1
|
L'Hôte L, Light I, Mattiangeli V, Teasdale MD, Halpin Á, Gourichon L, Key FM, Daly KG. An 8000 years old genome reveals the Neolithic origin of the zoonosis Brucella melitensis. Nat Commun 2024; 15:6132. [PMID: 39033187 PMCID: PMC11271283 DOI: 10.1038/s41467-024-50536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Brucella melitensis is a major livestock bacterial pathogen and zoonosis, causing disease and infection-related abortions in small ruminants and humans. A considerable burden to animal-based economies today, the presence of Brucella in Neolithic pastoral communities has been hypothesised but we lack direct genomic evidence thus far. We report a 3.45X B. melitensis genome preserved in an ~8000 year old sheep specimen from Menteşe Höyük, Northwest Türkiye, demonstrating that the pathogen had evolved and was circulating in Neolithic livestock. The genome is basal with respect to all known B. melitensis and allows the calibration of the B. melitensis speciation time from the primarily cattle-infecting B. abortus to approximately 9800 years Before Present (BP), coinciding with a period of consolidation and dispersal of livestock economies. We use the basal genome to timestamp evolutionary events in B. melitensis, including pseudogenization events linked to erythritol response, the supposed determinant of the pathogen's placental tropism in goats and sheep. Our data suggest that the development of herd management and multi-species livestock economies in the 11th-9th millennium BP drove speciation and host adaptation of this zoonotic pathogen.
Collapse
Affiliation(s)
- Louis L'Hôte
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Ian Light
- Max Planck Institute for Infection Biology, Evolutionary Pathogenomics, 10117, Berlin, Germany
| | | | - Matthew D Teasdale
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Áine Halpin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Felix M Key
- Max Planck Institute for Infection Biology, Evolutionary Pathogenomics, 10117, Berlin, Germany
| | - Kevin G Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
2
|
Muñoz-Bucio A, Arellano-Reynoso B, Sangari FJ, Sieira R, Thébault P, Espitia C, García Lobo JM, Seoane A, Suárez-Güemes F. Increased Brucella abortus asRNA_0067 expression under intraphagocytic stressors is associated with enhanced virB2 transcription. Arch Microbiol 2024; 206:285. [PMID: 38816572 PMCID: PMC11139718 DOI: 10.1007/s00203-024-03984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.
Collapse
Affiliation(s)
- Adrian Muñoz-Bucio
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Félix J Sangari
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Rodrigo Sieira
- Fundación Instituto Leloir-IIBBA CONICET, Av. Patricias Argentinas 435CABA, CP. 1405, Buenos Aires Argentina, Argentina
| | - Patricia Thébault
- Laboratoire Bordelais de Recherche en Informatique (LaBRI), UMR 5800, CNRS, Bordeaux INP, Université de Bordeaux, 33400, Talence, France
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México MX, CDMX, Circuito Escolar 33, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Juan M García Lobo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Asunción Seoane
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Francisco Suárez-Güemes
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico.
| |
Collapse
|
3
|
Husain AA, Pinto SM, Agarwal N, Behera SK, Khulkhule PR, Bhartiya NM, Subbannayya Y, Prasad TSK, Singh LR, Daginawala HF, Kashyap RS. Comprehensive Proteomic Analysis of Brucella melitensis ATCC23457 Strain Reveals Metabolic Adaptations in Response to Nutrient Stress. Curr Microbiol 2022; 80:20. [PMID: 36460801 DOI: 10.1007/s00284-022-03105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/29/2022] [Indexed: 12/04/2022]
Abstract
In the present study, a comprehensive proteomic analysis of Brucella melitensis (B. melitensis) strain ATCC23457 was carried out to investigate proteome alterations in response to in vitro-induced nutrient stress. Our analysis resulted in the identification of 2440 proteins, including 365 hypothetical proteins and 850 potentially secretory proteins representing ~77.8% of the B. melitensis proteome. Utilizing a proteogenomics approach, we provide translational evidence for eight novel putative protein-coding genes and confirmed the coding potential of 31 putatively annotated pseudogenes, thus refining the existing genome annotation. Further, using a label-free quantitative proteomic approach, new insights into the cellular processes governed by nutrient stress, including enrichment of amino acid metabolism (E), transcription (K), energy production and conversion (C), and biogenesis (J) processes were obtained. Pathway analysis revealed the enrichment of survival and homeostasis maintenance pathways, including type IV secretion system, nitrogen metabolism, and urease pathways in response to nutrient limitation. To conclude, our analysis demonstrates the utility of in-depth proteomic analysis in enabling improved annotation of the B. melitensis genome. Further, our results indicate that B. melitensis undergoes metabolic adaptations during nutrient stress similar to other Brucella. sp, and adapts itself for long-term persistence and survival.
Collapse
Affiliation(s)
- Aliabbas A Husain
- Research Center, Dr. G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, 440 010, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Nupur Agarwal
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Santosh K Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Payal R Khulkhule
- Research Center, Dr. G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, 440 010, India
| | - Nidhi M Bhartiya
- Research Center, Dr. G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, 440 010, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| | - Lokendra R Singh
- Research Center, Dr. G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, 440 010, India
| | - Hatim F Daginawala
- Research Center, Dr. G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, 440 010, India
| | - Rajpal S Kashyap
- Research Center, Dr. G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, 440 010, India.
| |
Collapse
|
4
|
Zhang X, Chen J, Cheng H, Zhu J, Dong Q, Zhang H, Chen Z. MicroRNA-155 expression with Brucella infection in vitro and in vivo and decreased serum levels of MicroRNA-155 in patients with brucellosis. Sci Rep 2022; 12:4181. [PMID: 35264708 PMCID: PMC8907217 DOI: 10.1038/s41598-022-08180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Infection with Brucella is characterized by the inhibition of host immune responses. MicroRNA-155 (miR-155) has been implicated in the immune response to many diseases. In this study, its expression during Brucella 16M infection of macrophages and mice was analyzed. Expression of miR-155 was significantly induced in macrophages at 24 h post infection. Further, an analysis of infected mice showed that miR-155 was inhibited at 7 and 14 days but induced at 28 days. Interestingly, this trend in induction or inhibition was reversed at 7 and 14 days in 16M△virB-infected mice. This suggested that decreased expression of miR-155 at an early stage of infection was dependent on intracellular replication. In humans with brucellosis, serum levels of miR-155 were significantly decreased compared to those in individuals without brucellosis and healthy volunteers. Significant correlations were observed between serum level of miR-155 and serum anti-Brucella antibody titers and the sweating symptom. This effect suggests that Brucella interferes with miR-155-regulated immune responses via a unique mechanism. Taken together, data from this study indicate that Brucella infection affects miR-155 expression and that human brucellosis patients show decreased serum levels of miR-155.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Huimin Cheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China.,Animal Husbandry and Veterinary Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Qiao Dong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China.
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
5
|
Abstract
Brucella spp. are Gram negative intracellular bacteria responsible for brucellosis, a worldwide distributed zoonosis. A prominent aspect of the Brucella life cycle is its ability to invade, survive and multiply within host cells. Comprehensive approaches, such as proteomics, have aided in unravelling the molecular mechanisms underlying Brucella pathogenesis. Technological and methodological advancements such as increased instrument performance and multiplexed quantification have broadened the range of proteome studies, enabling new and improved analyses, providing deeper and more accurate proteome coverage. Indeed, proteomics has demonstrated its contribution to key research questions in Brucella biology, i.e., immunodominant proteins, host-cell interaction, stress response, antibiotic targets and resistance, protein secretion. Here, we review the proteomics of Brucella with a focus on more recent works and novel findings, ranging from reconfiguration of the intracellular bacterial proteome and studies on proteomic profiles of Brucella infected tissues, to the identification of Brucella extracellular proteins with putative roles in cell signaling and pathogenesis. In conclusion, proteomics has yielded copious new candidates and hypotheses that require future verification. It is expected that proteomics will continue to be an invaluable tool for Brucella and applications will further extend to the currently ill-explored aspects including, among others, protein processing and post-translational modification.
Collapse
|
6
|
Zhang H, Wang B, Wu W, Deng X, Shao Z, Yi J, Wang Z, Yang N, Wang Y, Wang Y, Chen C. Insights into irr and rirA gene regulation on the virulence of Brucella melitensis M5-90. Can J Microbiol 2020; 66:351-358. [PMID: 32040345 DOI: 10.1139/cjm-2019-0393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron is a fundamental element required by most organisms, including Brucella. Several researchers have suggested that the iron response regulator (irr) and rhizobial iron regulator (rirA) genes regulate iron acquisition by Brucella abortus, influencing heme synthesis by and virulence of this pathogen. However, little is known about another Brucella species, Brucella melitensis. In this research, we successfully constructed two mutants: M5-90Δirr and M5-90ΔrirA. The adhesion, invasion, and intracellular survivability of these two mutants were evaluated in RAW264.7 cells infected with 1 × 106 CFU of M5-90Δirr, M5-90ΔrirA, or M5-90. We also tested the sensitivity of cells to hydrogen peroxide and their ability to grow. In addition, the virulence of these two mutants was evaluated in BALB/c mice. The results showed that the ability of these two mutants to invade and adhere inside the murine macrophages RAW264.7 was attenuated but their ability to replicate intracellularly was strengthened, enhancing the resistance to hydrogen peroxide. The M5-90Δirr mutant showed stronger growth ability than the parental strain under iron-limiting conditions. No differences were observed in the number of bacteria in spleen between M5-90 and M5-90Δirr at 7 or 15 days postinfection. However, the number of M5-90ΔrirA in spleen reduced significantly at 15 days postinfection. The splenic index of the M5-90Δirr group is evidently lower than that of M5-90. This is the first report that irr and rirA genes of B. melitensis are associated not only with virulence but also with growth ability. Together, our data suggest that M5-90Δirr is a promising Brucella vaccine candidate.
Collapse
Affiliation(s)
- Huan Zhang
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Benben Wang
- School of Life Science, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Wenxing Wu
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Xiaoyu Deng
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Zhiran Shao
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Jihai Yi
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Zhen Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Ningning Yang
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Yong Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| | - Chuangfu Chen
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang 832000, P.R. China
| |
Collapse
|
7
|
Deletion of the Type IV Secretion System Effector VceA Promotes Autophagy and Inhibits Apoptosis in Brucella-Infected Human Trophoblast Cells. Curr Microbiol 2019; 76:510-519. [PMID: 30805699 DOI: 10.1007/s00284-019-01651-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/11/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is the most common zoonotic disease that caused by intracellular parasitic bacteria Brucella. The survival and replication of Brucella in the host depend on the type IV secretion system (T4SS). The T4SS system of Brucella has many components and secreted proteins. But the mechanism helped Brucella to evade the host defense is still not clear. The objective of the present study was to investigate the effects of VceA on autophagy and apoptosis in Brucella-infected embryonic trophoblast cells. We constructed the VceA mutant strain (2308ΔVceA) and complementary strain (2308ΔVceA-C) of Brucella abortus 2308 (S2308). The human trophoblast cells (HPT-8 cells) and mice were infected by S2308, 2308ΔVceA and 2308ΔVceA-C. The cell autophagy and apoptosis were detected. The Atg5, LC3-II and Bcl-2 mRNA expression were significantly increased in 2308ΔVceA group than the S2308 group, and mRNA expression of P62 and Caspase-3 were significantly decreased than the S2308 group. Western blotting, qPCR and flow cytometry analysis showed that 2308ΔVceA promoted autophagy and inhibited apoptosis. Mouse immunohistochemistry experiments showed that P62 protein was scattered coloring and Cytochrome C protein was scarcely in 2308ΔVceA group at the myometrium. These results indicated that 2308ΔVceA promoted autophagy and inhibited apoptosis in HPT-8 cells during Brucella infection.
Collapse
|
8
|
Li ZQ, Zhang JL, Xi L, Yang GL, Wang SL, Zhang XG, Zhang JB, Zhang H. Deletion of the transcriptional regulator GntR down regulated the expression of Genes Related to Virulence and Conferred Protection against Wild-Type Brucella Challenge in BALB/c Mice. Mol Immunol 2017; 92:99-105. [PMID: 29055858 DOI: 10.1016/j.molimm.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/29/2017] [Accepted: 10/15/2017] [Indexed: 01/03/2023]
Abstract
Brucellosis, which is caused by Brucella spp., is a zoonotic infectious disease that can cause great hazard to public health and safety. The virulence of Brucella is essential for survive and multiply in host macrophages. GntR is a transcriptional regulator in Brucella that is required for virulence in macrophages and mice, and involved in resistance to stress responses. To determine the expression levels of target genes of GntR, we detected the expression levels of the GntR target genes in Brucella infected BALB/c mice. The results showed that several genes related to virulence, including omp25, virB1, vjbR, dnaK, htrA and hfq, were regulated by GntR during infection in BALB/c mice. Moreover, the 2308ΔgntR mutant induced high protective immunity in BALB/c mice challenge with B. abortus 2308 (S2308), and elicited an anti-Brucella-specific immunoglobulin G (IgG) response and induced the secretion of gamma interferon (IFN-γ) and interleukin-4 (IL-4). All together, these results indicated that gntR promoted the virulence of Brucella. The 2308ΔgntR was significantly attenuated in macrophages and mice and induced protective immune response during infection, suggested that 2308ΔgntR mutant is an attractive candidate for the design of a live attenuated vaccine against Brucella.
Collapse
Affiliation(s)
- Zhi-Qiang Li
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Jin-Liang Zhang
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Li Xi
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Guang-Li Yang
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Shu-Li Wang
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Xiao-Gen Zhang
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Jun-Bo Zhang
- College of Biology, Agriculture and Forestry, Tongren University, Tongren 554300, Guizhou Province, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang Province, China.
| |
Collapse
|
9
|
Zhang J, Yin S, Yi D, Zhang H, Li Z, Guo F, Chen C, Fang W, Wang J. The Brucella melitensis M5-90ΔmanB live vaccine candidate is safer than M5-90 and confers protection against wild-type challenge in BALB/c mice. Microb Pathog 2017; 112:148-155. [PMID: 28916316 DOI: 10.1016/j.micpath.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/13/2017] [Accepted: 09/11/2017] [Indexed: 11/30/2022]
Abstract
Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. Although effective, the current Brucella vaccines (strain M5-90 or others) have several drawbacks. The first is their residual virulence for animals and humans and the second is their inability to differentiate natural infection from that caused by vaccination. In the present study, Brucella melitensis M5-90 manB mutant (M5-90ΔmanB) was generated to overcome these drawbacks. M5-90ΔmanB showed significantly reduced survival in macrophages and mice, and induced strong protective immunity in BALB/c mice. It elicited anti-Brucella-specific IgG1 and IgG2a subtype responses and induced the secretion of gamma interferon (IFN-γ) and interleukin-4(IL-4). Results of immune assays showed, M5-90ΔmanB immunization induced the secretion of IFN-γ in goats, and serum samples from goats inoculated with M5-90ΔmanB were negative by Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). Further, the ManB antigen also allows serological assays differentiate infections caused by wild strains from infections by vaccination. These results show that M5-90ΔmanB is a suitable attenuated vaccine candidate against virulent Brucella melitensis 16 M (16 M) infection.
Collapse
Affiliation(s)
- Junbo Zhang
- College of Agroforestry Engineering and Planning (Cultural and Technological Industry Innovation Research Center), Tongren University, Tongren 554300, Guizhou, China; College of Animal Science and Technology, Zhejiang University, Hangzhou 3100204, Zhejiang, China
| | - Shuanghong Yin
- College of One Health, Tongren University, Tongren 554300, Guizhou, China
| | - Dewu Yi
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Hong Zhang
- College of One Health, Tongren University, Tongren 554300, Guizhou, China
| | - Zhiqiang Li
- College of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Fei Guo
- College of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Weihuan Fang
- College of Animal Science and Technology, Zhejiang University, Hangzhou 3100204, Zhejiang, China.
| | - Jiafu Wang
- College of Agroforestry Engineering and Planning (Cultural and Technological Industry Innovation Research Center), Tongren University, Tongren 554300, Guizhou, China
| |
Collapse
|
10
|
Rossetti CA, Drake KL, Lawhon SD, Nunes JS, Gull T, Khare S, Adams LG. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions. Front Microbiol 2017; 8:1275. [PMID: 28798726 PMCID: PMC5529337 DOI: 10.3389/fmicb.2017.01275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly" pathway and the cell components "bacterial-type flagellum hook" and "bacterial-type flagellum" were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein-protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein-protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches toward revealing a clearer understanding of new virulence factors and mechanisms influencing the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Jairo S Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Leslie G Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
11
|
Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages. World J Microbiol Biotechnol 2017; 33:60. [DOI: 10.1007/s11274-017-2230-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/16/2017] [Indexed: 11/26/2022]
|
12
|
Li ZQ, Gui D, Sun ZH, Zhang JB, Zhang WZ, Zhang H, Guo F, Chen CF. Immunization of BALB/c mice with Brucella abortus 2308ΔwbkA confers protection against wild-type infection. J Vet Sci 2016; 16:467-73. [PMID: 26040616 PMCID: PMC4701739 DOI: 10.4142/jvs.2015.16.4.467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/26/2015] [Accepted: 04/04/2015] [Indexed: 12/16/2022] Open
Abstract
Brucellosis is a zoonotic disease that causes animal and human diseases. Vaccination is a major measure for prevention of brucellosis, but it is currently not possible to distinguish vaccinated animals from those that have been naturally infected. Therefore, in this study, we constructed the Brucella (B.) abortus 2380 wbkA mutant (2308ΔwbkA) and evaluated its virulence. The survival of 2308ΔwbkA was attenuated in murine macrophage (RAW 264.7) and BALB/c mice, and it induced high protective immunity in mice. The wbkA mutant elicited an anti-Brucella-specific immunoglobulin G response and induced the secretion of gamma interferon. Antibodies to 2308ΔwbkA could be detected in sera from mice, implying the potential for use of this protein as a diagnostic antigen. The WbkA antigen would allow serological differentiation between infected and vaccinated animals. These results suggest that 2308ΔwbkA is a potential attenuated vaccine against 16M. This vaccine will be further evaluated in sheep.
Collapse
Affiliation(s)
- Zhi-qiang Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.,School of life sciences, Shangqiu normal university, Shangqiu 476000, China
| | - Dan Gui
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhi-hua Sun
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jun-bo Zhang
- College of Biology, Agriculture and Forestry, Tongren University, Tongren 554300, China
| | - Wen-zhi Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.,College of Co-Innovation Center for Zoonotic Infectious Diseases in the Western Region, Shihezi University, Shihezi 832000, China
| | - Fei Guo
- College of Biology, Agriculture and Forestry, Tongren University, Tongren 554300, China.,College of Medicine, Shihezi University, Shihezi 832000, China
| | - Chuang-fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.,College of Co-Innovation Center for Zoonotic Infectious Diseases in the Western Region, Shihezi University, Shihezi 832000, China
| |
Collapse
|
13
|
Zhong Z, Xu X, Li X, Liu S, Lei S, Yang M, Yu J, Yuan J, Ke Y, Du X, Wang Z, Ren Z, Peng G, Wang Y, Chen Z. Large-scale identification of small noncoding RNA with strand-specific deep sequencing and characterization of a novel virulence-related sRNA in Brucella melitensis. Sci Rep 2016; 6:25123. [PMID: 27112796 PMCID: PMC4845025 DOI: 10.1038/srep25123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/11/2016] [Indexed: 12/03/2022] Open
Abstract
Brucella is the causative agent of brucellosis, a worldwide epidemic zoonosis. Small noncoding RNAs (sRNAs) are important modulators of gene expression and involved in pathogenesis and stress adaptation of Brucella. In this study, using a strand-specific RNA deep-sequencing approach, we identified a global set of sRNAs expressed by B. melitensis 16M. In total, 1321 sRNAs were identified, ranging from 100 to 600 nucleotides. These sRNAs differ in their expression levels and strand and chromosomal distributions. The role of BSR0441, one of these sRNAs, in the virulence of B. melitensis 16M was further characterized. BSR0441 was highly induced during the infection of macrophages and mice. The deletion mutant of BSR0441 showed significantly reduced spleen colonization in the middle and late phases of infection. The expression of the BSR0441 target mRNA genes was also altered in the BSR0441 mutant strain during macrophage and mice infection, which is consistent with its reduced intracellular survival capacity. In summary, Brucella encodes a large number of sRNAs, which may be involved in the stress adaptation and virulence of Brucella. Further investigation of these regulators will extend our understanding of the Brucella pathogenesis mechanism and the interactions between Brucella and its hosts.
Collapse
Affiliation(s)
- Zhijun Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China.,Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Xiaoyang Xu
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China.,Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Xinran Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Shiwei Liu
- Wangjing Hospital, Academy of Traditional Chinese Medicine, Beijing 100102, P. R. China
| | - Shuangshuang Lei
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China.,Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Mingjuan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Jiuxuan Yu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Jiuyun Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Yuehua Ke
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Zhoujia Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Zhihua Ren
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
| | - Guangneng Peng
- College of Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
| | - Yufei Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China.,Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces, Beijing 100039, P. R. China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P. R. China.,Key Laboratory of Zoonotic of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang 110866, P. R. China
| |
Collapse
|
14
|
Zhang Y, Li T, Zhang J, Li Z, Zhang Y, Wang Z, Feng H, Wang Y, Chen C, Zhang H. The Brucella melitensis M5-90 phosphoglucomutase (PGM) mutant is attenuated and confers protection against wild-type challenge in BALB/c mice. World J Microbiol Biotechnol 2016; 32:58. [PMID: 26925620 DOI: 10.1007/s11274-016-2015-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022]
Abstract
Brucellae are Gram-negative intracellular bacterial pathogens that infect humans and animals, bringing great economic burdens to developing countries. Live attenuated Brucella vaccines (strain M5-90 or others) are the most efficient means for prevention and control of animal brucellosis. However, these vaccines have several drawbacks, including residual virulence in animals, and difficulties in differentiating natural infection from vaccine immunization, which limit their application. A vaccine that can differentiate infection from immunization will have extensive applications. A Brucella melitensis (B. melitensis) strain M5-90 pgm mutant (M5-90Δpgm) was constructed to overcome these drawbacks. M5-90Δpgm showed significantly reduced survival in embryonic trophoblast cells and in mice, and induced high protective immunity in BALB/c mice. Moreover, M5-90Δpgm elicited an anti-Brucella-specific immunoglobulin G response and induced the secretion of gamma interferon (IFN-γ) and interleukin-2 (IL-2). In addition, M5-90Δpgm induced the secretion of IFN-γ in immunized sheep. Serum samples from sheep inoculated with M5-90Δpgm were negative by the Rose Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). Furthermore, the PGM antigen allowed serological differentiation between infected and vaccinated animals. These results suggest that M5-90Δpgm is an ideal live attenuated vaccine candidate against B. melitensis 16 M and deserves further evaluation for vaccine development.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang Province, People's Republic of China
| | - Tiansen Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang Province, People's Republic of China
| | - Jing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang Province, People's Republic of China
| | - Zhiqiang Li
- School of Life Sciences, Shangqiu Normal University, Shangqiu, 476000, Henan Province, People's Republic of China
| | - Yan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang Province, People's Republic of China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang Province, People's Republic of China
| | - Hanping Feng
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang Province, People's Republic of China
| | - Yuanzhi Wang
- College of Medicine, Shihezi University, Shihezi, 832000, Xinjiang Province, People's Republic of China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang Province, People's Republic of China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang Province, People's Republic of China.
| |
Collapse
|
15
|
Lei S, Zhong Z, Ke Y, Yang M, Xu X, Ren H, An C, Yuan J, Yu J, Xu J, Qiu Y, Shi Y, Wang Y, Peng G, Chen Z. Deletion of the Small RNA Chaperone Protein Hfq down Regulates Genes Related to Virulence and Confers Protection against Wild-Type Brucella Challenge in Mice. Front Microbiol 2016; 6:1570. [PMID: 26834720 PMCID: PMC4718986 DOI: 10.3389/fmicb.2015.01570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/27/2015] [Indexed: 12/28/2022] Open
Abstract
Brucellosis is one of the most common zoonotic epidemics worldwide. Brucella, the etiological pathogen of brucellosis, has unique virulence characteristics, including the ability to survive within the host cell. Hfq is a bacterial chaperone protein that is involved in the survival of the pathogen under stress conditions. Moreover, hfq affects the expression of a large number of target genes. In the present study, we characterized the expression and regulatory patterns of the target genes of Hfq during brucellosis. The results revealed that hfq expression is highly induced in macrophages at the early infection stage and at the late stage of mouse infection. Several genes related to virulence, including omp25, omp31, vjbR, htrA, gntR, and dnaK, were found to be regulated by hfq during infection in BALB/c mice. Gene expression and cytokine secretion analysis revealed that an hfq-deletion mutant induced different cytokine profiles compared with that induced by 16M. Infection with the hfq-deletion mutant induced protective immune responses against 16M challenge. Together, these results suggest that hfq is induced during infection and its deletion results in significant attenuation which affects the host immune response caused by Brucella infection. By regulating genes related to virulence, hfq promotes the virulence of Brucella. The unique characteristics of the hfq-deletion mutant, including its decreased virulence and the ability to induce protective immune response upon infection, suggest that it represents an attractive candidate for the design of a live attenuated vaccine against Brucella.
Collapse
Affiliation(s)
- Shuangshuang Lei
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yuehua Ke
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Mingjuan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Xiaoyang Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Hang Ren
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Chang An
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Jiuyun Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Jiuxuan Yu
- Institute of Disease Control and Prevention, Academy of Military Medical ScienceBeijing, China; Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical UniversityHohhot, China
| | - Jie Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Yefeng Qiu
- Experimental Animal Center, Academy of Medical Sciences Beijing, China
| | - Yanchun Shi
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University Hohhot, China
| | - Yufei Wang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces Beijing, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical ScienceBeijing, China; College of Medicine, Shihezi UniversityShihezi, China
| |
Collapse
|
16
|
Sankarasubramanian J, Vishnu US, Dinakaran V, Sridhar J, Gunasekaran P, Rajendhran J. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host. MOLECULAR BIOSYSTEMS 2015; 12:178-90. [PMID: 26575364 DOI: 10.1039/c5mb00607d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.
Collapse
Affiliation(s)
- Jagadesan Sankarasubramanian
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
17
|
Park J, Zhang Y, Chen C, Dudley EG, Harvill ET. Diversity of secretion systems associated with virulence characteristics of the classical bordetellae. MICROBIOLOGY-SGM 2015; 161:2328-40. [PMID: 26459829 DOI: 10.1099/mic.0.000197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Secretion systems are key virulence factors, modulating interactions between pathogens and the host's immune response. Six potential secretion systems (types 1-6; T1SS-T6SS) have been discussed in classical bordetellae, respiratory commensals/pathogens of mammals. The prototypical Bordetella bronchiseptica strain RB50 genome seems to contain all six systems, whilst two human-restricted subspecies, Bordetella parapertussis and Bordetella pertussis, have lost different subsets of these. This implicates secretion systems in the divergent evolutionary histories that have led to their success in different niches. Based on our previous work demonstrating that changes in secretion systems are associated with virulence characteristics, we hypothesized there would be substantial divergence of the loci encoding each amongst sequenced strains. Here, we describe extensive differences in secretion system loci; 10 of the 11 sequenced strains had lost subsets of genes or one entire secretion system locus. These loci contained genes homologous to those present in the respective loci in distantly related organisms, as well as genes unique to bordetellae, suggesting novel and/or auxiliary functions. The high degree of conservation of the T3SS locus, a complex machine with interdependent parts that must be conserved, stands in dramatic contrast to repeated loss of T5aSS 'autotransporters', which function as an autonomous unit. This comparative analysis provided insights into critical aspects of each pathogen's adaptation to its different niche, and the relative contributions of recombination, mutation and horizontal gene transfer. In addition, the relative conservation of various secretion systems is an important consideration in the ongoing search for more highly conserved protective antigens for the next generation of pertussis vaccines.
Collapse
Affiliation(s)
- Jihye Park
- 1 Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA 2 Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, PA, USA
| | - Ying Zhang
- 1 Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Chun Chen
- 3 Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Edward G Dudley
- 3 Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Eric T Harvill
- 1 Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA 4 Singapore Centre on Environmental Life Sciences Engineering, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
18
|
A Brucella melitensis M5-90 wboA deletion strain is attenuated and enhances vaccine efficacy. Mol Immunol 2015; 66:276-83. [DOI: 10.1016/j.molimm.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/01/2015] [Accepted: 04/04/2015] [Indexed: 11/17/2022]
|
19
|
Li Z, Zhang J, Zhang KE, Fu Q, Wang Z, Li T, Zhang H, Guo F, Chen C. Brucella melitensis 16MΔTcfSR as a potential live vaccine allows for the differentiation between natural and vaccinated infection. Exp Ther Med 2015; 10:1182-1188. [PMID: 26622461 DOI: 10.3892/etm.2015.2619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Brucellosis is a zoonotic disease that poses a serious threat to public health and safety. Although the live attenuated vaccines targeting brucellosis, such as M5-90, are effective, there are a number of drawbacks to their use. For example, the vaccines are unable to differentiate between the natural and vaccinated forms of the infection, and these vaccines have also been shown to cause abortion in pregnant animals. Therefore, a safer and more potent vaccine is required. In the present study, a B. melitensis 16M TcfSR promoter mutant (16MΔTcfSR) was constructed in an attempt to overcome these drawbacks. A TcfSR mutant was derived from B. melitensis 16M and tested for virulence and protection efficiency. Levels of immuoglobulin G (IgG), and cytokine production were determined. In addition, TcfS was assessed as a diagnostic marker for brucellosis. The survival capacity of the 16MΔTcfSR mutant was shown to be attenuated in the RAW 264.7 murine macrophage cell line and BALB/c mice, and the vaccination was shown to induce a high level of protective immunity in BALB/c mice. In addition, the 16MΔTcfSR vaccination elicited an anti-Brucella-specific IgG response and induced the secretion of interferon-γ. Thus, the TcfS antigen allowed for the serological differentiation between the natural and vaccinated infection in animals. In conclusion, the results demonstrated that the 16MΔTcfSR mutant was attenuated in murine macrophage cells and BALB/c mice; therefore, 16MΔTcfSR is a potential candidate for a live attenuated vaccine against B. melitensis infection.
Collapse
Affiliation(s)
- Zhiqiang Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Junbo Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - K E Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Qiang Fu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Tiansen Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Fei Guo
- College of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
20
|
Li Z, Fu Q, Wang Z, Li T, Zhang H, Guo F, Wang Y, Zhang J, Chen C. TceSR two-component regulatory system of Brucella melitensis 16M is involved in invasion, intracellular survival and regulated cytotoxicity for macrophages. Lett Appl Microbiol 2015; 60:565-71. [PMID: 25721466 DOI: 10.1111/lam.12408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/21/2015] [Accepted: 02/17/2015] [Indexed: 11/29/2022]
Abstract
The mechanisms of invasion and intracellular survival of Brucella are still poorly understood. Previous studies showed that the two-component regulatory systems (TCSs) play an important role in the intracellular survival of Brucella. To investigate if TCSs involve in the virulence and cytotoxicity of Brucella melitensis, we introduced a mutation into one of the TCSs in chromosome II in Br. melitensis 16M strain, and generated 16MΔTceSR, a mutant of Br. melitensis 16M strain. In vitro infection experiments using murine macrophage cell line (RAW 264.7) showed that the survival of 16MΔTceSR mutant in macrophages decreased 0·91-log compared with that of wild type Br. melitensis 16M strain at 2 h postinfection, replication of 16MΔTceSR mutant in macrophages was 5·65-log, which was much lower than that wild type strain. Results of lactate dehydrogenase cytotoxicity assays in macrophages demonstrated high dose infection with wide type strain produced high level cytotoxicity to macrophages, but 16MΔTceSR mutant had very low level cytotoxicity, indicating mutation of TCSs impaired the cytotoxicity of Br. melitensis to macrophages. Animal experiments showed that the spleen colonization of 16MΔTceSR was significantly reduced compared with its wild type strains. The lower levels of survival of 16MΔTceSR in various stress conditions suggested that the mutation of the TCSs of Br. melitensis was the causative factor of its reduced resistance to stress conditions. Taken together, our results demonstrated TCS TceSR involves in the intracellular survival, virulence and cytotoxicity of Br. melitensis during its infection. Significance and impact of the study: Two-component systems (TCSs) are predominant bacterial signal transduction mechanisms. The pathogenicity of Brucella is due to its ability to adapt to the intracellular environment including low levels of acidic pH, high-salt and heat shock. TCSs are designed to sense diverse stimuli, transfer signals and enact an appropriate adaptive physiological response. Here, we show that Br. meilitensis TCS TceSR is not only involved in regulation of Br. meilitensis virulence and adaptation of environmental stresses, but also can regulate cytotoxicity in macrophages.
Collapse
Affiliation(s)
- Z Li
- College of Animal Science and Technology/Co-Innovation Center for Zoonotic Infectious Diseases in the western region, Shihezi University, Shihezi, China
| | - Q Fu
- College of Animal Science and Technology/Co-Innovation Center for Zoonotic Infectious Diseases in the western region, Shihezi University, Shihezi, China
| | - Z Wang
- College of Animal Science and Technology/Co-Innovation Center for Zoonotic Infectious Diseases in the western region, Shihezi University, Shihezi, China
| | - T Li
- College of Animal Science and Technology/Co-Innovation Center for Zoonotic Infectious Diseases in the western region, Shihezi University, Shihezi, China
| | - H Zhang
- College of Animal Science and Technology/Co-Innovation Center for Zoonotic Infectious Diseases in the western region, Shihezi University, Shihezi, China
| | - F Guo
- College of Medicine, Shihezi University, Shihezi, China
| | - Y Wang
- College of Medicine, Shihezi University, Shihezi, China
| | - J Zhang
- College of Biology, Agriculture and Forestry, Tongren University, Tongren, Guizhou, China
| | - C Chen
- College of Animal Science and Technology/Co-Innovation Center for Zoonotic Infectious Diseases in the western region, Shihezi University, Shihezi, China
| |
Collapse
|
21
|
Wang Y, Ke Y, Xu J, Wang L, Wang T, Liang H, Zhang W, Gong C, Yuan J, Zhuang Y, An C, Lei S, Du X, Wang Z, Li W, Yuan X, Huang L, Yang X, Chen Z. Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis. Front Microbiol 2015; 6:164. [PMID: 25852653 PMCID: PMC4365724 DOI: 10.3389/fmicb.2015.00164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Yuehua Ke
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Jie Xu
- Laboratory of Clinical Immunology in Jiangsu Province, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Ligui Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Tongkun Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| | - Hui Liang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Wei Zhang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Chunli Gong
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Jiuyun Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Yubin Zhuang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Chang An
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Shuangshuang Lei
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Xinying Du
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Zhoujia Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Wenna Li
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Xitong Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Liuyu Huang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Xiaoli Yang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Zeliang Chen
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| |
Collapse
|
22
|
Dong H, Liu W, Peng X, Wu Q. The effects of RegM on stress responses in Brucella melitensis. Curr Microbiol 2015; 70:730-4. [PMID: 25648428 DOI: 10.1007/s00284-015-0782-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/19/2014] [Indexed: 11/27/2022]
Abstract
Brucella melitensis is a facultative intracellular pathogen. The regM gene encodes a sensory transduction protein kinase in B. melitensis 16M, and genes orthologous to regM have been found to exist in many bacterial species. However, little is known about the regulation function of this gene in Brucella. In order to characterize this gene, we constructed a marked deletion mutant of regM as well as its complemented strain. The mutant was less able to withstand acid and hyperosmotic conditions than wild-type strain but shown no significant difference with wild-type strain when challenged by elevated temperature and hypotonic conditions. In addition, inactivation of regM did not affect virulence in B. melitensis 16M in macrophage and mice infection models.
Collapse
Affiliation(s)
- Hao Dong
- Department of Zoonosis Control, China Animal Disease Control Center, Beijing, China,
| | | | | | | |
Collapse
|
23
|
Silva TMA, Mol JPS, Winter MG, Atluri V, Xavier MN, Pires SF, Paixão TA, Andrade HM, Santos RL, Tsolis RM. The predicted ABC transporter AbcEDCBA is required for type IV secretion system expression and lysosomal evasion by Brucella ovis. PLoS One 2014; 9:e114532. [PMID: 25474545 PMCID: PMC4256435 DOI: 10.1371/journal.pone.0114532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022] Open
Abstract
Brucella ovis is a major cause of reproductive failure in rams and it is one of the few well-described Brucella species that is not zoonotic. Previous work showed that a B. ovis mutant lacking a species-specific ABC transporter (ΔabcBA) was attenuated in mice and was unable to survive in macrophages. The aim of this study was to evaluate the role of this ABC transporter during intracellular survival of B. ovis. In HeLa cells, B. ovis WT was able to survive and replicate at later time point (48 hpi), whereas an ΔabcBA mutant was attenuated at 24 hpi. The reduced survival of the ΔabcBA mutant was associated with a decreased ability to exclude the lysosomal marker LAMP1 from its vacuolar membrane, suggesting a failure to establish a replicative niche. The ΔabcBA mutant showed a reduced abundance of the Type IV secretion system (T4SS) proteins VirB8 and VirB11 in both rich and acid media, when compared to WT B. ovis. However, mRNA levels of virB1, virB8, hutC, and vjbR were similar in both strains. These results support the notion that the ABC transporter encoded by abcEDCBA or its transported substrate acts at a post-transcriptional level to promote the optimal expression of the B. ovis T4SS within infected host cells.
Collapse
Affiliation(s)
- Teane M. A. Silva
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana P. S. Mol
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Vidya Atluri
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Mariana N. Xavier
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Simone F. Pires
- Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hélida M. Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (RLS); (RMT)
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- * E-mail: (RLS); (RMT)
| |
Collapse
|
24
|
Saeedinia AR, Zeinoddini M, Soleimani M, Sadeghizadeh M. A new method for simultaneous gene deletion and down-regulation in Brucella melitensis Rev.1. Microbiol Res 2014; 170:114-23. [PMID: 25249309 DOI: 10.1016/j.micres.2014.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/17/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
In this study, our aim was to integrate an antisense expression cassette in bacterial chromosome for providing a long-term expression down-regulation in a bid to develop a new approach for simultaneous deletion and down-regulation of target genes in bacterial system. Therefore, we were used this approach for simultaneous deletion of the perosamine synthetase (per) gene and down-regulation of the virB1 expression in Brucella melitensis Rev.1. The per gene, which is one of the LPS O-chain coding genes, was replaced by homologous recombination with an antisense virB1 expression cassette together with kanamycin resistance cassette (kan(R)). Deletion of the per gene was characterized by PCR analysis and DNA sequencing. The expression of antisense virB1 cassette was confirmed by RT-PCR. Down-regulation of the virB1 mRNA expression was quantified by real-time RT-PCR using virB1 specific primers relative to the groEL reference gene. The survival rate of mutant strain was evaluated by CFU count in the BALB/c mice. The virB1 mRNA expression was down-regulated on average 10-fold in mutant strain as compared to parental strain. The loss of per gene function and decrease of the virB1 mRNA expression resulted in reduced entry and survival of the mutant Rev.1 strain in BALB/c mice splenocytes. We propose that this method can be used for simultaneous regulation of multiple genes expression.
Collapse
Affiliation(s)
- Ali Reza Saeedinia
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| | - Mehdi Zeinoddini
- Department of Genetics, Science and Biotechnology Research Center, Mallek-Ashtar University of Technology, P.O. Box: 15875-1774, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| |
Collapse
|
25
|
A functional and phylogenetic comparison of quorum sensing related genes in Brucella melitensis 16M. J Microbiol 2014; 52:709-15. [PMID: 24994008 DOI: 10.1007/s12275-014-3570-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/04/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
A quorum-sensing (QS) system is involved in Brucella melitensis survival inside the host cell. Two transcriptional regulators identified in B. melitensis, BlxR and VjbR, regulate the expression of virB, an operon required for bacterial intracellular persistence. In this work, 628 genes affected by VjbR and 124 by BlxR were analyzed to gain insights into their functional and taxonomical distributions among the Bacteria and Archaea cellular domains. In this regard, the Cluster of Orthologous Groups (COG) genes and orthologous genes in 789 nonredundant bacterial and archaeal genomes were obtained and compared against a group of randomly selected genes. From these analyses, we found 71 coaffected genes between VjbR and BlxR. In the COG comparison, VjbR activated genes associated with intracellular trafficking, secretion and vesicular transport and defense mechanisms, while BlxR affected genes related to energy production and conversion (with an equal effect) and translation, ribosomal structure and biogenesis, posttranslational modifications and carbohydrate and amino acid metabolism (with a negative effect). When the taxonomical distribution of orthologous genes was evaluated, the VjbR- and BlxR-related genes presented more orthologous genes in Crenarchaeota (Archaea), Firmicutes, and Tenericutes and fewer genes in Proteobacteria than expected by chance. These findings suggest that QS system exert a fine-tuning modulation of gene expression, by which VjbR activates genes related to infection persistence and defense, while BlxR represses general bacterial metabolism for intracellular adaptations. Finally, these affected genes present a degree of presence among Bacteria and Archaea genomes that is different from that expected by chance.
Collapse
|
26
|
Lee JJ, Lim JJ, Kim DG, Simborio HL, Kim DH, Reyes AWB, Min W, Lee HJ, Kim DH, Chang HH, Kim S. Characterization of culture supernatant proteins from Brucella abortus and its protection effects against murine brucellosis. Comp Immunol Microbiol Infect Dis 2014; 37:221-8. [PMID: 25016407 DOI: 10.1016/j.cimid.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/13/2014] [Accepted: 06/05/2014] [Indexed: 01/18/2023]
Abstract
In this study, we characterized the secreted proteins of Brucella abortus into the enriched media under the bacterial laboratory growth condition and investigated the pathogenic importance of culture supernatant (CS) proteins to B. abortus infection. CS proteins from stationary phase were concentrated and analyzed using 2D electrophoresis. In MALDI TOF/TOF analysis, more than 27 proteins including CuZn SOD, Dps, Tat, OMPs, Adh, LivF, Tuf, SucC, GroEL and DnaK were identified. Cytotoxic effects of CS proteins were found to increase in a dose-dependent manner in RAW 264.7 cells. Upon B. abortus challenge into phagocytes, however, CS proteins pre-treated cells exhibited lower bacterial uptake and intracellular replication compared to untreated cells. Immunization with CS proteins induced a strong humoral and cell mediated immune responses and exhibited significant higher degree of protection against virulence of B. abortus infection compared to mice immunized with Brucella broth protein (BBP). Taken together, these results indicate that B. abortus secreted a number of soluble immunogenic proteins under laboratory culture condition, which can promote antibody production resulted in enhancing host defense against to subsequently bacterial infection. Moreover, further analysis of CS proteins may help to understand the pathogenic mechanism of B. abortus infection and host-pathogen interaction.
Collapse
Affiliation(s)
- Jin Ju Lee
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 430-757, Republic of Korea; College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Ju Lim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dae Geun Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hannah Leah Simborio
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong Hyeok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | - WonGi Min
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hu Jang Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong Hee Kim
- School of Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
27
|
Cui M, Wang T, Xu J, Ke Y, Du X, Yuan X, Wang Z, Gong C, Zhuang Y, Lei S, Su X, Wang X, Huang L, Zhong Z, Peng G, Yuan J, Chen Z, Wang Y. Impact of Hfq on global gene expression and intracellular survival in Brucella melitensis. PLoS One 2013; 8:e71933. [PMID: 23977181 PMCID: PMC3747064 DOI: 10.1371/journal.pone.0071933] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/04/2013] [Indexed: 01/30/2023] Open
Abstract
Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of brucellae to survive and multiply in the hostile environment of host macrophages is essential to its virulence. The RNA-binding protein Hfq is a global regulator that is involved in stress resistance and pathogenicity. Here we demonstrate that Hfq is essential for stress adaptation and intracellular survival in B. melitensis. A B. melitensis hfq deletion mutant exhibits reduced survival under environmental stresses and is attenuated in cultured macrophages and mice. Microarray-based transcriptome analyses revealed that 359 genes involved in numerous cellular processes were dysregulated in the hfq mutant. From these same samples the proteins were also prepared for proteomic analysis to directly identify Hfq-regulated proteins. Fifty-five proteins with significantly affected expression were identified in the hfq mutant. Our results demonstrate that Hfq regulates many genes and/or proteins involved in metabolism, virulence, and stress responses, including those potentially involved in the adaptation of Brucella to the oxidative, acid, heat stress, and antibacterial peptides encountered within the host. The dysregulation of such genes and/or proteins could contribute to the attenuated hfq mutant phenotype. These findings highlight the involvement of Hfq as a key regulator of Brucella gene expression and facilitate our understanding of the role of Hfq in environmental stress adaptation and intracellular survival of B. melitensis.
Collapse
Affiliation(s)
- Mingquan Cui
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Tongkun Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Xu
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yuehua Ke
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xinying Du
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xitong Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zhoujia Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Chunli Gong
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yubin Zhuang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Shuangshuang Lei
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Xiao Su
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xuesong Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Liuyu Huang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Jing Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zeliang Chen
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yufei Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Brucella BioR regulator defines a complex regulatory mechanism for bacterial biotin metabolism. J Bacteriol 2013; 195:3451-67. [PMID: 23729648 DOI: 10.1128/jb.00378-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme cofactor biotin (vitamin H or B7) is an energetically expensive molecule whose de novo biosynthesis requires 20 ATP equivalents. It seems quite likely that diverse mechanisms have evolved to tightly regulate its biosynthesis. Unlike the model regulator BirA, a bifunctional biotin protein ligase with the capability of repressing the biotin biosynthetic pathway, BioR has been recently reported by us as an alternative machinery and a new type of GntR family transcriptional factor that can repress the expression of the bioBFDAZ operon in the plant pathogen Agrobacterium tumefaciens. However, quite unusually, a closely related human pathogen, Brucella melitensis, has four putative BioR-binding sites (both bioR and bioY possess one site in the promoter region, whereas the bioBFDAZ [bio] operon contains two tandem BioR boxes). This raised the question of whether BioR mediates the complex regulatory network of biotin metabolism. Here, we report that this is the case. The B. melitensis BioR ortholog was overexpressed and purified to homogeneity, and its solution structure was found to be dimeric. Functional complementation in a bioR isogenic mutant of A. tumefaciens elucidated that Brucella BioR is a functional repressor. Electrophoretic mobility shift assays demonstrated that the four predicted BioR sites of Brucella plus the BioR site of A. tumefaciens can all interact with the Brucella BioR protein. In a reporter strain that we developed on the basis of a double mutant of A. tumefaciens (the ΔbioR ΔbioBFDA mutant), the β-galactosidase (β-Gal) activity of three plasmid-borne transcriptional fusions (bioBbme-lacZ, bioYbme-lacZ, and bioRbme-lacZ) was dramatically decreased upon overexpression of Brucella bioR. Real-time quantitative PCR analyses showed that the expression of bioBFDA and bioY is significantly elevated upon removal of bioR from B. melitensis. Together, we conclude that Brucella BioR is not only a negative autoregulator but also a repressor of expression of bioY and bio operons that separately function in biotin transport and the biosynthesis pathway.
Collapse
|
29
|
Gomez G, Adams LG, Rice-Ficht A, Ficht TA. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front Cell Infect Microbiol 2013; 3:17. [PMID: 23720712 PMCID: PMC3655278 DOI: 10.3389/fcimb.2013.00017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/26/2013] [Indexed: 01/18/2023] Open
Abstract
Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development.
Collapse
Affiliation(s)
- Gabriel Gomez
- Department of Veterinary Pathobiology, Texas A&M University College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
30
|
Gomez G, Pei J, Mwangi W, Adams LG, Rice-Ficht A, Ficht TA. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach. PLoS One 2013; 8:e59751. [PMID: 23533646 PMCID: PMC3606113 DOI: 10.1371/journal.pone.0059751] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/18/2013] [Indexed: 01/18/2023] Open
Abstract
Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign) to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1-Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.
Collapse
Affiliation(s)
- Gabriel Gomez
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|
31
|
Ke Y, Wang Y, Yuan X, Zhong Z, Qu Q, Zhou D, Zeng X, Xu J, Wang Z, Du X, Wang T, Yang R, Zhen Q, Yu Y, Huang L, Chen Z. Altered Transcriptome of the B. melitensis Vaccine Candidate 16MΔvjbR, Implications for Development of Genetically Marked Live Vaccine. Indian J Microbiol 2012; 52:575-80. [PMID: 24293713 DOI: 10.1007/s12088-012-0293-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/16/2012] [Indexed: 11/24/2022] Open
Abstract
The VjbR protein induced antibody responses in both human and animal brucellosis, and the vjbR mutant 16MΔvjbR is an ideal vaccine candidate because of the feasibility of using the VjbR as diagnostic antigen. To further characterize this vaccine candidate and provide information for vaccine development, in the present study, a whole genome DNA microarray of 16M were used to compare the transcriptome of the vjbR mutant to that of the wild type strains. A total of 126 genes were greatly differentially expressed in the vjbR mutant. A great proportion of virB and flagellar genes were differentially expressed in the vjbR mutant, implying that the vjbR regulate expression of virulence genes by sensing intracellular environments. Interestingly, the virB genes are regulated by the vjbR in independent manners as shown by their different fold changes and transcription abundances. A number of genes involved in translation, stress response, amino acid transport and metabolism, cell wall/membrane biogenesis, energy production and conversion, translation were differentially expressed. The vjbR mutant showed increased sensitivity to stresses of nutrition limitation, oxidative stress and acidification, and decreased survival in macrophage and mice, being consistent with its transcription profiles. These results indicated that the quorum sensing regulator vjbR could sense intracellular environments and response to them by regulate expression of virulence genes and other intracellular survival related genes, and therefore contribute to Brucella survival in host cells. This also provided direct evidence for the rational vaccine design by using antigenic global regulator for future development of genetically marked vaccine for brucellosis.
Collapse
Affiliation(s)
- Yuehua Ke
- Department of Infectious Disease Control, Beijing Institute of Disease Control and Prevention, No. 20, Dongdajie, Fengtai District, Beijing, 100071 People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
von Bargen K, Gorvel JP, Salcedo SP. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev 2012; 36:533-62. [PMID: 22373010 DOI: 10.1111/j.1574-6976.2012.00334.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/10/2012] [Accepted: 02/16/2012] [Indexed: 01/18/2023] Open
Abstract
Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.
Collapse
Affiliation(s)
- Kristine von Bargen
- Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
| | | | | |
Collapse
|
33
|
Sandalakis V, Psaroulaki A, De Bock PJ, Christidou A, Gevaert K, Tsiotis G, Tselentis Y. Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. J Proteome Res 2012; 11:2374-85. [PMID: 22360387 DOI: 10.1021/pr201122w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations in the rpoB gene have already been shown to contribute to rifampicin resistance in many bacterial strains including Brucella species. Resistance against this antibiotic easily occurs and resistant strains have already been detected in human samples. We here present the first research project that combines proteomic, genomic, and microbiological analysis to investigate rifampicin resistance in an in vitro developed rifampicin resistant strain of Brucella abortus 2308. In silico analysis of the rpoB gene was performed and several antibiotics used in the therapy of Brucellosis were used for cross resistance testing. The proteomic profiles were examined and compared using MS-driven comparative proteomics. The resistant strain contained an already described mutation in the rpoB gene, V154F. A correlation between rifampicin resistance and reduced susceptibility on trimethoprim/sulfamethoxazole was detected by E-test and supported by the proteomics results. Using 12 836 MS/MS spectra we identified 6753 peptides corresponding to 456 proteins. The resistant strain presented 39 differentially regulated proteins most of which are involved in various metabolic pathways. Results from our research suggest that rifampicin resistance in Brucella mostly involves mutations in the rpoB gene, excitation of several metabolic processes, and perhaps the use of the already existing secretion mechanisms at a more efficient level.
Collapse
Affiliation(s)
- Vassilios Sandalakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
34
|
Paredes-Cervantes V, Flores-Mejía R, Moreno-Lafont MC, Lanz-Mendoza H, Tello-López ÁT, Castillo-Vera J, Pando-Robles V, Hurtado-Sil G, González-González E, Rodríguez-Cortés O, Gutiérrez-Hoya A, Vega-Ramírez MT, López-Santiago R. Comparative proteome analysis of Brucella abortus 2308 and its virB type IV secretion system mutant reveals new T4SS-related candidate proteins. J Proteomics 2011; 74:2959-71. [PMID: 21875698 DOI: 10.1016/j.jprot.2011.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 06/27/2011] [Accepted: 07/24/2011] [Indexed: 01/18/2023]
Abstract
Brucella abortus is an alpha-2 proteobacteria with a type IV secretion system (T4SS) known as virB, which is necessary to gain virulence by building up a replicative vacuole associated with the endoplasmic reticulum of the host cell. A virB T4SS mutant of the B. abortus 2308 strain and its wild-type strain were grown in acid medium in order to obtain and analyze their proteomes, looking for putative proteins that may serve as T4SS substrates and those that may be subjected to T4SS regulation. A total of 47 overexpressed and 22 underexpressed proteins from the virB T4SS mutant strain were selected and sequenced. Some of the 69 analyzed proteins have not been described before either as over or under-expressed in relation to a virB T4SS mutation, whereas some of them have been already described by other groups as potentially important secretory proteins in other Brucella species. An important number of the proteins identified are outer membrane and periplasmic space protein, which makes them become particularly important new T4SS-related candidate proteins.
Collapse
|
35
|
Hanna N, Jiménez de Bagüés MP, Ouahrani-Bettache S, El Yakhlifi Z, Köhler S, Occhialini A. The virB operon is essential for lethality of Brucella microti in the Balb/c murine model of infection. J Infect Dis 2011; 203:1129-35. [PMID: 21451001 DOI: 10.1093/infdis/jiq163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In murine infections, Brucella microti exhibits an atypical and highly pathogenic behavior resulting in a mortality of 82%. In this study, the possible involvement of the virB type IV secretion system, a key virulence factor of Brucella sp., in this lethal phenotype was investigated. As previously described for B. suis, expression of the virB operon of B. microti was induced in acid minimal medium, partially mimicking intracellular environment. Early neutralization of cellular compartments abolished intracellular replication of B. microti, showing that acidity of the Brucella-containing vacuole is an essential trigger. A ΔvirB mutant of B. microti exhibited strong attenuation in murine and human macrophages in vitro. Interestingly, infection with this mutant was not lethal in Balb/c mice and lacked the typical intrasplenic peak at 3 days post-infection, hence demonstrating that lethality of B. microti in murine infection absolutely requires a functional virB operon.
Collapse
Affiliation(s)
- Nabil Hanna
- Université Montpellier I, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), F-34095, Montpellier, France
| | | | | | | | | | | |
Collapse
|
36
|
Wang Y, Bai Y, Qu Q, Xu J, Chen Y, Zhong Z, Qiu Y, Wang T, Du X, Wang Z, Yu S, Fu S, Yuan J, Zhen Q, Yu Y, Chen Z, Huang L. The 16MΔvjbR as an ideal live attenuated vaccine candidate for differentiation between Brucella vaccination and infection. Vet Microbiol 2011; 151:354-62. [PMID: 21530111 DOI: 10.1016/j.vetmic.2011.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 11/19/2022]
Abstract
Brucellosis brings great economic burdens for developing countries. Live attenuated vaccines are the most efficient means for prevention and control of animal Brucellosis. However, the difficulties of differentiating of infection from vaccine immunization, which is essential for eradication programs, limit their applications. Therefore, the development of a vaccine that could differentiate infection from immunization will overcome the limitations and get extensive application. VjbR is a quorum sensing regulator involving in Brucella's intracellular survival. The vjbR∷Tn5 mutants have been proven effective against wild type strain challenge, implying its possibility of use in vaccine candidate development. To further evaluate this candidate gene, in the present study, the antigenicity of purified recombinant VjbR protein was analyzed. Antibodies to Brucella melitensis VjbR could be detected in sera from patients and animals with brucellosis but not in control ones, implying the potential use of this protein as a diagnostic antigen. Then a vjbR mutant of B. melitensis 16M was constructed by replacing the vjbR with kanamycin gene. The mutant showed reduced survival in macrophage and mice. Vaccination of BALB/c mice with 16MΔvjbR conferred significant protective immunity against B. melitensis strain 16M challenges, being equivalent to which induced by the license vaccine Rev.1. The vjbR deletion mutant elicited an anti-Brucella-specific immunoglobulin G response and induced the secretion of gamma interferon and interleukin-10. The most importance is that, the use of vjbR mutants as vaccines in association with diagnostic tests based on the VjbR antigen would allow the serological differentiation between infected and vaccinated animals. These results suggest that 16MΔvjbR is an ideal live attenuated vaccine candidate against B. melitensis and deserves further evaluation for vaccine development.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Infectious Disease, Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
de Jong MF, Rolán HG, Tsolis RM. Innate immune encounters of the (Type) 4th kind: Brucella. Cell Microbiol 2010; 12:1195-202. [PMID: 20670294 DOI: 10.1111/j.1462-5822.2010.01498.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In humans, pathogenic Brucella species cause a febrile illness known as brucellosis. A key pathogenic trait of this group of organisms is their ability to survive in immune cells and persist in tissues of the reticuloendothelial system, a process that requires the function of a Type IV secretion system. In contrast to other well-studied Gram-negative bacteria, Brucella spp. do not cause inflammation at the site of invasion, but have a latency period of 2-4 weeks before the onset of symptoms. This review discusses several mechanisms that allow Brucella spp. both to evade detection by pattern recognition receptors of the innate immune system and suppress their signalling. In contrast to these stealth features, the VirB Type IV secretion system, which mediates survival within phagocytic cells, stimulates innate immune responses in vivo. The responses stimulated by this virulence factor are sufficient to check bacterial growth, but not to elicit sterilizing immunity. The result is a stand-off between host and pathogen that results in persistent infection.
Collapse
Affiliation(s)
- Maarten F de Jong
- Department of Medical Microbiology & Immunology, University of California at Davis, Davis, CA, USA
| | | | | |
Collapse
|
38
|
Zhong Z, Wang Y, Qiao F, Wang Z, Du X, Xu J, Zhao J, Qu Q, Dong S, Sun Y, Huang L, Huang K, Chen Z. Cytotoxicity of Brucella smooth strains for macrophages is mediated by increased secretion of the type IV secretion system. Microbiology (Reading) 2009; 155:3392-3402. [DOI: 10.1099/mic.0.030619-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Some Brucella rough mutants cause cytotoxicity that resembles oncosis and necrosis in macrophages. This cytotoxicity requires the type IV secretion system (T4SS). In rough mutants, the cell-surface O antigen is shortened and the T4SS structure is thus exposed on the surface. Cytotoxicity effector proteins can therefore be more easily secreted. This enhanced secretion of effector proteins might cause the increased levels of cytotoxicity observed. However, whether this cytotoxicity is unique to the rough mutant and is mediated by overexpression of the T4SS has not been definitively determined. To test this, in the present study, a virB inactivation mutant (BMΔvirB) and an overexpression strain (BM-VIR) of a smooth Brucella melitensis strain (BM) were constructed and their cytotoxicity for macrophages and intracellular survival capability were analysed and compared. Cytotoxicity was detected in macrophages infected with higher concentrations of strains BM or BM-VIR, but not in those infected with BMΔvirB. The quorum sensing signal molecule N-dodecanoyl-dl-homoserine lactone (C12-HSL), a molecule that can inhibit expression of virB, inhibited the cytotoxicity of BM and BM-VIR, but not of BMΔvirB. These results indicated that overexpression of virB is responsible for Brucella cytotoxicity in macrophages. Transcription analysis showed that virB is regulated in a cell-density-dependent manner both in in vitro culture and during macrophage infection. When compared with BM, BM-VIR showed a reduced survival capacity in macrophages and mice, but both strains demonstrated similar resistance to in vitro stress conditions designed to simulate intracellular environments. Taken together, the cytotoxicity of Brucella for macrophages is probably mediated by increased secretion of effector proteins that results from overexpression of virB or an increase in the number of bacterial cells. The observation that both inactivation and overexpression of virB are detrimental for Brucella intracellular survival also indicated that the expression of virB is tightly regulated in a cell-density-dependent manner.
Collapse
Affiliation(s)
- Zhijun Zhong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Yufei Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Feng Qiao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Zhoujia Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Jie Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Jin Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Qing Qu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Shicun Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| |
Collapse
|
39
|
Zhang X, Ren J, Li N, Liu W, Wu Q. Disruption of the BMEI0066 gene attenuates the virulence of Brucella melitensis and decreases its stress tolerance. Int J Biol Sci 2009; 5:570-7. [PMID: 19742243 PMCID: PMC2737717 DOI: 10.7150/ijbs.5.570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/25/2009] [Indexed: 01/20/2023] Open
Abstract
Brucella melitensis is a facultative intracellular pathogen. An operon composed of BMEI0066, which encodes a two-component response regulator CenR, and BMEI0067, which encodes a cAMP-dependent protein kinase regulatory subunit, has been predicted to exist in many bacterial species. However, little is known about the function of this operon. In order to characterize this operon and assess its role in virulence, we constructed a marked deletion mutant of BMEI0066. The mutant was less able to withstand hyperosmotic conditions than wild-type (16M), but showed no significant difference with 16M when challenged by H2O2. The mutant also showed increased sensitivity to elevated temperature (42°C) and a reduced survival ratio under acidic conditions compared with 16M. The mutant failed to replicate in cultured murine macrophages and was rapidly cleared from the spleens of experimentally infected BALB/c mice. These findings suggest that these operon products make an important contribution to pathogenesis in mice, probably by allowing B. melitensis to adapt to the harsh environment encountered within host macrophages.
Collapse
Affiliation(s)
- Xinglin Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | | | | | | | | |
Collapse
|