1
|
Tanweer S, Sharma T, Grover A, Agarwal M, Grover S. Mycobacterium tuberculosis Essential Gene Thymidylate Synthase Is Involved in Immune Modulation and Survival inside the Host. ACS OMEGA 2024; 9:33743-33750. [PMID: 39130601 PMCID: PMC11308015 DOI: 10.1021/acsomega.4c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
A Mycobacterium tuberculosis essential gene, ThyX (Rv2754c), plays a key role in intermediate metabolism and respiration by catalyzing the formation of dTMP and tetrahydrofolate from dUMP and methylenetetrahydrofolate. ThyX is present in the M.tb complex and in M. smegmatis a nonpathogenic strain of Mycobacteria. In this study, we identified a novel function of ThyX, an enzyme with immune-modulating properties. We have shown that ThyX can activate the macrophages in the host toward M1 response. Overexpression of ThyX stimulates the production of nitrite oxide (NO) and induces apoptosis in macrophages; indeed both responses help the host to control growth of M.tb. ThyX was also discovered to play a role in the recombinant bacterium's ability to survive when it was subjected to oxidative and hypoxic stress by macrophages. These findings demonstrate the protein's functional importance in M.tb. Indeed these findings represent ThyX as a potential candidate for future research and show this as a therapeutic target.
Collapse
Affiliation(s)
- Sana Tanweer
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi-110065, India
| | - Tarina Sharma
- New
Jersey Medical School, Rutgers, The State
University of New Jersey, Newark, New Jersey 07103, United States
| | - Abhinav Grover
- School
of Biotechnology, Jawaharlal University, New Delhi-110069, India
| | - Meetu Agarwal
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi-110065, India
| | - Sonam Grover
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi-110065, India
| |
Collapse
|
2
|
Eyford BA, Lazarczyk MJ, Choi KB, Varghese M, Arora H, Kari S, Munro L, Pfeifer CG, Sowa A, Dickstein DR, Dickstein DL, Jefferies WA. Outside-in signaling through the major histocompatibility complex class-I cytoplasmic tail modulates glutamate receptor expression in neurons. Sci Rep 2023; 13:13079. [PMID: 37567897 PMCID: PMC10421907 DOI: 10.1038/s41598-023-38663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
The interplay between AMPA-type glutamate receptors (AMPARs) and major histocompatibility complex class I (MHC-I) proteins in regulating synaptic signaling is a crucial aspect of central nervous system (CNS) function. In this study, we investigate the significance of the cytoplasmic tail of MHC-I in synaptic signaling within the CNS and its impact on the modulation of synaptic glutamate receptor expression. Specifically, we focus on the Y321 to F substitution (Y321F) within the conserved cytoplasmic tyrosine YXXΦ motif, known for its dual role in endocytosis and cellular signaling of MHC-I. Our findings reveal that the Y321F substitution influences the expression of AMPAR subunits GluA2/3 and leads to alterations in the phosphorylation of key kinases, including Fyn, Lyn, p38, ERK1/2, JNK1/2/3, and p70 S6 kinase. These data illuminate the crucial role of MHC-I in AMPAR function and present a novel mechanism by which MHC-I integrates extracellular cues to modulate synaptic plasticity in neurons, which ultimately underpins learning and memory.
Collapse
Affiliation(s)
- Brett A Eyford
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Maciej J Lazarczyk
- Division of Institutional Measures, Department of Medical Direction and Quality, University Hospitals of Geneva, Geneva, Switzerland
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Kyung Bok Choi
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Hitesh Arora
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Suresh Kari
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lonna Munro
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Allison Sowa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Daniel R Dickstein
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Dara L Dickstein
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA.
- Department of Pathology, Uniformed Services University of Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| | - Wilfred A Jefferies
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Pelgrom LR, Patente TA, Otto F, Nouwen LV, Ozir-Fazalalikhan A, van der Ham AJ, van der Zande HJP, Heieis GA, Arens R, Everts B. mTORC1 signaling in antigen-presenting cells of the skin restrains CD8 + T cell priming. Cell Rep 2022; 40:111032. [PMID: 35793635 DOI: 10.1016/j.celrep.2022.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
How mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism, affects dendritic cell (DC) metabolism and T cell-priming capacity has primarily been investigated in vitro, but how mTORC1 regulates this in vivo remains poorly defined. Here, using mice deficient for mTORC1 component raptor in DCs, we find that loss of mTORC1 negatively affects glycolytic and fatty acid metabolism and maturation of conventional DCs, particularly cDC1s. Nonetheless, antigen-specific CD8+ T cell responses to infection are not compromised and are even enhanced following skin immunization. This is associated with increased activation of Langerhans cells and a subpopulation of EpCAM-expressing cDC1s, of which the latter show an increased physical interaction with CD8+ T cells in situ. Together, this work reveals that mTORC1 limits CD8+ T cell priming in vivo by differentially orchestrating the metabolism and immunogenicity of distinct antigen-presenting cell subsets, which may have implications for clinical use of mTOR inhibitors.
Collapse
Affiliation(s)
- Leonard R Pelgrom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thiago A Patente
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank Otto
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lonneke V Nouwen
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alwin J van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Graham A Heieis
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Arora SK, Alam A, Naqvi N, Ahmad J, Sheikh JA, Rahman SA, Hasnain SE, Ehtesham NZ. Immunodominant Mycobacterium tuberculosis Protein Rv1507A Elicits Th1 Response and Modulates Host Macrophage Effector Functions. Front Immunol 2020; 11:1199. [PMID: 32793184 PMCID: PMC7385400 DOI: 10.3389/fimmu.2020.01199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) persists as latent infection in nearly a quarter of the global population and remains the leading cause of death among infectious diseases. While BCG is the only vaccine for TB, its inability to provide complete protection makes it imperative to engineer BCG such that it expresses immunodominant antigens that can enhance its protective potential. In-silico comparative genomic analysis of Mycobacterium species identified M. tb Rv1507A as a “signature protein” found exclusively in M. tb. In-vitro (cell lines) and in-vivo experiments carried out in mice, using purified recombinant Rv1507A revealed it to be a pro-inflammatory molecule, eliciting significantly high levels of IL-6, TNF-α, and IL-12. There was increased expression of activation markers CD69, CD80, CD86, antigen presentation molecules (MHC I/MHCII), and associated Th1 type of immune response. Rv1507A knocked-in M. smegmatis also induced significantly higher pro-inflammatory Th1 response and higher survivability under stress conditions, both in-vitro (macrophage RAW264.7 cells) and in-vivo (mice). Sera derived from human TB patients showed significantly enhanced B-cell response against M. tb Rv1507A. The ability of M. tb Rv1507A to induce immuno-modulatory effect, B cell response, and significant memory response, renders it a putative vaccine candidate that demands further exploration.
Collapse
Affiliation(s)
- Simran Kaur Arora
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,ICMR-National Institute of Pathology, New Delhi, India
| | - Anwar Alam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Nilofer Naqvi
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javeed Ahmad
- ICMR-National Institute of Pathology, New Delhi, India
| | | | | | - Seyed Ehtesham Hasnain
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, Hyderabad, India
| | | |
Collapse
|
5
|
Reinicke AT, Raczkowski F, Mühlig M, Schmucker P, Lischke T, Reichelt J, Schneider E, Zielinski S, Sachs M, Jurack E, Tolosa E, Kurts C, Mittrücker HW, Meyer-Schwesinger C. Deubiquitinating Enzyme UCH-L1 Promotes Dendritic Cell Antigen Cross-Presentation by Favoring Recycling of MHC Class I Molecules. THE JOURNAL OF IMMUNOLOGY 2019; 203:1730-1742. [DOI: 10.4049/jimmunol.1801133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
|
6
|
Rommereim LM, Fox BA, Butler KL, Cantillana V, Taylor GA, Bzik DJ. Rhoptry and Dense Granule Secreted Effectors Regulate CD8 + T Cell Recognition of Toxoplasma gondii Infected Host Cells. Front Immunol 2019; 10:2104. [PMID: 31555296 PMCID: PMC6742963 DOI: 10.3389/fimmu.2019.02104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii secretes rhoptry (ROP) and dense granule (GRA) effector proteins to evade host immune clearance mediated by interferon gamma (IFN-γ), immunity-related GTPase (IRG) effectors, and CD8+ T cells. Here, we investigated the role of parasite-secreted effectors in regulating host access to parasitophorous vacuole (PV) localized parasite antigens and their presentation to CD8+ T cells by the major histocompatibility class I (MHC-I) pathway. Antigen presentation of PV localized parasite antigens by MHC-I was significantly increased in macrophages and/or dendritic cells infected with mutant parasites that lacked expression of secreted GRA (GRA2, GRA3, GRA4, GRA5, GRA7, GRA12) or ROP (ROP5, ROP18) effectors. The ability of various secreted GRA or ROP effectors to suppress antigen presentation by MHC-I was dependent on cell type, expression of IFN-γ, or host IRG effectors. The suppression of antigen presentation by ROP5, ROP18, and GRA7 correlated with a role for these molecules in preventing PV disruption by IFN-γ-activated host IRG effectors. However, GRA2 mediated suppression of antigen presentation was not correlated with PV disruption. In addition, the GRA2 antigen presentation phenotypes were strictly co-dependent on the expression of the GRA6 protein. These results show that MHC-I antigen presentation of PV localized parasite antigens was controlled by mechanisms that were dependent or independent of IRG effector mediated PV disruption. Our findings suggest that the GRA6 protein underpins an important mechanism that enhances CD8+ T cell recognition of parasite-infected cells with damaged or ruptured PV membranes. However, in intact PVs, parasite secreted effector proteins that associate with the PV membrane or the intravacuolar network membranes play important roles to actively suppress antigen presentation by MHC-I to reduce CD8+ T cell recognition and clearance of Toxoplasma gondii infected host cells.
Collapse
Affiliation(s)
- Leah M Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kiah L Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Viviana Cantillana
- Division of Geriatrics, Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
| | - Gregory A Taylor
- Division of Geriatrics, Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States.,Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, NC, United States
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
7
|
Lipid Droplets: A Significant but Understudied Contributor of Host⁻Bacterial Interactions. Cells 2019; 8:cells8040354. [PMID: 30991653 PMCID: PMC6523240 DOI: 10.3390/cells8040354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid droplets (LDs) are cytosolic lipid storage organelles that are important for cellular lipid metabolism, energy homeostasis, cell signaling, and inflammation. Several bacterial, viral and protozoal pathogens exploit host LDs to promote infection, thus emphasizing the importance of LDs at the host–pathogen interface. In this review, we discuss the thus far reported relation between host LDs and bacterial pathogens including obligate and facultative intracellular bacteria, and extracellular bacteria. Although there is less evidence for a LD–extracellular bacterial interaction compared to interactions with intracellular bacteria, in this review, we attempt to compare the bacterial mechanisms that target LDs, the host signaling pathways involved and the utilization of LDs by these bacteria. Many intracellular bacteria employ unique mechanisms to target host LDs and potentially obtain nutrients and lipids for vacuolar biogenesis and/or immune evasion. However, extracellular bacteria utilize LDs to either promote host tissue damage or induce host death. We also identify several areas that require further investigation. Along with identifying LD interactions with bacteria besides the ones reported, the precise mechanisms of LD targeting and how LDs benefit pathogens should be explored for the bacteria discussed in the review. Elucidating LD–bacterial interactions promises critical insight into a novel host–pathogen interaction.
Collapse
|
8
|
van Lookeren Campagne M, Verschoor A. Pathogen clearance and immune adherence "revisited": Immuno-regulatory roles for CRIg. Semin Immunol 2018; 37:4-11. [PMID: 29573978 DOI: 10.1016/j.smim.2018.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 01/30/2023]
Abstract
Rapid elimination of microbes from the bloodstream, along with the ability to mount an adaptive immune response, are essential for optimal host-defense. Kupffer cells are strategically positioned in the liver sinusoids and efficiently capture circulating microbes from the hepatic artery and portal vein, thus preventing bacterial dissemination. In vivo and in vitro studies have probed how complement receptor of the immunoglobulin superfamily (CRIg), also referred to as Z39Ig and V-set and Ig domain-containing 4 (VSIG4), acts as a critical player in pathogen recognition and clearance. While recent data suggested that CRIg may bind bacterial cell wall components directly, the single transmembrane receptor is best known for its interaction with complement C3 opsonization products on the microbial surface. On Kupffer cells, CRIg must capture opsonized microbes against the shear forces of the blood flow. In vivo work reveals how immune adherence (IA), a process in which blood platelets or erythrocytes associate with circulating bacteria, plays a critical role in regulating pathogen capture by CRIg under flow conditions. In addition to its typical innate immune functions, CRIg was shown to directly and indirectly influence adaptive immune responses. Here, we review our current understanding of the diverse roles of CRIg in pathogen elimination, anti-microbial immunity and autoimmunity. In particular, we will explore how, through selective capturing by CRIg, an important balance is achieved between the immunological and clearance functions of liver and spleen.
Collapse
Affiliation(s)
| | - Admar Verschoor
- Institute for Systemic Inflammation Research, Universität zu Lübeck, 23538 Lübeck, Germany.
| |
Collapse
|
9
|
McDougal CE, Sauer JD. Listeria monocytogenes: The Impact of Cell Death on Infection and Immunity. Pathogens 2018; 7:pathogens7010008. [PMID: 29324702 PMCID: PMC5874734 DOI: 10.3390/pathogens7010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes has evolved exquisite mechanisms for invading host cells and spreading from cell-to-cell to ensure maintenance of its intracellular lifecycle. As such, it is not surprising that loss of the intracellular replication niche through induction of host cell death has significant implications on the development of disease and the subsequent immune response. Although L. monocytogenes can activate multiple pathways of host cell death, including necrosis, apoptosis, and pyroptosis, like most intracellular pathogens L. monocytogenes has evolved a series of adaptations that minimize host cell death to promote its virulence. Understanding how L. monocytogenes modulates cell death during infection could lead to novel therapeutic approaches. In addition, as L. monocytogenes is currently being developed as a tumor immunotherapy platform, understanding how cell death pathways influence the priming and quality of cell-mediated immunity is critical. This review will focus on the mechanisms by which L. monocytogenes modulates cell death, as well as the implications of cell death on acute infection and the generation of adaptive immunity.
Collapse
Affiliation(s)
- Courtney E McDougal
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
10
|
GFPuv-Expressing Recombinant Rickettsia typhi: a Useful Tool for the Study of Pathogenesis and CD8 + T Cell Immunology in R. typhi Infection. Infect Immun 2017; 85:IAI.00156-17. [PMID: 28289147 PMCID: PMC5442613 DOI: 10.1128/iai.00156-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 11/20/2022] Open
Abstract
Rickettsia typhi is the causative agent of endemic typhus, a disease with increasing incidence worldwide that can be fatal. Because of its obligate intracellular life style, genetic manipulation of the pathogen is difficult. Nonetheless, in recent years, genetic manipulation tools have been successfully applied to rickettsiae. We describe here for the first time the transformation of R. typhi with the pRAM18dRGA plasmid that originally derives from Rickettsia amblyommatis and encodes the expression of GFPuv (green fluorescent protein with maximal fluorescence when excited by UV light). Transformed R. typhi (R. typhiGFPuv) bacteria are viable, replicate with kinetics similar to those of wild-type R. typhi in cell culture, and stably maintain the plasmid and GFPuv expression under antibiotic treatment in vitro and in vivo during infection of mice. CB17 SCID mice infected with R. typhiGFPuv succumb to the infection with kinetics similar to those for animals infected with wild-type R. typhi and develop comparable pathology and bacterial loads in the organs, demonstrating that the plasmid does not influence pathogenicity. In the spleen and liver of infected CB17 SCID mice, the bacteria are detectable by immunofluorescence microscopy in neutrophils and macrophages by histological staining. Finally, we show for the first time that transformed rickettsiae can be used for the detection of CD8+ T cell responses. GFP-specific restimulation of spleen cells from R. typhiGFPuv-infected BALB/c mice elicits gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin 2 (IL-2) secretion by CD8+ T cells. Thus, R. typhiGFPuv bacteria are a novel, potent tool to study infection with the pathogen in vitro and in vivo and the immune response to these bacteria.
Collapse
|
11
|
Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity. Infect Immun 2016; 85:IAI.00733-16. [PMID: 27821585 DOI: 10.1128/iai.00733-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 01/25/2023] Open
Abstract
The influence of cell death on adaptive immunity has been studied for decades. Despite these efforts, the intricacies of how various cell death pathways shape immune responses in the context of infection remain unclear, particularly with regard to more recently discovered pathways such as pyroptosis. The emergence of Listeria monocytogenes as a promising immunotherapeutic platform demands a thorough understanding of how cell death induced in the context of infection influences the generation of CD8+ T-cell-mediated immune responses. To begin to address this question, we designed strains of L. monocytogenes that robustly activate necrosis, apoptosis, or pyroptosis. We hypothesized that proinflammatory cell death such as necrosis would be proimmunogenic while apoptosis would be detrimental, as has previously been reported in the context of sterile cell death. Surprisingly, we found that the activation of any host cell death in the context of L. monocytogenes infection inhibited the generation of protective immunity and specifically the activation of antigen-specific CD8+ T cells. Importantly, the mechanism of attenuation was unique for each type of cell death, ranging from deficits in costimulation in the context of necrosis to a suboptimal inflammatory milieu in the case of pyroptosis. Our results suggest that cell death in the context of infection is different from sterile-environment-induced cell death and that inhibition of cell death or its downstream consequences is necessary for developing effective cell-mediated immune responses using L. monocytogenes-based immunotherapeutic platforms.
Collapse
|
12
|
Broadley S, Plaumann A, Coletti R, Lehmann C, Wanisch A, Seidlmeier A, Esser K, Luo S, Rämer P, Massberg S, Busch D, van Lookeren Campagne M, Verschoor A. Dual-Track Clearance of Circulating Bacteria Balances Rapid Restoration of Blood Sterility with Induction of Adaptive Immunity. Cell Host Microbe 2016; 20:36-48. [DOI: 10.1016/j.chom.2016.05.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/15/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
|
13
|
Martínez del Hoyo G, Ramírez-Huesca M, Levy S, Boucheix C, Rubinstein E, Minguito de la Escalera M, González-Cintado L, Ardavín C, Veiga E, Yáñez-Mó M, Sánchez-Madrid F. CD81 controls immunity to Listeria infection through rac-dependent inhibition of proinflammatory mediator release and activation of cytotoxic T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:6090-101. [PMID: 25972472 DOI: 10.4049/jimmunol.1402957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/19/2015] [Indexed: 01/28/2023]
Abstract
Despite recent evidence on the involvement of CD81 in pathogen binding and Ag presentation by dendritic cells (DCs), the molecular mechanism of how CD81 regulates immunity during infection remains to be elucidated. To investigate the role of CD81 in the regulation of defense mechanisms against microbial infections, we have used the Listeria monocytogenes infection model to explore the impact of CD81 deficiency in the innate and adaptive immune response against this pathogenic bacteria. We show that CD81(-/-) mice are less susceptible than wild-type mice to systemic Listeria infection, which correlates with increased numbers of inflammatory monocytes and DCs in CD81(-/-) spleens, the main subsets controlling early bacterial burden. Additionally, our data reveal that CD81 inhibits Rac/STAT-1 activation, leading to a negative regulation of the production of TNF-α and NO by inflammatory DCs and the activation of cytotoxic T cells by splenic CD8α(+) DCs. In conclusion, this study demonstrates that CD81-Rac interaction exerts an important regulatory role on the innate and adaptive immunity against bacterial infection and suggests a role for CD81 in the development of novel therapeutic targets during infectious diseases.
Collapse
Affiliation(s)
- Gloria Martínez del Hoyo
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain;
| | - Marta Ramírez-Huesca
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Shoshana Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94035
| | - Claude Boucheix
- INSERM, Université Paris-Sud, Institut André Lwoff, 94807 Villejuif, France
| | - Eric Rubinstein
- INSERM, Université Paris-Sud, Institut André Lwoff, 94807 Villejuif, France
| | - María Minguito de la Escalera
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Leticia González-Cintado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Esteban Veiga
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain; and
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain; and
| | - Francisco Sánchez-Madrid
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| |
Collapse
|
14
|
Corradin G, Levitskaya J. Priming of CD8(+) T Cell Responses to Liver Stage Malaria Parasite Antigens. Front Immunol 2014; 5:527. [PMID: 25414698 PMCID: PMC4220712 DOI: 10.3389/fimmu.2014.00527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/07/2014] [Indexed: 01/13/2023] Open
Abstract
While the role of malaria parasite-specific memory CD8+ T cells in the control of exo-erythrocytic stages of malaria infection is well documented and generally accepted, a debate is still ongoing regarding both the identity of the anatomic site where the activation of naive pathogen-specific T cells is taking place and contribution of different antigen-presenting cells (APCs) into this process. Whereas some studies infer a role of professional APCs present in the lymph nodes draining the site of parasite injection by the mosquito, others argue in favor of the liver as a primary organ and hepatocytes as stimulators of naïve parasite-specific T cell responses. This review aims to critically analyze the current knowledge and outline new lines of research necessary to understand the induction of protective cellular immunity against the malaria parasite.
Collapse
Affiliation(s)
| | - Jelena Levitskaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
15
|
Tan Y, Li Y, Fu X, Yang F, Zheng P, Zhang J, Guo B, Wu Y. Systemic C3 modulates CD8+ T cell contraction after Listeria monocytogenes infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:3426-35. [PMID: 25187659 DOI: 10.4049/jimmunol.1302763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ag-specific CD8(+) T cell contraction (contraction), which occurs after the resolution of infection, is critical for homeostasis of the immune system. Although complement components regulate the primary CD8(+) T cell response, there is insufficient evidence supporting their role in regulating contraction and memory. In this study, we show that C3-deficient (C3(-/-)) mice exhibited significantly less CD8(+) T cell contraction than did wild-type mice postinfection with recombinant Listeria monocytogenes expressing OVA. Kinetic analyses also revealed decreased contraction in mice treated with cobra venom factor to deplete C3, which was consistent with the results in C3(-/-) recipient mice transplanted with bone marrow cells from the same donors as wild-type recipient mice. The phenotypes of memory cells generated by C3(-/-) mice were not altered compared with those of wild-type mice. Further, C5aR signaling downstream of C3 was not involved in the regulation of contraction. Moreover, the regulation of contraction by C3 may be independent of the duration of antigenic stimulation or the functional avidity of effector CD8(+) T cells. However, reduced contraction in C3(-/-) mice was accompanied by a decrease in the proportion of KLRG-1(hi) (killer-cell lectin-like receptor G1) CD127(lo) short-lived effector cells at the peak of the response and correlated with a reduction in the levels of inflammatory cytokines, such as IL-12 and IFN-γ, produced early postinfection. These results provide new insights into the role of systemic C3 in regulating contraction following intracellular bacterial infection and may help to develop vaccines that are more effective.
Collapse
Affiliation(s)
- Yulong Tan
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaolan Fu
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Fei Yang
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Ping Zheng
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Jue Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bo Guo
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| | - Yuzhang Wu
- Department of Immunology, Third Military Medical University, Chongqing 400038, China; and
| |
Collapse
|
16
|
Khan ML, Halfdanarson TR, Borad MJ. Immunotherapeutic and oncolytic viral therapeutic strategies in pancreatic cancer. Future Oncol 2014; 10:1255-75. [PMID: 24947264 DOI: 10.2217/fon.13.277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pancreatic adenocarcinoma is an aggressive disease with dismal outcomes despite recent advances using combination chemotherapeutic regimens. The lack of an adequate immune response to malignant cells has been identified as a factor associated with tumor aggressiveness and refractoriness to systemic treatment. Preclinical and early clinical studies have identified numerous immunotherapeutic and oncolytic viral therapeutic strategies aimed towards amplifying the immune reaction to pancreatic cancer and have established encouraging results. Promising antitumor efficacy has been observed both in vitro and in vivo with many of these approaches. These novel applications have also led to improved understanding of the process of pancreatic tumor growth and invasion, knowledge of the tumor microenvironment and have pioneered further investigations of similar therapies. Here we review both immunotherapeutic and oncolytic viral therapeutic strategies in pancreatic cancer.
Collapse
Affiliation(s)
- Meaghan L Khan
- Mayo Clinic Arizona Division of Hematology & Medical Oncology, 13400 E Shea Boulevard, Scottsdale, AZ 85259, USA
| | | | | |
Collapse
|
17
|
Nierkens S, Tel J, Janssen E, Adema GJ. Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends Immunol 2013; 34:361-70. [PMID: 23540650 DOI: 10.1016/j.it.2013.02.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/27/2022]
Abstract
Antigen cross-presentation describes the process through which dendritic cells (DCs) acquire exogenous antigens for presentation on MHC class I molecules. The ability to cross-present has been thought of as a feature of specialized DC subsets. Emerging data, however, suggest that the cross-presenting ability of each DC subset is tuned by and dependent on several factors, such as DC location and activation status, and the type of antigen and inflammatory signals. Thus, we argue that capacity of cross-presentation is not an exclusive trait of one or several distinct DC subtypes, but rather a common feature of the DC family in both mice and humans. Understanding DC subset activation and antigen-presentation pathways might yield improved tools and targets to exploit the unique cross-presenting capacity of DCs in immunotherapy.
Collapse
Affiliation(s)
- Stefan Nierkens
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Tumor Immunology Laboratory, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
18
|
Bueno SM, Riquelme S, Riedel CA, Kalergis AM. Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 2012; 137:28-36. [PMID: 22703384 DOI: 10.1111/j.1365-2567.2012.03614.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Innate and adaptive immunity are inter-related by dendritic cells (DCs), which directly recognize bacteria through the binding of pathogen-associated molecular patterns (PAMPs) to specialized receptors on their surface. After capturing and degrading bacteria, DCs present their antigens as small peptides bound to MHC molecules and prime naive bacteria-specific T cells. In response to PAMP recognition DCs undergo maturation, which is a phenotypic change that increases their immunogenicity and promotes the activation of naive T cells. As a result, a specific immune response that targets bacteria-derived antigens is initiated. Therefore, the characterization of DC-bacteria interactions is important to understand the mechanisms used by virulent bacteria to avoid adaptive immunity. Furthermore, any impairment of DC function might contribute to bacterial survival and dissemination inside the host. An example of a bacterial pathogen capable of interfering with DC function is Salmonella enterica serovar Typhimurium (S. Typhimurium). Virulent strains of this bacterium are able to differentially modulate the entrance to DCs, avoid lysosomal degradation and prevent antigen presentation on MHC molecules. These features of virulent S. Typhimurium are controlled by virulence proteins, which are encoded by pathogenicity islands. Modulation of DC functions by these gene products is supported by several studies showing that pathogenesis might depend on this attribute of virulent S. Typhimurium. Here we discuss some of the recent data reported by the literature showing that several virulence proteins from Salmonella are required to modulate DC function and the activation of host adaptive immunity.
Collapse
Affiliation(s)
- Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genetica Molecular y Microbiologia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
19
|
Williams MA, Schmidt RL, Lenz LL. Early events regulating immunity and pathogenesis during Listeria monocytogenes infection. Trends Immunol 2012; 33:488-95. [PMID: 22677184 PMCID: PMC3440530 DOI: 10.1016/j.it.2012.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/18/2012] [Accepted: 04/22/2012] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes (Lm) is both a life-threatening pathogen of humans and a model organism that is widely used to dissect the mechanisms of innate and adaptive immune resistance to infection. Specific aspects of the immune response to systemic Lm infection can be protective, neutral, or in some cases deleterious. In this review, we seek to provide an overview of the early events during Lm infection that dictate or regulate host innate and adaptive immune responses. We highlight several recent developments that add to our understanding of the complex interplay between inflammatory responses, host susceptibility to infection, and the development of protective immunity.
Collapse
Affiliation(s)
- Matthew A Williams
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
20
|
Abstract
Active immunotherapy targeting dendritic cells (DCs) has shown great promise in preclinical models and in human clinical trials for the treatment of malignant disease. Sipuleucel-T (Provenge, Dendreon, Seattle, WA), which consists of antigen-loaded dendritic cells (DCs), recently became the first targeted therapeutic cancer vaccine to be approved by the US Food and Drug Administration (FDA). However, ex vivo therapies such as Provenge have practical limitations and elicit an immune response with limited scope. By contrast, live-attenuated Listeria monocytogenes (Lm) naturally targets DCs in vivo and stimulates both innate and adaptive cellular immunity. Lm-based vaccines engineered to express cancer antigens have demonstrated striking efficacy in several animal models and have resulted in encouraging anecdotal survival benefit in early human clinical trials. Two different Lm-based vaccine platforms have advanced into phase II clinical trials in cervical and pancreatic cancer. Future Lm-based clinical vaccine candidates are expected to feature polyvalent antigen expression and to be used in combination with other immunotherapies or conventional therapies such as radiotherapy and chemotherapy to augment efficacy.
Collapse
Affiliation(s)
- Dung T Le
- The Sidney Kimmel Cancer Center and the Skip Viragh Pancreatic Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | | |
Collapse
|
21
|
Bai Y, Qian C, Qian L, Ma F, Hou J, Chen Y, Wang Q, Cao X. Integrin CD11b Negatively Regulates TLR9-Triggered Dendritic Cell Cross-Priming by Upregulating microRNA-146a. THE JOURNAL OF IMMUNOLOGY 2012; 188:5293-302. [DOI: 10.4049/jimmunol.1102371] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
A CD74-dependent MHC class I endolysosomal cross-presentation pathway. Nat Immunol 2012; 13:237-45. [PMID: 22306692 PMCID: PMC4933585 DOI: 10.1038/ni.2225] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/26/2011] [Indexed: 01/25/2023]
Abstract
Immune responses are initiated and primed by dendritic cells (DCs) that cross-present exogenous antigen. The chaperone CD74 (invariant chain) is thought to promote DC priming exclusively in the context of major histocompatibility complex (MHC) class II. However, we demonstrate here a CD74-dependent MHC class I cross-presentation pathway in DCs that had a major role in the generation of MHC class I-restricted, cytolytic T lymphocyte (CTL) responses to viral protein- and cell-associated antigens. CD74 associated with MHC class I in the endoplasmic reticulum of DCs and mediated the trafficking of MHC class I to endolysosomal compartments for loading with exogenous peptides. We conclude that CD74 has a previously undiscovered physiological function in endolysosomal DC cross-presentation for priming MHC class I-mediated CTL responses.
Collapse
|
23
|
Qiu T, Zhu HC, Liu XH, Dong WC, Weng XD, Hu CH, Kuang YL, Gao RH, Dan C, Tao T. Lentiviral-mediated shRNA against RelB induces the generation of tolerogenic dendritic cells. Int Immunopharmacol 2012; 12:501-9. [PMID: 22266276 DOI: 10.1016/j.intimp.2012.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Lentiviral-mediated shRNA against RelB was used to produce tolerogenic dendritic cells from murine bone marrow derived dendritic cells (BMDCs). METHOD RelB expression in the BMDCs was silenced by lentivirus carrying RelB shRNA. The apoptosis rate and surface markers of DCs were assessed by flow cytometry. IL-12,IL-10,TGF-β1 secreted by DCs and DNA binding capacity of NF-κB subunits in the nucleus were measured by ELISA, independently. MLR was used to analyze the capacity of DCs to inhibit immune response. RESULTS RelB expression was significantly inhibited in DCs following lentiviral mediated delivery of RelB specific shRNA. The RelB shRNA-DC produced lower IL-12 and higher IL-10 than mature dendritic cells (mDCs) and silencing control DCs. There was no difference in the apoptosis rate between shRNA RelB-DCs and mDCs. The expression levels of co-stimulatory molecules (CD80, CD86 and CD83) and MHC-II class molecule were lower in the RelB shRNA-DCs than in the mDCs and silencing control DCs. In addition, RelB shRNA also inhibited the RelB DNA binding capacity but had no effect on other NF-κB subunits. The shRNA RelB-DCs can significantly inhibit mixed lymphocyte reaction (MLR) and down-regulate Th1 cytokines and prompt the production of Th2 cytokines. CONCLUSION Our results indicate RelB shRNA transfection of DCs can induce the immature status, and produce tolerogenic DCs.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Dendritic cells (DCs) represent a unique collection of innate immune cells present throughout the body as distinct subpopulations generally sharing the functions of pathogen recognition, cytokine production, and antigen presentation. A large body of work in recent years has examined DC functions during infection with Listeria monocytogenes (Lm), particularly in the murine model. Here, I review several aspects of DC biology in this model, with particular emphasis on the role DCs play in the establishment of a productive Lm infection and the role of DCs as cytokine producers and antigen-presenting cells in this system.
Collapse
Affiliation(s)
- Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Verschoor A, Neuenhahn M, Navarini AA, Graef P, Plaumann A, Seidlmeier A, Nieswandt B, Massberg S, Zinkernagel RM, Hengartner H, Busch DH. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12:1194-201. [PMID: 22037602 DOI: 10.1038/ni.2140] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/21/2011] [Indexed: 12/30/2022]
Abstract
The acquisition of pathogen-derived antigen by dendritic cells (DCs) is a key event in the generation of cytotoxic CD8(+) T cell responses. In mice, the intracellular bacterium Listeria monocytogenes is directed from the blood to splenic CD8α(+) DCs. We report that L. monocytogenes rapidly associated with platelets in the bloodstream in a manner dependent on GPIb and complement C3. Platelet association targeted a small but immunologically important portion of L. monocytogenes to splenic CD8α(+) DCs, diverting bacteria from swift clearance by other, less immunogenic phagocytes. Thus, an effective balance is established between maintaining sterility of the circulation and induction of antibacterial immunity by DCs. Other gram-positive bacteria also were rapidly tagged by platelets, revealing a broadly active shuttling mechanism for systemic bacteria.
Collapse
Affiliation(s)
- Admar Verschoor
- Institute for Medical Microbiology, Immunology and Hygiene, and Focus Group, Clinical Cell Processing and Purification, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Plasmacytoid dendritic cells mature independently of MyD88 and IFN-αβR in response to Listeria and stimulate CD8 T cells. Immunol Lett 2011; 138:104-12. [DOI: 10.1016/j.imlet.2011.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 03/11/2011] [Accepted: 03/22/2011] [Indexed: 12/27/2022]
|
27
|
Campisi L, Soudja SM, Cazareth J, Bassand D, Lazzari A, Brau F, Narni-Mancinelli E, Glaichenhaus N, Geissmann F, Lauvau G. Splenic CD8α⁺ dendritic cells undergo rapid programming by cytosolic bacteria and inflammation to induce protective CD8⁺ T-cell memory. Eur J Immunol 2011; 41:1594-605. [PMID: 21469106 DOI: 10.1002/eji.201041036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/08/2011] [Accepted: 03/09/2011] [Indexed: 11/09/2022]
Abstract
Memory CD8(+) T lymphocytes are critical effector cells of the adaptive immune system mediating long-lived pathogen-specific protective immunity. Three signals - antigen, costimulation and inflammation - orchestrate optimal CD8(+) T-cell priming and differentiation into effector and memory cells and shape T-cell functional fate and ability to protect against challenge infections. While among the conventional spleen DCs (cDCs), the CD8α(+) but not the CD8α(-) cDCs most efficiently mediate CD8(+) T-cell priming, it is unclear which subset, irrespective of their capacity to process MHC class I-associated antigens, is most efficient at inducing naïve CD8(+) T-cell differentiation into pathogen-specific protective memory cells in vivo. Moreover, the origin of the required signals is still unclear. Using mice infected with the intracellular bacterium Listeria monocytogenes, we show that splenic CD8α(+) cDCs become endowed with all functional features to optimally prime protective memory CD8(+) T cells in vivo within only a few hours post-immunization. Such programming requires both cytosolic signals resulting from bacterial invasion of the host cells and extracellular inflammatory mediators. Thus, these data designate these cells as the best candidates to facilitate the development of cell-based vaccine therapy.
Collapse
Affiliation(s)
- Laura Campisi
- Institut National de Santé et de Recherche Médicale Unité 924, Groupe Avenir, Valbonne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Distinct responses of splenic dendritic cell subsets to infection with Listeria monocytogenes: maturation phenotype, level of infection, and T cell priming capacity ex vivo. Cell Immunol 2011; 268:79-86. [PMID: 21457950 DOI: 10.1016/j.cellimm.2011.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/08/2011] [Accepted: 03/04/2011] [Indexed: 12/22/2022]
Abstract
To determine the relative contributions of DC subsets in the development of protective immunity to Listeria monocytogenes we examined the relationship between maturation, bacterial burden, and T cell priming capacity of four well characterized subsets of splenic DC following infection with Lm. CD8α(+), CD4(+), and CD8α(-)CD4(-) DC and the B220(+) plasmacytoid DC (pDC) were compared for abundance and costimulatory molecule expression at 24, 48, and 72h post i.v. infection. We further determined the bacterial burden associated with each DC subset and their relative capacities to prime CD8(+) T cells at 24hpi. The CD8α(+) DC displayed the highest level of maturation, association with live bacteria, and T cell activation potential. Second, the CD4(+) DC were also mature, yet were associated with fewer bacteria, and stimulated T cell proliferation, but not IFN-γ production. The CD8α(-)CD4(-) DC showed a modest maturation response and were associated with a high number of bacteria, but failed to induce T cell proliferation ex vivo. pDC displayed a strong maturation response, but were not associated with detectable bacteria and also failed to stimulate T cell activation. Finally, we measured the cytokine responses in these subsets and determined that IL-12 was produced predominantly by the CD8(+) DC, correlating with the ability of this subset DC to induce IFN-γ production in T cells. We conclude that Listeria-specific CD8(+) T cell activation in the spleen is most effectively achieved by infection-induced maturation of the CD8α(+) DC subset.
Collapse
|
29
|
Wolf BJ, Princiotta MF. Viral and bacterial minigene products are presented by MHC class I molecules with similar efficiencies. Mol Immunol 2010; 48:463-71. [PMID: 21067810 DOI: 10.1016/j.molimm.2010.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/29/2022]
Abstract
MHC class I molecules present short peptides, usually 8-10 amino acids in length, to CD8(+) T cells. These peptides are typically generated from full-length endogenously synthesized proteins degraded by the antigen processing machinery of the target cell. However, exogenous proteins, whether originating from intracellular bacteria or parasites or via phagocytosis during cross-presentation, can also be processed for presentation by MHC class I molecules. It is currently not known whether endogenously synthesized proteins and proteins acquired from exogenous sources follow the same presentation pathway. One clue that the processing pathways followed by endogenous and exogenous proteins may not be identical is the vastly different presentation efficiencies reported for viral versus bacterial antigens. Because class I antigen processing involves multiple steps, we sought to determine where in the processing pathway these differences in efficiency occur. To accomplish this, we expressed identical minimal peptide determinants from viral and bacterial vectors using a minigene expression system and determined the rate of peptide-MHC generation per molecule of minigene product synthesized. We found that peptides expressed from either the viral or bacterial vector were presented with virtually identical efficiencies. These results suggest that differences in the processing pathways followed by endogenous versus exogenous proteins most likely occur at a point prior to where free peptide is liberated from full-length protein.
Collapse
Affiliation(s)
- Benjamin J Wolf
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 E Adams St, 2285 Weiskotten Hall Addition, Syracuse, NY 13210, United States
| | | |
Collapse
|
30
|
CD69 limits early inflammatory diseases associated with immune response to
Listeria monocytogenes
infection. Immunol Cell Biol 2010; 88:707-15. [DOI: 10.1038/icb.2010.62] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|