1
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Huang GX, Mandanas MV, Djeddi S, Fernandez-Salinas D, Gutierrez-Arcelus M, Barrett NA. Increased glycolysis and cellular crosstalk in eosinophilic chronic rhinosinusitis with nasal polyps. Front Immunol 2024; 15:1321560. [PMID: 38444858 PMCID: PMC10912276 DOI: 10.3389/fimmu.2024.1321560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the sinonasal mucosa with distinct endotypes including type 2 (T2) high eosinophilic CRS with nasal polyps (eCRSwNP), T2 low non-eosinophilic CRS with nasal polyps (neCRSwNP), and CRS without nasal polyps (CRSsNP). Methods Given the heterogeneity of disease, we hypothesized that assessment of single cell RNA sequencing (scRNA-seq) across this spectrum of disease would reveal connections between infiltrating and activated immune cells and the epithelial and stromal populations that reside in sinonasal tissue. Results Here we find increased expression of genes encoding glycolytic enzymes in epithelial cells (EpCs), stromal cells, and memory T-cell subsets from patients with eCRSwNP, as compared to healthy controls. In basal EpCs, this is associated with a program of cell motility and Rho GTPase effector expression. Across both stromal and immune subsets, glycolytic programming was associated with extracellular matrix interactions, proteoglycan generation, and collagen formation. Furthermore, we report increased cell-cell interactions between EpCs and stromal/immune cells in eCRSwNP compared to healthy control tissue, and we nominate candidate receptor-ligand pairs that may drive tissue remodeling. Discussion These findings support a role for glycolytic reprograming in T2-elicited tissue remodeling and implicate increased cellular crosstalk in eCRSwNP.
Collapse
Affiliation(s)
- George X. Huang
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Michael V. Mandanas
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sarah Djeddi
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Daniela Fernandez-Salinas
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Nora A. Barrett
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Brütsch SM, Madzharova E, Pantasis S, Wüstemann T, Gurri S, Steenbock H, Gazdhar A, Kuhn G, Angel P, Bellusci S, Brinckmann J, Auf dem Keller U, Werner S, Bordoli MR. Mesenchyme-derived vertebrate lonesome kinase controls lung organogenesis by altering the matrisome. Cell Mol Life Sci 2023; 80:89. [PMID: 36920550 PMCID: PMC10017657 DOI: 10.1007/s00018-023-04735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Vertebrate lonesome kinase (VLK) is the only known secreted tyrosine kinase and responsible for the phosphorylation of a broad range of secretory pathway-resident and extracellular matrix proteins. However, its cell-type specific functions in vivo are still largely unknown. Therefore, we generated mice lacking the VLK gene (protein kinase domain containing, cytoplasmic (Pkdcc)) in mesenchymal cells. Most of the homozygous mice died shortly after birth, most likely as a consequence of their lung abnormalities and consequent respiratory failure. E18.5 embryonic lungs showed a reduction of alveolar type II cells, smaller bronchi, and an increased lung tissue density. Global mass spectrometry-based quantitative proteomics identified 97 proteins with significantly and at least 1.5-fold differential abundance between genotypes. Twenty-five of these had been assigned to the extracellular region and 15 to the mouse matrisome. Specifically, fibromodulin and matrilin-4, which are involved in extracellular matrix organization, were significantly more abundant in lungs from Pkdcc knockout embryos. These results support a role for mesenchyme-derived VLK in lung development through regulation of matrix dynamics and the resulting modulation of alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Salome M Brütsch
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Sophia Pantasis
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Till Wüstemann
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Selina Gurri
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, 3010, Bern, Switzerland.,Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland
| | - Gisela Kuhn
- Department of Health Sciences and Technology, Institute of Biomechanics, ETH Zurich, 8093, Zurich, Switzerland
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Saverio Bellusci
- German Lung Research Center (DCL), Giessen, Germany.,Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Aulweg 130, 35392, Giessen, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany.,Department of Dermatology, University of Lübeck, 23562, Lübeck, Germany
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark.
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland.
| | - Mattia R Bordoli
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
4
|
Kato T, Liu N, Morinaga H, Asakawa K, Muraguchi T, Muroyama Y, Shimokawa M, Matsumura H, Nishimori Y, Tan LJ, Hayano M, Sinclair DA, Mohri Y, Nishimura EK. Dynamic stem cell selection safeguards the genomic integrity of the epidermis. Dev Cell 2021; 56:3309-3320.e5. [PMID: 34932948 DOI: 10.1016/j.devcel.2021.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022]
Abstract
Maintaining genomic integrity and stability is crucial for life; yet, no tissue-driven mechanism that robustly safeguards the epithelial genome has been discovered. Epidermal stem cells (EpiSCs) continuously replenish the stratified layers of keratinocytes that protect organisms against various environmental stresses. To study the dynamics of DNA-damaged cells in tissues, we devised an in vivo fate tracing system for EpiSCs with DNA double-strand breaks (DSBs) and demonstrated that those cells exit from their niches. The clearance of EpiSCs with DSBs is caused by selective differentiation and delamination through the DNA damage response (DDR)-p53-Notch/p21 axis, with the downregulation of ITGB1. Moreover, concomitant enhancement of symmetric cell divisions of surrounding stem cells indicates that the selective elimination of cells with DSBs is coupled with the augmented clonal expansion of intact stem cells. These data collectively demonstrate that tissue autonomy through the dynamic coupling of cell-autonomous and non-cell-autonomous mechanisms coordinately maintains the genomic quality of the epidermis.
Collapse
Affiliation(s)
- Tomoki Kato
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Nan Liu
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hironobu Morinaga
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kyosuke Asakawa
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Division of Aging and Regeneration, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Taichi Muraguchi
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuko Muroyama
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mariko Shimokawa
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroyuki Matsumura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuriko Nishimori
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Li Jing Tan
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Motoshi Hayano
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan; Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA; Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Yasuaki Mohri
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Division of Aging and Regeneration, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Division of Aging and Regeneration, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
5
|
Yan S, Ripamonti R, Kawabe H, Ben-Yehuda Greenwald M, Werner S. NEDD4-1 is a key regulator of epidermal homeostasis and wound repair. J Invest Dermatol 2021; 142:1703-1713.e11. [PMID: 34756879 DOI: 10.1016/j.jid.2021.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin ligase Nedd4-1 plays key roles in organ development, tissue homeostasis and cancer, but its functions in the skin are largely unknown. Here we show perturbations in keratinocyte proliferation and terminal differentiation, epidermal barrier function, and hair follicle cycling as well as increased UV-induced apoptosis in mice lacking Nedd4-1 in keratinocytes. In particular, re-epithelialization of full-thickness excisional wounds was delayed in the mutant mice. This was caused by severely impaired migration and proliferation of Nedd4-1-deficient keratinocytes. Therefore, a few keratinocytes, which had escaped recombination and expressed Nedd4-1, obtained a growth advantage and contributed to re-epithelialization. Mechanistically, Nedd4-1-deficient keratinocytes failed to efficiently activate the Erk1/2 mitogen-activated kinases and the YAP transcriptional co-activator. These results identify Nedd4-1 as an essential player in wound repair through its effect on mitogenic and motogenic signaling pathways in keratinocytes.
Collapse
Affiliation(s)
- Shen Yan
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Raphael Ripamonti
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 317-8511, Japan
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
6
|
Goggins BJ, Minahan K, Sherwin S, Soh WS, Pryor J, Bruce J, Liu G, Mathe A, Knight D, Horvat JC, Walker MM, Keely S. Pharmacological HIF-1 stabilization promotes intestinal epithelial healing through regulation of α-integrin expression and function. Am J Physiol Gastrointest Liver Physiol 2021; 320:G420-G438. [PMID: 33470153 DOI: 10.1152/ajpgi.00192.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Intestinal epithelia are critical for maintaining gastrointestinal homeostasis. Epithelial barrier injury, causing inflammation and vascular damage, results in inflammatory hypoxia, and thus, healing occurs in an oxygen-restricted environment. The transcription factor hypoxia-inducible factor (HIF)-1 regulates genes important for cell survival and repair, including the cell adhesion protein β1-integrin. Integrins function as αβ-dimers, and α-integrin-matrix binding is critical for cell migration. We hypothesized that HIF-1 stabilization accelerates epithelial migration through integrin-dependent pathways. We aimed to examine functional and posttranslational activity of α-integrins during HIF-1-mediated intestinal epithelial healing. Wound healing was assessed in T84 monolayers over 24 h with/without prolyl-hydroxylase inhibitor (PHDi) (GB-004), which stabilizes HIF-1. Gene and protein expression were measured by RT-PCR and immunoblot, and α-integrin localization was assessed by immunofluorescence. α-integrin function was assessed by antibody-mediated blockade, and integrin α6 regulation was determined by HIF-1α chromatin immunoprecipitation. Models of mucosal wounding and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis were used to examine integrin expression and localization in vivo. PHDi treatment accelerated wound closure and migration within 12 h, associated with increased integrin α2 and α6 protein, but not α3. Functional blockade of integrins α2 and α6 inhibited PHDi-mediated accelerated wound closure. HIF-1 bound directly to the integrin α6 promoter. PHDi treatment accelerated mucosal healing, which was associated with increased α6 immunohistochemical staining in wound-associated epithelium and wound-adjacent tissue. PHDi treatment increased α6 protein levels in colonocytes of TNBS mice and induced α6 staining in regenerating crypts and reepithelialized inflammatory lesions. Together, these data demonstrate a role for HIF-1 in regulating both integrin α2 and α6 responses during intestinal epithelial healing.NEW & NOTEWORTHY HIF-1 plays an important role in epithelial restitution, selectively inducing integrins α6 and α2 to promote migration and proliferation, respectively. HIF-stabilizing prolyl-hydroxylase inhibitors accelerate intestinal mucosal healing by inducing epithelial integrin expression.
Collapse
Affiliation(s)
- Bridie J Goggins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Kyra Minahan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Simonne Sherwin
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Wai S Soh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Jennifer Pryor
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Jessica Bruce
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Gang Liu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrea Mathe
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Marjorie M Walker
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
7
|
Development and Maintenance of Epidermal Stem Cells in Skin Adnexa. Int J Mol Sci 2020; 21:ijms21249736. [PMID: 33419358 PMCID: PMC7766199 DOI: 10.3390/ijms21249736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023] Open
Abstract
The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs.
Collapse
|
8
|
Lui PPY, Wong CM. Biology of Tendon Stem Cells and Tendon in Aging. Front Genet 2020; 10:1338. [PMID: 32010194 PMCID: PMC6976534 DOI: 10.3389/fgene.2019.01338] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Both tendon injuries and tendinopathies, particularly rotator cuff tears, increase with tendon aging. Tendon stem cells play important roles in promoting tendon growth, maintenance, and repair. Aged tendons show a decline in regenerative potential coupled with a loss of stem cell function. Recent studies draw attention to aging primarily a disorder of stem cells. The micro-environment (“niche”) where stem cells resided in vivo provides signals that direct them to metabolize, self-renew, differentiate, or remain quiescent. These signals include receptors and secreted soluble factors for cell-cell communication, extracellular matrix, oxidative stress, and vascularity. Both intrinsic cellular deficits and aged niche, coupled with age-associated systemic changes of hormonal and metabolic signals can inhibit or alter the functions of tendon stem cells, resulting in reduced fitness of these primitive cells and hence more frequent injuries and poor outcomes of tendon repair. This review aims to summarize the biological changes of aged tendons. The biological changes of tendon stem cells in aging are reviewed after a systematic search of the PubMed. Relevant factors of stem cell aging including cell-intrinsic factors, changes of microenvironment, and age-associated systemic changes of hormonal and metabolic signals are examined, with findings related to tendon stem cells highlighted when literature is available. Future research directions on the aging mechanisms of tendon stem cells are discussed. Better understanding of the molecular mechanisms underlying the functional decline of aged tendon stem cells would provide insight for the rational design of rejuvenating therapies.
Collapse
Affiliation(s)
| | - Chi Ming Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| |
Collapse
|
9
|
Borreguero-Muñoz N, Fletcher GC, Aguilar-Aragon M, Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. The Hippo pathway integrates PI3K-Akt signals with mechanical and polarity cues to control tissue growth. PLoS Biol 2019; 17:e3000509. [PMID: 31613895 PMCID: PMC6814241 DOI: 10.1371/journal.pbio.3000509] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 10/25/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.
Collapse
Affiliation(s)
| | - Georgina C. Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mario Aguilar-Aragon
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Barry J. Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- * E-mail:
| |
Collapse
|
10
|
Keratinocyte stem cells are more resistant to UVA radiation than their direct progeny. PLoS One 2018; 13:e0203863. [PMID: 30208100 PMCID: PMC6135485 DOI: 10.1371/journal.pone.0203863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
The epidermis undergoes constant renewal during its lifetime. This is possible due to a special population of keratinocyte stem cells (KSCs) located at the basal layer. These cells are surrounded by their direct progeny, keratinocyte progenitors or transient amplifying cells (TAs), which arise from cell division. Skin is exposed every day to sun radiation; in particular, UVA radiation penetrates through the epidermis and induces damage to KSCs and TAs. Although keratinocytes in the basal layer are the most likely skin carcinomas and/or photoaging cells of origin, surprisingly few studies have addressed the specific responses of these cells to UV radiation. In this study, we showed for the first time that keratinocyte stem cells were more resistant to UVA irradiation than their direct progeny, transient amplifying cells. Using both the MTT assay and clonogenic assay, we found that KSCs were more photo-resistant compared to TAs after exposure to different doses of UVA (from 0 to 50 J/cm2). Moreover, KSCs had a greater ability to reconstruct human epidermis (RHE) after UVA exposure compared with TAs. Finally, investigations of DNA repair using the comet assay showed that DNA single-strand breaks and thymine dimers were repaired quicker and more efficiently in KSCs compared with TAs. In a previous work, we showed that the same stem cell population was more resistant to ionizing radiation, another carcinogenic agent. Collectively, our results combined with other observations demonstrate that keratinocyte stem cells, which are responsible for epidermal renewal throughout life, are equipped with an efficient arsenal against several genotoxic agents. Our future work will try to identify the factors or signaling pathways that are responsible for this differential photo-sensitivity and DNA repair capacity between KSCs and TAs.
Collapse
|
11
|
Veeravarmal V, Austin RD, Nagini S, Nassar MHM. Expression of β1integrin in normal epithelium, oral submucous fibrosis and oral squamous cell carcinoma. Pathol Res Pract 2017; 214:273-280. [PMID: 29113685 DOI: 10.1016/j.prp.2017.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/02/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION AND AIMS The possible reason suggested for epithelial atrophy in oral submucous fibrosis (OSMF) is ischemia. Dysregulation in the epithelial proliferation and maturation is also thought to be a cause. The β1 integrin identifies the oral epithelial stem cells. The changes induced by the arecanut on these cells may result in epithelial alterations. The aim of this study is to evaluate the stem cells distribution and percentage by assessing the β1 integrin expression. MATERIALS AND METHODS The study included normal oral mucosa (15 cases) and disease group (97 cases). The disease group was further subdivided into early (29 cases), moderate (34 cases), advanced OSMF (18 cases) and oral squamous cell carcinoma(OSCC) associated with OSMF (16 cases). The tissues were stained for β1 integrin antibodies. The positive cells and staining intensities were analysed to determine the staining index, and statistically evaluated using KW test statistics. RESULTS β1 integrin was observed in retepegs region and the percentage of positive cells was 14%- 30% in the control. In OSMF, the β1 integrin positivity was observed in basal and suprabasal layers, and the percentage was ranged from 2%-71%. β1 integrin expression in OSCC was observed both in central and peripheral cells and ranged from 17%-85%. On comparison, the difference in staining index among normal, OSMF and carcinomas was significant at p<0.01. The stem cells percentage was increased both in OSMF and carcinomas. The non-dysplastic epithelium of OSMF with severe atrophy showed lowest percentage. It is inferred that absence of stem cells and proliferation may attribute for the atrophy.
Collapse
Affiliation(s)
- Veeran Veeravarmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthaih Dental College and Hospital, Annamalai University, Annamalai Nagar, Chidhambaram, Tamil Nadu, India.
| | - Ravi David Austin
- Department of Oral Medicine and Radiology, Rajah Muthaih Dental College and Hospital, Annamalai University, Annamalai Nagar, Chidhambaram, Tamil Nadu, India.
| | - Siddavaram Nagini
- Department of Biochemistry and Bio-Technology, Annamalai University, Annamalai Nagar, India.
| | - Mohamed Hanifa Mohamed Nassar
- Department of Oral and Maxillofacial Pathology, Rajah Muthaih Dental College and Hospital, Annamalai University, Annamalai Nagar, Chidhambaram, Tamil Nadu, India.
| |
Collapse
|
12
|
Fang J, Wang H, Liu Y, Ding F, Ni Y, Shao S. High KRT8 expression promotes tumor progression and metastasis of gastric cancer. Cancer Sci 2017; 108:178-186. [PMID: 27865045 PMCID: PMC5329158 DOI: 10.1111/cas.13120] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Keratin8 (KRT8) is the major component of the intermediate filament cytoskeleton and predominantly expressed in simple epithelial tissues. Aberrant expression of KRT8 is associated with multiple tumor progression and metastasis. However, the role of KRT8 in gastric cancer (GC) remains unclear. In this study, KRT8 expression was investigated and it was found to be upregulated along with human GC progression and metastasis at both mRNA and protein levels in human gastric cancer tissues. In addition, KRT8 overexpression enhanced the proliferation and migration of human gastric cancer cells, whereas the knock‐down of KRT8 by siRNA only inhibited migration of human gastric cancer cells. Integrinβ1‐FAK‐induced epithelial‐mesenchymal‐transition (EMT) only existed in the high KRT8 cells. Furthermore, KRT8 overexpression led to increase in p‐smad2/3 levels and TGFβ dependent signaling events. KRT8 expression in GC was related to tumor clinical stage and worse survival. Kaplan–Meier analysis proved that KRT8 was associated with overall survival of patients with GC that patients with high KRT8 expression tend to have unfavorable outcome. Moreover, Cox's proportional hazards analysis showed that high KRT8 expression was a prognostic marker of poor outcome. These results provided that KRT8 expression may therefore be a biomarker or potential therapeutic target to identify patients with worse survival.
Collapse
Affiliation(s)
- Jian Fang
- School of Medicine, Jiangsu University, Jiangsu, China
| | - Hao Wang
- Second People's Hospital of Wuxi, Wuxi, China.,Nanjing Medical University, Nanjing, China
| | - Yun Liu
- School of Medicine, Jiangsu University, Jiangsu, China
| | - Fangfang Ding
- School of Medicine, Jiangsu University, Jiangsu, China
| | - Ying Ni
- School of Medicine, Jiangsu University, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Jiangsu, China
| |
Collapse
|
13
|
Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 2016; 365:467-82. [PMID: 27351421 DOI: 10.1007/s00441-016-2446-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023]
Abstract
During cutaneous wound healing, keratinocyte proliferation and migration are critical for re-epithelialization. In addition the epidermis secretes growth factors, cytokines, proteases, and matricellular proteins into the wound microenvironment that modify the extracellular matrix and stimulate other wound cells that control the inflammatory response, promote angiogenesis and facilitate tissue contraction and remodeling. Wound keratinocytes express at least seven different integrins-the major cell adhesion receptors for the extracellular matrix-that collectively control essential cell-autonomous functions to ensure proper re-epithelialization, including migration, proliferation, survival and basement membrane assembly. Moreover, it has become evident in recent years that some integrins can regulate paracrine signals from wound epidermis that stimulate other wound cells involved in angiogenesis, contraction and inflammation. Importantly, it is likely that abnormal integrin expression or function in the epidermis contributes to wound pathologies such as over-exuberant healing (e.g., hypertrophic scar formation) or diminished healing (e.g., chronic wounds). In this review, we discuss current knowledge of integrin function in the epidermis, which implicates them as attractive therapeutic targets to promote wound healing or treat wound pathologies. We also discuss challenges that arise from the complex roles that multiple integrins play in wound epidermis, which may be regulated through extracellular matrix remodeling that determines ligand availability. Indeed, understanding how different integrin functions are temporally coordinated in wound epidermis and which integrin functions go awry in pathological wounds, will be important to determine how best to target them clinically to achieve maximum therapeutic benefit. Graphical abstract In addition to their well-characterized roles in keratinocyte adhesion, migration and wound re-epithelialization, epidermal integrins play important roles in modifying the wound microenvironment by regulating the expression and secretion of growth factors, extracellular proteases, and matricellular proteins that stimulate other wound cells, including vascular endothelial cells and fibroblasts/myofibroblasts.
Collapse
|
14
|
Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S, Wculek SK, Cordero J, Tan EH, Ridgway R, Brunton VG, Sahai E, Gerhardt H, Behrens A, Malanchi I, Sansom OJ, Thompson BJ. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 2016; 143:1674-87. [PMID: 26989177 PMCID: PMC4874484 DOI: 10.1242/dev.133728] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022]
Abstract
The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | - Richard K Stone
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Stefan Boeing
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Stefanie K Wculek
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Julia Cordero
- The Beatson Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | - Ee H Tan
- The Beatson Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | - Rachel Ridgway
- Edinburgh Cancer Research Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Val G Brunton
- Edinburgh Cancer Research Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Erik Sahai
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Holger Gerhardt
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Axel Behrens
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ilaria Malanchi
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Owen J Sansom
- The Beatson Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | - Barry J Thompson
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
15
|
Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging. Stem Cells Int 2016; 2016:7370642. [PMID: 27148370 PMCID: PMC4842382 DOI: 10.1155/2016/7370642] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells.
Collapse
|
16
|
Palazzo E, Morandi P, Lotti R, Saltari A, Truzzi F, Schnebert S, Dumas M, Marconi A, Pincelli C. Notch Cooperates with Survivin to Maintain Stemness and to Stimulate Proliferation in Human Keratinocytes during Ageing. Int J Mol Sci 2015; 16:26291-302. [PMID: 26540052 PMCID: PMC4661807 DOI: 10.3390/ijms161125948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 01/01/2023] Open
Abstract
The Notch signaling pathway orchestrates cell fate by either inducing cell differentiation or maintaining cells in an undifferentiated state. This study aims to evaluate Notch expression and function in normal human keratinocytes. Notch1 is expressed in all epidermal layers, though to a different degree of intensity, with a dramatic decrease during ageing. Notch1 intracellular domain (N1ICD) levels are decreased during transit from keratinocyte stem cells (KSC) to transit amplifying (TA) cells, mimicking survivin expression in samples from donors of all ages. Calcium markedly reduces N1ICD levels in keratinocytes. N1ICD overexpression induces the up-regulation of survivin and the down-regulation of keratin 10 and involucrin, while increasing the S phase of the cell cycle. On the other hand, Notch1 inhibition (DAPT) dose-dependently decreases survivin, stimulates differentiation, and reduces keratinocyte proliferation in samples from donors of all ages. Silencing Notch downgrades survivin and increases keratin 10. In addition, Notch1 inhibition decreases survivin levels and proliferation both in KSC and TA cells. Finally, while survivin overexpression decreases keratinocyte differentiation and increases N1ICD expression both in KSC and TA cells, silencing survivin results in N1ICD down-regulation and an increase in differentiation markers. These results suggest that the Notch1/survivin crosstalk contributes to the maintenance of stemness in human keratinocytes.
Collapse
Affiliation(s)
- Elisabetta Palazzo
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Paolo Morandi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Roberta Lotti
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Annalisa Saltari
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Francesca Truzzi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | | | - Marc Dumas
- LVMH Recherche, 185 Avenue de Verdun, Saint Jean de Braye 45800, France.
| | - Alessandra Marconi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| |
Collapse
|
17
|
The role of the microenvironment on the fate of adult stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:639-48. [PMID: 25985755 DOI: 10.1007/s11427-015-4865-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022]
Abstract
Adult stem cells (SCs) exist in all tissues that promote tissue growth, regeneration, and healing throughout life. The SC niche in which they reside provides signals that direct them to proliferate, differentiate, or remain dormant; these factors include neighboring cells, the extracellular matrix, soluble molecules, and physical stimuli. In disease and aging states, stable or transitory changes in the microenvironment can directly cause SC activation or inhibition in tissue healing as well as functional regulation. Here, we discuss the microenvironmental regulation of the behavior of SC and focus on plasticity approaches by which various environmental factors can enhance the function of SCs and more effectively direct the fate of SCs.
Collapse
|
18
|
Zhang L, Li Z, Fan Y, Li H, Li Z, Li Y. Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling. Int J Biochem Cell Biol 2015; 64:202-11. [PMID: 25934251 DOI: 10.1016/j.biocel.2015.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Glucose-regulated protein of 78kD (GRP78) is a multifunctional protein belonging to the heat shock protein 70 family. Overexpression of GRP78 triggered by environmental and physiological stresses is positively correlated with the occurrence and progression of various tumors, but the molecular mechanisms have not been well established. The present study indicated that overexpression of GRP78 in colon cancer cells could promote cell-matrix adhesion through the upregulation of fibronectin, integrin-β1 and phosphorylated FAK. Meanwhile, it resulted in a visible epithelial-mesenchymal transition in DLD1 cells, and the Snail-2 played the key role during the process. More importantly, the data indicated that GRP78 overexpression facilitated the expression and secretion of TGF-β1, which further activated the downstream Smad2/3 signaling module to effectuate the cell-matrix adhesion and epithelial-mesenchymal transition. Taken together, this study provides a novel molecular mechanism involving in the effects of GRP78 on colon cancer metastasis.
Collapse
Affiliation(s)
- Lichao Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zongwei Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongsheng Fan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hanqing Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhouyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yaoping Li
- Shanxi Tumor Hospital, Taiyuan 030006, China
| |
Collapse
|
19
|
Shiomi A, Izumi K, Uenoyama A, Saito T, Saito N, Ohnuki H, Kato H, Kanatani M, Nomura S, Egusa H, Maeda T. Cyclic mechanical pressure-loading alters epithelial homeostasis in a three-dimensional in vitro oral mucosa model: clinical implications for denture-wearers. J Oral Rehabil 2014; 42:192-201. [PMID: 25472623 DOI: 10.1111/joor.12254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2014] [Indexed: 11/28/2022]
Abstract
Denture-wearing affects the quality and quantity of epithelial cells in the underlying healthy oral mucosa. The physiologic mechanisms, however, are poorly understood. This study aimed to compare histologic changes and cellular responses of an epithelial cell layer to cyclic mechanical pressure-loading mimicking denture-wearing using an organotypic culture system to develop a three-dimensional in vitro oral mucosa model (3DOMM). Primary human oral keratinocytes and fibroblasts were serially grown in a monolayer culture, and cell viability was measured under continuous cyclic mechanical pressure (50 kPa) for 7 days (cycles of 60 min on, 20 s off to degas and inject air). Upon initiation of an air-liquid interface culture for epithelial stratification, the cyclic pressure, set to the mode above mentioned, was applied to the 3DOMMs for 7 days. Paraffin-embedded 3DOMMs were examined histologically and immunohistochemically. In the monolayer culture, the pressure did not affect the viability of oral keratinocytes or fibroblasts. Few histologic changes were observed in the epithelial layer of the control and pressure-loaded 3DOMMs. Immunohistochemical examination, however, revealed a significant decrease in Ki-67 labelling and an increase in filaggrin and involucrin expression in the suprabasal layer of the pressure-loaded 3DOMMs. Pressure-loading attenuated integrin β1 expression and increased matrix metalloproteinase-9 activity. Incomplete deposition of laminin and type IV collagen beneath the basal cells was observed only in the pressure-loaded 3DOMM. Cyclic pressure-loading appeared to disrupt multiple functions of the basal cells in the 3DOMM, resulting in a predisposition towards terminal differentiation. Thus, denture-wearing could compromise oral epithelial homeostasis.
Collapse
Affiliation(s)
- A Shiomi
- Division of Dental Educational Research Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ivosevic-Zaper J, Hofmann M, Kakadjanova A, Valesky E, Meissner M, Bereiter-Hahn J, Kaufmann R, Bernd A, Kippenberger S. Topically applied glycyrrhizic acid causes hair removal in rats. PHARMACEUTICAL BIOLOGY 2014; 52:1362-1365. [PMID: 24785361 DOI: 10.3109/13880209.2014.884608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Anecdotic reports from Turkmenistan suggest an epilatory effect of sweet licorice extract after topical application. OBJECTIVE This study examines hair removal after topical application of glycyrrhizic acid, the main compound of sweet licorice. MATERIALS AND METHODS An aqueous solution containing 15% of the ammonium salt of glycyrrhizic acid, 10% urea, and 20% ethanol was topically applied two times per day on the neck areas of Wistar rats using a toothbrush. RESULTS After 3 d, 20-30% of the treated areas were free of hair. After treatment for 6-12 d, 90-95% of the hair was gone. Clinical as well as immunohistological examinations showed no signs of inflammation even after long-term treatment for more than 9 months. Interestingly, long-term treatment reduced the regrowth of hair of about 20%. Examination by scanning electron microscopy showed a smoothed hair cuticle that might facilitate detachment of the hair shaft from the follicular wall. DISCUSSION AND CONCLUSION Our findings suggest glycyrrhizic acid as an interesting molecule for treating hypertrichosis in humans.
Collapse
Affiliation(s)
- Julijana Ivosevic-Zaper
- Department of Dermatology, Venereology and Allergology, Johann Wolfgang Goethe University, Frankfurt/Main, Germany and
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Eckes B, Krieg T, Wickström SA. Role of integrin signalling through integrin-linked kinase in skin physiology and pathology. Exp Dermatol 2014; 23:453-6. [DOI: 10.1111/exd.12429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Beate Eckes
- Dermatology; University of Cologne; Cologne Germany
| | - Thomas Krieg
- Dermatology; University of Cologne; Cologne Germany
- CECAD Cologne Excellent in Aging Research; Cologne Germany
- Center for Molecular Medicine Cologne (CMMC); Cologne Germany
| | - Sara A. Wickström
- CECAD Cologne Excellent in Aging Research; Cologne Germany
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing’; Max Planck Institute for Biology of Ageing; Cologne Germany
| |
Collapse
|
22
|
Mato E, González C, Moral A, Pérez JI, Bell O, Lerma E, de Leiva A. ABCG2/BCRP gene expression is related to epithelial-mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1). J Mol Endocrinol 2014; 52:289-300. [PMID: 24643400 DOI: 10.1530/jme-14-0051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tumor malignancy is associated with the epithelial-mesenchymal transition (EMT) process and resistance to chemotherapy. However, little is known about the relationship between the EMT and the multidrug-resistance gene in thyroid tumor progression. We investigated whether the expression of the ABCG2/BCRP gene is associated with ZEB1 and other EMT inducer genes involved in tumor dedifferentiation. We established a subpopulation of cells that express the ABCG2/BCRP gene derived from the thyroid papillary carcinoma cell line (TPC-1), the so-called TPC-1 MITO-resistant subline. The most relevant findings in these TPC-1 selected cells were a statistically significant upregulation of ZEB1 and TWIST1 (35- and 15-fold change respectively), no changes in the relative expression of vimentin and SNAIL1, and no expression of E-cadherin. The TPC-1 MITO-resistant subline displayed a faster migration and greater invasive ability than parental cells in correlation with a significant upregulation of the survivin (BIRC5) gene (twofold change, P<0.05). The knockdown of ZEB1 promoted nuclear re-expression of E-cadherin, reduced expression of vimentin, N-cadherin, and BIRC5 genes, and reduced cell migration (P<0.05). Analysis of human thyroid carcinoma showed a slight overexpression of the ABCG2/BCRP at stages I and II (P<0.01), and a higher overexpression at stages III and IV (P<0.01). SNAIL1, TWIST1, and ZEB1 genes showed higher expression at stages III and IV than at stages I and II. E- and N-cadherin genes were upregulated at stages I and II of the disease (ninefold and tenfold change, respectively, P<0.01) but downregulated at stages III and IV (fourfold lower, P<0.01). These results could be a promising starting point for further study of the role of the ABCG2/BCRP gene in the progression of thyroid tumor.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/biosynthesis
- Adult
- Aged
- Aged, 80 and over
- Cadherins/biosynthesis
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma, Papillary
- Cell Line, Tumor
- Cell Movement/genetics
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Humans
- Inhibitor of Apoptosis Proteins/biosynthesis
- Male
- Middle Aged
- Neoplasm Invasiveness/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Staging
- Nuclear Proteins/biosynthesis
- RNA Interference
- RNA, Small Interfering
- Snail Family Transcription Factors
- Survivin
- Thyroid Cancer, Papillary
- Thyroid Gland/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Twist-Related Protein 1/biosynthesis
- Up-Regulation
- Vimentin/biosynthesis
- Young Adult
- Zinc Finger E-box-Binding Homeobox 1
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- E Mato
- Thyroid Neoplasia Study Group, EDUAB-HSP, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Departament de Biologia Cel-lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Spain Departments of Endocrinology and Nutrition General Surgery Pathology IIB, Hospital de la Santa Creu i Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Ernst N, Yay A, Bíró T, Tiede S, Humphries M, Paus R, Kloepper JE. β1 integrin signaling maintains human epithelial progenitor cell survival in situ and controls proliferation, apoptosis and migration of their progeny. PLoS One 2013; 8:e84356. [PMID: 24386370 PMCID: PMC3874009 DOI: 10.1371/journal.pone.0084356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/14/2013] [Indexed: 01/05/2023] Open
Abstract
β1 integrin regulates multiple epithelial cell functions by connecting cells with the extracellular matrix (ECM). While β1 integrin-mediated signaling in murine epithelial stem cells is well-studied, its role in human adult epithelial progenitor cells (ePCs) in situ remains to be defined. Using microdissected, organ-cultured human scalp hair follicles (HFs) as a clinically relevant model for studying human ePCs within their natural topobiological habitat, β1 integrin-mediated signaling in ePC biology was explored by β1 integrin siRNA silencing, specific β1 integrin-binding antibodies and pharmacological inhibition of integrin-linked kinase (ILK), a key component of the integrin-induced signaling cascade. β1 integrin knock down reduced keratin 15 (K15) expression as well as the proliferation of outer root sheath keratinocytes (ORSKs). Embedding of HF epithelium into an ECM rich in β1 integrin ligands that mimic the HF mesenchyme significantly enhanced proliferation and migration of ORSKs, while K15 and CD200 gene and protein expression were inhibited. Employing ECM-embedded β1 integrin-activating or -inhibiting antibodies allowed to identify functionally distinct human ePC subpopulations in different compartments of the HF epithelium. The β1 integrin-inhibitory antibody reduced β1 integrin expression in situ and selectively enhanced proliferation of bulge ePCs, while the β1 integrin-stimulating antibody decreased hair matrix keratinocyte apoptosis and enhanced transferrin receptor (CD71) immunoreactivity, a marker of transit amplifying cells, but did not affect bulge ePC proliferation. That the putative ILK inhibitor QLT0267 significantly reduced ORSK migration and proliferation and induced massive ORSK apoptosis suggests a key role for ILK in mediating the ß1 integrin effects. Taken together, these findings demonstrate that ePCs in human HFs require β1 integrin-mediated signaling for survival, adhesion, and migration, and that different human HF ePC subpopulations differ in their response to β1 integrin signaling. These insights may be exploited for cell-based regenerative medicine strategies that employ human HF-derived ePCs.
Collapse
Affiliation(s)
- Nancy Ernst
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Arzu Yay
- Department of Histology and Embryology, University of Erciyes, Kayseri, Turkey
| | - Tamás Bíró
- DE-MTA ‘‘Lendület’’ Cellular Physiology Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Stephan Tiede
- Institute of Experimental Immunology, Euroimmun AG, Luebeck, Germany
| | - Martin Humphries
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | | |
Collapse
|
24
|
Calenic B, Paun IA, van Staden RI, Didilescu A, Petre A, Dinescu M, Greabu M. Novel method for proliferation of oral keratinocyte stem cells. J Periodontal Res 2013; 49:711-8. [DOI: 10.1111/jre.12153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 12/17/2022]
Affiliation(s)
- B. Calenic
- Department of Biochemistry; Faculty of Dentistry; University of Medicine and Pharmacy Carol Davila; Bucharest Romania
- National Institute of Research for Electrochemistry and Condensed Mater; Bucharest Romania
| | - I. A. Paun
- National Institute for Laser, Plasma and Radiation Physics; Bucharest Romania
- Faculty of Applied Sciences; University Politehnica of Bucharest; Bucharest Romania
| | - R. I. van Staden
- National Institute of Research for Electrochemistry and Condensed Mater; Bucharest Romania
| | - A. Didilescu
- Department of Embryology; Faculty of Dentistry; University of Medicine and Pharmacy Carol Davila; Bucharest Romania
| | - A. Petre
- Department of Prosthetic Dentistry; Faculty of Dentistry; University of Medicine and Pharmacy Carol Davila; Bucharest Romania
| | - M. Dinescu
- National Institute for Laser, Plasma and Radiation Physics; Bucharest Romania
| | - M. Greabu
- Department of Biochemistry; Faculty of Dentistry; University of Medicine and Pharmacy Carol Davila; Bucharest Romania
| |
Collapse
|
25
|
Hegde S, Raghavan S. A Skin-depth Analysis of Integrins: Role of the Integrin Network in Health and Disease. ACTA ACUST UNITED AC 2013; 20:155-69. [DOI: 10.3109/15419061.2013.854334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
β1 integrin−mediated signals are required for platelet granule secretion and hemostasis in mouse. Blood 2013; 122:2723-31. [DOI: 10.1182/blood-2013-06-508721] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Platelet β1 integrin−mediated signals control granule secretion and hemostasis β1 integrin−mediated outside-in signaling is independent of direct kindlin-integrin interaction
Collapse
|
27
|
Watt FM, Huck WTS. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 2013; 14:467-73. [PMID: 23839578 DOI: 10.1038/nrm3620] [Citation(s) in RCA: 577] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of stem cells and regenerative medicine offers considerable promise as a means of delivering new treatments for a wide range of diseases. In order to maximize the effectiveness of cell-based therapies - whether stimulating expansion of endogenous cells or transplanting cells into patients - it is essential to understand the environmental (niche) signals that regulate stem cell behaviour. One of those signals is from the extracellular matrix (ECM). New technologies have offered insights into how stem cells sense signals from the ECM and how they respond to these signals at the molecular level, which ultimately regulate their fate.
Collapse
Affiliation(s)
- Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, London, UK.
| | | |
Collapse
|
28
|
Volk SW, Iqbal SA, Bayat A. Interactions of the Extracellular Matrix and Progenitor Cells in Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:261-272. [PMID: 24527348 DOI: 10.1089/wound.2012.0417] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 01/16/2023] Open
Abstract
SIGNIFICANCE Both chronic wounds and excessive scar formation after cutaneous injury create a formidable clinical problem resulting in considerable morbidity and healthcare expenditure. The deposition and remodeling of extracellular matrix (ECM) components are critical processes in cutaneous healing. Understanding the role of the ECM in directing progenitor and reparative cell fate and activities during wound repair is required to improve wound-care strategies. RECENT ADVANCES In addition to providing structural integrity, the ECM is recognized to play critical roles in regulating progenitor and reparative cell behaviors such as migration, differentiation, proliferation, and survival. The ECM dictates these activities through its binding of adhesion receptors as well as its ability to regulate growth factor bioavailability and signaling. More recently, a key role for mechanical control of cell fate through interaction with the ECM has emerged. CRITICAL ISSUES Despite significant advances in understanding the pathophysiology of cutaneous wound repair, problematic wounds remain a significant healthcare challenge. Regenerative medical strategies that either target endogenous stem cells or utilize applications of exogenous stem cell populations have emerged as promising approaches to pathologic wounds. However, the identification of smart biomaterials and matrices may allow for further optimization of such therapies. FUTURE DIRECTIONS An efficient and appropriate healing response in the skin postinjury is regulated by a fine balance of the quantity and quality of ECM proteins. A more complete understanding of ECM regulation of the cell fate and activities during cutaneous wound repair is vital for the development of novel treatment strategies for improvement of cutaneous healing.
Collapse
Affiliation(s)
- Susan W. Volk
- Departments of Clinical Studies and Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Syed Amir Iqbal
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
- Department of Plastic and Reconstructive Surgery, Wythenshawe Hospital, University Hospital South Manchester NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
- Institute of Inflammation and Repair, Manchester Academic Health Science Center, Wythenshawe Hospital, University Hospital South Manchester NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
29
|
Boulter E, Estrach S, Errante A, Pons C, Cailleteau L, Tissot F, Meneguzzi G, Féral CC. CD98hc (SLC3A2) regulation of skin homeostasis wanes with age. ACTA ACUST UNITED AC 2013; 210:173-90. [PMID: 23296466 PMCID: PMC3549711 DOI: 10.1084/jem.20121651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss of CD98hc expression in young adult skin induces changes similar to those associated with aging, including improper skin homeostasis and epidermal wound healing. Skin aging is linked to reduced epidermal proliferation and general extracellular matrix atrophy. This involves factors such as the cell adhesion receptors integrins and amino acid transporters. CD98hc (SLC3A2), a heterodimeric amino acid transporter, modulates integrin signaling in vitro. We unravel CD98hc functions in vivo in skin. We report that CD98hc invalidation has no appreciable effect on cell adhesion, clearly showing that CD98hc disruption phenocopies neither CD98hc knockdown in cultured keratinocytes nor epidermal β1 integrin loss in vivo. Instead, we show that CD98hc deletion in murine epidermis results in improper skin homeostasis and epidermal wound healing. These defects resemble aged skin alterations and correlate with reduction of CD98hc expression observed in elderly mice. We also demonstrate that CD98hc absence in vivo induces defects as early as integrin-dependent Src activation. We decipher the molecular mechanisms involved in vivo by revealing a crucial role of the CD98hc/integrins/Rho guanine nucleotide exchange factor (GEF) leukemia-associated RhoGEF (LARG)/RhoA pathway in skin homeostasis. Finally, we demonstrate that the deregulation of RhoA activation in the absence of CD98hc is also a result of impaired CD98hc-dependent amino acid transports.
Collapse
Affiliation(s)
- Etienne Boulter
- Institute for Research on Cancer and Aging, Nice, AVENIR Team, University of Nice Sophia-Antipolis, Institut National de la Santé et de la Recherche Médicale U1081, Centre National de la Recherche Scientifique UMR 7284, Centre Antoine Lacassagne, Nice 06107, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The physical and mechanical properties of the cellular microenvironment regulate cell shape and can strongly influence cell fate. How mechanical cues are sensed and transduced to regulate gene expression has long remained elusive. Recently, cues from the extracellular matrix, cell adhesion sites, cell shape and the actomyosin cytoskeleton were found to converge on the regulation of the downstream effectors of the Hippo pathway YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) in vertebrates and Yorkie in flies. This convergence may explain how mechanical signals can direct normal and pathological cell behaviour.
Collapse
|
31
|
Modulation of radiation-induced oral mucositis (mouse) by selective inhibition of β1 integrin. Radiother Oncol 2012; 104:230-4. [DOI: 10.1016/j.radonc.2012.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 11/18/2022]
|
32
|
Integrin β1 is required for maintenance of vascular tone in postnatal mice. J Cell Commun Signal 2012; 6:175-80. [PMID: 22766837 DOI: 10.1007/s12079-012-0170-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022] Open
Abstract
Connective tissue is required for maintaining the integrity of tissues. Integrins are the cell surface receptors responsible for cell attachment to extracellular matrix; however, their tissue-specific role in this process is poorly understood. Here, we test whether integrin β1 is required for blood vessel maintenance and integrity in adult mice. We show that adult mice containing a fibroblast/smooth muscle cell-specific deletion of integrin β1 exhibit impaired bleeding time and maintenance of vessel architecture, including progressively reduced levels of extracellular matrix (ECM). Vessels also possessed diminished levels of α-smooth muscle actin (α-SMA), and cells derived from vessels showed reduced production of mRNAs encoding ECM and α-SMA as well as reduced α-SMA protein and stress fibers and ECM contraction. Integrin β1 in adult fibroblasts/smooth muscle cells/pericytes is required for vasoconstriction and vascular maintenance.
Collapse
|
33
|
Rezvani HR, Ali N, Serrano-Sanchez M, Dubus P, Varon C, Ged C, Pain C, Cario-André M, Seneschal J, Taïeb A, de Verneuil H, Mazurier F. Loss of epidermal hypoxia-inducible factor-1α accelerates epidermal aging and affects re-epithelialization in human and mouse. J Cell Sci 2011; 124:4172-83. [PMID: 22193962 DOI: 10.1242/jcs.082370] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
In mouse and human skin, HIF-1α is constitutively expressed in the epidermis, mainly in the basal layer. HIF-1α has been shown to have crucial systemic functions: regulation of kidney erythropoietin production in mice with constitutive HIF-1α epidermal deletion, and hypervascularity following epidermal HIF-1α overexpression. However, its local role in keratinocyte physiology has not been clearly defined. To address the function of HIF-1α in the epidermis, we used the mouse model of HIF-1α knockout targeted to keratinocytes (K14-Cre/Hif1a(flox/flox)). These mice had a delayed skin phenotype characterized by skin atrophy and pruritic inflammation, partly mediated by basement membrane disturbances involving laminin-332 (Ln-332) and integrins. We also investigated the relevance of results of studies in mice to human skin using reconstructed epidermis and showed that HIF-1α knockdown in human keratinocytes impairs the formation of a viable reconstructed epidermis. A diminution of keratinocyte growth potential, following HIF-1α silencing, was associated with a decreased expression of Ln-322 and α6 integrin and β1 integrin. Overall, these results indicate a role of HIF-1α in skin homeostasis especially during epidermal aging.
Collapse
Affiliation(s)
- Hamid Reza Rezvani
- INSERM, Biothérapies des maladies génétiques et cancers, U1035, 146 rue Léo Saignat, Bordeaux, F-33000 France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005124. [PMID: 21441589 DOI: 10.1101/cshperspect.a005124] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian skin comprises a multi-layered epithelium, the epidermis, and an underlying connective tissue, the dermis. The epidermal extracellular matrix is a basement membrane, whereas the dermal ECM comprises fibrillar collagens and associated proteins. There is considerable heterogeneity in ECM composition within both epidermis and dermis. The functional significance of this extends beyond cell adhesion to a range of cell autonomous and nonautonomous processes, including control of epidermal stem cell fate. In skin, cell-ECM interactions influence normal homeostasis, aging, wound healing, and disease. Disturbed integrin and ECM signaling contributes to both tumor formation and fibrosis. Strategies for manipulating cell-ECM interactions to repair skin defects and intervene in a variety of skin diseases hold promise for the future.
Collapse
Affiliation(s)
- Fiona M Watt
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom.
| | | |
Collapse
|
35
|
Han W, Chen M, Li M, Wu Z, Zhao Y, Wang Y, Wang L, Yu L, Fu X. Acclimatized induction reveals the multipotency of adult human undifferentiated keratinocytes. Cell Reprogram 2010; 12:283-94. [PMID: 20698770 DOI: 10.1089/cell.2009.0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated that several types of somatic stem cells have the remarkable capacity to differentiate into other types of tissues. However, the promise of keratinocyte stem cells seems slim for generating nonepidermal tissues. Using our recently developed acclimatization induction strategy, we demonstrate the multipotency of adult human undifferentiated keratinocytes (UKs). The UKs were isolated from the basal layer of adult human foreskin and cultured in Epilife medium, which allows for the growth of only keratin-positive keratinocytes, promotes high proliferation of UKs, and prevents their differentiation. Induction of the UKs by either serum or lineage-committed medium only produce differentiated epidermal cells. Hence, serum or lineage-committed medium was added to Epilife to acclimate UKs to differentiate to other cell types. Unexpectedly, serum acclimatization can induce UKs to produce a large number of smooth muscle cells and fewer of adipocytes and neurocytes within 3 weeks. In contrast, except for the terminally differentiated epidermal cells, committed acclimatization can induce UKs to differentiate exclusively into the adipocytic, myogenic, or neurogenic lineages. These data indicate that human UKs represent a novel multipotent adult stem cell, and suggest that they may provide an accessible, therapeutically promising cell source for regenerative medicine.
Collapse
Affiliation(s)
- Weidong Han
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu S, Shi-wen X, Blumbach K, Eastwood M, Denton CP, Eckes B, Krieg T, Abraham DJ, Leask A. Expression of integrin β1 by fibroblasts is required for tissue repair in vivo. J Cell Sci 2010; 123:3674-82. [DOI: 10.1242/jcs.070672] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In tissue repair, fibroblasts migrate into the wound to produce and remodel extracellular matrix (ECM). Integrins are believed to be crucial for tissue repair, but their tissue-specific role in this process is poorly understood. Here, we show that mice containing a fibroblast-specific deletion of integrin β1 exhibit delayed cutaneous wound closure and less granulation tissue formation, including reduced production of new ECM and reduced expression of α-smooth muscle actin (α-SMA). Integrin-β1-deficient fibroblasts showed reduced expression of type I collagen and connective tissue growth factor, and failed to differentiate into myofibroblasts as a result of reduced α-SMA stress fiber formation. Loss of integrin β1 in adult fibroblasts reduced their ability to adhere to, to spread on and to contract ECM. Within stressed collagen matrices, integrin-β1-deficient fibroblasts showed reduced activation of latent TGFβ. Addition of active TGFβ alleviated the phenotype of integrin-β1-deficient mice. Thus integrin β1 is essential for normal wound healing, where it acts, at least in part, through a TGFβ-dependent mechanism in vivo.
Collapse
Affiliation(s)
- Shangxi Liu
- The Canadian Institute of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, London, ON N6A 5C1, Canada
| | - Xu Shi-wen
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, UCL-Medical School (Royal Free Campus), University College London, London NW3 2PF, UK
| | - Katrin Blumbach
- Department of Dermatology, University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | - Mark Eastwood
- Division of Biosciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, UCL-Medical School (Royal Free Campus), University College London, London NW3 2PF, UK
| | - Beate Eckes
- Department of Dermatology, University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | - Thomas Krieg
- Department of Dermatology, University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, UCL-Medical School (Royal Free Campus), University College London, London NW3 2PF, UK
| | - Andrew Leask
- The Canadian Institute of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, London, ON N6A 5C1, Canada
| |
Collapse
|
37
|
Abstract
Skin and its appendages provide a protective barrier against the assaults of the environment. To perform its role, epidermis undergoes an ongoing renewal through a balance of proliferation and differentiation/apoptosis called homeostasis. Keratinocyte stem cells reside in a special microenvironment called niche in basal epidermis, adult hair follicle, and sebaceous glands. While a definite marker has yet to be detected, data raised part in humans and part in the mouse system point to a critical role of stem and its progeny transit amplifying cells in epidermal homeostasis. Stem cells are protected from apoptosis and are long resident in adult epidermis. This renders them more prone to be the origin of skin cancer. In this review, we will outline the main features of adult stem cells in mouse and humans and discuss their fate in relation to differentiation, apoptosis, and cancer.
Collapse
Affiliation(s)
- Carlo Pincelli
- Laboratory of Cutaneous Biology, School of Biosciences and Biotechnologies, University of Modena and Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
38
|
Margadant C, Charafeddine RA, Sonnenberg A. Unique and redundant functions of integrins in the epidermis. FASEB J 2010; 24:4133-52. [DOI: 10.1096/fj.09-151449] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Coert Margadant
- Division of Cell BiologyThe Netherlands Cancer Institute Amsterdam The Netherlands
| | | | - Arnoud Sonnenberg
- Division of Cell BiologyThe Netherlands Cancer Institute Amsterdam The Netherlands
| |
Collapse
|