1
|
Hoyt KM, Barr JR, Hopkins AO, Dykes JK, Lúquez C, Kalb SR. Validation of a clinical assay for botulinum neurotoxins through mass spectrometric detection. J Clin Microbiol 2024; 62:e0162923. [PMID: 38687021 PMCID: PMC11237762 DOI: 10.1128/jcm.01629-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Botulism is a paralytic disease due to the inhibition of acetylcholine exocytosis at the neuromuscular junction, which can be lethal if left untreated. Botulinum neurotoxins (BoNTs) are produced by some spore-forming Clostridium bacteria. The current confirmatory assay to test for BoNTs in clinical specimens is the gold-standard mouse bioassay. However, an Endopep-MS assay method has been developed to detect BoNTs in clinical samples using benchtop mass spectrometric detection. This work demonstrates the validation of the Endopep-MS method for clinical specimens with the intent of method distribution in public health laboratories. The Endopep-MS assay was validated by assessing the sensitivity, robustness, selectivity, specificity, and reproducibility. The limit of detection was found to be equivalent to or more sensitive than the mouse bioassay. Specificity studies determined no cross-reactivity between the different serotypes and no false positives from an exclusivity panel of culture supernatants of enteric disease organisms and non-toxigenic strains of Clostridium. Inter-serotype specificity testing with 19 BoNT subtypes was 100% concordant with the expected results, accurately determining the presence of the correct serotype and the absence of incorrect serotypes. Additionally, a panel of potential interfering substances was used to test selectivity. Finally, clinical studies included clinical specimen stability and reproducibility, which was found to be 99.9% from a multicenter evaluation study. The multicenter validation study also included a clinical validation study, which yielded a 99.4% correct determination rate. Use of the Endopep-MS method will improve the capacity and response time for laboratory confirmation of botulism in public health laboratories.
Collapse
Affiliation(s)
- Kaitlin M. Hoyt
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R. Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - André O. Hopkins
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Janet K. Dykes
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carolina Lúquez
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Suzanne R. Kalb
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Sanicas M, Torro R, Limozin L, Chames P. Antigen density and applied force control enrichment of nanobody-expressing yeast cells in microfluidics. LAB ON A CHIP 2024; 24:2944-2957. [PMID: 38716822 DOI: 10.1039/d4lc00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In vitro display technologies such as yeast display have been instrumental in developing the selection of new antibodies, antibody fragments or nanobodies that bind to a specific target, with affinity towards the target being the main factor that influences selection outcome. However, the roles of mechanical forces are being increasingly recognized as a crucial factor in the regulation and activation of effector cell function. It would thus be of interest to isolate binders behaving optimally under the influence of mechanical forces. We developed a microfluidic assay allowing the selection of yeast displaying nanobodies through antigen-specific immobilization on a surface under controlled hydrodynamic flow. This approach enabled enrichment of model yeast mixtures using tunable antigen density and applied force. This new force-based selection method opens the possibility of selecting binders by relying on both their affinity and force resistance, with implications for the design of more efficient immunotherapeutics.
Collapse
Affiliation(s)
- Merlin Sanicas
- Aix-Marseille Université, CNRS, INSERM, CRCM, Institute Paoli-Calmettes, Marseille, France.
- Aix-Marseille Université, CNRS, INSERM, LAI, Marseille, France.
| | - Rémy Torro
- Aix-Marseille Université, CNRS, INSERM, LAI, Marseille, France.
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, LAI, Marseille, France.
| | - Patrick Chames
- Aix-Marseille Université, CNRS, INSERM, CRCM, Institute Paoli-Calmettes, Marseille, France.
| |
Collapse
|
3
|
Harmsen MM, Cornelissen JC, van der Wal FJ, Bergervoet JHW, Koene M. Single-Domain Antibody Multimers for Detection of Botulinum Neurotoxin Serotypes C, D, and Their Mosaics in Endopep-MS. Toxins (Basel) 2023; 15:573. [PMID: 37755999 PMCID: PMC10535107 DOI: 10.3390/toxins15090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly toxic proteins that require high-affinity immunocapture reagents for use in endopeptidase-based assays. Here, 30 novel and 2 earlier published llama single-domain antibodies (VHHs) against the veterinary-relevant BoNT serotypes C and D were yeast-produced. These VHHs recognized 10 independent antigenic sites, and many cross-reacted with the BoNT/DC and CD mosaic variants. As VHHs are highly suitable for genetically linking to increase antigen-binding affinity, 52 VHH multimers were produced and their affinity for BoNT/C, D, DC, and CD was determined. A selection of 15 multimers with high affinity (KD < 0.1 nM) was further shown to be resilient to a high salt wash that is used for samples from complex matrices and bound native BoNTs from culture supernatants as shown by Endopep-MS. High-affinity multimers suitable for further development of a highly sensitive Endopep-MS assay include four multimers that bind both BoNT/D and CD with KD of 14-99 pM, one multimer for BoNT/DC (65 pM) that also binds BoNT/C (75 pM), and seven multimers for BoNT/C (<1-19 pM), six of which also bind BoNT/DC with lower affinity (93-508 pM). In addition to application in diagnostic tests, these VHHs could be used for the development of novel therapeutics for animals or humans.
Collapse
Affiliation(s)
- Michiel M. Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan C. Cornelissen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Fimme J. van der Wal
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan H. W. Bergervoet
- Wageningen Plant Research, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Miriam Koene
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| |
Collapse
|
4
|
A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes. Toxins (Basel) 2023; 15:toxins15020092. [PMID: 36828407 PMCID: PMC9966434 DOI: 10.3390/toxins15020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid neuromuscular paralysis by cleaving one of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. BoNTs display high affinity and specificity for neuromuscular junctions, making them one of the most potent neurotoxins known to date. There are seven serologically distinct BoNTs (serotypes BoNT/A to BoNT/G) which can be further divided into subtypes (e.g., BoNT/A1, BoNT/A2…) based on small changes in their amino acid sequence. Of these, BoNT/A1 and BoNT/B1 have been utilised to treat various diseases associated with spasticity and hypersecretion. There are potentially many more BoNT variants with differing toxicological profiles that may display other therapeutic benefits. This review is focused on the structural analysis of the cell-binding domain from BoNT/A1 to BoNT/A6 subtypes (HC/A1 to HC/A6), including features such as a ganglioside binding site (GBS), a dynamic loop, a synaptic vesicle glycoprotein 2 (SV2) binding site, a possible Lys-Cys/Cys-Cys bridge, and a hinge motion between the HCN and HCC subdomains. Characterising structural features across subtypes provides a better understanding of how the cell-binding domain functions and may aid the development of novel therapeutics.
Collapse
|
5
|
Daba GM, Elnahas MO, Elkhateeb WA. Beyond biopreservatives, bacteriocins biotechnological applications: History, current status, and promising potentials. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Antonucci L, Locci C, Schettini L, Clemente MG, Antonucci R. Infant botulism: an underestimated threat. Infect Dis (Lond) 2021; 53:647-660. [PMID: 33966588 DOI: 10.1080/23744235.2021.1919753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Infant botulism (IB) is defined as a potentially life-threatening neuroparalytic disorder affecting children younger than 12 months. It is caused by ingestion of food or dust contaminated by Clostridium botulinum spores, which germinate in the infant's large bowel and produce botulinum neurotoxin. Although the real impact of IB is likely underestimated worldwide, the USA has the highest number of cases. The limited reporting of IB in many countries is probably due to diagnostic difficulties and nonspecific presentation. The onset is usually heralded by constipation, followed by bulbar palsy, and then by a descending bilateral symmetric paralysis; ultimately, palsy can involve respiratory and diaphragmatic muscles, leading to respiratory failure. The treatment is based on supportive care and specific therapy with Human Botulism Immune Globulin Intravenous (BIG-IV), and should be started as early as possible. The search for new human-like antibody preparations that are both highly effective and well tolerated has led to the creation of a mixture of oligoclonal antibodies that are highly protective and can be produced in large quantities without the use of animals. Ongoing research for future treatment of IB involves the search for new molecular targets to produce a new generation of laboratory-produced antitoxins, and the development of new vaccines with safety and efficacy profiles that can be scaled up for clinical use. This narrative literature review aims to provide a readable synthesis of the best current literature on microbiological, epidemiological and clinical features of IB, and a practical guide for its treatment.
Collapse
Affiliation(s)
- Luca Antonucci
- Academic Department of Pediatrics, Children's Hospital Bambino Gesù, University of Rome 'Tor Vergata', Rome, Italy
| | - Cristian Locci
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Livia Schettini
- Academic Department of Pediatrics, Children's Hospital Bambino Gesù, University of Rome 'Tor Vergata', Rome, Italy
| | - Maria Grazia Clemente
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Roberto Antonucci
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
7
|
Livet S, Worbs S, Volland H, Simon S, Dorner MB, Fenaille F, Dorner BG, Becher F. Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices. Toxins (Basel) 2021; 13:toxins13010052. [PMID: 33450857 PMCID: PMC7828309 DOI: 10.3390/toxins13010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
The toxin abrin found in the seeds of Abrus precatorius has attracted much attention regarding criminal and terroristic misuse over the past decade. Progress in analytical methods for a rapid and unambiguous identification of low abrin concentrations in complex matrices is essential. Here, we report on the development and evaluation of a MALDI-TOF mass spectrometry approach for the fast, sensitive and robust abrin isolectin identification, differentiation and quantification in complex food matrices. The method combines immunoaffinity-enrichment with specific abrin antibodies, accelerated trypsin digestion and the subsequent MALDI-TOF analysis of abrin peptides using labeled peptides for quantification purposes. Following the optimization of the workflow, common and isoform-specific peptides were detected resulting in a ~38% sequence coverage of abrin when testing ng-amounts of the toxin. The lower limit of detection was established at 40 ng/mL in milk and apple juice. Isotope-labeled versions of abundant peptides with high ionization efficiency were added. The quantitative evaluation demonstrated an assay variability at or below 22% with a linear range up to 800 ng/mL. MALDI-TOF mass spectrometry allows for a simple and fast (<5 min) analysis of abrin peptides, without a time-consuming peptide chromatographic separation, thus constituting a relevant alternative to liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Sandrine Livet
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - Hervé Volland
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Stéphanie Simon
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
- Correspondence: ; Tel.: +33-1-69-08-13-15
| |
Collapse
|
8
|
Moritz MS, Tepp WH, Inzalaco HN, Johnson EA, Pellett S. Comparative functional analysis of mice after local injection with botulinum neurotoxin A1, A2, A6, and B1 by catwalk analysis. Toxicon 2019; 167:20-28. [PMID: 31181297 PMCID: PMC6688953 DOI: 10.1016/j.toxicon.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 01/10/2023]
Abstract
Botulinum neurotoxins (BoNTs) are potent neurotoxins and are the causative agent of botulism, as well as valuable pharmaceuticals. BoNTs are divided into seven serotypes that comprise over 40 reported subtypes. BoNT/A1 and BoNT/B1 are currently the only subtypes approved for pharmaceutical use in the USA. While several other BoNT subtypes including BoNT/A2 and/A6 have been proposed as promising pharmaceuticals, detailed characterization using in vivo assays are essential to determine their pharmaceutical characteristics compared to the currently used BoNT/A1 and/B1. Several methods for studying BoNTs in mice are being used, but no objective and quantitative assay for assessment of functional outcomes after injection has been described. Here we describe the use of CatWalk XT as a new analytical tool for the objective and quantitative analysis of the paralytic effect after local intramuscular injection of BoNT subtypes A1, A2, A6, and B1. Catwalk is a sophisticated gait and locomotion analysis system that quantitatively analyzes a rodent's paw print dimensions and footfall patterns while traversing a glass plate during unforced walk. Significant changes were observed in several gait parameters in mice after local intramuscular injection of all tested BoNT subtypes, however, no changes were observed in mice injected intraperitoneally with the same BoNTs. While a clear difference in time to peak paralysis was observed between BoNT/A1 and/B1, injection of all four toxins resulted in a deficit in the injected limb with the other limbs functionally compensating and with no qualitative differences between the four BoNT subtypes. The presented data demonstrate the utility of CatWalk as a tool for functional outcomes after local BoNT injection through its ability to collect large amounts of quantitative data and objectively analyze sensitive changes in static and dynamic gait parameters.
Collapse
Affiliation(s)
- Molly S Moritz
- University of Wisconsin-Madison, Dept. of Bacteriology, USA
| | - William H Tepp
- University of Wisconsin-Madison, Dept. of Bacteriology, USA
| | | | - Eric A Johnson
- University of Wisconsin-Madison, Dept. of Bacteriology, USA
| | - Sabine Pellett
- University of Wisconsin-Madison, Dept. of Bacteriology, USA.
| |
Collapse
|
9
|
von Berg L, Stern D, Pauly D, Mahrhold S, Weisemann J, Jentsch L, Hansbauer EM, Müller C, Avondet MA, Rummel A, Dorner MB, Dorner BG. Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specific antibodies and suspension array technology. Sci Rep 2019; 9:5531. [PMID: 30940836 PMCID: PMC6445094 DOI: 10.1038/s41598-019-41722-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and cause the life threatening disease botulism. Sensitive and broad detection is extremely challenging due to the toxins' high potency and molecular heterogeneity with several serotypes and more than 40 subtypes. The toxicity of BoNT is mediated by enzymatic cleavage of different synaptic proteins involved in neurotransmitter release at serotype-specific cleavage sites. Hence, active BoNTs can be monitored and distinguished in vitro by detecting their substrate cleavage products. In this work, we developed a comprehensive panel of monoclonal neoepitope antibodies (Neo-mAbs) highly specific for the newly generated N- and/or C-termini of the substrate cleavage products of BoNT serotypes A to F. The Neo-mAbs were implemented in a set of three enzymatic assays for the simultaneous detection of two BoNT serotypes each by monitoring substrate cleavage on colour-coded magnetic Luminex-beads. For the first time, all relevant serotypes could be detected in parallel by a routine in vitro activity assay in spiked serum and food samples yielding excellent detection limits in the range of the mouse bioassay or better (0.3-80 pg/mL). Therefore, this work represents a major step towards the replacement of the mouse bioassay for botulism diagnostics.
Collapse
Affiliation(s)
- Laura von Berg
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Diana Pauly
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Stefan Mahrhold
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625, Hannover, Germany
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625, Hannover, Germany
| | - Lisa Jentsch
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Eva-Maria Hansbauer
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Christian Müller
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, 3700, Switzerland
| | - Marc A Avondet
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, 3700, Switzerland
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625, Hannover, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, 13353, Germany.
| |
Collapse
|
10
|
Li M, Lee D, Obi CR, Freeberg JK, Farr-Jones S, Tomic MT. An ambient temperature-stable antitoxin of nine co-formulated antibodies for botulism caused by serotypes A, B and E. PLoS One 2018; 13:e0197011. [PMID: 29746518 PMCID: PMC5944936 DOI: 10.1371/journal.pone.0197011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Safe and effective antitoxins to treat and prevent botulism are needed for biodefense. We have developed recombinant antibody-based therapeutics for botulinum neurotoxin (BoNT) serotypes A, B, and E. The mechanism of action of this antitoxin requires that three mAbs bind one toxin molecule to achieve clearance. Here we present a co-formulation of an antitoxin to the three most important serotypes. Combining these antibodies obviates the need to identify the serotype causing intoxication prior to drug administration, which would facilitate administration. The lyophilized powder formulation contains nine mAbs, three mAbs for each of the three serotypes (A, B, E). The formulation was stored as a liquid and lyophilized powder for up to one year, and characterized by binding affinity and multiple physicochemical methods. No significant increase in soluble higher order aggregates, cleavage products, or change in charge isoforms was measured after storage as a lyophilized powder at 50°C for one year. Furthermore, toxin-domain binding ELISA data indicated that each of the individual antibodies in the lyophilized drug product showed essentially full binding capability to their respective toxin domains after being stored at 50°C for one year. Physicochemical characterization of the formulation demonstrated the nine individual mAbs were remarkably stable. This work demonstrates feasibility of lyophilized, oligoclonal antibody therapies for biodefense with ambient temperature stability, that would facilitate stockpiling, distribution, and administration.
Collapse
Affiliation(s)
- Mingxiang Li
- XOMA Corp., Berkeley, CA, United States of America
| | - Dennis Lee
- XOMA Corp., Berkeley, CA, United States of America
| | - Chidi R. Obi
- XOMA Corp., Berkeley, CA, United States of America
| | | | - Shauna Farr-Jones
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Milan T. Tomic
- XOMA Corp., Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Dual-route targeted vaccine protects efficiently against botulinum neurotoxin A complex. Vaccine 2017; 36:155-164. [PMID: 29180028 DOI: 10.1016/j.vaccine.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 01/05/2023]
Abstract
Clostridium botulinum readily persists in the soil and secretes life-threatening botulinum neurotoxins (BoNTs) that are categorized into serotypes A to H, of which, serotype A (BoNT/A) is the most commonly occurring in nature. An efficacious vaccine with high longevity against BoNT intoxication is urgent. Herein, we developed a dual-route vaccine administered over four consecutive weeks by mucosal and parenteral routes, consisting of the heavy chain (Hc) of BoNT/A targeting dendritic cell peptide (DCpep) expressed by Lactobacillus acidophilus as a secretory immunogenic protein. The administered dual-route vaccine elicited robust and long-lasting memory B cell responses comprising germinal center (GC) B cells and follicular T cells (Tfh) that fully protected mice from lethal oral BoNT/A fatal intoxication. Additionally, passively transferring neutralizing antibodies against BoNT/A into naïve mice induced robust protection against BoNT/A lethal intoxication. Together, a targeted vaccine employing local and systemic administrative routes may represent a novel formulation eliciting protective B cell responses with remarkable longevity against threatening biologic agents such as BoNTs.
Collapse
|
12
|
Hansbauer EM, Worbs S, Volland H, Simon S, Junot C, Fenaille F, Dorner BG, Becher F. Rapid Detection of Abrin Toxin and Its Isoforms in Complex Matrices by Immuno-Extraction and Quantitative High Resolution Targeted Mass Spectrometry. Anal Chem 2017; 89:11719-11727. [PMID: 28984440 DOI: 10.1021/acs.analchem.7b03189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abrin expressed by the tropical plant Abrus precatorius is highly dangerous with an estimated human lethal dose of 0.1-1 μg/kg body weight. Due to the potential misuse as a biothreat agent, abrin is in the focus of surveillance. Fast and reliable methods are therefore of great importance for early identification. Here, we have developed an innovative and rapid multiepitope immuno-mass spectrometry workflow which is capable of unambiguously differentiating abrin and its isoforms in complex matrices. Toxin-containing samples were incubated with magnetic beads coated with multiple abrin-specific antibodies, thereby concentrating and extracting all the isoforms. Using an ultrasonic bath for digestion enhancement, on-bead trypsin digestion was optimized to obtain efficient and reproducible peptide recovery in only 30 min. Improvements made to the workflow reduced total analysis time to less than 3 h. A large panel of common and isoform-specific peptides was monitored by multiplex LC-MS/MS through the parallel reaction monitoring mode on a quadrupole-Orbitrap high resolution mass spectrometer. Additionally, absolute quantification was accomplished by isotope dilution with labeled AQUA peptides. The newly established method was demonstrated as being sensitive and reproducible with quantification limits in the low ng/mL range in various food and clinical matrices for the isoforms of abrin and also the closely related, less toxic Abrus precatorius agglutinin. This method allows for the first time the rapid detection, differentiation, and simultaneous quantification of abrin and its isoforms by mass spectrometry.
Collapse
Affiliation(s)
- Eva-Maria Hansbauer
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute , Berlin, Germany
| | - Hervé Volland
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Christophe Junot
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - François Fenaille
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute , Berlin, Germany
| | - François Becher
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| |
Collapse
|
13
|
Rasetti-Escargueil C, Avril A, Miethe S, Mazuet C, Derman Y, Selby K, Thullier P, Pelat T, Urbain R, Fontayne A, Korkeala H, Sesardic D, Hust M, Popoff MR. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies. Toxins (Basel) 2017; 9:toxins9100309. [PMID: 28974033 PMCID: PMC5666356 DOI: 10.3390/toxins9100309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT) A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC) of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies). For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs). The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans.
Collapse
Affiliation(s)
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Maladies Infectieuses, Unité Biothérapies anti-Infectieuses et Immunité, 1 Place du Général Valérie André, BP73, 91220 Brétigny-sur-Orge, France.
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Christelle Mazuet
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- BIOTEM, Parc d'activité Bièvre Dauphine 885, Rue Alphonse Gourju, 38140 Apprieu, France.
| | - Remi Urbain
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
- Ecdysis Pharma, Bioincubateur Eurasanté, 70 Rue du Dr Yersin, 59120 Loos, France.
| | - Alexandre Fontayne
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), a Center of the Medicines and Healthcare Products Regulatory Agency, Division of Bacteriology, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
14
|
Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins. Toxins (Basel) 2017; 9:toxins9060193. [PMID: 28617306 PMCID: PMC5488043 DOI: 10.3390/toxins9060193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/26/2017] [Accepted: 06/09/2017] [Indexed: 11/20/2022] Open
Abstract
Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs), toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC), alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs) to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH), and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC), but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs) which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.
Collapse
|
15
|
Perry MJ, Centurioni DA, Davis SW, Hannett GE, Musser KA, Egan CT. Implementing the Bruker MALDI Biotyper in the Public Health Laboratory for C. botulinum Neurotoxin Detection. Toxins (Basel) 2017; 9:toxins9030094. [PMID: 28282915 PMCID: PMC5371849 DOI: 10.3390/toxins9030094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Currently, the gold standard method for active botulinum neurotoxin (BoNT) detection is the mouse bioassay (MBA). A Centers for Disease Control and Prevention-developed mass spectrometry (MS)-based assay that detects active BoNT was successfully validated and implemented in a public health laboratory in clinical matrices using the Bruker MALDI-TOF MS (Matrix-assisted laser desorption ionization–time of flight mass spectrometry) Biotyper. For the first time, a direct comparison with the MBA was performed to determine MS-based assay sensitivity using the Bruker MALDI Biotyper. Mice were injected with BoNT/A, /B, /E, and /F at concentrations surrounding the established MS assay limit of detection (LOD) and analyzed simultaneously. For BoNT/B, /E, and /F, MS assay sensitivity was equivalent or better than the MBA at 25, 0.3, and 8.8 mLD50, respectively. BoNT/A was detected by the MBA between 1.8 and 18 mLD50, somewhat more sensitive than the MS method of 18 mLD50. Studies were performed to compare assay performance in clinical specimens. For all tested specimens, the MS method rapidly detected BoNT activity and serotype in agreement with, or in the absence of, results from the MBA. We demonstrate that the MS assay can generate reliable, rapid results while eliminating the need for animal testing.
Collapse
Affiliation(s)
- Michael J Perry
- Biodefense Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.
| | - Dominick A Centurioni
- Biodefense Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.
| | - Stephen W Davis
- Biodefense Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.
| | - George E Hannett
- Bacteriology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.
| | - Kimberlee A Musser
- Bacteriology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.
| | - Christina T Egan
- Biodefense Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.
| |
Collapse
|
16
|
Bomba-Warczak E, Vevea JD, Brittain JM, Figueroa-Bernier A, Tepp WH, Johnson EA, Yeh FL, Chapman ER. Interneuronal Transfer and Distal Action of Tetanus Toxin and Botulinum Neurotoxins A and D in Central Neurons. Cell Rep 2016; 16:1974-87. [PMID: 27498860 DOI: 10.1016/j.celrep.2016.06.104] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/07/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022] Open
Abstract
Recent reports suggest that botulinum neurotoxin (BoNT) A, which is widely used clinically to inhibit neurotransmission, can spread within networks of neurons to have distal effects, but this remains controversial. Moreover, it is not known whether other members of this toxin family are transferred between neurons. Here, we investigate the potential distal effects of BoNT/A, BoNT/D, and tetanus toxin (TeNT), using central neurons grown in microfluidic devices. Toxins acted upon the neurons that mediated initial entry, but all three toxins were also taken up, via an alternative pathway, into non-acidified organelles that mediated retrograde transport to the somato-dendritic compartment. Toxins were then released into the media, where they entered and exerted their effects upon upstream neurons. These findings directly demonstrate that these agents undergo transcytosis and interneuronal transfer in an active form, resulting in long-distance effects.
Collapse
Affiliation(s)
- Ewa Bomba-Warczak
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA
| | - Jason D Vevea
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA
| | - Joel M Brittain
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA
| | - Annette Figueroa-Bernier
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Felix L Yeh
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
17
|
Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum Strain. mSphere 2016; 1:mSphere00100-15. [PMID: 27303710 PMCID: PMC4863619 DOI: 10.1128/msphere.00100-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/01/2016] [Indexed: 12/29/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated "type H," has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 10(7) mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A to G, based upon their selective neutralization by homologous antiserum, which is relevant for clinical and diagnostic purposes. Even though supportive care dramatically reduces the death rate of botulism, the only pharmaceutical intervention to reduce symptom severity and recovery time is early administration of antitoxin (antiserum raised against BoNTs). A recent report of a novel BoNT serotype, serotype H, raised concern of a "treatment-resistant" and highly potent toxin. However, the toxin's chimeric structure and characteristics indicate a chimeric BoNT/FA. Here we describe the first characterization of this novel toxin in purified form. BoNT/FA was neutralized by available antitoxins, supporting classification as BoNT/FA. BoNT/FA required proteolytic activation to achieve full toxicity and had relatively low potency in mice compared to BoNT/A1 but surprisingly high activity in cultured neurons.
Collapse
|
18
|
Simon S, Fiebig U, Liu Y, Tierney R, Dano J, Worbs S, Endermann T, Nevers MC, Volland H, Sesardic D, Dorner MB. Recommended Immunological Strategies to Screen for Botulinum Neurotoxin-Containing Samples. Toxins (Basel) 2015; 7:5011-34. [PMID: 26703727 PMCID: PMC4690110 DOI: 10.3390/toxins7124860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) cause the life-threatening neurological illness botulism in humans and animals and are divided into seven serotypes (BoNT/A–G), of which serotypes A, B, E, and F cause the disease in humans. BoNTs are classified as “category A” bioterrorism threat agents and are relevant in the context of the Biological Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection, quantification and discrimination capabilities of 23 expert laboratories from the health, food and security areas. Here we describe three immunological strategies that proved to be successful for the detection and quantification of BoNT/A, B, and E considering the restricted sample volume (1 mL) distributed. To analyze the samples qualitatively and quantitatively, the first strategy was based on sensitive immunoenzymatic and immunochromatographic assays for fast qualitative and quantitative analyses. In the second approach, a bead-based suspension array was used for screening followed by conventional ELISA for quantification. In the third approach, an ELISA plate format assay was used for serotype specific immunodetection of BoNT-cleaved substrates, detecting the activity of the light chain, rather than the toxin protein. The results provide guidance for further steps in quality assurance and highlight problems to address in the future.
Collapse
Affiliation(s)
- Stéphanie Simon
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Uwe Fiebig
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Yvonne Liu
- Division of Bacteriology, National Institute for Biological Standards and Control, a Centre of Medicines & Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Rob Tierney
- Division of Bacteriology, National Institute for Biological Standards and Control, a Centre of Medicines & Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Julie Dano
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Tanja Endermann
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Marie-Claire Nevers
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Hervé Volland
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Dorothea Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control, a Centre of Medicines & Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Martin B Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| |
Collapse
|
19
|
Rasetti-Escargueil C, Avril A, Chahboun S, Tierney R, Bak N, Miethe S, Mazuet C, Popoff MR, Thullier P, Hust M, Pelat T, Sesardic D. Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B. MAbs 2015; 7:1161-77. [PMID: 26381852 PMCID: PMC4966489 DOI: 10.1080/19420862.2015.1082016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2–7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2–7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2–7 and BLC3) are close to the human germline sequences, which suggest that they may be well tolerated in potential clinical development.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| | - Arnaud Avril
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Siham Chahboun
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Rob Tierney
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| | - Nicola Bak
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| | - Sebastian Miethe
- c Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig ; Braunschweig , Germany
| | - Christelle Mazuet
- d Unité des Bactéries anaérobies et Toxines; Institut Pasteur ; Paris , France
| | - Michel R Popoff
- d Unité des Bactéries anaérobies et Toxines; Institut Pasteur ; Paris , France
| | - Philippe Thullier
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Michael Hust
- c Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig ; Braunschweig , Germany
| | - Thibaut Pelat
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Dorothea Sesardic
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| |
Collapse
|
20
|
Isolation of nanomolar scFvs of non-human primate origin, cross-neutralizing botulinum neurotoxins A1 and A2 by targeting their heavy chain. BMC Biotechnol 2015; 15:86. [PMID: 26382731 PMCID: PMC4574468 DOI: 10.1186/s12896-015-0206-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/11/2015] [Indexed: 12/14/2022] Open
Abstract
Background Botulism is a naturally occurring disease, mainly caused by the ingestion of food contaminated by the botulinum neurotoxins (BoNTs). Botulinum neurotoxins are the most lethal. They are classified among the six major biological warfare agents by the Centers for Disease Control. BoNTs act on the cholinergic motoneurons, where they cleave proteins implicated in acetylcholine vesicle exocytosis. This exocytosis inhibition induces a flaccid paralysis progressively affecting all the muscles and generally engendering a respiratory distress. BoNTs are also utilized in medicine, mainly for the treatment of neuromuscular disorders, preventing large scale vaccination. Botulism specific treatment requires injections of antitoxins, usually of equine origin and thus poorly tolerated. Therefore, development of human or human-like neutralizing antibodies is of a major interest, and it is the subject of the European framework project called “AntiBotABE”. Results In this study, starting from a macaque immunized with the recombinant heavy chain of BoNT/A1 (BoNT/A1-HC), an immune antibody phage-display library was generated and antibody fragments (single chain Fragment variable) with nanomolar affinity were isolated and further characterized. The neutralization capacities of these scFvs were analyzed in the mouse phrenic nerve-hemidiaphragm assay. Conclusions After a three-round panning, 24 antibody fragments with affinity better than 10 nM were isolated. Three of them neutralized BoNT/A1 efficiently and two cross-neutralized BoNT/A1 and BoNT/A2 subtypes in the mouse phrenic nerve-hemidiaphragm assay. These are the first monoclonal human-like antibodies cross-neutralizing both BoNT/A1 and BoNT/A2. The antibody A1HC38 was selected for further development, and could be clinically developed for the prophylaxis and treatment of botulism. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0206-0) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Kalb SR, Boyer AE, Barr JR. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity. Toxins (Basel) 2015; 7:3497-511. [PMID: 26404376 PMCID: PMC4591662 DOI: 10.3390/toxins7093497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/10/2015] [Accepted: 08/26/2015] [Indexed: 01/15/2023] Open
Abstract
Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A–G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin.
Collapse
Affiliation(s)
- Suzanne R Kalb
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| | - Anne E Boyer
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| | - John R Barr
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| |
Collapse
|
22
|
Maslanka SE, Lúquez C, Dykes JK, Tepp WH, Pier CL, Pellett S, Raphael BH, Kalb SR, Barr JR, Rao A, Johnson EA. A Novel Botulinum Neurotoxin, Previously Reported as Serotype H, Has a Hybrid-Like Structure With Regions of Similarity to the Structures of Serotypes A and F and Is Neutralized With Serotype A Antitoxin. J Infect Dis 2015; 213:379-85. [PMID: 26068781 DOI: 10.1093/infdis/jiv327] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/16/2015] [Indexed: 01/13/2023] Open
Abstract
Botulism is a potentially fatal paralytic disease caused by the action of botulinum neurotoxin (BoNT) on nerve cells. There are 7 known serotypes (A-G) of BoNT and up to 40 genetic variants. Clostridium botulinum strain IBCA10-7060 was recently reported to produce BoNT serotype B (BoNT/B) and a novel BoNT, designated as BoNT/H. The BoNT gene (bont) sequence of BoNT/H was compared to known bont sequences. Genetic analysis suggested that BoNT/H has a hybrid-like structure containing regions of similarity to the structures of BoNT/A1 and BoNT/F5. This novel BoNT was serologically characterized by the mouse neutralization assay and a neuronal cell-based assay. The toxic effects of this hybrid-like BoNT were completely eliminated by existing serotype A antitoxins, including those contained in multivalent therapeutic antitoxin products that are the mainstay of human botulism treatment.
Collapse
Affiliation(s)
| | - Carolina Lúquez
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Janet K Dykes
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin-Madison
| | | | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison
| | - Brian H Raphael
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Suzanne R Kalb
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John R Barr
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Agam Rao
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
23
|
Kalb SR, Baudys J, Wang D, Barr JR. Recommended mass spectrometry-based strategies to identify botulinum neurotoxin-containing samples. Toxins (Basel) 2015; 7:1765-78. [PMID: 25996606 PMCID: PMC4448173 DOI: 10.3390/toxins7051765] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/01/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause the disease called botulism, which can be lethal. BoNTs are proteins secreted by some species of clostridia and are known to cause paralysis by interfering with nerve impulse transmission. Although the human lethal dose of BoNT is not accurately known, it is estimated to be between 0.1 μg to 70 μg, so it is important to enable detection of small amounts of these toxins. Our laboratory previously reported on the development of Endopep-MS, a mass-spectrometric‑based endopeptidase method to detect, differentiate, and quantify BoNT immunoaffinity purified from complex matrices. In this work, we describe the application of Endopep-MS for the analysis of thirteen blinded samples supplied as part of the EQuATox proficiency test. This method successfully identified the presence or absence of BoNT in all thirteen samples and was able to successfully differentiate the serotype of BoNT present in the samples, which included matrices such as buffer, milk, meat extract, and serum. Furthermore, the method yielded quantitative results which had z-scores in the range of -3 to +3 for quantification of BoNT/A containing samples. These results indicate that Endopep-MS is an excellent technique for detection, differentiation, and quantification of BoNT in complex matrices.
Collapse
Affiliation(s)
- Suzanne R Kalb
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| | - Jakub Baudys
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| | - Dongxia Wang
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| | - John R Barr
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| |
Collapse
|
24
|
Kalb SR, Baudys J, Raphael BH, Dykes JK, Lúquez C, Maslanka SE, Barr JR. Functional characterization of botulinum neurotoxin serotype H as a hybrid of known serotypes F and A (BoNT F/A). Anal Chem 2015; 87:3911-7. [PMID: 25731972 DOI: 10.1021/ac504716v] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique strain of Clostridium botulinum (IBCA10-7060) was recently discovered which produces two toxins: botulinum neurotoxin (BoNT) serotype B and a novel BoNT reported as serotype H. Previous molecular assessment showed that the light chain (LC) of the novel BoNT most resembled the bont of the light chain of known subtype F5, while the C-terminus of the heavy chain (HC) most resembled the binding domain of serotype A. We evaluated the functionality of both toxins produced in culture by first incorporating an immunoaffinity step using monoclonal antibodies to purify BoNT from culture supernatants and tested each immune-captured neurotoxin with full-length substrates vesicle-associated membrane protein 2 (VAMP-2), synaptosomal-associated protein 25 (SNAP-25), syntaxin, and shortened peptides representing the substrates. The BoNT/B produced by this strain behaved as a typical BoNT/B, having immunoaffinity for anti-B monoclonal antibodies and cleaving both full length VAMP-2 and a peptide based on the sequence of VAMP-2 in the expected location. As expected, there was no activity toward SNAP-25 or syntaxin. The novel BoNT demonstrated immunoaffinity for anti-A monoclonal antibodies but did not cleave SNAP-25 as expected for BoNT/A. Instead, the novel BoNT cleaved VAMP-2 and VAMP-2-based peptides in the same location as BoNT/F5. This is the first discovery of a single botulinum neurotoxin with BoNT/A antigenicity and BoNT/F light chain function. This work suggests that the newly reported serotype H may actually be a hybrid of previously known BoNT serotype A and serotype F, specifically subtype F5.
Collapse
Affiliation(s)
- Suzanne R Kalb
- †Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy NE, Atlanta, Georgia 30341, United States
| | - Jakub Baudys
- †Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy NE, Atlanta, Georgia 30341, United States
| | - Brian H Raphael
- ‡Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Janet K Dykes
- ‡Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Carolina Lúquez
- ‡Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Susan E Maslanka
- ‡Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - John R Barr
- †Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy NE, Atlanta, Georgia 30341, United States
| |
Collapse
|
25
|
Kull S, Schulz KM, Strotmeier JWN, Kirchner S, Schreiber T, Bollenbach A, Dabrowski PW, Nitsche A, Kalb SR, Dorner MB, Barr JR, Rummel A, Dorner BG. Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype. PLoS One 2015; 10:e0116381. [PMID: 25658638 PMCID: PMC4320087 DOI: 10.1371/journal.pone.0116381] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 12/31/2022] Open
Abstract
Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might pave the way for the development of novel therapeutics and tailor-made antitoxins.
Collapse
Affiliation(s)
- Skadi Kull
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - K. Melanie Schulz
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - Sebastian Kirchner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Tanja Schreiber
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - P. Wojtek Dabrowski
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Suzanne R. Kalb
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Martin B. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - John R. Barr
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte G. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|
26
|
Kalb SR, Krilich JC, Dykes JK, Lúquez C, Maslanka SE, Barr JR. Detection of Botulinum Toxins A, B, E, and F in Foods by Endopep-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1133-1141. [PMID: 25578960 PMCID: PMC4523457 DOI: 10.1021/jf505482b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Botulism is caused by exposure to botulinum neurotoxins (BoNTs). BoNTs are proteins secreted by some species of clostridia; these neurotoxins are known to interfere with nerve impulse transmission, thus causing paralysis. Botulism may be contracted through consumption of food either naturally or intentionally contaminated with BoNT. The human lethal dose of BoNT is not known but is estimated to be between 0.1 and 70 μg; thus, it is important to be able to detect small amounts of this toxin in foods to ensure food safety and to identify the source of an outbreak. Our laboratory previously reported on the development of Endopep-MS, a mass-spectrometric-based endopeptidase method for the detection and differentiation of BoNT. This method can detect BoNT at levels below the historic standard mouse bioassay in clinical samples such as serum, stool, and culture supernatants. We have now expanded this assay to detect BoNT in over 50 foods including representative products that were involved in actual botulism investigations. The foods tested by the Endopep-MS included those with various acidities, viscosities, and fat levels. Dairy and culturally diverse products were also included. This work demonstrates that the Endopep-MS method can be used to detect BoNT/A, /B, /E, and /F in foods at levels spiked below that of the limit of detection of the mouse bioassay. Furthermore, we successfully applied this method to investigate several foods associated with botulism outbreaks.
Collapse
Affiliation(s)
- Suzanne R. Kalb
- Centers for Disease Control and Prevention, National Center of Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, NE, Atlanta, GA 30341
| | - Joan C. Krilich
- Battelle Memorial Institute under contract at the Centers for Disease Control and Prevention, Atlanta, GA
| | - Janet K. Dykes
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, Atlanta, GA 30329
| | - Carolina Lúquez
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, Atlanta, GA 30329
| | - Susan E. Maslanka
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, Atlanta, GA 30329
| | - John R. Barr
- Centers for Disease Control and Prevention, National Center of Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, NE, Atlanta, GA 30341
- Corresponding Author: Tel: 770-488-7848; Fax: 770-488-4609;
| |
Collapse
|
27
|
Björnstad K, Tevell Åberg A, Kalb SR, Wang D, Barr JR, Bondesson U, Hedeland M. Validation of the Endopep-MS method for qualitative detection of active botulinum neurotoxins in human and chicken serum. Anal Bioanal Chem 2014; 406:7149-61. [PMID: 25228079 DOI: 10.1007/s00216-014-8170-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/28/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly toxic proteases produced by anaerobic bacteria. Traditionally, a mouse bioassay (MBA) has been used for detection of BoNTs, but for a long time, laboratories have worked with alternative methods for their detection. One of the most promising in vitro methods is a combination of an enzymatic and mass spectrometric assay called Endopep-MS. However, no comprehensive validation of the method has been presented. The main purpose of this work was to perform a validation for the qualitative analysis of BoNT-A, B, C, C/D, D, D/C, and F in serum. The limit of detection (LOD), selectivity, precision, stability in matrix and solution, and correlation with the MBA were evaluated. The LOD was equal to or even better than that of the MBA for BoNT-A, B, D/C, E, and F. Furthermore, Endopep-MS was for the first time successfully used to differentiate between BoNT-C and D and their mosaics C/D and D/C by different combinations of antibodies and target peptides. In addition, sequential antibody capture was presented as a new way to multiplex the method when only a small sample volume is available. In the comparison with the MBA, all the samples analyzed were positive for BoNT-C/D with both methods. These results indicate that the Endopep-MS method is a valid alternative to the MBA as the gold standard for BoNT detection based on its sensitivity, selectivity, and speed and that it does not require experimental animals.
Collapse
Affiliation(s)
- Kristian Björnstad
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Lévêque C, Ferracci G, Maulet Y, Mazuet C, Popoff M, Seagar M, El Far O. Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism. Biosens Bioelectron 2014; 57:207-12. [DOI: 10.1016/j.bios.2014.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 12/22/2022]
|
29
|
Kalb SR, Baudys J, Smith TJ, Smith LA, Barr JR. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5. Anal Chem 2014; 86:3254-62. [PMID: 24605815 DOI: 10.1021/ac5001509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.
Collapse
Affiliation(s)
- Suzanne R Kalb
- Centers for Disease Control and Prevention , National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, NE, Atlanta, Georgia 30341, United States
| | | | | | | | | |
Collapse
|
30
|
Miethe S, Rasetti-Escargueil C, Liu Y, Chahboun S, Pelat T, Avril A, Frenzel A, Schirrmann T, Thullier P, Sesardic D, Hust M. Development of neutralizing scFv-Fc against botulinum neurotoxin A light chain from a macaque immune library. MAbs 2014; 6:446-59. [PMID: 24492304 PMCID: PMC3984333 DOI: 10.4161/mabs.27773] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.
Collapse
Affiliation(s)
- Sebastian Miethe
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie, und Bioinformatik; Abteilung Biotechnologie; Braunschweig, Germany
| | - Christine Rasetti-Escargueil
- National Institute for Biological Standards and Control (NIBSC); Medicines and Healthcare Products Regulatory Agency; Division of Bacteriology; Potters Bar, UK
| | - Yvonne Liu
- National Institute for Biological Standards and Control (NIBSC); Medicines and Healthcare Products Regulatory Agency; Division of Bacteriology; Potters Bar, UK
| | - Siham Chahboun
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines ; La Tronche Cedex, France
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines ; La Tronche Cedex, France
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines ; La Tronche Cedex, France
| | - André Frenzel
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie, und Bioinformatik; Abteilung Biotechnologie; Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie, und Bioinformatik; Abteilung Biotechnologie; Braunschweig, Germany
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines ; La Tronche Cedex, France
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC); Medicines and Healthcare Products Regulatory Agency; Division of Bacteriology; Potters Bar, UK
| | - Michael Hust
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie, und Bioinformatik; Abteilung Biotechnologie; Braunschweig, Germany
| |
Collapse
|
31
|
Comparison of the catalytic properties of the botulinum neurotoxin subtypes A1 and A5. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2722-8. [PMID: 24096023 DOI: 10.1016/j.bbapap.2013.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022]
Abstract
Clostridium botulinum neurotoxins (BoNTs) cause the life-threatening disease botulism through the inhibition of neurotransmitter release by cleaving essential SNARE proteins. There are seven serologically distinctive types of BoNTs and many subtypes within a serotype have been identified. BoNT/A5 is a recently discovered subtype of type A botulinum neurotoxin which possesses a very high degree of sequence similarity and identity to the well-studied A1 subtype. In the present study, we examined the endopeptidase activity of these two BoNT/A subtypes and our results revealed significant differences in substrate binding and cleavage efficiency between subtype A5 and A1. Distinctive hydrolysis efficiency was observed between the two toxins during cleavage of the native substrate SNAP-25 versus a shortened peptide mimic. N-terminal truncation studies demonstrated that a key region of the SNAP-25, including the amino acid residues at 151 through 154 located in the remote binding region of the substrate, contributed to the differential catalytic properties between A1 and A5. Elevated binding affinity of the peptide substrate resulted from including these important residues and enhanced BoNT/A5's hydrolysis efficiency. In addition, mutations of these amino acid residues affect the proteolytic performance of the two toxins in different ways. This study provides a better understanding of the biological activity of these toxins, their performance characteristics in the Endopep-MS assay to detect BoNT in clinical samples and foods, and is useful for the development of peptide substrates.
Collapse
|
32
|
Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect Immun 2013; 81:3894-902. [PMID: 23918782 DOI: 10.1128/iai.00536-13] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are synthesized by Clostridium botulinum and exist as seven immunologically distinct serotypes designated A through G. For most serotypes, several subtypes have now been described based on nominal differences in the amino acid sequences. BoNT/A1 is the most well-characterized subtype of the BoNT/A serotype, and many of its properties, including its potency, its prevalence as a food poison, and its utility as a pharmaceutical, have been thoroughly studied. In contrast, much remains unknown of the other BoNT/A subtypes. In this study, BoNT/A subtype 1 (BoNT/A1) to BoNT/A5 were characterized utilizing a mouse bioassay, an in vitro cleavage assay, and several neuronal cell-based assays. The data indicate that BoNT/A1 to -5 have distinct in vitro and in vivo toxicological properties and that, unlike those for BoNT/A1, the neuronal and mouse results for BoNT/A2 to -5 do not correlate with their enzymatic activity. These results indicate that BoNT/A1 to -5 have distinct characteristics, which are of importance for a greater understanding of botulism and for pharmaceutical applications.
Collapse
|
33
|
Bagramyan K, Kaplan BE, Cheng LW, Strotmeier J, Rummel A, Kalkum M. Substrates and controls for the quantitative detection of active botulinum neurotoxin in protease-containing samples. Anal Chem 2013; 85:5569-76. [PMID: 23656526 DOI: 10.1021/ac4008418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) are used in a wide variety of medical applications, but there is limited pharmacokinetic data on active BoNT. Monitoring BoNT activity in the circulation is challenging because BoNTs are highly toxic and are rapidly taken up by neurons and removed from the bloodstream. Previously we reported a sensitive BoNT "Assay with a Large Immunosorbent Surface Area" that uses conversion of fluorogenic peptide substrates to measure the intrinsic endopeptidase activity of bead-captured BoNT. However, in complex biological samples, protease contaminants can also cleave the substrates, reducing sensitivity and specificity of the assay. Here, we present a novel set of fluorogenic peptides that serve as BoNT-specific substrates and protease-sensitive controls. BoNT-cleavable substrates contain a C-terminal Nle, while BoNT-noncleavable controls contain its isomer ε-Ahx. The substrates are cleaved by BoNT subtypes A1-A3 and A5. Substrates and control peptides can be cleaved by non-BoNT proteases (e.g., trypsin, proteinase K, and thermolysin) while obeying Michaelis-Menten kinetics. Using this novel substrate/control set, we studied BoNT/A1 activity in two mouse models of botulism. We detected BoNT/A serum activities ranging from ~3600 to 10 amol/L in blood of mice that had been intravenously injected 1 h prior with BoNT/A1 complex (100 to 4 pg/mouse). We also detected the endopeptidase activity of orally administered BoNT/A1 complex (1 μg) in blood 5 h after administration; activity was greatest 7 h after administration. Redistribution and elevation rates for active toxin were measured and are comparable to those reported for inactive toxin.
Collapse
Affiliation(s)
- Karine Bagramyan
- Beckman Research Institute of City of Hope, Department of Immunology, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
34
|
Toxin detection in patients' sera by mass spectrometry during two outbreaks of type A Botulism in France. J Clin Microbiol 2012; 50:4091-4. [PMID: 22993181 DOI: 10.1128/jcm.02392-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In two outbreaks of food-borne botulism in France, Clostridium botulinum type A was isolated and characterized from incriminated foods. Botulinum neurotoxin type A was detected in the patients' sera by mouse bioassay and in vitro endopeptidase assay with an immunocapture step and identification of the cleavage products by mass spectrometry.
Collapse
|
35
|
Zhang Y, Lou J, Jenko KL, Marks JD, Varnum SM. Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays. Anal Biochem 2012; 430:185-92. [PMID: 22935296 DOI: 10.1016/j.ab.2012.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022]
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, are a group of seven (A-G) immunologically distinct proteins and cause the paralytic disease botulism. These toxins are the most poisonous substances known to humans and are potential bioweapon agents. Therefore, it is necessary to develop highly sensitive assays for the detection of BoNTs in both clinical and environmental samples. In the current study, we have developed an enzyme-linked immunosorbent assay (ELISA)-based protein antibody microarray for the sensitive and simultaneous detection of BoNT serotypes A, B, C, D, E, and F. With engineered high-affinity antibodies, the BoNT assays have sensitivities in buffer ranging from 1.3fM (0.2pg/ml) to 14.7fM (2.2pg/ml). Using clinical and food matrices (serum and milk), the microarray is capable of detecting BoNT serotypes A to F to similar levels as in standard buffer. Cross-reactivity between assays for individual serotype was also analyzed. These simultaneous, rapid, and sensitive assays have the potential to measure botulinum toxins in a high-throughput manner in complex clinical, food, and environmental samples.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
36
|
Singh AK, Stanker LH, Sharma SK. Botulinum neurotoxin: where are we with detection technologies? Crit Rev Microbiol 2012; 39:43-56. [PMID: 22676403 DOI: 10.3109/1040841x.2012.691457] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Because of its high toxicity, botulinum neurotoxin (BoNT) poses a significant risk to humans and it represents a possible biological warfare agent. Nevertheless, BoNT serotypes A and B are considered an effective treatment for a variety of neurological disorders. The growing applicability of BoNT as a drug, and its potential use as a biological threat agent, highlight the urgent need to develop sensitive detection assays and therapeutic counter measures. In the last decade, significant progress has been made in BoNT detection technologies but none have fully replaced the mouse lethality assay, the current "gold standard". Recently, new advances in robotics and the availability of new reagents have allowed development of methods for rapid toxin analysis. These technologies while promising need further refinement.
Collapse
Affiliation(s)
- Ajay K Singh
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| | | | | |
Collapse
|
37
|
Liu YY, Rigsby P, Sesardic D, Marks JD, Jones RG. A functional dual-coated (FDC) microtiter plate method to replace the botulinum toxin LD50 test. Anal Biochem 2012; 425:28-35. [DOI: 10.1016/j.ab.2012.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 11/17/2022]
|
38
|
Dorner MB, Schulz KM, Kull S, Dorner BG. Complexity of Botulinum Neurotoxins: Challenges for Detection Technology. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Chahboun S, Hust M, Liu Y, Pelat T, Miethe S, Helmsing S, Jones RG, Sesardic D, Thullier P. Isolation of a nanomolar scFv inhibiting the endopeptidase activity of botulinum toxin A, by single-round panning of an immune phage-displayed library of macaque origin. BMC Biotechnol 2011; 11:113. [PMID: 22111995 PMCID: PMC3252318 DOI: 10.1186/1472-6750-11-113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/23/2011] [Indexed: 01/06/2023] Open
Abstract
Background Botulinum neurotoxin A (BoNT/A), mainly represented by subtype A1, is the most toxic substance known. It causes naturally-occurring food poisoning, and is among the biological agents at the highest risk of being weaponized. Several antibodies neutralizing BoNT/A by targeting its heavy chain (BoNT/A-H) have been isolated in the past. For the first time however, an IgG (4LCA) recently isolated by hybridoma technology and targeting the BoNT/A light chain (BoNT/A-L), was shown to inhibit BoNT/A endopeptidase activity and protect in vivo against BoNT/A. In the present study, a phage-displayed library was constructed from a macaque (Macaca fascicularis) hyper-immunized with BoNTA/L in order to isolate scFvs inhibiting BoNT/A endopeptidase activity for clinical use. Results Diversity of the scFvs constituting the library was limited due to the frequent presence, within the genes intended to be part of the library, of restriction sites utilized for its construction. After screening with several rounds of increasing stringency, as is usual with phage technology, the library got overwhelmed by phagemids encoding incomplete scFvs. The screening was successfully re-performed with a single round of high stringency. In particular, one of the isolated scFvs, 2H8, bound BoNT/A1 with a 3.3 nM affinity and effectively inhibited BoNT/A1 endopeptidase activity. The sequence encoding 2H8 was 88% identical to human germline genes and its average G-score was -0.72, quantifying the high human-like quality of 2H8. Conclusions The presence of restrictions sites within many of the sequences that were to be part of the library did not prevent the isolation of an scFv, 2H8, by an adapted panning strategy. ScFv 2H8 inhibited toxin endopeptidase activity in vitro and possessed human-like quality required for clinical development. More generally, the construction and screening of phage-displayed libraries built from hyper-immunized non-human primates is an efficient solution to isolate antibody fragments with therapeutic potential.
Collapse
Affiliation(s)
- Siham Chahboun
- Unité de Biotechnologie des Anticorps, et des Toxines, Département de Microbiologie, Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), 24 Avenue des Maquis du Grésivaudan, BP 87, 38702 La Tronche Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kalb SR, Santana WI, Geren IN, Garcia-Rodriguez C, Lou J, Smith TJ, Marks JD, Smith LA, Pirkle JL, Barr JR. Extraction and inhibition of enzymatic activity of botulinum neurotoxins /B1, /B2, /B3, /B4, and /B5 by a panel of monoclonal anti-BoNT/B antibodies. BMC BIOCHEMISTRY 2011; 12:58. [PMID: 22085466 PMCID: PMC3250939 DOI: 10.1186/1471-2091-12-58] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/15/2011] [Indexed: 11/30/2022]
Abstract
Background Botulism is caused by botulinum neurotoxins (BoNTs), extremely toxic proteins which can induce respiratory failure leading to long-term intensive care or death. Treatment for botulism includes administration of antitoxins, which must be administered early in the course of the intoxication; therefore, rapid determination of human exposure to BoNT is an important public health goal. In previous work, our laboratory reported on Endopep-MS, a mass spectrometry-based activity method for detecting and differentiating BoNT/A, /B, /E, and /F in clinical samples. We also demonstrated that antibody-capture is effective for purification and concentration of BoNTs from complex matrices such as clinical samples. However, some antibodies inhibit or neutralize the enzymatic activity of BoNT, so the choice of antibody for toxin extraction is critical. Results In this work, we evaluated 24 anti-BoNT/B monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/B1, /B2, /B3, /B4, and /B5 and to extract those toxins. Among the mAbs, there were significant differences in ability to extract BoNT/B subtypes and inhibitory effect on BoNT catalytic activity. Some of the mAbs tested enhanced the in vitro light chain activity of BoNT/B, suggesting that BoNT/B may undergo conformational change upon binding some mAbs. Conclusions In addition to determining in vitro inhibition abilities of a panel of mAbs against BoNT/B1-/B5, this work has determined B12.2 and 2B18.2 to be the best mAbs for sample preparation before Endopep-MS. These mAb characterizations also have the potential to assist with mechanistic studies of BoNT/B protection and treatment, which is important for studying alternative therapeutics for botulism.
Collapse
Affiliation(s)
- Suzanne R Kalb
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, N,E,, Atlanta, GA 30341, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pierce CL, Williams TL, Moura H, Pirkle JL, Cox NJ, Stevens J, Donis RO, Barr JR. Quantification of immunoreactive viral influenza proteins by immunoaffinity capture and isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 2011; 83:4729-37. [PMID: 21591780 DOI: 10.1021/ac2006526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An immunocapture isotope dilution mass spectrometry (IC-IDMS) method was developed to quantify antibody-bound influenza hemagglutinins (HA) in trivalent influenza vaccines (TIV). Currently, regulatory potency requirements for TIV require HA quantification based on the single radial immunodiffusion (SRID) assay, which is time-consuming, laborious, and requires production of large quantities of reagents globally. In IC-IDMS, antiserum to the HA of interest captured viral proteins that were in the correct conformation to be recognized by the antibodies. The captured proteins were digested, and evolutionarily conserved tryptic peptides were quantified using isotope-dilution liquid chromatography-tandem mass spectrometry. IC-IDMS relies on antibody-antigen binding similar to SRID but incorporates the accuracy and precision of IDMS. Polyclonal antibodies (pAb-H3) prepared by injection of sheep with purified H3 HA captured 82.9% (55.26 fmol/μL) of the total H3 HA (66.69 fmol/μL) from the commercial TIV and 93.6% (57.23 fmol/μL) of the total H3 HA (61.14 fmol/μL) in purified virus. While other HA (H1, B), neuraminidase (N1, N2, NB), viral matrix proteins, and nucleoproteins were also captured by this antiserum, our results were not affected due to the specificity of the mass spectrometer. IC-IDMS is an accurate, precise, sensitive, and selective method to measure antibody-bound HA in purified virus and commercial vaccines.
Collapse
Affiliation(s)
- Carrie L Pierce
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F-50, Atlanta, Georgia 30341, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gray SA, Barr JR, Kalb SR, Marks JD, Baird CL, Cangelosi GA, Miller KD, Feldhaus MJ. Synergistic capture of Clostridium botulinum type A neurotoxin by scFv antibodies to novel epitopes. Biotechnol Bioeng 2011; 108:2456-67. [PMID: 21538339 DOI: 10.1002/bit.23196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 11/07/2022]
Abstract
A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, 3 also bound to full-length BoNT/A toxin complex with affinities ranging from 5 to 48 nM. Epitope binning showed that the three unique clones recognized at least two epitopes distinct from one another as well as from the detection MAbs. After production in E. coli, scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigens. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.
Collapse
Affiliation(s)
- Sean A Gray
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, Washington 98109; telephone: 206-256-7143; fax: 206-256-7229.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Boyer AE, Gallegos-Candela M, Lins RC, Kuklenyik Z, Woolfitt A, Moura H, Kalb S, Quinn CP, Barr JR. Quantitative mass spectrometry for bacterial protein toxins--a sensitive, specific, high-throughput tool for detection and diagnosis. Molecules 2011; 16:2391-413. [PMID: 21403598 PMCID: PMC6259840 DOI: 10.3390/molecules16032391] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/01/2011] [Accepted: 03/09/2011] [Indexed: 12/28/2022] Open
Abstract
Matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometry (MS) is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI) tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA) which combines with lethal factor (LF) and edema factor (EF), forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.
Collapse
Affiliation(s)
- Anne E. Boyer
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Maribel Gallegos-Candela
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Renato C. Lins
- Battelle Analytical Services, Atlanta, at the Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA
| | - Zsuzsanna Kuklenyik
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Adrian Woolfitt
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Hercules Moura
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Suzanne Kalb
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Conrad P. Quinn
- Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333, USA
| | - John R. Barr
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-770-488-7848; Fax: +1-770-488-0509
| |
Collapse
|
44
|
Pocsfalvi G, Schlosser G. Detection of bacterial protein toxins by solid phase magnetic immunocapture and mass spectrometry. Methods Mol Biol 2011; 739:3-12. [PMID: 21567313 DOI: 10.1007/978-1-61779-102-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bacterial protein toxins are involved in a number of infectious and foodborne diseases and are considered as potential biological warfare agents as well. Their sensitive multiplex detection in complex environmental, food, and biological samples are an important although challenging task. Solid-phase immunoaffinity capture provides an efficient way to enrich and purify a wide range of proteins from complex mixtures. We have shown that staphylococcal enterotoxins, for example, can be efficiently enriched by means of magnetic immunocapture using antibody functionalized paramagnetic beads. The method was successfully interfaced by the on-beads and off-beads detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry at the protein level and by the off-beads nano-electrospray ionization-MS/MS detection at the enzyme digests level, enabling thus the unambiguous identification of the toxin. The method is applicable to any bacterial toxin to which an antibody is available.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.
| | | |
Collapse
|
45
|
Garcia-Rodriguez C, Geren IN, Lou J, Conrad F, Forsyth C, Wen W, Chakraborti S, Zao H, Manzanarez G, Smith TJ, Brown J, Tepp WH, Liu N, Wijesuriya S, Tomic MT, Johnson EA, Smith LA, Marks JD. Neutralizing human monoclonal antibodies binding multiple serotypes of botulinum neurotoxin. Protein Eng Des Sel 2010; 24:321-31. [PMID: 21149386 DOI: 10.1093/protein/gzq111] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Botulism, a disease of humans characterized by prolonged paralysis, is caused by botulinum neurotoxins (BoNTs), the most poisonous substances known. There are seven serotypes of BoNT (A-G) which differ from each other by 34-64% at the amino acid level. Each serotype is uniquely recognized by polyclonal antibodies, which originally were used to classify serotypes. To determine if there existed monoclonal antibodies (mAbs) capable of binding two or more serotypes, we evaluated the ability of 35 yeast-displayed single-chain variable fragment antibodies generated from vaccinated humans or mice for their ability to bind multiple BoNT serotypes. Two such clonally related human mAbs (1B18 and 4E17) were identified that bound BoNT serotype A (BoNT/A) and B or BoNT/A, B, E and F, respectively, with high affinity. Using molecular evolution techniques, it proved possible to both increase affinity and maintain cross-serotype reactivity for the 4E17 mAb. Both 1B18 and 4E17 bound to a relatively conserved epitope at the tip of the BoNT translocation domain. Immunoglobulin G constructed from affinity matured variants of 1B18 and 4E17 were evaluated for their ability to neutralize BoNT/B and E, respectively, in vivo. Both antibodies potently neutralized BoNT in vivo demonstrating that this epitope is functionally important in the intoxication pathway. Such cross-serotype binding and neutralizing mAbs should simplify the development of antibody-based BoNT diagnostics and therapeutics.
Collapse
Affiliation(s)
- C Garcia-Rodriguez
- Department of Anesthesia and Pharmaceutical Chemistry, University of California-San Francisco, Rm 3C-38, San Francisco General Hospital, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kalb SR, Garcia-Rodriguez C, Lou J, Baudys J, Smith TJ, Marks JD, Smith LA, Pirkle JL, Barr JR. Extraction of BoNT/A, /B, /E, and /F with a single, high affinity monoclonal antibody for detection of botulinum neurotoxin by Endopep-MS. PLoS One 2010; 5:e12237. [PMID: 20808925 PMCID: PMC2923190 DOI: 10.1371/journal.pone.0012237] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/24/2010] [Indexed: 11/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies.
Collapse
Affiliation(s)
- Suzanne R. Kalb
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Consuelo Garcia-Rodriguez
- Department of Anesthesia and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Jianlong Lou
- Department of Anesthesia and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Jakub Baudys
- Battelle Memorial Institute at the Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Theresa J. Smith
- Integrated Toxicology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - James D. Marks
- Department of Anesthesia and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Leonard A. Smith
- Integrated Toxicology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - James L. Pirkle
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
47
|
Lou J, Geren I, Garcia-Rodriguez C, Forsyth CM, Wen W, Knopp K, Brown J, Smith T, Smith LA, Marks JD. Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Eng Des Sel 2010; 23:311-9. [PMID: 20156888 DOI: 10.1093/protein/gzq001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Botulism is caused by the botulinum neurotoxins (BoNTs), the most poisonous substance known. Because of the high potency of BoNT, development of diagnostic and therapeutic antibodies for botulism requires antibodies of very high affinity. Here we report the use of yeast mating to affinity mature BoNT antibodies by light chain shuffling. A library of immunoglobulin light chains was generated in a yeast vector where the light chain is secreted. The heavy chain variable region and the first domain of the constant region (V(H)-C(H)1) from a monoclonal antibody was cloned into a different yeast vector for surface display as a fusion to the Aga2 protein. Through yeast mating of the two haploid yeasts, a library of light chain-shuffled Fab was created. Using this approach, the affinities of one BoNT/A and two BoNT/B scFv antibody fragments were increased from 9- to more than 77-fold. Subcloning the V-genes from the affinity-matured Fab yielded fully human IgG1 with equilibrium binding constants for BoNT/A and BoNT/B of 2.51 x 10(-11) M or lower for all three monoclonal antibodies. This technique provides a rapid route to antibody affinity maturation.
Collapse
Affiliation(s)
- J Lou
- Department of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco General Hospital, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Conway JO, Sherwood LJ, Collazo MT, Garza JA, Hayhurst A. Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. PLoS One 2010; 5:e8818. [PMID: 20098614 PMCID: PMC2809108 DOI: 10.1371/journal.pone.0008818] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/23/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There are currently 7 known serotypes of botulinum neurotoxin (BoNT) classified upon non-cross reactivity of neutralizing immunoglobulins. Non-neutralizing immunoglobulins, however, can exhibit cross-reactivities between 2 or more serotypes, particularly mosaic forms, which can hamper the development of highly specific immunoassays, especially if based on polyclonal antisera. Here we employ facile recombinant antibody technology to subtractively select ligands to each of the 7 BoNT serotypes, resulting in populations with very high specificity for their intended serotype. METHODS AND FINDINGS A single llama was immunized with a cocktail of 7 BoNT toxoids to generate a phage display library of single domain antibodies (sdAb, VHH or nanobodies) which were selected on live toxins. Resulting sdAb were capable of detecting both toxin and toxin complex with the best combinations able to detect 100s-10s of pg per 50 microL sample in a liquid bead array. The most sensitive sdAb were combined in a heptaplex assay to identify each of the BoNT serotypes in buffer and milk and to a lesser extent in carrot juice, orange juice and cola. Several anti-A(1) sdAb recognized A2 complex, showing that subtype cross-reactivity within a serotype was evident. Many of our sdAb could act as both captor and tracer for several toxin and toxin complexes suggesting sdAb can be used as architectural probes to indicate BoNT oligomerisation. Six of 14 anti-A clones exhibited inhibition of SNAP-25 cleavage in the neuro-2A assay indicating some sdAb had toxin neutralizing capabilities. Many sdAb were also shown to be refoldable after exposure to high temperatures in contrast to polyclonal antisera, as monitored by circular dichroism. CONCLUSIONS Our panel of molecularly flexible antibodies should not only serve as a good starting point for ruggedizing assays and inhibitors, but enable the intricate architectures of BoNT toxins and complexes to be probed more extensively.
Collapse
Affiliation(s)
- Jerry O. Conway
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Laura J. Sherwood
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - M. Thelma Collazo
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - John A. Garza
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Andrew Hayhurst
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|