1
|
Baum ML, Wilton DK, Fox RG, Carey A, Hsu YHH, Hu R, Jäntti HJ, Fahey JB, Muthukumar AK, Salla N, Crotty W, Scott-Hewitt N, Bien E, Sabatini DA, Lanser TB, Frouin A, Gergits F, Håvik B, Gialeli C, Nacu E, Lage K, Blom AM, Eggan K, McCarroll SA, Johnson MB, Stevens B. CSMD1 regulates brain complement activity and circuit development. Brain Behav Immun 2024; 119:317-332. [PMID: 38552925 DOI: 10.1016/j.bbi.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.
Collapse
Affiliation(s)
- Matthew L Baum
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; MD-PhD Program of Harvard & MIT, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel K Wilton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel G Fox
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alanna Carey
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Han H Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruilong Hu
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Henna J Jäntti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jaclyn B Fahey
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allie K Muthukumar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nikkita Salla
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William Crotty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nicole Scott-Hewitt
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth Bien
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sabatini
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arnaud Frouin
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick Gergits
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chrysostomi Gialeli
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden; Cardiovascular Research - Translational Studies Research Group, Department of Clinical Sciences, Lund University, S-214 28 Malmö, Sweden
| | - Eugene Nacu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew B Johnson
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
2
|
Muzyka VV, Brooks M, Badea TC. Postnatal developmental dynamics of cell type specification genes in Brn3a/Pou4f1 Retinal Ganglion Cells. Neural Dev 2018; 13:15. [PMID: 29958540 PMCID: PMC6025728 DOI: 10.1186/s13064-018-0110-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND About 20-30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain. The developmental mechanisms by which RGCs are specified are still largely unknown. Brn3a is a member of the Brn3/Pou4f transcription factor family, which contains key regulators of RGC postmitotic specification. In particular, Brn3a ablation results in the loss of RGCs with small, thick and dense dendritic arbors ('midget-like' RGCs), and morphological changes in other RGC subpopulations. To identify downstream molecular mechanisms underlying Brn3a effects on RGC numbers and morphology, our group recently performed a RNA deep sequencing screen for Brn3a transcriptional targets in mouse RGCs and identified 180 candidate transcripts. METHODS We now focus on a subset of 28 candidate genes encoding potential cell type determinant proteins. We validate and further define their retinal expression profile at five postnatal developmental time points between birth and adult stage, using in situ hybridization (ISH), RT-PCR and fluorescent immunodetection (IIF). RESULTS We find that a majority of candidate genes are enriched in the ganglion cell layer during early stages of postnatal development, but dynamically change their expression profile. We also document transcript-specific expression differences for two example candidates, using RT-PCR and ISH. Brn3a dependency could be confirmed by ISH and IIF only for a fraction of our candidates. CONCLUSIONS Amongst our candidate Brn3a target genes, a majority demonstrated ganglion cell layer specificity, however only around two thirds showed Brn3a dependency. Some were previously implicated in RGC type specification, while others have known physiological functions in RGCs. Only three genes were found to be consistently regulated by Brn3a throughout postnatal retina development - Mapk10, Tusc5 and Cdh4.
Collapse
Affiliation(s)
| | - Matthew Brooks
- Genomics Core, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Building 6, Room 331B Center Drive, Bethesda, MD, 20892-0610, USA
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Building 6, Room 331B Center Drive, Bethesda, MD, 20892-0610, USA.
| |
Collapse
|
3
|
Functions of the Alzheimer's Disease Protease BACE1 at the Synapse in the Central Nervous System. J Mol Neurosci 2016; 60:305-315. [PMID: 27456313 PMCID: PMC5059407 DOI: 10.1007/s12031-016-0800-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Inhibition of the protease β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a promising treatment strategy for Alzheimer's disease, and a number of BACE inhibitors are currently progressing through clinical trials. The strategy aims to decrease production of amyloid-β (Aβ) peptide from the amyloid precursor protein (APP), thus reducing or preventing Aβ toxicity. Over the last decade, it has become clear that BACE1 proteolytically cleaves a number of substrates in addition to APP. These substrates are not known to be involved in the pathogenesis of Alzheimer's disease but have other roles in the developing and/or mature central nervous system. Consequently, BACE inhibition and knockout in mice results in synaptic and other neuronal dysfunctions and the key substrates responsible for these deficits are still being elucidated. Of the BACE1 substrates that have been validated to date, a number may contribute to the synaptic deficits seen with BACE blockade, including neuregulin 1, close homologue of L1 and seizure-related gene 6. It is important to understand the impact that BACE blockade may have on these substrates and other proteins detected in substrate screens and, if necessary, develop substrate-selective BACE inhibitors.
Collapse
|
4
|
Chapman NH, Nato AQ, Bernier R, Ankenman K, Sohi H, Munson J, Patowary A, Archer M, Blue EM, Webb SJ, Coon H, Raskind WH, Brkanac Z, Wijsman EM. Whole exome sequencing in extended families with autism spectrum disorder implicates four candidate genes. Hum Genet 2015; 134:1055-68. [PMID: 26204995 PMCID: PMC4578871 DOI: 10.1007/s00439-015-1585-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/11/2015] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders, characterized by impairment in communication and social interactions, and by repetitive behaviors. ASDs are highly heritable, and estimates of the number of risk loci range from hundreds to >1000. We considered 7 extended families (size 12-47 individuals), each with ≥3 individuals affected by ASD. All individuals were genotyped with dense SNP panels. A small subset of each family was typed with whole exome sequence (WES). We used a 3-step approach for variant identification. First, we used family-specific parametric linkage analysis of the SNP data to identify regions of interest. Second, we filtered variants in these regions based on frequency and function, obtaining exactly 200 candidates. Third, we compared two approaches to narrowing this list further. We used information from the SNP data to impute exome variant dosages into those without WES. We regressed affected status on variant allele dosage, using pedigree-based kinship matrices to account for relationships. The p value for the test of the null hypothesis that variant allele dosage is unrelated to phenotype was used to indicate strength of evidence supporting the variant. A cutoff of p = 0.05 gave 28 variants. As an alternative third filter, we required Mendelian inheritance in those with WES, resulting in 70 variants. The imputation- and association-based approach was effective. We identified four strong candidate genes for ASD (SEZ6L, HISPPD1, FEZF1, SAMD11), all of which have been previously implicated in other studies, or have a strong biological argument for their relevance.
Collapse
Affiliation(s)
- Nicola H Chapman
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Alejandro Q Nato
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Katy Ankenman
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Harkirat Sohi
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeff Munson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Center on Child Development and Disability, University of Washington, Seattle, WA, USA
| | - Ashok Patowary
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Marilyn Archer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth M Blue
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Center on Child Development and Disability, University of Washington, Seattle, WA, USA
| | - Hilary Coon
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wendy H Raskind
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Ellen M Wijsman
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- University of Washington, University of Washington Tower, T15, 4333 Brooklyn Ave, NE, BOX 359460, Seattle, WA, 98195-9460, USA.
| |
Collapse
|
5
|
Borromeo MD, Meredith DM, Castro DS, Chang JC, Tung KC, Guillemot F, Johnson JE. A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development 2014; 141:2803-12. [PMID: 24924197 DOI: 10.1242/dev.105866] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The proper balance of excitatory and inhibitory neurons is crucial for normal processing of somatosensory information in the dorsal spinal cord. Two neural basic helix-loop-helix transcription factors (TFs), Ascl1 and Ptf1a, have contrasting functions in specifying these neurons. To understand how Ascl1 and Ptf1a function in this process, we identified their direct transcriptional targets genome-wide in the embryonic mouse neural tube using ChIP-Seq and RNA-Seq. We show that Ascl1 and Ptf1a directly regulate distinct homeodomain TFs that specify excitatory or inhibitory neuronal fates. In addition, Ascl1 directly regulates genes with roles in several steps of the neurogenic program, including Notch signaling, neuronal differentiation, axon guidance and synapse formation. By contrast, Ptf1a directly regulates genes encoding components of the neurotransmitter machinery in inhibitory neurons, and other later aspects of neural development distinct from those regulated by Ascl1. Moreover, Ptf1a represses the excitatory neuronal fate by directly repressing several targets of Ascl1. Ascl1 and Ptf1a bind sequences primarily enriched for a specific E-Box motif (CAGCTG) and for secondary motifs used by Sox, Rfx, Pou and homeodomain factors. Ptf1a also binds sequences uniquely enriched in the CAGATG E-box and in the binding motif for its co-factor Rbpj, providing two factors that influence the specificity of Ptf1a binding. The direct transcriptional targets identified for Ascl1 and Ptf1a provide a molecular understanding of how these DNA-binding proteins function in neuronal development, particularly as key regulators of homeodomain TFs required for neuronal subtype specification.
Collapse
Affiliation(s)
- Mark D Borromeo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David M Meredith
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diogo S Castro
- Instituto Gulbenkian de Ciência, Molecular Neurobiology Laboratory, Oeiras, Portugal
| | - Joshua C Chang
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kuang-Chi Tung
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francois Guillemot
- Division of Molecular Neurobiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Tyrosine phosphorylation is essential for DSCAML1 to promote dendrite arborization of mouse cortical neurons. Neurosci Lett 2013; 555:193-7. [PMID: 24084194 DOI: 10.1016/j.neulet.2013.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 11/21/2022]
Abstract
Dendritic self-avoidance is critical for appropriate dendrite arborization. We herein examined the role of Down syndrome cell adhesion molecule like-1 (DSCAML1) in regulating dendritic self-avoidance and that of tyrosine phosphorylation in mediating the effects of DSCAML1. Knocking down DSCAML1 in newborn mouse cortical neurons compromised dendritic self-avoidance as evidenced by dendritic fasciculation and increased dendritic self-crossing. Introduction of a DSCAML1(Y1808F) mutant into the DSCAML1-knocked down neurons failed to reverse the abnormal dendritic arborization. These results suggest that DSCAML1 promotes dendritic self-avoidance in cortical neurons, and that phosphorylation at Y1808 is essential in mediating the effects of DSCAML1.
Collapse
|
7
|
Jiang J, Chen X, Liu W, Zhao Y, Guan Y, Han Y, Wang F, Lu J, Yu Z, Du Z, Zhang X. Correlation between human seizure-related gene 6 variants and idiopathic generalized epilepsy in a Southern Chinese Han population. Neural Regen Res 2012; 7:96-100. [PMID: 25767482 PMCID: PMC4354136 DOI: 10.3969/j.issn.1673-5374.2012.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
This study sought to analyze the genotype and gene mutations of human seizure-related gene 6 in 98 patients with idiopathic generalized epilepsy (non-febrile seizures), who were selected from three generations of the Chinese Han population living in Shanghai, Zhejiang Province, Wuxi of Jiangsu Province, and Jiangxi Province of Southern China. Twenty-six patients’ parents were available as a first-degree relatives group and 100 biologically unrelated healthy controls were collected as the control group. Based on the age of onset and seizure type, the patients were divided into six subgroups. Polymerase chain reaction and DNA direct sequencing analysis showed that the most frequent mutations c.1249dupC (p.Gly418Argfx31) and c.1636A > G (p.Thr546Ala) were detected in some idiopathic generalized epilepsy patients and their asymptomatic first-degree relatives (30.6% vs. 19.2% and 11.2% vs. 26.9%). A novel mutation c.1807G > A (p.Val603Met) was found in a patient with late-onset idiopathic generalized epilepsy. There was no significant difference in the incidence of these three mutations among the different subgroups of idiopathic generalized epilepsy and controls. Thus, further analysis of a larger population is needed to confirm the assumption that human seizure-related gene 6 is a susceptibility gene for idiopathic generalized epilepsy with various sub-syndromes.
Collapse
Affiliation(s)
- Jianming Jiang
- Department of Neurology, Changhai Hospital, Second Military Medical University of Chinese PLA, Shanghai 200433, China
| | - Xiaoling Chen
- Department of Biochemistry & Genetics, the National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Wenting Liu
- Department of Biochemistry & Genetics, the National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Yan Zhao
- Department of Biochemistry & Genetics, the National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Yangtai Guan
- Department of Neurology, Changhai Hospital, Second Military Medical University of Chinese PLA, Shanghai 200433, China
| | - Yan Han
- Department of Neurology, Changhai Hospital, Second Military Medical University of Chinese PLA, Shanghai 200433, China
| | - Feng Wang
- Department of Neurology, Changhai Hospital, Second Military Medical University of Chinese PLA, Shanghai 200433, China
| | - Jiajun Lu
- Department of Biochemistry & Genetics, the National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Zhiliang Yu
- Department of Neurology, Changhai Hospital, Second Military Medical University of Chinese PLA, Shanghai 200433, China
| | - Zhenfang Du
- Department of Biochemistry & Genetics, the National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Xianning Zhang
- Department of Biochemistry & Genetics, the National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
8
|
Osaki G, Mitsui S, Yuri K. The distribution of the seizure-related gene 6 (Sez-6) protein during postnatal development of the mouse forebrain suggests multiple functions for this protein: an analysis using a new antibody. Brain Res 2011; 1386:58-69. [PMID: 21334315 DOI: 10.1016/j.brainres.2011.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/10/2011] [Accepted: 02/10/2011] [Indexed: 11/16/2022]
Abstract
The seizure-related gene 6 (Sez-6) encodes a transmembrane protein that is expressed in neuronal cells. A Sez-6-deficient mouse exhibits impaired spatial memory, motor deficits, and decreased anxiety levels. To understand the function of Sez-6 during the postnatal development of the forebrain, the spatiotemporal pattern of distribution of the Sez-6 protein was immunohistochemically analyzed using a new anti-Sez-6 antibody. Western blot analysis confirmed the specificity of this new antibody, and showed that the content of the Sez-6 protein in the cerebral cortex was highest during the neonatal period and decreased gradually thereafter. Immunohistochemical analysis revealed that Sez-6 immunoreactivity (IR) was detected in various brain regions, such as the hippocampus, cerebral cortex, piriform cortex, striatum, lateral amygdala, and olfactory tubercle. The expression patterns of Sez-6 in these brain regions was divided into three groups: i) in the cerebral cortex, hippocampus, and lateral amygdala, moderate-to-strong Sez-6 IR was detected in the first postnatal week and decreased gradually thereafter; ii) Sez-6 IR was not observed during the neonatal period in the striatum and the intensity of the signal increased gradually toward adulthood; and iii) strong Sez-6 IR was observed in the olfactory tubercle, regardless of the developmental stage. Furthermore, Sez-6 IR was detected in dendrites of hippocampal and cortical pyramidal neurons neonatally, whereas it localized around the soma after postnatal day 10. These spatiotemporal alterations of the regional and intracellular distribution of the Sez-6 protein suggest multiple functions for this protein during the postnatal development of the forebrain.
Collapse
Affiliation(s)
- George Osaki
- Department of Neurobiology and Anatomy, Kochi Medical School, Oko-cho, Nankoku 783–8505, Japan
| | | | | |
Collapse
|