1
|
Galbiati F, Becetti I, Lauze M, Aulinas A, Singhal V, Bredella MA, Lawson EA, Misra M. Increased copeptin may reflect vasopressin-related metabolic changes after bariatric surgery. Obesity (Silver Spring) 2024. [PMID: 39725569 DOI: 10.1002/oby.24200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Mechanisms underlying metabolic improvement following metabolic and bariatric surgery (MBS) may provide insight into novel therapies. Vasopressin improves body composition and protects against hypoglycemia. Associations of copeptin, a stable cleavage product of vasopressin, with BMI and insulin resistance suggest an adaptive increase in vasopressin to counteract metabolic disruption. To our knowledge, no study has investigated copeptin before and after MBS in humans. This study's aim was to investigate copeptin changes following MBS and associations with metabolic parameters. METHODS This was a 12-month longitudinal study of 64 youth (78% female; mean age 18.7 [SD 2.8] y) with obesity (mean BMI 45.6 [SD 6.8] kg/m2) undergoing MBS (n = 34) or nonsurgical (NS) lifestyle management (n = 30). Fasting copeptin, hemoglobin A1c (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), body composition, and resting energy expenditure (REE) were assessed. RESULTS Over 12 months, copeptin increased more (time-by-treatment p = 0.017) whereas HbA1c and adiposity decreased more after MBS than NS (ps ≤ 0.036). Copeptin changes correlated negatively with percentage fat mass and REE changes (rho ≤ -0.29; ps ≤ 0.025) in the whole group, and they correlated positively with HbA1c and HOMA-IR (rho ≥ 0.41; false discovery rate-adjusted p = 0.05) and negatively with REE changes (rho = -0.55; false discovery rate-adjusted p = 0.036) in the MBS group. CONCLUSIONS Increases in copeptin after weight loss in MBS compared with NS were associated with lower REE and higher HbA1c/HOMA-IR values. Vasopressin may contribute to MBS-related metabolic modifications.
Collapse
Affiliation(s)
- Francesca Galbiati
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Imen Becetti
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan Lauze
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Aulinas
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR-Sant Pau, Barcelona, Spain
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Mattel Childrens' Hospital, UCLA, Los Angeles, California, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, NYU Langone Health and Grossman School of Medicine, New York, New York, USA
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Henrot P, Dupin I, Schilfarth P, Esteves P, Blervaque L, Zysman M, Gouzi F, Hayot M, Pomiès P, Berger P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int J Mol Sci 2023; 24:ijms24076454. [PMID: 37047427 PMCID: PMC10095391 DOI: 10.3390/ijms24076454] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Pierre Schilfarth
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Maéva Zysman
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| |
Collapse
|
3
|
Della Peruta C, Lozanoska-Ochser B, Renzini A, Moresi V, Sanchez Riera C, Bouché M, Coletti D. Sex Differences in Inflammation and Muscle Wasting in Aging and Disease. Int J Mol Sci 2023; 24:ijms24054651. [PMID: 36902081 PMCID: PMC10003083 DOI: 10.3390/ijms24054651] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Only in recent years, thanks to a precision medicine-based approach, have treatments tailored to the sex of each patient emerged in clinical trials. In this regard, both striated muscle tissues present significant differences between the two sexes, which may have important consequences for diagnosis and therapy in aging and chronic illness. In fact, preservation of muscle mass in disease conditions correlates with survival; however, sex should be considered when protocols for the maintenance of muscle mass are designed. One obvious difference is that men have more muscle than women. Moreover, the two sexes differ in inflammation parameters, particularly in response to infection and disease. Therefore, unsurprisingly, men and women respond differently to therapies. In this review, we present an up-to-date overview on what is known about sex differences in skeletal muscle physiology and disfunction, such as disuse atrophy, age-related sarcopenia, and cachexia. In addition, we summarize sex differences in inflammation which may underly the aforementioned conditions because pro-inflammatory cytokines deeply affect muscle homeostasis. The comparison of these three conditions and their sex-related bases is interesting because different forms of muscle atrophy share common mechanisms; for instance, those responsible for protein dismantling are similar although differing in terms of kinetics, severity, and regulatory mechanisms. In pre-clinical research, exploring sexual dimorphism in disease conditions could highlight new efficacious treatments or recommend implementation of an existing one. Any protective factors discovered in one sex could be exploited to achieve lower morbidity, reduce the severity of the disease, or avoid mortality in the opposite sex. Thus, the understanding of sex-dependent responses to different forms of muscle atrophy and inflammation is of pivotal importance to design innovative, tailored, and efficient interventions.
Collapse
Affiliation(s)
- Chiara Della Peruta
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Department of Medicine and Surgery, LUM University, 70010 Bari, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Viviana Moresi
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), c/o Sapienza University of Rome, 00185 Roma, Italy
| | - Carles Sanchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Marina Bouché
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Correspondence:
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Biological Adaptation and Ageing (B2A), Institut de Biologie Paris-Seine, Sorbonne Université, CNRS UMR 8256, Inserm U1164, 75005 Paris, France
| |
Collapse
|
4
|
Svandova E, Lesot H, Sharpe P, Matalova E. Making the head: Caspases in life and death. Front Cell Dev Biol 2023; 10:1075751. [PMID: 36712975 PMCID: PMC9880857 DOI: 10.3389/fcell.2022.1075751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.
Collapse
Affiliation(s)
- Eva Svandova
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
5
|
Shim YA, Weliwitigoda A, Campbell T, Dosanjh M, Johnson P. Splenic erythroid progenitors decrease TNF-α production by macrophages and reduce systemic inflammation in a mouse model of T cell-induced colitis. Eur J Immunol 2020; 51:567-579. [PMID: 33180325 DOI: 10.1002/eji.202048687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/13/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
In inflammatory bowel disease (IBD), inflammation can occur beyond the intestine and spread systemically causing complications such as arthritis, cachexia, and anemia. Here, we determine the impact of CD45, a pan-leukocyte marker and tyrosine phosphatase, on IBD. Using a mouse model of T cell transfer colitis, CD25- CD45RBhigh CD4+ T cells were transferred into Rag1-deficient mice (RAGKO) and CD45-deficient RAGKO mice (CD45RAGKO). Weight loss and systemic wasting syndrome were delayed in CD45RAGKO mice compared to RAGKO mice, despite equivalent inflammation in the colon. CD45RAGKO mice had reduced serum levels of TNF-α, and reduced TNF-α production by splenic myeloid cells. CD45RAGKO mice also had increased numbers of erythroid progenitors in the spleen, which had previously been shown to be immunosuppressive. Adoptive transfer of these erythroid progenitors into RAGKO mice reduced their weight loss and TNF-α expression by splenic red pulp macrophages. In vitro, erythroid cells suppressed TNF-α expression in red pulp macrophages in a phagocytosis-dependent manner. These findings show a novel role for erythroid progenitors in suppressing the pro-inflammatory function of splenic macrophages and cachexia associated with IBD.
Collapse
Affiliation(s)
- Yaein Amy Shim
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada
| | - Asanga Weliwitigoda
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Teresa Campbell
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, British Columbia, Canada
| |
Collapse
|
6
|
Displaced Myonuclei in Cancer Cachexia Suggest Altered Innervation. Int J Mol Sci 2020; 21:ijms21031092. [PMID: 32041358 PMCID: PMC7038037 DOI: 10.3390/ijms21031092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
An idiopathic myopathy characterized by central nuclei in muscle fibers, a hallmark of muscle regeneration, has been observed in cancer patients. In cancer cachexia skeletal muscle is incapable of regeneration, consequently, this observation remains unaccounted for. In C26-tumor bearing, cachectic mice, we observed muscle fibers with central nuclei in the absence of molecular markers of bona fide regeneration. These clustered, non-peripheral nuclei were present in NCAM-expressing muscle fibers. Since NCAM expression is upregulated in denervated myofibers, we searched for additional makers of denervation, including AchRs, MUSK, and HDAC. This last one being also consistently upregulated in cachectic muscles, correlated with an increase of central myonuclei. This held true in the musculature of patients suffering from gastrointestinal cancer, where a progressive increase in the number of central myonuclei was observed in weight stable and in cachectic patients, compared to healthy subjects. Based on all of the above, the presence of central myonuclei in cancer patients and animal models of cachexia is consistent with motor neuron loss or NMJ perturbation and could underlie a previously neglected phenomenon of denervation, rather than representing myofiber damage and regeneration in cachexia. Similarly to aging, denervation-dependent myofiber atrophy could contribute to muscle wasting in cancer cachexia.
Collapse
|
7
|
Sorrentino S, Barbiera A, Proietti G, Sica G, Adamo S, Scicchitano BM. Inhibition of Phosphoinositide 3-Kinase/Protein Kinase B Signaling Hampers the Vasopressin-dependent Stimulation of Myogenic Differentiation. Int J Mol Sci 2019; 20:ijms20174188. [PMID: 31461843 PMCID: PMC6747374 DOI: 10.3390/ijms20174188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/24/2019] [Indexed: 01/09/2023] Open
Abstract
Arginine-vasopressin (AVP) promotes muscle differentiation, hypertrophy, and regeneration through the combined activation of the calcineurin and Calcium/Calmodulin-dependent Protein Kinase (CaMK) pathways. The AVP system is impaired in several neuromuscular diseases, suggesting that AVP may act as a physiological factor in skeletal muscle. Since the Phosphoinositide 3-kinases/Protein Kinase B/mammalian Target Of Rapamycin (PI3K/Akt/mTOR) signaling plays a significant role in regulating muscle mass, we evaluated its role in the AVP myogenic effect. In L6 cells AKT1 expression was knocked down, and the AVP-dependent expression of mTOR and Forkhead box O3 (FoxO) was analyzed by Western blotting. The effect of the PI3K inhibitor LY294002 was evaluated by cellular and molecular techniques. Akt knockdown hampered the AVP-dependent mTOR expression while increased the levels of FoxO transcription factor. LY294002 treatment inhibited the AVP-dependent expression of Myocyte Enhancer Factor-2 (MEF2) and myogenin and prevented the nuclear translocation of MEF2. LY294002 also repressed the AVP-dependent nuclear export of histone deacetylase 4 (HDAC4) interfering with the formation of multifactorial complexes on the myogenin promoter. We demonstrate that the PI3K/Akt pathway is essential for the full myogenic effect of AVP and that, by targeting this pathway, one may highlight novel strategies to counteract muscle wasting in aging or neuromuscular disorders.
Collapse
Affiliation(s)
- Silvia Sorrentino
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Alessandra Barbiera
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Gabriella Proietti
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Gigliola Sica
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Sergio Adamo
- Dipartimento di Scienze Anatomiche, Istologiche, Medico-legali e dell'Apparato Locomotore (SAIMLAL), Sezione di Istologia ed Embriologia Medica, Sapienza Università, via A. Scarpa 16, 00161 Roma, Italy.
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| |
Collapse
|
8
|
Kramerova I, Torres JA, Eskin A, Nelson SF, Spencer MJ. Calpain 3 and CaMKIIβ signaling are required to induce HSP70 necessary for adaptive muscle growth after atrophy. Hum Mol Genet 2019. [PMID: 29528394 PMCID: PMC5905633 DOI: 10.1093/hmg/ddy071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in CAPN3 cause autosomal recessive limb girdle muscular dystrophy 2A. Calpain 3 (CAPN3) is a calcium dependent protease residing in the myofibrillar, cytosolic and triad fractions of skeletal muscle. At the triad, it colocalizes with calcium calmodulin kinase IIβ (CaMKIIβ). CAPN3 knock out mice (C3KO) show reduced triad integrity and blunted CaMKIIβ signaling, which correlates with impaired transcriptional activation of myofibrillar and oxidative metabolism genes in response to running exercise. These data suggest a role for CAPN3 and CaMKIIβ in gene regulation that takes place during adaptation to endurance exercise. To assess whether CAPN3- CaMKIIβ signaling influences skeletal muscle remodeling in other contexts, we subjected C3KO and wild type mice to hindlimb unloading and reloading and assessed CaMKIIβ signaling and gene expression by RNA-sequencing. After induced atrophy followed by 4 days of reloading, both CaMKIIβ activation and expression of inflammatory and cellular stress genes were increased. C3KO muscles failed to activate CaMKIIβ signaling, did not activate the same pattern of gene expression and demonstrated impaired growth at 4 days of reloading. Moreover, C3KO muscles failed to activate inducible HSP70, which was previously shown to be indispensible for the inflammatory response needed to promote muscle recovery. Likewise, C3KO showed diminished immune cell infiltration and decreased expression of pro-myogenic genes. These data support a role for CaMKIIβ signaling in induction of HSP70 and promotion of the inflammatory response during muscle growth and remodeling that occurs after atrophy, suggesting that CaMKIIβ regulates remodeling in multiple contexts: endurance exercise and growth after atrophy.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| | - Jorge A Torres
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| | - Ascia Eskin
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Adamo S, Pigna E, Lugarà R, Moresi V, Coletti D, Bouché M. Skeletal Muscle: A Significant Novel Neurohypophyseal Hormone-Secreting Organ. Front Physiol 2019; 9:1885. [PMID: 30670984 PMCID: PMC6331439 DOI: 10.3389/fphys.2018.01885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sergio Adamo
- Section of Histology & Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Eva Pigna
- Section of Histology & Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Rosamaria Lugarà
- Section of Histology & Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Viviana Moresi
- Section of Histology & Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Section of Histology & Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy.,Sorbonne Université, CNRS UMR 8256-INSERM ERL U1164, Biological Adaptation and Aging B2A, Paris, France
| | - Marina Bouché
- Section of Histology & Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Renzini A, Marroncelli N, Noviello C, Moresi V, Adamo S. HDAC4 Regulates Skeletal Muscle Regeneration via Soluble Factors. Front Physiol 2018; 9:1387. [PMID: 30319457 PMCID: PMC6171007 DOI: 10.3389/fphys.2018.01387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle possesses a high ability to regenerate after an insult or in pathological conditions, relying on satellite cells, the skeletal muscle stem cells. Satellite cell behavior is tightly regulated by the surrounding microenvironment, which provides multiple signals derived from local cells and systemic factors. Among epigenetic mechanisms, histone deacetylation has been proved to affect muscle regeneration. Indeed, pan-histone deacetylase inhibitors were found to improve muscle regeneration, while deletion of histone deacetylase 4 (HDAC4) in satellite cells inhibits their proliferation and differentiation, leading to compromised muscle regeneration. In this study, we delineated the HDAC4 function in adult skeletal muscle, following injury, by using a tissue-specific null mouse line. We showed that HDAC4 is crucial for skeletal muscle regeneration by mediating soluble factors that influence muscle-derived cell proliferation and differentiation. These findings add new biological functions to HDAC4 in skeletal muscle that need considering when administering histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Marroncelli
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Chiara Noviello
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy.,Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Hydrogen Sulfide Alleviates Lipopolysaccharide-Induced Diaphragm Dysfunction in Rats by Reducing Apoptosis and Inflammation through ROS/MAPK and TLR4/NF- κB Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9647809. [PMID: 29977458 PMCID: PMC5994286 DOI: 10.1155/2018/9647809] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/11/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022]
Abstract
Diaphragm dysfunction is an important clinical problem worldwide. Hydrogen sulfide (H2S) is involved in many physiological and pathological processes in mammals. However, the effect and mechanism of H2S in diaphragm dysfunction have not been fully elucidated. In this study, we detected that the level of H2S was decreased in lipopolysaccharide- (LPS-) treated L6 cells. Treatment with H2S increased the proliferation and viability of LPS-treated L6 cells. We found that H2S decreased reactive oxygen species- (ROS-) induced apoptosis through the mitogen-activated protein kinase (MAPK) signaling pathway in LPS-treated L6 cells. Administration of H2S alleviated LPS-induced inflammation by mediating the toll-like receptor-4 (TLR-4)/nuclear factor-kappa B (NF-κB) signaling pathway in L6 cells. Furthermore, H2S improved diaphragmatic function and structure through the reduction of inflammation and apoptosis in the diaphragm of septic rats. In conclusion, these findings indicate that H2S ameliorates LPS-induced diaphragm dysfunction in rats by reducing apoptosis and inflammation through ROS/MAPK and TLR4/NF-κB signaling pathways. Novel slow-releasing H2S donors can be designed and applied for the treatment of diaphragm dysfunction.
Collapse
|
12
|
Coletti D. Chemotherapy-induced muscle wasting: an update. Eur J Transl Myol 2018; 28:7587. [PMID: 29991991 PMCID: PMC6036312 DOI: 10.4081/ejtm.2018.7587] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/08/2023] Open
Abstract
The majority of cancers are associated to cachexia, a severe form of weight loss mostly accounted for by skeletal muscle wasting. Cancer patients are often treated with chemotherapy, whose side effects are at times neglected or underestimated. Paradoxically, chemotherapy itself can induce muscle wasting with severe, cancer-independent effects on muscle homeostasis. Since muscle wasting is a primary marker of poor prognosis for cancer patients and negatively affects their quality of life, the systemic consequences of chemotherapy in this context must be fully characterized and taken into account. Ten years ago a precursor study in an animal cancer model was published in the European Journal of Translation Myology (back then, Basic and Applied Myology), highlighting that the side effects of chemotherapy include muscle wasting, possibly mediated by NF-κB activation. This paper, entitled «Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia», is now being reprinted for the inaugural issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the most recent advances in the study of chemotherapy-induced muscle wasting.
Collapse
Affiliation(s)
- Dario Coletti
- (1) Biology of Adaptation and Aging, Sorbonne Université, Paris, France; (2) Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Italy
| |
Collapse
|
13
|
Vallejo D, Hernández-Torres F, Lozano-Velasco E, Rodriguez-Outeiriño L, Carvajal A, Creus C, Franco D, Aránega AE. PITX2 Enhances the Regenerative Potential of Dystrophic Skeletal Muscle Stem Cells. Stem Cell Reports 2018; 10:1398-1411. [PMID: 29641992 PMCID: PMC5998647 DOI: 10.1016/j.stemcr.2018.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), one of the most lethal genetic disorders, involves progressive muscle degeneration resulting from the absence of DYSTROPHIN. Lack of DYSTROPHIN expression in DMD has critical consequences in muscle satellite stem cells including a reduced capacity to generate myogenic precursors. Here, we demonstrate that the c-isoform of PITX2 transcription factor modifies the myogenic potential of dystrophic-deficient satellite cells. We further show that PITX2c enhances the regenerative capability of mouse DYSTROPHIN-deficient satellite cells by increasing cell proliferation and the number of myogenic committed cells, but importantly also increasing dystrophin-positive (revertant) myofibers by regulating miR-31. These PITX2-mediated effects finally lead to improved muscle function in dystrophic (DMD/mdx) mice. Our studies reveal a critical role for PITX2 in skeletal muscle repair and may help to develop therapeutic strategies for muscular disorders.
Collapse
Affiliation(s)
- Daniel Vallejo
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Francisco Hernández-Torres
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Estefanía Lozano-Velasco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Alejandra Carvajal
- Servicio de Neurología, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - Carlota Creus
- Servicio de Neurología, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Amelia Eva Aránega
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain.
| |
Collapse
|
14
|
Baumann CW, Otis JS. 17-(allylamino)-17-demethoxygeldanamycin drives Hsp70 expression but fails to improve morphological or functional recovery in injured skeletal muscle. Clin Exp Pharmacol Physiol 2016; 42:1308-16. [PMID: 26277605 DOI: 10.1111/1440-1681.12477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 08/08/2015] [Indexed: 12/31/2022]
Abstract
The stress inducible 70 kDa heat shock protein (Hsp70) is instrumental to efficient morphological and functional recovery following skeletal muscle injury because of its roles in protein quality control and molecular signalling. Therefore, in attempt to improve recovery, Hsp70 expression was increased with 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) prior to and following an intramuscular injection of barium chloride (BaCl2) into the tibialis anterior (TA) of healthy young mice. To assess recovery, regenerating fibre cross-sectional area (CSA) of the TA and in vivo peak isometric torque produced by the anterior crural muscles (TA, extensor digitorum longus and extensor hallucis muscles) were analyzed for up to 3 weeks after the injury. Because treatment of 17-AAG and Hsp70 are known to influence inflammatory and myogenic signalling, tumor necrosis factor-α (TNF-α) and myogenin content were also assessed. This study reports that 17-AAG was effective at up-regulating Hsp70 expression, increasing content fivefold in the uninjured muscle. However, this significant increase in Hsp70 content did not enhance morphological or functional recovery following the injury, as the return of regenerating fibre CSA and in vivo peak isometric torque did not differ compared to that of the injured muscle from the vehicle treated mice. Treatment with 17-AAG also altered TNF-α and myogenin content, increasing both to a greater extent after the injury. Together, these findings demonstrate that although 17-AAG may alter molecular makers of regeneration, it does not improve recovery following BaCl2-induced skeletal muscle injury in healthy young mice.
Collapse
Affiliation(s)
- Cory W Baumann
- Muscle Biology Laboratory, Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA
| | - Jeffrey S Otis
- Muscle Biology Laboratory, Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
15
|
Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep 2016; 6:19781. [PMID: 26812922 PMCID: PMC4728392 DOI: 10.1038/srep19781] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/17/2015] [Indexed: 11/26/2022] Open
Abstract
Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activation of the expression levels of PGC1α isoforms. The levels of Hsp60 protein were fibre-type specific in the posterior muscles and endurance training increased its content in type I muscle fibers. Concomitantly with the increased levels of Hsp60 released in the blood stream of trained mice, mitochondrial copy number and the expression of three isoforms of PGC1α increased. Overexpressing hsp60 in cultured myoblasts induced only the expression of PGC1 1α, suggesting a correlation between Hsp60 overexpression and PGC1 1 α activation.
Collapse
|
16
|
Costa A, Rossi E, Scicchitano BM, Coletti D, Moresi V, Adamo S. Neurohypophyseal Hormones: Novel Actors of Striated Muscle Development and Homeostasis. Eur J Transl Myol 2014; 24:3790. [PMID: 26913138 PMCID: PMC4756744 DOI: 10.4081/ejtm.2014.3790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since the 1980’s, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.
Collapse
Affiliation(s)
- Alessandra Costa
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| | - Eleonora Rossi
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University , Rome, Italy
| | - Bianca Maria Scicchitano
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology; (3) Institute of Histology and Embryology, Catholic University School of Medicine, Rome, Italy
| | - Dario Coletti
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| | - Viviana Moresi
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University , Rome, Italy
| | - Sergio Adamo
- (1) Histology and Medical Embryology Section, Dept. AHFMO, Sapienza University, Rome, Italy; (2) I.I.M., Interuniversity Institute of Myology
| |
Collapse
|
17
|
Perniconi B, Coletti D. Skeletal muscle tissue engineering: best bet or black beast? Front Physiol 2014; 5:255. [PMID: 25071600 PMCID: PMC4082300 DOI: 10.3389/fphys.2014.00255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Barbara Perniconi
- Biology of Adaptation and Aging (B2A), Université Pierre et Marie Curie Paris 6Paris, France
- Department of Anatomical, Histological, Forensic Sciences and Hortopedics, Sapienza University of RomeRome, Italy
- Interuniversity Institute of MyologyRome, Italy
| | - Dario Coletti
- Biology of Adaptation and Aging (B2A), Université Pierre et Marie Curie Paris 6Paris, France
- Department of Anatomical, Histological, Forensic Sciences and Hortopedics, Sapienza University of RomeRome, Italy
- Interuniversity Institute of MyologyRome, Italy
| |
Collapse
|
18
|
Ajuwon KM. Chronic immune stimulation in adipose tissue and its consequences for health and performance in the pig. Vet Immunol Immunopathol 2014; 159:166-70. [DOI: 10.1016/j.vetimm.2014.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Costa A, Toschi A, Murfuni I, Pelosi L, Sica G, Adamo S, Scicchitano BM. Local overexpression of V1a-vasopressin receptor enhances regeneration in tumor necrosis factor-induced muscle atrophy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:235426. [PMID: 24971321 PMCID: PMC4055243 DOI: 10.1155/2014/235426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/25/2023]
Abstract
Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF) is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-)dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca(2+)/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies.
Collapse
Affiliation(s)
- Alessandra Costa
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Angelica Toschi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Ivana Murfuni
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Laura Pelosi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Gigliola Sica
- Institute of Histology and Embryology, Catholic University School of Medicine, L.go F. Vito, 1, 00168 Rome, Italy
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Bianca Maria Scicchitano
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
- Institute of Histology and Embryology, Catholic University School of Medicine, L.go F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
20
|
Connolly PF, Jäger R, Fearnhead HO. New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 2014; 5:149. [PMID: 24795644 PMCID: PMC3997007 DOI: 10.3389/fphys.2014.00149] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly clear that caspases, far from being merely cell death effectors, have a much wider range of functions within the cell. These functions are as diverse as signal transduction and cytoskeletal remodeling, and caspases are now known to have an essential role in cell proliferation, migration, and differentiation. There is also evidence that apoptotic cells themselves can direct the behavior of nearby cells through the caspase-dependent secretion of paracrine signaling factors. In some processes, including the differentiation of skeletal muscle myoblasts, both caspase activation in differentiating cells as well as signaling from apoptotic cells has been reported. Here, we review the non-apoptotic outcomes of caspase activity in a range of different model systems and attempt to integrate this knowledge.
Collapse
Affiliation(s)
- Patrick F Connolly
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| | - Richard Jäger
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences Rheinbach, Germany
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| |
Collapse
|
21
|
Senf SM. Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol 2013; 4:330. [PMID: 24273516 PMCID: PMC3822288 DOI: 10.3389/fphys.2013.00330] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
The stress-inducible 70-kDa heat shock protein (HSP70) is a highly conserved protein with diverse intracellular and extracellular functions. In skeletal muscle, HSP70 is rapidly induced in response to both non-damaging and damaging stress stimuli including exercise and acute muscle injuries. This upregulation of HSP70 contributes to the maintenance of muscle fiber integrity and facilitates muscle regeneration and recovery. Conversely, HSP70 expression is decreased during muscle inactivity and aging, and evidence supports the loss of HSP70 as a key mechanism which may drive muscle atrophy, contractile dysfunction and reduced regenerative capacity associated with these conditions. To date, the therapeutic benefit of HSP70 upregulation in skeletal muscle has been established in rodent models of muscle injury, muscle atrophy, modified muscle use, aging, and muscular dystrophy, which highlights HSP70 as a key therapeutic target for the treatment of various conditions which negatively affect skeletal muscle mass and function. This article will review these important findings and provide perspective on the unanswered questions related to HSP70 and skeletal muscle plasticity which require further investigation.
Collapse
Affiliation(s)
- Sarah M Senf
- Department of Physical Therapy, University of Florida Gainesville, FL, USA
| |
Collapse
|
22
|
Winter DL, Paulin D, Mericskay M, Li Z. Posttranslational modifications of desmin and their implication in biological processes and pathologies. Histochem Cell Biol 2013; 141:1-16. [DOI: 10.1007/s00418-013-1148-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
|
23
|
Coletti D, Teodori L, Lin Z, Beranudin JF, Adamo S. Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration compared. Regen Med Res 2013; 1:4. [PMID: 25984323 PMCID: PMC4375925 DOI: 10.1186/2050-490x-1-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/20/2013] [Indexed: 01/24/2023] Open
Abstract
In tissues characterized by a high turnover or following acute injury, regeneration replaces damaged cells and is involved in adaptation to external cues, leading to homeostasis of many tissues during adult life. An understanding of the mechanics underlying tissue regeneration is highly relevant to regenerative medicine-based interventions. In order to investigate the existence a leitmotif of tissue regeneration, we compared the cellular aspects of regeneration of skin, nerve and skeletal muscle, three organs characterized by different types of anatomical and functional organization. Epidermis is a stratified squamous epithelium that migrates from the edge of the wound on the underlying dermis to rebuild lost tissue. Peripheral neurons are elongated cells whose neurites are organized in bundles, within an endoneurium of connective tissue; they either die upon injury or undergo remodeling and axon regrowth. Skeletal muscle is characterized by elongated syncytial cells, i.e. muscle fibers, that can temporarily survive in broken pieces; satellite cells residing along the fibers form new fibers, which ultimately fuse with the old ones as well as with each other to restore the previous organization. Satellite cell asymmetrical division grants a reservoir of undifferentiated cells, while other stem cell populations of muscle and non-muscle origin participate in muscle renewal. Following damage, all the tissues analyzed here go through three phases: inflammation, regeneration and maturation. Another common feature is the occurrence of cellular de-differentiation and/or differentiation events, including gene transcription, which are typical of embryonic development. Nonetheless, various strategies are used by different tissues to replace their lost parts. The epidermis regenerates ex novo, whereas neurons restore their missing parts; muscle fibers use a mixed strategy, based on the regrowth of missing parts through reconstruction by means of newborn fibers. The choice of either strategy is influenced by the anatomical, physical and chemical features of the cells as well as by the extracellular matrix typical of a given tissue, which points to the existence of differential, evolutionary-based mechanisms for specific tissue regeneration. The shared, ordered sequence of steps that characterize the regeneration processes examined suggests it may be possible to model this extremely important phenomenon to reproduce multicellular organisms.
Collapse
Affiliation(s)
- Dario Coletti
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France ; Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| | - Laura Teodori
- ENEA-Frascati, UTAPRAD-DIM, Diagnostics and Metrology Laboratory, 00044 Rome, Italy
| | - Zhenlin Lin
- UPMC Univ Paris 06, UR4 Ageing, Stress, Inflammation, 75005 Paris, France
| | | | - Sergio Adamo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, 00161 Rome, Italy ; Interuniversity Institute of Myology, Kragujevac, Italy
| |
Collapse
|
24
|
Senf SM, Howard TM, Ahn B, Ferreira LF, Judge AR. Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration. PLoS One 2013; 8:e62687. [PMID: 23626847 PMCID: PMC3633856 DOI: 10.1371/journal.pone.0062687] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle regeneration following injury is a highly coordinated process that involves transient muscle inflammation, removal of necrotic cellular debris and subsequent replacement of damaged myofibers through secondary myogenesis. However, the molecular mechanisms which coordinate these events are only beginning to be defined. In the current study we demonstrate that Heat shock protein 70 (Hsp70) is increased following muscle injury, and is necessary for the normal sequence of events following severe injury induced by cardiotoxin, and physiological injury induced by modified muscle use. Indeed, Hsp70 ablated mice showed a significantly delayed inflammatory response to muscle injury induced by cardiotoxin, with nearly undetected levels of both neutrophil and macrophage markers 24 hours post-injury. At later time points, Hsp70 ablated mice showed sustained muscle inflammation and necrosis, calcium deposition and impaired fiber regeneration that persisted several weeks post-injury. Through rescue experiments reintroducing Hsp70 intracellular expression plasmids into muscles of Hsp70 ablated mice either prior to injury or post-injury, we confirm that Hsp70 optimally promotes muscle regeneration when expressed during both the inflammatory phase that predominates in the first four days following severe injury and the regenerative phase that predominates thereafter. Additional rescue experiments reintroducing Hsp70 protein into the extracellular microenvironment of injured muscles at the onset of injury provides further evidence that Hsp70 released from damaged muscle may drive the early inflammatory response to injury. Importantly, following induction of physiological injury through muscle reloading following a period of muscle disuse, reduced inflammation in 3-day reloaded muscles of Hsp70 ablated mice was associated with preservation of myofibers, and increased muscle force production at later time points compared to WT. Collectively our findings indicate that depending on the nature and severity of muscle injury, therapeutics which differentially target both intracellular and extracellular localized Hsp70 may optimally preserve muscle tissue and promote muscle functional recovery.
Collapse
Affiliation(s)
- Sarah M Senf
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | |
Collapse
|
25
|
Radford EJ, Isganaitis E, Jimenez-Chillaron J, Schroeder J, Molla M, Andrews S, Didier N, Charalambous M, McEwen K, Marazzi G, Sassoon D, Patti ME, Ferguson-Smith AC. An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Genet 2012; 8:e1002605. [PMID: 22511876 PMCID: PMC3325178 DOI: 10.1371/journal.pgen.1002605] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/03/2012] [Indexed: 11/18/2022] Open
Abstract
Environmental factors during early life are critical for the later metabolic health of the individual and of future progeny. In our obesogenic environment, it is of great socioeconomic importance to investigate the mechanisms that contribute to the risk of metabolic ill health. Imprinted genes, a class of functionally mono-allelic genes critical for early growth and metabolic axis development, have been proposed to be uniquely susceptible to environmental change. Furthermore, it has also been suggested that perturbation of the epigenetic reprogramming of imprinting control regions (ICRs) may play a role in phenotypic heritability following early life insults. Alternatively, the presence of multiple layers of epigenetic regulation may in fact protect imprinted genes from such perturbation. Unbiased investigation of these alternative hypotheses requires assessment of imprinted gene expression in the context of the response of the whole transcriptome to environmental assault. We therefore analyse the role of imprinted genes in multiple tissues in two affected generations of an established murine model of the developmental origins of health and disease using microarrays and quantitative RT–PCR. We demonstrate that, despite the functional mono-allelicism of imprinted genes and their unique mechanisms of epigenetic dosage control, imprinted genes as a class are neither more susceptible nor protected from expression perturbation induced by maternal undernutrition in either the F1 or the F2 generation compared to other genes. Nor do we find any evidence that the epigenetic reprogramming of ICRs in the germline is susceptible to nutritional restriction. However, we propose that those imprinted genes that are affected may play important roles in the foetal response to undernutrition and potentially its long-term sequelae. We suggest that recently described instances of dosage regulation by relaxation of imprinting are rare and likely to be highly regulated. Environmental perturbations during early life are known to affect one's risk of metabolic disease many years later. Furthermore, that risk can be inherited by future generations, although the mechanisms responsible are poorly understood. Imprinted genes are unusual as only one of the two copies is expressed in a parent-of-origin–specific manner. As only one copy is active, imprinted gene dosage has been hypothesised to be uniquely vulnerable to environmental change. Therefore, it has been suggested that imprinted genes may play an important role in the developmental origins of health and disease. Alternatively, the opposite may be true—imprinted genes may be more tightly safeguarded from perturbation. To test these two hypotheses, we analysed the expression of imprinted genes in the context of all active genes in two affected generations of a mouse model of the developmental origins of health and disease. Our data show that imprinted genes as a class are neither more nor less susceptible to expression change, but a subset of imprinted genes may be involved in the adaptation of the conceptus. Furthermore, imprints in the developing germline are not affected and imprinted genes are largely stable in the second generation. This is important, as it is the first time that this hypothesis has been tested in an unbiased fashion.
Collapse
Affiliation(s)
- Elizabeth J. Radford
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Josep Jimenez-Chillaron
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua Schroeder
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Molla
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Nathalie Didier
- Myology Group-UMR S 787, INSERM and Université Paris VI/Pierre et Marie Curie, Paris, France
| | - Marika Charalambous
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsten McEwen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Giovanna Marazzi
- Myology Group-UMR S 787, INSERM and Université Paris VI/Pierre et Marie Curie, Paris, France
| | - David Sassoon
- Myology Group-UMR S 787, INSERM and Université Paris VI/Pierre et Marie Curie, Paris, France
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (ACF-S); (M-EP)
| | - Anne C. Ferguson-Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (ACF-S); (M-EP)
| |
Collapse
|
26
|
Perniconi B, Costa A, Aulino P, Teodori L, Adamo S, Coletti D. The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 2011; 32:7870-82. [PMID: 21802724 DOI: 10.1016/j.biomaterials.2011.07.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 11/26/2022]
Abstract
In the pursuit of a transplantable construct for the replacement of large skeletal muscle defects arising from traumatic or pathological conditions, several attempts have been made to obtain a highly oriented, vascularized and functional skeletal muscle. Acellular scaffolds derived from organ decellularization are promising, widely used biomaterials for tissue engineering. However, the acellular skeletal muscle extra cellular matrix (ECM) has been poorly characterized in terms of production, storage and host-donor interactions. We have produced acellular scaffolds at the whole organ scale from various skeletal muscles explanted from mice. The acellular scaffolds conserve chemical and architectural features of the tissue of origin, including the vascular bed. Scaffolds can be sterilely stored for weeks at +4°C or +37°C in tissue culture grade conditions. When transplanted in wt mice, the grafts are stable for several weeks, whilst being colonized by inflammatory and stem cells. We demonstrate that the acellular scaffold per se represents a pro-myogenic environment supporting de novo formation of muscle fibers, likely derived from host cells with myogenic potential. Myogenesis within the implant is enhanced by immunosuppressive treatment. Our work highlights the fundamental role of this niche in tissue engineering application and unveils the clinical potential of allografts based on decellularized tissue for regenerative medicine.
Collapse
Affiliation(s)
- Barbara Perniconi
- Sapienza University of Rome, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Histology & Medical Embryology Section, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Jaafar R, Zeiller C, Pirola L, Di Grazia A, Naro F, Vidal H, Lefai E, Némoz G. Phospholipase D regulates myogenic differentiation through the activation of both mTORC1 and mTORC2 complexes. J Biol Chem 2011; 286:22609-21. [PMID: 21525000 DOI: 10.1074/jbc.m110.203885] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How phospholipase D (PLD) is involved in myogenesis remains unclear. At the onset of myogenic differentiation of L6 cells induced by the PLD agonist vasopressin in the absence of serum, mTORC1 complex was rapidly activated, as reflected by phosphorylation of S6 kinase1 (S6K1). Both the long (p85) and short (p70) S6K1 isoforms were phosphorylated in a PLD1-dependent way. Short rapamycin treatment specifically inhibiting mTORC1 suppressed p70 but not p85 phosphorylation, suggesting that p85 might be directly activated by phosphatidic acid. Vasopressin stimulation also induced phosphorylation of Akt on Ser-473 through PLD1-dependent activation of mTORC2 complex. In this model of myogenesis, mTORC2 had a positive role mostly unrelated to Akt activation, whereas mTORC1 had a negative role, associated with S6K1-induced Rictor phosphorylation. The PLD requirement for differentiation can thus be attributed to its ability to trigger via mTORC2 activation the phosphorylation of an effector that could be PKCα. Moreover, PLD is involved in a counter-regulation loop expected to limit the response. This study thus brings new insights in the intricate way PLD and mTOR cooperate to control myogenesis.
Collapse
|
28
|
Gehrig SM, Lynch GS. Emerging drugs for treating skeletal muscle injury and promoting muscle repair. Expert Opin Emerg Drugs 2011; 16:163-82. [DOI: 10.1517/14728214.2010.524743] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Aulino P, Berardi E, Cardillo VM, Rizzuto E, Perniconi B, Ramina C, Padula F, Spugnini EP, Baldi A, Faiola F, Adamo S, Coletti D. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC Cancer 2010; 10:363. [PMID: 20615237 PMCID: PMC2912868 DOI: 10.1186/1471-2407-10-363] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 07/08/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an experimental model of cancer cachexia. As part of the search for novel clinical and basic research applications for this experimental model, we characterized novel cellular and molecular features of C26-bearing mice. METHODS A fragment of C26 tumor was subcutaneously grafted in isogenic BALB/c mice. The mass growth and proliferation rate of the tumor were analyzed. Histological and cytofluorometric analyses were used to assess cell death, ploidy and differentiation of the tumor cells. The main features of skeletal muscle atrophy, which were highlighted by immunohistochemical and electron microscopy analyses, correlated with biochemical alterations. Muscle force and resistance to fatigue were measured and analyzed as major functional deficits of the cachectic musculature. RESULTS We found that the C26 tumor, ectopically implanted in mice, is an undifferentiated carcinoma, which should be referred to as such and not as adenocarcinoma, a common misconception. The C26 tumor displays aneuploidy and histological features typical of transformed cells, incorporates BrdU and induces severe weight loss in the host, which is largely caused by muscle wasting. The latter appears to be due to proteasome-mediated protein degradation, which disrupts the sarcomeric structure and muscle fiber-extracellular matrix interactions. A pivotal functional deficit of cachectic muscle consists in increased fatigability, while the reported loss of tetanic force is not statistically significant following normalization for decreased muscle fiber size. CONCLUSIONS We conclude, on the basis of the definition of cachexia, that ectopically-implanted C26 carcinoma represents a well standardized experimental model for research on cancer cachexia. We wish to point out that scientists using the C26 model to study cancer and those using the same model to study cachexia may be unaware of each other's works because they use different keywords; we present strategies to eliminate this gap and discuss the benefits of such an exchange of knowledge.
Collapse
Affiliation(s)
- Paola Aulino
- Department of Histology and Medical Embryology, Sapienza University of Rome, Via Scarpa 16, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The present investigation is devoted to uncovering the different signaling pathways - particularly transcriptional factors - involved in muscle wasting. RECENT FINDINGS Although the search for the cachectic factor(s) started a long time ago, and although many scientific and economic efforts have been devoted to its discovery, we are still a long way from knowing the whole truth. In this review we describe recent findings about the tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, TWEAK and myostatin actions in cancer cachexia models. SUMMARY The main aim of the present review is to summarize and evaluate the different molecular mechanisms and catabolic mediators (mainly cytokines) involved in cancer cachexia since they may represent targets for future promising clinical investigations.
Collapse
|
31
|
Itagaki K, Menconi M, Antoniu B, Zhang Q, Gonnella P, Soybel D, Hauser C, Hasselgren PO. Dexamethasone stimulates store-operated calcium entry and protein degradation in cultured L6 myotubes through a phospholipase A(2)-dependent mechanism. Am J Physiol Cell Physiol 2010; 298:C1127-39. [PMID: 20107037 DOI: 10.1152/ajpcell.00309.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Muscle wasting in various catabolic conditions is at least in part regulated by glucocorticoids. Increased calcium levels have been reported in atrophying muscle. Mechanisms regulating calcium homeostasis in muscle wasting, in particular the role of glucocorticoids, are poorly understood. Here we tested the hypothesis that glucocorticoids increase intracellular calcium concentrations in skeletal muscle and stimulate store-operated calcium entry (SOCE) and that these effects of glucocorticoids may at least in part be responsible for glucocorticoid-induced protein degradation. Treatment of cultured myotubes with dexamethasone, a frequently used in vitro model of muscle wasting, resulted in increased intracellular calcium concentrations determined by fura-2 AM fluorescence measurements. When SOCE was measured by using calcium "add-back" to muscle cells after depletion of intracellular calcium stores, results showed that SOCE was increased 15-25% by dexamethasone and that this response to dexamethasone was inhibited by the store-operated calcium channel blocker BTP2. Dexamethasone treatment stimulated the activity of calcium-independent phospholipase A(2) (iPLA(2)), and dexamethasone-induced increase in SOCE was reduced by the iPLA(2) inhibitor bromoenol lactone (BEL). In additional experiments, treatment of myotubes with the store-operated calcium channel inhibitor gadolinium ion or BEL reduced dexamethasone-induced increase in protein degradation. Taken together, the results suggest that glucocorticoids increase calcium concentrations in myocytes and stimulate iPLA(2)-dependent SOCE and that glucocorticoid-induced muscle protein degradation may at least in part be regulated by increased iPLA(2) activity, SOCE, and cellular calcium levels.
Collapse
Affiliation(s)
- Kiyoshi Itagaki
- Dept. of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
McGivney BA, Eivers SS, MacHugh DE, MacLeod JN, O'Gorman GM, Park SDE, Katz LM, Hill EW. Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. BMC Genomics 2009; 10:638. [PMID: 20042072 PMCID: PMC2812474 DOI: 10.1186/1471-2164-10-638] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 12/30/2009] [Indexed: 12/23/2022] Open
Abstract
Background Selection for exercise-adapted phenotypes in the Thoroughbred racehorse has provided a valuable model system to understand molecular responses to exercise in skeletal muscle. Exercise stimulates immediate early molecular responses as well as delayed responses during recovery, resulting in a return to homeostasis and enabling long term adaptation. Global mRNA expression during the immediate-response period has not previously been reported in skeletal muscle following exercise in any species. Also, global gene expression changes in equine skeletal muscle following exercise have not been reported. Therefore, to identify novel genes and key regulatory pathways responsible for exercise adaptation we have used equine-specific cDNA microarrays to examine global mRNA expression in skeletal muscle from a cohort of Thoroughbred horses (n = 8) at three time points (before exercise, immediately post-exercise, and four hours post-exercise) following a single bout of treadmill exercise. Results Skeletal muscle biopsies were taken from the gluteus medius before (T0), immediately after (T1) and four hours after (T2) exercise. Statistically significant differences in mRNA abundance between time points (T0 vs T1 and T0 vs T2) were determined using the empirical Bayes moderated t-test in the Bioconductor package Linear Models for Microarray Data (LIMMA) and the expression of a select panel of genes was validated using real time quantitative reverse transcription PCR (qRT-PCR). While only two genes had increased expression at T1 (P < 0.05), by T2 932 genes had increased (P < 0.05) and 562 genes had decreased expression (P < 0.05). Functional analysis of genes differentially expressed during the recovery phase (T2) revealed an over-representation of genes localized to the actin cytoskeleton and with functions in the MAPK signalling, focal adhesion, insulin signalling, mTOR signaling, p53 signaling and Type II diabetes mellitus pathways. At T1, using a less stringent statistical approach, we observed an over-representation of genes involved in the stress response, metabolism and intracellular signaling. These findings suggest that protein synthesis, mechanosensation and muscle remodeling contribute to skeletal muscle adaptation towards improved integrity and hypertrophy. Conclusions This is the first study to characterize global mRNA expression profiles in equine skeletal muscle using an equine-specific microarray platform. Here we reveal novel genes and mechanisms that are temporally expressed following exercise providing new knowledge about the early and late molecular responses to exercise in the equine skeletal muscle transcriptome.
Collapse
Affiliation(s)
- Beatrice A McGivney
- Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, UCD College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Current World Literature. Curr Opin Support Palliat Care 2009; 3:305-12. [DOI: 10.1097/spc.0b013e3283339c93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|