1
|
Sutinen A, Jones NC, Hoffmann SV, Ruskamo S, Kursula P. Conformational analysis of membrane-proximal segments of GDAP1 in a lipidic environment using synchrotron radiation suggests a mode of assembly at the mitochondrial outer membrane. Biophys Chem 2023; 303:107113. [PMID: 37778197 DOI: 10.1016/j.bpc.2023.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The mitochondrial outer membrane creates a diffusion barrier between the cytosol and the mitochondrial intermembrane space, allowing the exchange of metabolic products, important for efficient mitochondrial function in neurons. The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial outer membrane protein with a critical role in mitochondrial dynamics and metabolic balance in neurons. Missense mutations in the GDAP1 gene are linked to the most common human peripheral neuropathy, Charcot-Marie-Tooth disease (CMT). GDAP1 is a distant member of the glutathione-S-transferase (GST) superfamily, with unknown enzymatic properties or functions at the molecular level. The structure of the cytosol-facing GST-like domain has been described, but there is no consensus on how the protein interacts with the mitochondrial outer membrane. Here, we describe a model for GDAP1 assembly on the membrane using peptides vicinal to the GDAP1 transmembrane domain. We used oriented circular dichroism spectroscopy (OCD) with synchrotron radiation to study the secondary structure and orientation of GDAP1 segments at the outer and inner surfaces of the outer mitochondrial membrane. These experiments were complemented by small-angle X-ray scattering, providing the first experimental structural models for full-length human GDAP1. The results indicate that GDAP1 is bound into the membrane via a single transmembrane helix, flanked by two peripheral helices interacting with the outer and inner leaflets of the mitochondrial outer membrane in different orientations. Impairment of these interactions could be a mechanism for CMT in the case of missense mutations affecting these segments instead of the GST-like domain.
Collapse
Affiliation(s)
- Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland; Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Cieślik M, Zawadzka A, Czapski GA, Wilkaniec A, Adamczyk A. Developmental Stage-Dependent Changes in Mitochondrial Function in the Brain of Offspring Following Prenatal Maternal Immune Activation. Int J Mol Sci 2023; 24:ijms24087243. [PMID: 37108406 PMCID: PMC10138707 DOI: 10.3390/ijms24087243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Maternal immune activation (MIA) is an important risk factor for neurodevelopmental disorders such as autism. The aim of the current study was to investigate the development-dependent changes in the mitochondrial function of MIA-exposed offspring, which may contribute to autism-like deficits. MIA was evoked by the single intraperitoneal administration of lipopolysaccharide to pregnant rats at gestation day 9.5, and several aspects of mitochondrial function in fetuses and in the brains of seven-day-old pups and adolescent offspring were analyzed along with oxidative stress parameters measurement. It was found that MIA significantly increased the activity of NADPH oxidase (NOX), an enzyme generating reactive oxygen species (ROS) in the fetuses and in the brain of seven-day-old pups, but not in the adolescent offspring. Although a lower mitochondrial membrane potential accompanied by a decreased ATP level was already observed in the fetuses and in the brain of seven-day-old pups, persistent alterations of ROS, mitochondrial membrane depolarization, and lower ATP generation with concomitant electron transport chain complexes downregulation were observed only in the adolescent offspring. We suggest that ROS observed in infancy are most likely of a NOX activity origin, whereas in adolescence, ROS are produced by damaged mitochondria. The accumulation of dysfunctional mitochondria leads to the intense release of free radicals that trigger oxidative stress and neuroinflammation, resulting in an interlinked vicious cascade.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Overduin M, Kervin TA, Klarenbach Z, Adra TRC, Bhat RK. Comprehensive classification of proteins based on structures that engage lipids by COMPOSEL. Biophys Chem 2023; 295:106971. [PMID: 36801589 DOI: 10.1016/j.bpc.2023.106971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Structures can now be predicted for any protein using programs like AlphaFold and Rosetta, which rely on a foundation of experimentally determined structures of architecturally diverse proteins. The accuracy of such artificial intelligence and machine learning (AI/ML) approaches benefits from the specification of restraints which assist in navigating the universe of folds to converge on models most representative of a given protein's physiological structure. This is especially pertinent for membrane proteins, with structures and functions that depend on their presence in lipid bilayers. Structures of proteins in their membrane environments could conceivably be predicted from AI/ML approaches with user-specificized parameters that describe each element of the architecture of a membrane protein accompanied by its lipid environment. We propose the Classification Of Membrane Proteins based On Structures Engaging Lipids (COMPOSEL), which builds on existing nomenclature types for monotopic, bitopic, polytopic and peripheral membrane proteins as well as lipids. Functional and regulatory elements are also defined in the scripts, as shown with membrane fusing synaptotagmins, multidomain PDZD8 and Protrudin proteins that recognize phosphoinositide (PI) lipids, the intrinsically disordered MARCKS protein, caveolins, the β barrel assembly machine (BAM), an adhesion G-protein coupled receptor (aGPCR) and two lipid modifying enzymes - diacylglycerol kinase DGKε and fatty aldehyde dehydrogenase FALDH. This demonstrates how COMPOSEL communicates lipid interactivity as well as signaling mechanisms and binding of metabolites, drug molecules, polypeptides or nucleic acids to describe the operations of any protein. Moreover COMPOSEL can be scaled to express how genomes encode membrane structures and how our organs are infiltrated by pathogens such as SARS-CoV-2.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Trixie Rae C Adra
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Rakesh K Bhat
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
STAT6 in mitochondrial outer membrane impairs mitochondrial fusion by inhibiting MFN2 dimerization. iScience 2022; 25:104923. [PMID: 36065189 PMCID: PMC9440285 DOI: 10.1016/j.isci.2022.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Although it is reported that mitochondria-localized nuclear transcription factors (TFs) regulate mitochondrial processes such as apoptosis and mitochondrial transcription/respiration, the functions and mechanisms of mitochondrial dynamics regulated by mitochondria-localized nuclear TFs are yet to be fully characterized. Here, we identify STAT6 as a mitochondrial protein that is localized in the outer membrane of mitochondria (OMM). STAT6 in OMM inhibits mitochondrial fusion by blocking MFN2 dimerization. This implies that STAT6 has a critical role in mitochondrial dynamics. Moreover, mitochondrial accumulation of STAT6 in response to hypoxic conditions reveals that STAT6 is a regulator of mitochondrial processes including fusion/fission mechanisms. STAT6 has mitochondrial-targeting sequences and anchoring transmembrane segments STAT6 in OMM attenuates mitochondrial fusion by blocking MFN2 dimerization Hypoxia-induced STAT6 mitochondrial accumulation inhibits tumorigenesis
Collapse
|
5
|
GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton. Commun Biol 2022; 5:541. [PMID: 35662277 PMCID: PMC9166793 DOI: 10.1038/s42003-022-03487-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca2+ homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca2+ levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology. GDAP1 mutations effect Charcot-Marie-Tooth disease 4A by inhibiting the pyruvate dehydrogenase complex and restricting mitochondrial localization of dynamin-related protein 1 through alterations of the actin cytoskeleton.
Collapse
|
6
|
Sutinen A, Nguyen GTT, Raasakka A, Muruganandam G, Loris R, Ylikallio E, Tyynismaa H, Bartesaghi L, Ruskamo S, Kursula P. Structural insights into Charcot-Marie-Tooth disease-linked mutations in human GDAP1. FEBS Open Bio 2022; 12:1306-1324. [PMID: 35509130 PMCID: PMC9249340 DOI: 10.1002/2211-5463.13422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral polyneuropathy in humans, and its different subtypes are linked to mutations in dozens of different genes. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause two types of CMT, demyelinating CMT4A and axonal CMT2K. The GDAP1-linked CMT genotypes are mainly missense point mutations. Despite clinical profiling and in vivo studies on the mutations, the etiology of GDAP1-linked CMT is poorly understood. Here, we describe the biochemical and structural properties of the Finnish founding CMT2K mutation H123R as well as CMT2K-linked R120W, both of which are autosomal dominant mutations. The disease variant proteins retain close to normal structure and solution behaviour, but both present a significant decrease in thermal stability. Using GDAP1 variant crystal structures, we identify a side chain interaction network between helices ⍺3, ⍺6, and ⍺7, which is affected by CMT mutations, as well as a hinge in the long helix ⍺6, which is linked to structural flexibility. Structural analysis of GDAP1 indicates that CMT may arise from disruption of specific intra- and intermolecular interaction networks, leading to alterations in GDAP1 structure and stability, and eventually, insufficient motor and sensory neuron function.
Collapse
Affiliation(s)
- Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Giang Thi Tuyet Nguyen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Norway
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland.,Clinical Neurosciences, Helsinki University Hospital, Neurology, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | | | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
7
|
Miressi F, Benslimane N, Favreau F, Rassat M, Richard L, Bourthoumieu S, Laroche C, Magy L, Magdelaine C, Sturtz F, Lia AS, Faye PA. GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of hiPSCs-Derived Motor Neurons. Biomedicines 2021; 9:biomedicines9080945. [PMID: 34440148 PMCID: PMC8393985 DOI: 10.3390/biomedicines9080945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) gene have been associated with demyelinating and axonal forms of Charcot-Marie-Tooth (CMT) disease, the most frequent hereditary peripheral neuropathy in humans. Previous studies reported the prevalent GDAP1 expression in neural tissues and cells, from animal models. Here, we described the first GDAP1 functional study on human induced-pluripotent stem cells (hiPSCs)-derived motor neurons, obtained from normal subjects and from a CMT2H patient, carrying the GDAP1 homozygous c.581C>G (p.Ser194*) mutation. At mRNA level, we observed that, in normal subjects, GDAP1 is mainly expressed in motor neurons, while it is drastically reduced in the patient’s cells containing a premature termination codon (PTC), probably degraded by the nonsense-mediated mRNA decay (NMD) system. Morphological and functional investigations revealed in the CMT patient’s motor neurons a decrease of cell viability associated to lipid dysfunction and oxidative stress development. Mitochondrion is a key organelle in oxidative stress generation, but it is also mainly involved in energetic metabolism. Thus, in the CMT patient’s motor neurons, mitochondrial cristae defects were observed, even if no deficit in ATP production emerged. This cellular model of hiPSCs-derived motor neurons underlines the role of mitochondrion and oxidative stress in CMT disease and paves the way for new treatment evaluation.
Collapse
Affiliation(s)
- Federica Miressi
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- Correspondence:
| | - Nesrine Benslimane
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Marion Rassat
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Laurence Richard
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Sylvie Bourthoumieu
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Cytogénétique, F-87000 Limoges, France
| | - Cécile Laroche
- CHU Limoges, Service de Pédiatrie, F-87000 Limoges, France;
- CHU Limoges, Centre de Compétence des Maladies Héréditaires du Métabolisme, F-87000 Limoges, France
| | - Laurent Magy
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Corinne Magdelaine
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Franck Sturtz
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
- CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| |
Collapse
|
8
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
9
|
Navaratnarajah T, Anand R, Reichert AS, Distelmaier F. The relevance of mitochondrial morphology for human disease. Int J Biochem Cell Biol 2021; 134:105951. [PMID: 33610749 DOI: 10.1016/j.biocel.2021.105951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Mitochondria are highly dynamic organelles, which undergo frequent structural and metabolic changes to fulfil cellular demands. To facilitate these processes several proteins are required to regulate mitochondrial shape and interorganellar communication. These proteins include the classical mitochondrial fusion (MFN1, MFN2, and OPA1) and fission proteins (DRP1, MFF, FIS1, etc.) as well as several other proteins that are directly or indirectly involved in these processes (e.g. YME1L, OMA1, INF2, GDAP1, MIC13, etc.). During the last two decades, inherited genetic defects in mitochondrial fusion and fission proteins have emerged as an important class of neurodegenerative human diseases with variable onset ranging from infancy to adulthood. So far, no causal treatment strategies are available for these disorders. In this review, we provide an overview about the current knowledge on mitochondrial dynamics under physiological conditions. Moreover, we describe human diseases, which are associated with genetic defects in these pathways.
Collapse
Affiliation(s)
- Tharsini Navaratnarajah
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Nguyen GTT, Sutinen A, Raasakka A, Muruganandam G, Loris R, Kursula P. Structure of the Complete Dimeric Human GDAP1 Core Domain Provides Insights into Ligand Binding and Clustering of Disease Mutations. Front Mol Biosci 2021; 7:631232. [PMID: 33585569 PMCID: PMC7873046 DOI: 10.3389/fmolb.2020.631232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders. Despite the common involvement of ganglioside-induced differentiation-associated protein 1 (GDAP1) in CMT, the protein structure and function, as well as the pathogenic mechanisms, remain unclear. We determined the crystal structure of the complete human GDAP1 core domain, which shows a novel mode of dimerization within the glutathione S-transferase (GST) family. The long GDAP1-specific insertion forms an extended helix and a flexible loop. GDAP1 is catalytically inactive toward classical GST substrates. Through metabolite screening, we identified a ligand for GDAP1, the fatty acid hexadecanedioic acid, which is relevant for mitochondrial membrane permeability and Ca2+ homeostasis. The fatty acid binds to a pocket next to a CMT-linked residue cluster, increases protein stability, and induces changes in protein conformation and oligomerization. The closest homologue of GDAP1, GDAP1L1, is monomeric in its full-length form. Our results highlight the uniqueness of GDAP1 within the GST family and point toward allosteric mechanisms in regulating GDAP1 oligomeric state and function.
Collapse
Affiliation(s)
- Giang Thi Tuyet Nguyen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Googins MR, Woghiren-Afegbua AO, Calderon M, St. Croix CM, Kiselyov KI, VanDemark AP. Structural and functional divergence of GDAP1 from the glutathione S-transferase superfamily. FASEB J 2020; 34:7192-7207. [PMID: 32274853 PMCID: PMC9394736 DOI: 10.1096/fj.202000110r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 11/11/2022]
Abstract
Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) alter mitochondrial morphology and result in several subtypes of the inherited peripheral neuropathy Charcot-Marie-Tooth disease; however, the mechanism by which GDAP1 functions has remained elusive. GDAP1 contains primary sequence homology to the GST superfamily; however, the question of whether GDAP1 is an active GST has not been clearly resolved. Here, we present biochemical evidence, suggesting that GDAP1 has lost the ability to bind glutathione without a loss of substrate binding activity. We have revealed that the α-loop, located within the H-site motif is the primary determinant for substrate binding. Using structural data of GDAP1, we have found that critical residues and configurations in the G-site which canonically interact with glutathione are altered in GDAP1, rendering it incapable of binding glutathione. Last, we have found that the overexpression of GDAP1 in HeLa cells results in a mitochondrial phenotype which is distinct from oxidative stress-induced mitochondrial fragmentation. This phenotype is dependent on the presence of the transmembrane domain, as well as a unique hydrophobic domain that is not found in canonical GSTs. Together, we data point toward a non-enzymatic role for GDAP1, such as a sensor or receptor.
Collapse
Affiliation(s)
- Matthew R. Googins
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michael Calderon
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kirill I. Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew P. VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Theocharopoulou G. The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases. AIMS Neurosci 2020; 7:43-65. [PMID: 32455165 PMCID: PMC7242057 DOI: 10.3934/neuroscience.2020004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Orderly mitochondrial life cycle, plays a key role in the pathology of neurodegenerative diseases. Mitochondria are ubiquitous in neurons as they respond to an ever-changing demand for energy supply. Mitochondria constantly change in shape and location, feature of their dynamic nature, which facilitates a quality control mechanism. Biological studies in mitochondria dynamics are unveiling the mechanisms of fission and fusion, which essentially arrange morphology and motility of these organelles. Control of mitochondrial network homeostasis is a critical factor for the proper function of neurons. Disease-related genes have been reported to be implicated in mitochondrial dysfunction. Increasing evidence implicate mitochondrial perturbation in neuronal diseases, such as AD, PD, HD, and ALS. The intricacy involved in neurodegenerative diseases and the dynamic nature of mitochondria point to the idea that, despite progress toward detecting the biology underlying mitochondrial disorders, its link to these diseases is difficult to be identified in the laboratory. Considering the need to model signaling pathways, both in spatial and temporal level, there is a challenge to use a multiscale modeling framework, which is essential for understanding the dynamics of a complex biological system. The use of computational models in order to represent both a qualitative and a quantitative structure of mitochondrial homeostasis, allows to perform simulation experiments so as to monitor the conformational changes, as well as the intersection of form and function.
Collapse
|
13
|
Rzepnikowska W, Kaminska J, Kabzińska D, Kochański A. Pathogenic Effect of GDAP1 Gene Mutations in a Yeast Model. Genes (Basel) 2020; 11:genes11030310. [PMID: 32183277 PMCID: PMC7140815 DOI: 10.3390/genes11030310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
The question of whether a newly identified sequence variant is truly a causative mutation is a central problem of modern clinical genetics. In the current era of massive sequencing, there is an urgent need to develop new tools for assessing the pathogenic effect of new sequence variants. In Charcot-Marie-Tooth disorders (CMT) with their extreme genetic heterogeneity and relatively homogenous clinical presentation, addressing the pathogenic effect of rare sequence variants within 80 CMT genes is extremely challenging. The presence of multiple rare sequence variants within a single CMT-affected patient makes selection for the strongest one, the truly causative mutation, a challenging issue. In the present study we propose a new yeast-based model to evaluate the pathogenic effect of rare sequence variants found within the one of the CMT-associated genes, GDAP1. In our approach, the wild-type and pathogenic variants of human GDAP1 gene were expressed in yeast. Then, a growth rate and mitochondrial morphology and function of GDAP1-expressing strains were studied. Also, the mutant GDAP1 proteins localization and functionality were assessed in yeast. We have shown, that GDAP1 was not only stably expressed but also functional in yeast cell, as it influenced morphology and function of mitochondria and altered the growth of a mutant yeast strain. What is more, the various GDAP1 pathogenic sequence variants caused the specific for them effect in the tests we performed. Thus, the proposed model is suitable for validating the pathogenic effect of known GDAP1 mutations and may be used for testing of unknown sequence variants found in CMT patients.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.)
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.)
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.)
- Correspondence: ; Tel.: +48-22-60-86-526
| |
Collapse
|
14
|
Eijkenboom I, Vanoevelen JM, Hoeijmakers JG, Wijnen I, Gerards M, Faber CG, Smeets HJ. A zebrafish model to study small-fiber neuropathy reveals a potential role for GDAP1. Mitochondrion 2019; 47:273-281. [DOI: 10.1016/j.mito.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 01/10/2023]
|
15
|
Costello JL, Passmore JB, Islinger M, Schrader M. Multi-localized Proteins: The Peroxisome-Mitochondria Connection. Subcell Biochem 2019; 89:383-415. [PMID: 30378033 DOI: 10.1007/978-981-13-2233-4_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are dynamic, multifunctional organelles that play pivotal cooperative roles in the metabolism of cellular lipids and reactive oxygen species. Their functional interplay, the "peroxisome-mitochondria connection", also includes cooperation in anti-viral signalling and defence, as well as coordinated biogenesis by sharing key division proteins. In this review, we focus on multi-localised proteins which are shared by peroxisomes and mitochondria in mammals. We first outline the targeting and sharing of matrix proteins which are involved in metabolic cooperation. Next, we discuss shared components of peroxisomal and mitochondrial dynamics and division, and we present novel insights into the dual targeting of tail-anchored membrane proteins. Finally, we provide an overview of what is currently known about the role of shared membrane proteins in disease. What emerges is that sharing of proteins between these two organelles plays a key role in their cooperative functions which, based on new findings, may be more extensive than originally envisaged. Gaining a better insight into organelle interplay and the targeting of shared proteins is pivotal to understanding how organelle cooperation contributes to human health and disease.
Collapse
Affiliation(s)
| | | | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | | |
Collapse
|
16
|
Novel GDAP1 Mutation in a Vietnamese Family with Charcot-Marie-Tooth Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7132494. [PMID: 31179332 PMCID: PMC6507255 DOI: 10.1155/2019/7132494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 04/14/2019] [Indexed: 01/09/2023]
Abstract
Background Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth (CMT) disease and over 80 different mutations have been identified so far. This study analyzed the clinical and genetic characteristics of a Vietnamese CMT family that was affected by a novel GDAP1 mutation. Methods We present three children of a family with progressive weakness, mild sensory loss, and absent tendon reflexes. Electrodiagnostic analyses displayed an axonal type of neuropathy in affected patients. Sequencing of GDAP1 gene was requested for all members of the family. Results All affected individuals manifested identical clinical symptoms of motor and sensory impairments within the first three years of life, and nerve conduction study indicated the axonal degeneration. A homozygous GDAP1 variant (c.667_671dup) was found in the three affected children as recessive inheritance pattern. The mutation leads to a premature termination codon that shortens GDAP1 protein (p.Gln224Hisfs∗37). Further testing showed heterozygous c.667_671dup variant in the parents. Discussion Our study expands the mutational spectrum of GDAP1-related CMT disease with the new and unreported GDAP1 variant. Alterations in GDAP1 gene should be evaluated as CMT causing variants in the Vietnamese population, predominantly axonal form of neuropathy in CMT disease.
Collapse
|
17
|
Calcium Deregulation and Mitochondrial Bioenergetics in GDAP1-Related CMT Disease. Int J Mol Sci 2019; 20:ijms20020403. [PMID: 30669311 PMCID: PMC6359725 DOI: 10.3390/ijms20020403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/17/2022] Open
Abstract
The pathology of Charcot-Marie-Tooth (CMT), a disease arising from mutations in different genes, has been associated with an impairment of mitochondrial dynamics and axonal biology of mitochondria. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause several forms of CMT neuropathy, but the pathogenic mechanisms involved remain unclear. GDAP1 is an outer mitochondrial membrane protein highly expressed in neurons. It has been proposed to play a role in different aspects of mitochondrial physiology, including mitochondrial dynamics, oxidative stress processes, and mitochondrial transport along the axons. Disruption of the mitochondrial network in a neuroblastoma model of GDAP1-related CMT has been shown to decrease Ca2+ entry through the store-operated calcium entry (SOCE), which caused a failure in stimulation of mitochondrial respiration. In this review, we summarize the different functions proposed for GDAP1 and focus on the consequences for Ca2+ homeostasis and mitochondrial energy production linked to CMT disease caused by different GDAP1 mutations.
Collapse
|
18
|
Mitochondrial Dynamics in Stem Cells and Differentiation. Int J Mol Sci 2018; 19:ijms19123893. [PMID: 30563106 PMCID: PMC6321186 DOI: 10.3390/ijms19123893] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are highly dynamic organelles that continuously change their shape. Their main function is adenosine triphosphate (ATP) production; however, they are additionally involved in a variety of cellular phenomena, such as apoptosis, cell cycle, proliferation, differentiation, reprogramming, and aging. The change in mitochondrial morphology is closely related to the functionality of mitochondria. Normal mitochondrial dynamics are critical for cellular function, embryonic development, and tissue formation. Thus, defects in proteins involved in mitochondrial dynamics that control mitochondrial fusion and fission can affect cellular differentiation, proliferation, cellular reprogramming, and aging. Here, we review the processes and proteins involved in mitochondrial dynamics and their various associated cellular phenomena.
Collapse
|
19
|
Ali S, McStay GP. Regulation of Mitochondrial Dynamics by Proteolytic Processing and Protein Turnover. Antioxidants (Basel) 2018; 7:antiox7010015. [PMID: 29342083 PMCID: PMC5789325 DOI: 10.3390/antiox7010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial network is a dynamic organization within eukaryotic cells that participates in a variety of essential cellular processes, such as adenosine triphosphate (ATP) synthesis, central metabolism, apoptosis and inflammation. The mitochondrial network is balanced between rates of fusion and fission that respond to pathophysiologic signals to coordinate appropriate mitochondrial processes. Mitochondrial fusion and fission are regulated by proteins that either reside in or translocate to the inner or outer mitochondrial membranes or are soluble in the inter-membrane space. Mitochondrial fission and fusion are performed by guanosine triphosphatases (GTPases) on the outer and inner mitochondrial membranes with the assistance of other mitochondrial proteins. Due to the essential nature of mitochondrial function for cellular homeostasis, regulation of mitochondrial dynamics is under strict control. Some of the mechanisms used to regulate the function of these proteins are post-translational proteolysis and/or turnover, and this review will discuss these mechanisms required for correct mitochondrial network organization.
Collapse
Affiliation(s)
- Sumaira Ali
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA.
| | - Gavin P McStay
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA.
| |
Collapse
|
20
|
Yoshimura A, Yuan JH, Hashiguchi A, Hiramatsu Y, Ando M, Higuchi Y, Nakamura T, Okamoto Y, Matsumura K, Hamano T, Sawaura N, Shimatani Y, Kumada S, Okumura Y, Miyahara J, Yamaguchi Y, Kitamura S, Haginoya K, Mitsui J, Ishiura H, Tsuji S, Takashima H. Clinical and mutational spectrum of Japanese patients with Charcot-Marie-Tooth disease caused by GDAP1 variants. Clin Genet 2017; 92:274-280. [PMID: 28244113 DOI: 10.1111/cge.13002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/09/2017] [Accepted: 02/23/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mutations in GDAP1 are responsible for heterogeneous clinical and electrophysiological phenotypes of Charcot-Marie-Tooth disease (CMT), with autosomal dominant or recessive inheritance pattern. The aim of this study is to identify the clinical and mutational spectrum of CMT patients with GDAP1 variants in Japan. MATERIALS AND METHODS From April 2007 to October 2014, using three state-of-art technologies, we conducted gene panel sequencing in a cohort of 1,030 patients with inherited peripheral neuropathies (IPNs), and 398 mutation-negative cases were further analyzed with whole-exome sequencing. RESULTS We identified GDAP1 variants from 10 patients clinically diagnosed with CMT. The most frequent recessive variant in our cohort (5/10), c.740C>T (p.A247V), was verified to be associated with a founder event. We also detected three novel likely pathogenic variants: c.928C>T (p.R310W) and c.546delA (p.E183Kfs*23) in Case 2 and c.376G>A (p.E126K) in Case 8. Nerve conduction study or sural nerve biopsy of all 10 patients indicated axonal type peripheral neuropathy. CONCLUSION We identified GDAP1 variants in approximately 1% of our cohort with IPNs, and established a founder mutation in half of these patients. Our study originally described the mutational spectrum and clinical features of GDAP1-related CMT patients in Japan.
Collapse
Affiliation(s)
- A Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - J-H Yuan
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - A Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Y Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - M Ando
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Y Higuchi
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - T Nakamura
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Y Okamoto
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - K Matsumura
- Department of Neurology, Teikyo University, Tokyo, Japan
| | - T Hamano
- Department of Neurology, Kansai Electric Power Hospital, Osaka, Japan
| | - N Sawaura
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Y Shimatani
- Department of Clinical Neuroscience, Tokushima University Graduate School, Tokushima, Japan
| | - S Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Y Okumura
- Department of Pediatric Neurology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - J Miyahara
- Department of Neurology, Tominaga Hospital, Osaka, Japan
| | - Y Yamaguchi
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - S Kitamura
- Department of Neurology, Konan Hospital, Hyogo, Japan
| | - K Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Miyagi, Japan
| | - J Mitsui
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - H Ishiura
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - S Tsuji
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - H Takashima
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
21
|
González-Sánchez P, Pla-Martín D, Martínez-Valero P, Rueda CB, Calpena E, Del Arco A, Palau F, Satrústegui J. CMT-linked loss-of-function mutations in GDAP1 impair store-operated Ca 2+ entry-stimulated respiration. Sci Rep 2017; 7:42993. [PMID: 28220846 PMCID: PMC5318958 DOI: 10.1038/srep42993] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
GDAP1 is an outer mitochondrial membrane protein involved in Charcot-Marie-Tooth (CMT) disease. Lack of GDAP1 gives rise to altered mitochondrial networks and endoplasmic reticulum (ER)-mitochondrial interactions resulting in a decreased ER-Ca2+ levels along with a defect on store-operated calcium entry (SOCE) related to a misallocation of mitochondria to subplasmalemmal sites. The defect on SOCE is mimicked by MCU silencing or mitochondrial depolarization, which prevent mitochondrial calcium uptake. Ca2+ release from de ER and Ca2+ inflow through SOCE in neuroblastoma cells result in a Ca2+-dependent upregulation of respiration which is blunted in GDAP1 silenced cells. Reduced SOCE in cells with CMT recessive missense mutations in the α-loop of GDAP1, but not dominant mutations, was associated with smaller SOCE-stimulated respiration. These cases of GDAP1 deficiency also resulted in a decreased ER-Ca2+ levels which may have pathological implications. The results suggest that CMT neurons may be under energetic constraints upon stimulation by Ca2+ mobilization agonists and point to a potential role of perturbed mitochondria-ER interaction related to energy metabolism in forms of CMT caused by some of the recessive or null mutations of GDAP1.
Collapse
Affiliation(s)
- Paloma González-Sánchez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain
| | - David Pla-Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Paula Martínez-Valero
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain
| | - Carlos B Rueda
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain
| | - Eduardo Calpena
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Araceli Del Arco
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain.,Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo, 45071, Spain
| | - Francesc Palau
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain.,Institut de Recerca Sant Joan de Déu and Hospital Sant Joan de Déu, Barcelona 08950, Spain.,Pediatrics Division, University of Barcelona School of Medicine, Barcelona, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, Madrid, 28040, Spain
| |
Collapse
|
22
|
Huber N, Bieniossek C, Wagner KM, Elsässer HP, Suter U, Berger I, Niemann A. Glutathione-conjugating and membrane-remodeling activity of GDAP1 relies on amphipathic C-terminal domain. Sci Rep 2016; 6:36930. [PMID: 27841286 PMCID: PMC5107993 DOI: 10.1038/srep36930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Abstract
Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) cause severe peripheral motor and sensory neuropathies called Charcot-Marie-Tooth disease. GDAP1 expression induces fission of mitochondria and peroxisomes by a currently elusive mechanism, while disease causing mutations in GDAP1 impede the protein's role in mitochondrial dynamics. In silico analysis reveals sequence similarities of GDAP1 to glutathione S-transferases (GSTs). However, a proof of GST activity and its possible impact on membrane dynamics are lacking to date. Using recombinant protein, we demonstrate for the first time theta-class-like GST activity for GDAP1, and it's activity being regulated by the C-terminal hydrophobic domain 1 (HD1) of GDAP1 in an autoinhibitory manner. Moreover, we show that the HD1 amphipathic pattern is required to induce membrane dynamics by GDAP1. As both, fission and GST activities of GDAP1, are critically dependent on HD1, we propose that GDAP1 undergoes a molecular switch, turning from a pro-fission active to an auto-inhibited inactive conformation.
Collapse
Affiliation(s)
- Nina Huber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Bieniossek
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Konstanze Marion Wagner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Hans-Peter Elsässer
- Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, 35033 Marburg, Germany
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
- School of Biochemistry, Bristol University, Bristol BS8 1TD, United Kingdom
| | - Axel Niemann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
23
|
Shigemitsu S, Cao W, Terada T, Shimizu K. Development of a prediction system for tail-anchored proteins. BMC Bioinformatics 2016; 17:378. [PMID: 27634135 PMCID: PMC5025589 DOI: 10.1186/s12859-016-1202-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND "Tail-anchored (TA) proteins" is a collective term for transmembrane proteins with a C-terminal transmembrane domain (TMD) and without an N-terminal signal sequence. TA proteins account for approximately 3-5 % of all transmembrane proteins that mediate membrane fusion, regulation of apoptosis, and vesicular transport. The combined use of TMD and signal sequence prediction tools is typically required to predict TA proteins. RESULTS Here we developed a prediction system named TAPPM that predicted TA proteins solely from target amino acid sequences according to the knowledge of the sequence features of TMDs and the peripheral regions of TA proteins. Manually curated TA proteins were collected from published literature. We constructed hidden markov models of TA proteins as well as three different types of transmembrane proteins with similar structures and compared their likelihoods as TA proteins. CONCLUSIONS Using the HMM models, we achieved high prediction accuracy; area under the receiver operator curve values reaching 0.963. A command line tool written in Python is available at https://github.com/davecao/tappm_cli .
Collapse
Affiliation(s)
- Shunsuke Shigemitsu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wei Cao
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Tohru Terada
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
24
|
Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnauné-Pelloquin L, Davezac N, Mils V, Miquel MC, Rojo M, Belenguer P. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 2015; 90:3-19. [PMID: 26494254 DOI: 10.1016/j.nbd.2015.10.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/16/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are dynamic organelles that continually move, fuse and divide. The dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs, keeps mitochondria in good health by restoring or removing damaged organelles or precipitates cells in apoptosis in cases of severe defects. Mitochondrial fusion and fission are essential in mammals and their disturbances are associated with several diseases. However, while mitochondrial fusion/fission dynamics, and the proteins that control these processes, are ubiquitous, associated diseases are primarily neurological disorders. Accordingly, inactivation of the main actors of mitochondrial fusion/fission dynamics is associated with defects in neuronal development, plasticity and functioning, both ex vivo and in vivo. Here, we present the central actors of mitochondrial fusion and fission and review the role of mitochondrial dynamics in neuronal physiology and pathophysiology. Particular emphasis is placed on the three main actors of these processes i.e. DRP1,MFN1-2, and OPA1 as well as on GDAP1, a protein of the mitochondrial outer membrane preferentially expressed in neurons. This article is part of a Special Issue entitled: Mitochondria & Brain.
Collapse
Affiliation(s)
- A M Bertholet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - T Delerue
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - A M Millet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M F Moulis
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - C David
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France
| | - M Daloyau
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - L Arnauné-Pelloquin
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - N Davezac
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - V Mils
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M C Miquel
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M Rojo
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France.
| | - P Belenguer
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
25
|
Barneo-Muñoz M, Juárez P, Civera-Tregón A, Yndriago L, Pla-Martin D, Zenker J, Cuevas-Martín C, Estela A, Sánchez-Aragó M, Forteza-Vila J, Cuezva JM, Chrast R, Palau F. Lack of GDAP1 induces neuronal calcium and mitochondrial defects in a knockout mouse model of charcot-marie-tooth neuropathy. PLoS Genet 2015; 11:e1005115. [PMID: 25860513 PMCID: PMC4393229 DOI: 10.1371/journal.pgen.1005115] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.
Collapse
Affiliation(s)
- Manuela Barneo-Muñoz
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - Paula Juárez
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - Azahara Civera-Tregón
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Laura Yndriago
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - David Pla-Martin
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Carmen Cuevas-Martín
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Anna Estela
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - María Sánchez-Aragó
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jerónimo Forteza-Vila
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Instituto Valenciano de Patología, Catholic University of Valencia, Valencia, Spain
| | - José M. Cuezva
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Francesc Palau
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- University of Castilla-La Mancha School of Medicine at Ciudad Real, Ciudad Real, Spain
| |
Collapse
|
26
|
Intermediate Charcot-Marie-Tooth disease. Neurosci Bull 2014; 30:999-1009. [PMID: 25326399 DOI: 10.1007/s12264-014-1475-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 01/15/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a common neurogenetic disorder and its heterogeneity is a challenge for genetic diagnostics. The genetic diagnostic procedures for a CMT patient can be explored according to the electrophysiological criteria: very slow motor nerve conduction velocity (MNCV) (<15 m/s), slow MNCV (15-25 m/s), intermediate MNCV (25-45 m/s), and normal MNCV (>45 m/s). Based on the inheritance pattern, intermediate CMT can be divided into dominant (DI-CMT) and recessive types (RI-CMT). GJB1 is currently considered to be associated with X-linked DI-CMT, and MPZ, INF2, DNM2, YARS, GNB4, NEFL, and MFN2 are associated with autosomal DI-CMT. Moreover, GDAP1, KARS, and PLEKHG5 are associated with RI-CMT. Identification of these genes is not only important for patients and families but also provides new information about pathogenesis. It is hoped that this review will lead to a better understanding of intermediate CMT and provide a detailed diagnostic procedure for intermediate CMT.
Collapse
|
27
|
Niemann A, Huber N, Wagner KM, Somandin C, Horn M, Lebrun-Julien F, Angst B, Pereira JA, Halfter H, Welzl H, Feltri ML, Wrabetz L, Young P, Wessig C, Toyka KV, Suter U. The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease. ACTA ACUST UNITED AC 2014; 137:668-82. [PMID: 24480485 PMCID: PMC3927703 DOI: 10.1093/brain/awt371] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations in the mitochondrial fission factor GDAP1 are associated with severe peripheral neuropathies, but why the CNS remains unaffected is unclear. Using a Gdap1−/− mouse, Niemann et al. demonstrate that a CNS-expressed Gdap1 paralogue changes its subcellular localisation under oxidative stress conditions to also act as a mitochondrial fission factor. The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot–Marie–Tooth disease. We found that Gdap1 knockout mice (Gdap1−/−), mimicking genetic alterations of patients suffering from severe forms of Charcot–Marie–Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1−/− mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1−/− mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1−/− mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1−/− mice compared with controls. Our findings demonstrate that Charcot–Marie–Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.
Collapse
Affiliation(s)
- Axel Niemann
- 1 Institute of Molecular Health Sciences, Cell Biology, Department of Biology, ETH Zurich, Swiss Federal Institute of Technology, Switzerland, ETH-Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Charcot-Marie-Tooth disease-associated mutants of GDAP1 dissociate its roles in peroxisomal and mitochondrial fission. EMBO Rep 2013; 14:545-52. [PMID: 23628762 DOI: 10.1038/embor.2013.56] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/13/2013] [Accepted: 04/11/2013] [Indexed: 11/08/2022] Open
Abstract
Mitochondria and peroxisomes can be fragmented by the process of fission. The fission machineries of both organelles share a set of proteins. GDAP1 is a tail-anchored protein of mitochondria and induces mitochondrial fragmentation. Mutations in GDAP1 lead to Charcot-Marie-Tooth disease (CMT), an inherited peripheral neuropathy, and affect mitochondrial dynamics. Here, we show that GDAP1 is also targeted to peroxisomes mediated by the import receptor Pex19. Knockdown of GDAP1 leads to peroxisomal elongation that can be rescued by re-expressing GDAP1 and by missense mutated forms found in CMT patients. GDAP1-induced peroxisomal fission is dependent on the integrity of its hydrophobic domain 1, and on Drp1 and Mff, as is mitochondrial fission. Thus, GDAP1 regulates mitochondrial and peroxisomal fission by a similar mechanism. However, our results reveal also a more critical role of the amino-terminal GDAP1 domains, carrying most CMT-causing mutations, in the regulation of mitochondrial compared to peroxisomal fission.
Collapse
|
29
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
30
|
Gao K, Deng X, Qian H, Wu P, Qin G, Guo X. Cloning, characterization, and expression analysis of a novel BmGDAP1 gene from silkworm, Bombyx mori, involved in cytoplasmic polyhedrosis virus infection. Gene 2012; 497:208-13. [PMID: 22316564 DOI: 10.1016/j.gene.2012.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/18/2011] [Accepted: 01/19/2012] [Indexed: 11/25/2022]
Abstract
A novel ganglioside-induced differentiation-associated protein 1 gene (BmGDAP1) was first cloned and sequenced from silkworm, Bombyx mori using rapid amplification of cDNA ends (RACE). The full-length cDNA of BmGDAP1 was 1514bp, consisting of a 91bp 5' untranslated region (UTR), a 424bp 3'-UTR and a 999bp open reading frame (ORF). The ORF encoded a polypeptide of 332 amino acids, which possessed a thioredoxin (TRX)-like domain, a glutathione S-transferase-C (GST-C) family domain and a transmembrane segment. Furthermore, quantitative real-time PCR analysis revealed that BmGDAP1 transcripts were mainly presented in the tissues of hemocytes and midgut of silkworm, and its expression level was down-regulated in the hemocytes, while up-regulated in the midgut. Therefore, it could be concluded that BmGDAP1 plays an important role in the recognition and immune response of silkworm to BmCPV infection.
Collapse
Affiliation(s)
- Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
31
|
Espinós C, Calpena E, Martínez-Rubio D, Lupo V. Autosomal Recessive Charcot-Marie-Tooth Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:61-75. [DOI: 10.1007/978-1-4614-0653-2_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Cassereau J, Chevrollier A, Bonneau D, Verny C, Procaccio V, Reynier P, Ferré M. A locus-specific database for mutations in GDAP1 allows analysis of genotype-phenotype correlations in Charcot-Marie-Tooth diseases type 4A and 2K. Orphanet J Rare Dis 2011; 6:87. [PMID: 22200116 PMCID: PMC3313893 DOI: 10.1186/1750-1172-6-87] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/26/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The ganglioside-induced differentiation-associated protein 1 gene (GDAP1), which is involved in the Charcot-Marie-Tooth disease (CMT), the most commonly inherited peripheral neuropathy, encodes a protein anchored to the mitochondrial outer membrane. The phenotypic presentations of patients carrying GDAP1 mutations are heterogeneous, making it difficult to determine genotype-phenotype correlations, since the majority of the mutations have been found in only a few unrelated patients. Locus-specific databases (LSDB) established in the framework of the Human Variome Project provide powerful tools for the investigation of such rare diseases. METHODS AND RESULTS We report the development of a publicly accessible LSDB for the GDAP1 gene. The GDAP1 LSDB has adopted the Leiden Open-source Variation Database (LOVD) software platform. This database, which now contains 57 unique variants reported in 179 cases of CMT, offers a detailed description of the molecular, clinical and electrophysiological data of the patients. The usefulness of the GDAP1 database is illustrated by the finding that GDAP1 mutations lead to primary axonal damage in CMT, with secondary demyelination in the more severe cases of the disease. CONCLUSION Findings of this nature should lead to a better understanding of the pathophysiology of CMT. Finally, the GDAP1 LSDB, which is part of the mitodyn.org portal of databases of genes incriminated in disorders involving mitochondrial dynamics and bioenergetics, should yield new insights into mitochondrial diseases.
Collapse
|
33
|
Sivera R, Espinós C, Vílchez JJ, Mas F, Martínez-Rubio D, Chumillas MJ, Mayordomo F, Muelas N, Bataller L, Palau F, Sevilla T. Phenotypical features of the p.R120W mutation in the GDAP1 gene causing autosomal dominant Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2011; 15:334-44. [PMID: 21199105 DOI: 10.1111/j.1529-8027.2010.00286.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutations in the ganglioside-induced-differentiation-associated protein 1 gene (GDAP1) can cause Charcot-Marie-Tooth (CMT) disease with demyelinating (CMT4A) or axonal forms (CMT2K and ARCMT2K). Most of these mutations present a recessive inheritance, but few autosomal dominant GDAP1 mutations have also been reported. We performed a GDAP1 gene screening in a clinically well-characterized series of 81 index cases with axonal CMT neuropathy, identifying 17 patients belonging to 4 unrelated families in whom the heterozygous p.R120W was found to be the only disease-causing mutation. The main objective was to fully characterize the neuropathy caused by this mutation. The clinical picture included a mild-moderate phenotype with onset around adolescence, but great variability. Consistently, ankle dorsiflexion and plantar flexion were impaired to a similar degree. Nerve conduction studies revealed an axonal neuropathy. Muscle magnetic resonance imaging studies demonstrated selective involvement of intrinsic foot muscles in all patients and a uniform pattern of fatty infiltration in the calf, with distal and superficial posterior predominance. Pathological abnormalities included depletion of myelinated fibers, regenerative clusters and features of axonal degeneration with mitochondrial aggregates. Our findings highlight the relevance of dominantly transmitted p.R120W GDAP1 gene mutations which can cause an axonal CMT with a wide clinical profile.
Collapse
Affiliation(s)
- Rafael Sivera
- Department of Neurology, University Hospital Universitari La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Finsterer J. Inherited mitochondrial neuropathies. J Neurol Sci 2011; 304:9-16. [PMID: 21402391 DOI: 10.1016/j.jns.2011.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 01/17/2011] [Accepted: 02/09/2011] [Indexed: 12/14/2022]
Abstract
Mitochondrial disorders (MIDs) occasionally manifest as polyneuropathy either as the dominant feature or as one of many other manifestations (inherited mitochondrial neuropathy). MIDs in which polyneuropathy is the dominant feature, include NARP syndrome due to the transition m.8993T>, CMT2A due to MFN2 mutations, CMT2K and CMT4A due to GDAP1 mutations, and axonal/demyelinating neuropathy with external ophthalmoplegia due to POLG1 mutations. MIDs in which polyneuropathy is an inconstant feature among others is the MELAS syndrome, MERRF syndrome, LHON, Mendelian PEO, KSS, Leigh syndrome, MNGIE, SANDO; MIRAS, MEMSA, AHS, MDS (hepato-cerebral form), IOSCA, and ADOA syndrome. In the majority of the cases polyneuropathy presents in a multiplex neuropathy distribution. Nerve conduction studies may reveal either axonal or demyelinated or mixed types of neuropathies. If a hereditary neuropathy is due to mitochondrial dysfunction, the management of these patients is at variance from non-mitochondrial hereditary neuropathies. Patients with mitochondrial hereditary neuropathy need to be carefully investigated for clinical or subclinical involvement of other organs or systems. Supportive treatment with co-factors, antioxidants, alternative energy sources, or lactate lowering agents can be tried. Involvement of other organs may require specific treatment. Mitochondrial neuropathies should be included in the differential diagnosis of hereditary neuropathies.
Collapse
|
35
|
A new missense GDAP1 mutation disturbing targeting to the mitochondrial membrane causes a severe form of AR-CMT2C disease. Neurogenetics 2011; 12:145-53. [PMID: 21365284 DOI: 10.1007/s10048-011-0276-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/26/2011] [Indexed: 02/02/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) caused by mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene is characterized by a spectrum of phenotypes. Recurrent nonsense mutations (Q163X and S194X) showing regional distribution segregate with an early onset, severe course of recessive CMT disease with early loss of ambulancy. Missense mutations in GDAP1 have been reported in sporadic CMT cases with variable course of disease, among them the recurrent L239F missense GDAP1 mutation occurring in the European population. Finally, some GDAP1 mutations are associated with a mild form of CMT inherited as an autosomal dominant trait. In this study, we characterize the CMT phenotype in one Polish family with recessive trait of inheritance at the clinical, electrophysiological, morphological, cellular, and genetic level associated with a new Gly327Asp mutation in the GDAP1 gene. In spite of the nature of Gly327Asp mutation (missense), the CMT phenotype associated with this variant may be characterized as an early onset, severe axonal neuropathy, with severe skeletal deformities. The mutation lies within the transmembrane domain of GDAP1 and interferes with the mitochondrial targeting of the protein, similar to the loss of the domain in the previously reported Q163X and S194X mutations. We conclude that the loss of mitochondrial targeting is associated with a severe course of disease. Our study shows that clinical outcome of CMT disease caused by mutations in the GDAP1 gene cannot be predicted solely on the basis of genetic results (missense/nonsense mutations).
Collapse
|
36
|
Landes T, Martinou JC. Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:540-5. [PMID: 21277336 DOI: 10.1016/j.bbamcr.2011.01.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 01/25/2023]
Abstract
Mitochondria continually fuse and divide to yield a dynamic interconnected network throughout the cell. During apoptosis, concomitantly with permeabilization of the mitochondrial outer membrane (MOMP) and cytochrome c release, mitochondria undergo massive fission. This results in the formation of small, round organelles that tend to aggregate around the nucleus. Under some circumstances, preceding their fission, mitochondria tend to elongate and to hyperfuse, a process that is interpreted as a cell defense mechanism. Since many years, there is a controversy surrounding the physiological relevance of mitochondrial fragmentation in apoptosis. In this review, we present recent advances in this field, describe the mechanisms that underlie this process, and discuss how they could cooperate with Bax to trigger MOMP and cytochrome c release. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Thomas Landes
- Department of Cell Biology, University of Geneva, Sciences III, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
37
|
Cassereau J, Chevrollier A, Gueguen N, Desquiret V, Verny C, Nicolas G, Dubas F, Amati-Bonneau P, Reynier P, Bonneau D, Procaccio V. Mitochondrial dysfunction and pathophysiology of Charcot–Marie–Tooth disease involving GDAP1 mutations. Exp Neurol 2011; 227:31-41. [DOI: 10.1016/j.expneurol.2010.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/02/2010] [Accepted: 09/04/2010] [Indexed: 11/29/2022]
|
38
|
Cho DH, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 2010; 67:3435-47. [PMID: 20577776 PMCID: PMC11115814 DOI: 10.1007/s00018-010-0435-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/22/2022]
Abstract
Mitochondria are highly dynamic organelles that continuously undergo two opposite processes, fission and fusion. Mitochondrial dynamics influence not only mitochondrial morphology, but also mitochondrial biogenesis, mitochondrial distribution within the cell, cell bioenergetics, and cell injury or death. Drp1 mediates mitochondrial fission, whereas Mfn1/2 and Opa1 control mitochondrial fusion. Neurons require large amounts of energy to carry out their highly specialized functions. Thus, mitochondrial dysfunction is a prominent feature in a variety of neurodegenerative diseases. Mutations of Mfn2 and Opa1 lead to neuropathies such as Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. Moreover, both Aβ peptide and mutant huntingtin protein induce mitochondrial fragmentation and neuronal cell death. In addition, mutants of Parkinson's disease-related genes also show abnormal mitochondrial morphology. This review highlights our current understanding of abnormal mitochondrial dynamics relevant to neuronal synaptic loss and cell death in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease.
Collapse
Affiliation(s)
- Dong-Hyung Cho
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Pungpap-dong, Songpa-gu, Seoul, 138-736 Korea
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi 446-701 Korea
| | - Tomohiro Nakamura
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Stuart A. Lipton
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
39
|
GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis 2009; 36:509-20. [PMID: 19782751 DOI: 10.1016/j.nbd.2009.09.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/10/2009] [Accepted: 09/20/2009] [Indexed: 12/12/2022] Open
Abstract
Mutations in the GDAP1 gene lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease; CMT). Here, we demonstrate that GDAP1 is a mitochondrial fission factor whose activity is dependent on the fission factors Drp1 and Fis1. Unlike other mitochondrial fission factors, GDAP1 overexpression or knockdown does not influence the susceptibility of cells to apoptotic stimuli. Recessively inherited CMT-associated forms of GDAP1 (rmGDAP1s) have reduced fission activity, whereas dominantly inherited forms (dmGDAP1s) interfere with mitochondrial fusion. Only the expression of dmGDAP1s increases the production of ROS, leads to uneven mitochondrial transmembrane potentials, and enhances the susceptibility to apoptotic stimuli. Taken together, our results indicate that wild-type GDAP1 promotes fission without increasing the risk of apoptosis. In CMT, recessive GDAP1 mutations are associated with reduced fission activity, while dominant mutations impair mitochondrial fusion and cause mitochondrial damage. Thus, different cellular mechanisms that disturb mitochondrial dynamics underlie the similar clinical manifestations caused by GDAP1 mutations, depending on the mode of inheritance.
Collapse
|