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
The utility of mass spectrometry-based proteomic data for validation of novel alternative splice forms reconstructed from RNA-Seq data: a preliminary assessment. BMC Bioinformatics 2010; 11 Suppl 11:S14. [PMID: 21172049 PMCID: PMC3024872 DOI: 10.1186/1471-2105-11-s11-s14] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Most mass spectrometry (MS) based proteomic studies depend on searching acquired tandem mass (MS/MS) spectra against databases of known protein sequences. In these experiments, however, a large number of high quality spectra remain unassigned. These spectra may correspond to novel peptides not present in the database, especially those corresponding to novel alternative splice (AS) forms. Recently, fast and comprehensive profiling of mammalian genomes using deep sequencing (i.e. RNA-Seq) has become possible. MS-based proteomics can potentially be used as an aid for protein-level validation of novel AS events observed in RNA-Seq data. Results In this work, we have used publicly available mouse tissue proteomic and RNA-Seq datasets and have examined the feasibility of using MS data for the identification of novel AS forms by searching MS/MS spectra against translated mRNA sequences derived from RNA-Seq data. A significant correlation between the likelihood of identifying a peptide from MS/MS data and the number of reads in RNA-Seq data for the same gene was observed. Based on in silico experiments, it was also observed that only a fraction of novel AS forms identified from RNA-Seq had the corresponding junction peptide compatible with MS/MS sequencing. The number of novel peptides that were actually identified from MS/MS spectra was substantially lower than the number expected based on in silico analysis. Conclusions The ability to confirm novel AS forms from MS/MS data in the dataset analyzed was found to be quite limited. This can be explained in part by low abundance of many novel transcripts, with the abundance of their corresponding protein products falling below the limit of detection by MS.
Collapse
|
29
|
Hegyi H, Kalmar L, Horvath T, Tompa P. Verification of alternative splicing variants based on domain integrity, truncation length and intrinsic protein disorder. Nucleic Acids Res 2010; 39:1208-19. [PMID: 20972208 PMCID: PMC3045584 DOI: 10.1093/nar/gkq843] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
According to current estimations ∼95% of multi-exonic human protein-coding genes undergo alternative splicing (AS). However, for 4000 human proteins in PDB, only 14 human proteins have structures of at least two alternative isoforms. Surveying these structural isoforms revealed that the maximum insertion accommodated by an isoform of a fully ordered protein domain was 5 amino acids, other instances of domain changes involved intrinsic structural disorder. After collecting 505 minor isoforms of human proteins with evidence for their existence we analyzed their length, protein disorder and exposed hydrophobic surface. We found that strict rules govern the selection of alternative splice variants aimed to preserve the integrity of globular domains: alternative splice sites (i) tend to avoid globular domains or (ii) affect them only marginally or (iii) tend to coincide with a location where the exposed hydrophobic surface is minimal or (iv) the protein is disordered. We also observed an inverse correlation between the domain fraction lost and the full length of the minor isoform containing the domain, possibly indicating a buffering effect for the isoform protein counteracting the domain truncation effect. These observations provide the basis for a prediction method (currently under development) to predict the viability of splice variants.
Collapse
Affiliation(s)
- Hedi Hegyi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, PO Box 7, 1518 Budapest, Hungary.
| | | | | | | |
Collapse
|
30
|
Blakeley P, Siepen JA, Lawless C, Hubbard SJ. Investigating protein isoforms via proteomics: a feasibility study. Proteomics 2010; 10:1127-40. [PMID: 20077415 DOI: 10.1002/pmic.200900445] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alternative splicing (AS) and processing of pre-messenger RNAs explains the discrepancy between the number of genes and proteome complexity in multicellular eukaryotic organisms. However, relatively few alternative protein isoforms have been experimentally identified, particularly at the protein level. In this study, we assess the ability of proteomics to inform on differently spliced protein isoforms in human and four other model eukaryotes. The number of Ensembl-annotated genes for which proteomic data exists that informs on AS exceeds 33% of the alternately spliced genes in the human and worm genomes. Examining AS in chicken via proteomics for the first time, we find support for over 600 AS genes. However, although peptide identifications support only a small fraction of alternative protein isoforms that are annotated in Ensembl, many more variants are amenable to proteomic identification. There remains a sizeable gap between these existing identifications (10-52% of AS genes) and those that are theoretically feasible (90-99%). We also compare annotations between Swiss-Prot and Ensembl, recommending use of both to maximize coverage of AS. We propose that targeted proteomic experiments using selected reactions and standards are essential to uncover further alternative isoforms and discuss the issues surrounding these strategies.
Collapse
Affiliation(s)
- Paul Blakeley
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|