1
|
Gu Y, Xu J, Sun F, Cheng J. Elevated intracellular pH of zygotes during mouse aging causes mitochondrial dysfunction associated with poor embryo development. Mol Cell Endocrinol 2023:111991. [PMID: 37336488 DOI: 10.1016/j.mce.2023.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
The mortality of preimplantation embryos is positively correlated with maternal age. However, the underlying mechanism for the poor quality of embryos remains unclear. Here, we found that aging caused elevated intracellular pH (pHi) in zygotes, which could trigger aberrant mitochondrial membrane potential, increased reactive oxygen species (ROS) levels, and poor embryo development. Moreover, single-cell transcriptome sequencing of mouse zygotes identified 120 genes that were significantly differentially expressed (DE) between young and older zygotes. These include genes such as Slc14a1, Fxyd5, CD74, and Bst, which are related to cell division, ion transporter, and cell differentiation. Further analysis indicated that these DE genes were enriched in apoptosis, the NF-kappa B signaling pathway, and the chemokine signaling pathway, which might be the key regulatory pathway affecting the quality of zygotes and subsequent embryo development. Taken together, our study helps elucidate the poor quality and development of older preimplantation embryos.
Collapse
Affiliation(s)
- Yimin Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Junjie Xu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China; Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, 7, Taiyuan, 030001, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Jinmei Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Darbandi S, Darbandi M, Khorram Khorshid HR, Sengupta P. Electrophysiology of Human Gametes: A Systematic Review. World J Mens Health 2022; 40:442-455. [PMID: 35021309 PMCID: PMC9253800 DOI: 10.5534/wjmh.210107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Oocytes and spermatozoa are electrogenic cells with the ability to respond to electrical stimuli and modulate their electrical properties accordingly. Determination of the ionic events during the gamete maturation helps to design suitable culture media for gametes in assisted reproductive technology (ART). The present systematic review focuses on the electrophysiology of human gametes during different stages of maturation and also during fertilization. MATERIALS AND METHODS The reports published in the English language between January 2000 and July 2021 were extracted from various electronic scientific databases following the PRISMA checklist using specific MeSH keywords. RESULTS Subsequent to the screening process with defined inclusion and exclusion criteria, 60 articles have been included in this review. Among them, 11 articles were directly related to the electrophysiology of human oocytes and 49 physiology department to the electrophysiology of human spermatozoa. CONCLUSIONS Gametes generate electrical currents by ionic exchange, particularly Na+, K+, Cl-, H+, Zn2+, Cu2+, Se2+, Mg2+, HCO3-, and Ca2+ through specific ion channels in different stages of gamete maturation. The ionic concentrations, pH, and other physicochemical variables are modulated during the gametogenesis, maturation, activation, and the fertilization process following gamete function and metabolism. The electrical properties of human gametes change during different stages of maturation. Although it is demonstrated that the electrical properties are significant regulators of cell signaling and are fundamental to gamete maturation and fertilization, their exact roles in these processes are still poorly understood. Further research is required to unveil the intricate electrophysiological processes of human gamete maturation.
Collapse
Affiliation(s)
- Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Biosciences and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, India.
| |
Collapse
|
3
|
Tscherner AK, Macaulay AD, Ortman CS, Baltz JM. Initiation of cell volume regulation and unique cell volume regulatory mechanisms in mammalian oocytes and embryos. J Cell Physiol 2021; 236:7117-7133. [PMID: 33634482 DOI: 10.1002/jcp.30352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/07/2022]
Abstract
The period beginning with the signal for ovulation, when a fully-grown oocyte progresses through meiosis to become a mature egg that is fertilized and develops as a preimplantation embryo, is crucial for healthy development. The early preimplantation embryo is unusually sensitive to cell volume perturbations, with even moderate decreases in volume or dysregulation of volume-regulatory mechanisms resulting in developmental arrest. To prevent this, early embryos possess mechanisms of cell volume control that are apparently unique to them. These rely on the accumulation of glycine and betaine (N, N, N-trimethylglycine) as organic osmolytes-compounds that can provide intracellular osmotic support without the deleterious effects of inorganic ions. Preimplantation embryos also have the same mechanisms as somatic cells that mediate rapid responses to deviations in cell volume, which rely on inorganic ion transport. Both the unique, embryo-specific mechanisms that use glycine and betaine and the inorganic ion-dependent mechanisms undergo major changes during meiotic maturation and preimplantation development. The most profound changes occur immediately after ovulation is triggered. Before this, oocytes cannot regulate their volume, since they are strongly attached to their rigid extracellular matrix shell, the zona pellucida. After ovulation is triggered, the oocyte detaches from the zona pellucida and first becomes capable of independent volume regulation. A complex set of developmental changes in each cell volume-regulatory mechanism continues through egg maturation and preimplantation development. The unique cell volume-regulatory mechanisms in eggs and preimplantation embryos and the developmental changes they undergo appear critical for normal healthy embryo development.
Collapse
Affiliation(s)
- Allison K Tscherner
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angus D Macaulay
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| | - Chyna S Ortman
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jay M Baltz
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Gatimel N, Moreau J, Parinaud J, Léandri RD. Need for choosing the ideal pH value for IVF culture media. J Assist Reprod Genet 2020; 37:1019-1028. [PMID: 32124192 DOI: 10.1007/s10815-020-01726-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/19/2020] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Monitoring the pH of IVF culture media is a good practice, but the required pH levels have been "arbitrarily" set. Assisted reproductive technology centers around the world are spending time and money on pH monitoring without any consensus to date. The objective of this narrative review was to evaluate the importance of pH monitoring during IVF, discover how the oocyte and embryo regulate their intracellular pH and try to determine the optimal pH to be applied. METHODS A narrative literature review was performed on publications in the PubMed database reporting on the impact of pH on cellular function, oocyte and embryo development, IVF outcomes and pathophysiology, or on physiological pH in the female reproductive tract. RESULTS Intracellular pH regulates many cellular processes such as meiotic spindle stability of the oocyte, cell division and differentiation, embryo enzymatic activities, and blastocoel formation. The internal pH of the human embryo is maintained by regulatory mechanisms (mainly Na+/H+ and HCO3-/Cl- exchangers) that can be exceeded, particularly in the oocyte and early-stage embryos. The opinion that the optimal pH for embryo culture is physiological pH is not correct since several physicochemical parameters specific to IVF culture conditions (temperature, medium composition, duration of culture, or implication of CO2) can modify the intracellular pH of the embryo and change its needs and adaptability. CONCLUSIONS Because correct and stable extracellular pH is essential to embryo health and development, monitoring pH is imperative. However, there is a lack of clinical data on choosing the ideal pH for human IVF culture media.
Collapse
Affiliation(s)
- Nicolas Gatimel
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse University Hospitals, 330 avenue de Grande Bretagne, 31059, Toulouse, France. .,EA 3694 Human Fertility Research Group, Paule de Viguier Hospital, Toulouse University Hospitals, 330 avenue de Grande Bretagne, 31059, Toulouse, France.
| | - Jessika Moreau
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse University Hospitals, 330 avenue de Grande Bretagne, 31059, Toulouse, France.,EA 3694 Human Fertility Research Group, Paule de Viguier Hospital, Toulouse University Hospitals, 330 avenue de Grande Bretagne, 31059, Toulouse, France
| | - Jean Parinaud
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse University Hospitals, 330 avenue de Grande Bretagne, 31059, Toulouse, France.,EA 3694 Human Fertility Research Group, Paule de Viguier Hospital, Toulouse University Hospitals, 330 avenue de Grande Bretagne, 31059, Toulouse, France
| | - Roger D Léandri
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse University Hospitals, 330 avenue de Grande Bretagne, 31059, Toulouse, France.,EA 3694 Human Fertility Research Group, Paule de Viguier Hospital, Toulouse University Hospitals, 330 avenue de Grande Bretagne, 31059, Toulouse, France
| |
Collapse
|
5
|
McClatchie T, Meredith M, Ouédraogo MO, Slow S, Lever M, Mann MRW, Zeisel SH, Trasler JM, Baltz JM. Betaine is accumulated via transient choline dehydrogenase activation during mouse oocyte meiotic maturation. J Biol Chem 2017; 292:13784-13794. [PMID: 28663368 DOI: 10.1074/jbc.m117.803080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 11/06/2022] Open
Abstract
Betaine (N,N,N-trimethylglycine) plays key roles in mouse eggs and preimplantation embryos first in a novel mechanism of cell volume regulation and second as a major methyl donor in blastocysts, but its origin is unknown. Here, we determined that endogenous betaine was present at low levels in germinal vesicle (GV) stage mouse oocytes before ovulation and reached high levels in the mature, ovulated egg. However, no betaine transport into oocytes was detected during meiotic maturation. Because betaine can be synthesized in mammalian cells via choline dehydrogenase (CHDH; EC 1.1.99.1), we assessed whether this enzyme was expressed and active. Chdh transcripts and CHDH protein were expressed in oocytes. No CHDH enzyme activity was detected in GV oocyte lysate, but CHDH became highly active during oocyte meiotic maturation. It was again inactive after fertilization. We then determined whether oocytes synthesized betaine and whether CHDH was required. Isolated maturing oocytes autonomously synthesized betaine in vitro in the presence of choline, whereas this failed to occur in Chdh-/- oocytes, directly demonstrating a requirement for CHDH for betaine accumulation in oocytes. Overall, betaine accumulation is a previously unsuspected physiological process during mouse oocyte meiotic maturation whose underlying mechanism is the transient activation of CHDH.
Collapse
Affiliation(s)
- Taylor McClatchie
- From the Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,the Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario K1H 8M5, Canada
| | - Megan Meredith
- From the Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,the Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario K1H 8M5, Canada
| | - Mariame O Ouédraogo
- From the Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,the Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario K1H 8M5, Canada
| | - Sandy Slow
- the Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Michael Lever
- the Department of Chemistry, University of Canterbury, Christchurch 8041, New Zealand
| | - Mellissa R W Mann
- the Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213.,the Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213
| | - Steven H Zeisel
- the Department of Nutrition, Nutrition Research Institute, Gillings School of Global Public Health and School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jacquetta M Trasler
- the Montréal Children's Hospital and Research Institute of the McGill University Health Centre, Montréal, Quebec H4A 3J1, Canada, and.,the Departments of Human Genetics, Pediatrics, and Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3A 1B1, Canada
| | - Jay M Baltz
- From the Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada, .,the Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
6
|
Cheng JM, Li J, Tang JX, Chen SR, Deng SL, Jin C, Zhang Y, Wang XX, Zhou CX, Liu YX. Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice. Cell Cycle 2016; 15:2454-63. [PMID: 27472084 PMCID: PMC5026820 DOI: 10.1080/15384101.2016.1201255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022] Open
Abstract
Increases in the aneuploidy rate caused by the deterioration of cohesion with increasing maternal age have been well documented. However, the molecular mechanism for the loss of cohesion in aged oocytes remains unknown. In this study, we found that intracellular pH (pHi) was elevated in aged oocytes, which might disturb the structure of the cohesin ring to induce aneuploidy. We observed for the first time that full-grown germinal vesicle (GV) oocytes displayed an increase in pHi with advancing age in CD1 mice. Furthermore, during the in vitro oocyte maturation process, the pHi was maintained at a high level, up to ∼7.6, in 12-month-old mice. Normal pHi is necessary to maintain protein localization and function. Thus, we put forward a hypothesis that the elevated oocyte pHi might be related to the loss of cohesion and the increased aneuploidy in aged mice. Through the in vitro alkalinization treatment of young oocytes, we observed that the increased pHi caused an increase in the aneuploidy rate and the sister inter-kinetochore (iKT) distance associated with the strength of cohesion and caused a decline in the cohesin subunit SMC3 protein level. Young oocytes with elevated pHi exhibited substantially the increase in chromosome misalignment.
Collapse
Affiliation(s)
- Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chen-Xi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Mackenzie ACL, Kyle DD, McGinnis LA, Lee HJ, Aldana N, Robinson DN, Evans JP. Cortical mechanics and myosin-II abnormalities associated with post-ovulatory aging: implications for functional defects in aged eggs. Mol Hum Reprod 2016; 22:397-409. [PMID: 26921397 PMCID: PMC4884917 DOI: 10.1093/molehr/gaw019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY HYPOTHESIS Cellular aging of the egg following ovulation, also known as post-ovulatory aging, is associated with aberrant cortical mechanics and actomyosin cytoskeleton functions. STUDY FINDING Post-ovulatory aging is associated with dysfunction of non-muscle myosin-II, and pharmacologically induced myosin-II dysfunction produces some of the same deficiencies observed in aged eggs. WHAT IS KNOWN ALREADY Reproductive success is reduced with delayed fertilization and when copulation or insemination occurs at increased times after ovulation. Post-ovulatory aged eggs have several abnormalities in the plasma membrane and cortex, including reduced egg membrane receptivity to sperm, aberrant sperm-induced cortical remodeling and formation of fertilization cones at the site of sperm entry, and reduced ability to establish a membrane block to prevent polyspermic fertilization. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Ovulated mouse eggs were collected at 21-22 h post-human chorionic gonadotrophin (hCG) (aged eggs) or at 13-14 h post-hCG (young eggs), or young eggs were treated with the myosin light chain kinase (MLCK) inhibitor ML-7, to test the hypothesis that disruption of myosin-II function could mimic some of the effects of post-ovulatory aging. Eggs were subjected to various analyses. Cytoskeletal proteins in eggs and parthenogenesis were assessed using fluorescence microscopy, with further analysis of cytoskeletal proteins in immunoblotting experiments. Cortical tension was measured through micropipette aspiration assays. Egg membrane receptivity to sperm was assessed in in vitro fertilization (IVF) assays. Membrane topography was examined by low-vacuum scanning electron microscopy (SEM). MAIN RESULTS AND THE ROLE OF CHANCE Aged eggs have decreased levels and abnormal localizations of phosphorylated myosin-II regulatory light chain (pMRLC; P = 0.0062). Cortical tension, which is mediated in part by myosin-II, is reduced in aged mouse eggs when compared with young eggs, by ∼40% in the cortical region where the metaphase II spindle is sequestered and by ∼50% in the domain to which sperm bind and fuse (P < 0.0001). Aging-associated parthenogenesis is partly rescued by treating eggs with a zinc ionophore (P = 0.003), as is parthenogenesis induced by inhibition of mitogen-activated kinase (MAPK) 3/1 [also known as extracellular signal-regulated kinase (ERK)1/2] or MLCK. Inhibition of MLCK with ML-7 also results in effects that mimic those of post-ovulatory aging: fertilized ML-7-treated eggs show both impaired fertilization and increased extents of polyspermy, and ML-7-treated young eggs have several membrane abnormalities that are shared by post-ovulatory aged eggs. LIMITATIONS, REASONS FOR CAUTION These studies were done with mouse oocytes, and it remains to be fully determined how these findings from mouse oocytes would compare with other species. For studies using methods not amenable to analysis of large sample sizes and data are limited to what images one can capture (e.g. SEM), data should be interpreted conservatively. WIDER IMPLICATIONS OF THE FINDINGS These data provide insights into causes of reproductive failures at later post-copulatory times. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This project was supported by R01 HD037696 and R01 HD045671 from the NIH to J.P.E. Cortical tension studies were supported by R01 GM66817 to D.N.R. The authors declare there are no financial conflicts of interest.
Collapse
Affiliation(s)
- Amelia C L Mackenzie
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Diane D Kyle
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Lauren A McGinnis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Hyo J Lee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Nathalia Aldana
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Wang W, Ren X, Cai Y, Chen L, Zhang W, Xu J. Rifampicin Induces Bicarbonate-Rich Choleresis in Rats: Involvement of Anion Exchanger 2. Dig Dis Sci 2016; 61:126-36. [PMID: 26319954 DOI: 10.1007/s10620-015-3850-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/10/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM Previous studies have shown that rifampicin induced choleresis, the mechanisms of which have not been described. The aim of this study was to investigate the mechanisms underlying in vivo rifampicin-induced choleresis. METHODS In one experimental set, rats were treated chronically with rifampicin on days 1, 3 and 7. Serum and biliary parameters were assayed, and mRNA and protein levels, as well as the locations of the hepatic export transporters were analyzed by real-time PCR, western blot and immunofluorescence. Ductular mass was evaluated immunohistochemically. In another experimental set, rats received an acute infusion of rifampicin. The amount of rifampicin in bile was detected using HPLC. Biliary parameters were monitored following intrabiliary retrograde fluxes of the Cl(-)/HCO3 (-) exchange inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in the infused rats. RESULTS Biliary bicarbonate output increased in parallel to the augmented bile flow in response to rifampicin, and this effect was abolished with intrabiliary administration of DIDS, but not NPPB. The biliary secretion of rifampicin with increases in bile flow and biliary rifampicin in response to different infused doses of the antibiotic show no significant correlations. After rifampicin treatment, the expression level of anion exchanger 2 (AE2) increased, while the location of hepatic transporters did not change. However, RIF treatment did not increase ductular mass significantly. CONCLUSIONS These results indicate that the increase in bile flow induced by rifampicin is mainly due to increased HCO3 (-) excretion mediated by increased AE2 protein expression and activity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Xiaofei Ren
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Yi Cai
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Lihong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Weiping Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Jianming Xu
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
9
|
Dagilgan S, Dundar-Yenilmez E, Tuli A, Urunsak IF, Erdogan S. Evaluation of intracellular pH regulation and alkalosis defense mechanisms in preimplantation embryos. Theriogenology 2015; 83:1075-84. [DOI: 10.1016/j.theriogenology.2014.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
|
10
|
Richard S, Baltz JM. Prophase I arrest of mouse oocytes mediated by natriuretic peptide precursor C requires GJA1 (connexin-43) and GJA4 (connexin-37) gap junctions in the antral follicle and cumulus-oocyte complex. Biol Reprod 2014; 90:137. [PMID: 24804968 DOI: 10.1095/biolreprod.114.118505] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fully grown germinal vesicle stage mouse oocytes remain arrested in meiotic prophase I until ovulation. This arrest is maintained by cGMP produced in cumulus granulosa cells surrounding the oocyte. Recently, it was found that cGMP production in cumulus cells depends on NPR2 guanylate cyclase activated by its ligand natriuretic peptide precursor C (NPPC). It is assumed that cGMP reaches the oocyte through gap junctions that couple cumulus granulosa cells to each other and to the oocyte. Previous work identified two main types of gap junctions in the follicle, connexin-43 gap junctions (GJA1 protein) between granulosa cells and connexin-37 gap junctions (GJA4) between cumulus cells and the oocyte. However, it had not been established that both types are required for meiotic arrest mediated by NPPC/NPR2 signaling. To investigate this, we used connexin mimetic peptides (CMPs) that specifically disrupt gap junction isoforms within cumulus-oocyte complexes (COCs) and isolated antral follicles in culture. We furthermore developed a punctured antral follicle preparation to permit CMP access to the antral cavity in an otherwise intact follicle. CMP directed against connexin-43 (Cx43 CMP) overcame NPPC-mediated meiotic arrest in both isolated COCs and antral follicles. Cx37 CMP, in contrast, had no effect when present in the medium, but released oocyte arrest in the presence of NPPC when microinjected into the perivitelline space near the oocyte surface in COCs. This is consistent with both connexin isoforms being required for meiotic arrest and with the reported localization of connexin-43 throughout the cumulus cells and connexin-37 at the oocyte surface.
Collapse
Affiliation(s)
- Samantha Richard
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, and Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Jay M Baltz
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, and Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Zhou C, Fitzharris G, Alper SL, Baltz JM. Na+/H+exchange is inactivated during mouse oocyte meiosis, facilitating glycine accumulation that maintains embryo cell volume. J Cell Physiol 2013; 228:2042-53. [DOI: 10.1002/jcp.24370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/20/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Seth L. Alper
- Renal Division and Molecular and Vascular Medicine Division, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School; Boston; Massachusetts
| | | |
Collapse
|
12
|
Zhou C, Baltz JM. JAK2 mediates the acute response to decreased cell volume in mouse preimplantation embryos by activating NHE1. J Cell Physiol 2012; 228:428-38. [DOI: 10.1002/jcp.24147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Baltz JM, Zhou C. Cell volume regulation in mammalian oocytes and preimplantation embryos. Mol Reprod Dev 2012; 79:821-31. [DOI: 10.1002/mrd.22117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/17/2012] [Indexed: 11/06/2022]
|
14
|
Hur CG, Kim EJ, Cho SK, Cho YW, Yoon SY, Tak HM, Kim CW, Choe C, Han J, Kang D. K+ efflux through two-pore domain K+ channels is required for mouse embryonic development. Reproduction 2012; 143:625-36. [DOI: 10.1530/rep-11-0225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous studies have suggested that K+ channels regulate a wide range of physiological processes in mammalian cells. However, little is known about the specific function of K+ channels in germ cells. In this study, mouse zygotes were cultured in a medium containing K+ channel blockers to identify the functional role of K+ channels in mouse embryonic development. Voltage-dependent K+ channel blockers, such as tetraethylammonium and BaCl2, had no effect on embryonic development to the blastocyst stage, whereas K2P channel blockers, such as quinine, selective serotonin reuptake inhibitors (fluoxetine, paroxetine, and citalopram), gadolinium trichloride, anandamide, ruthenium red, and zinc chloride, significantly decreased blastocyst formation (P<0.05). RT-PCR data showed that members of the K2P channel family, specifically KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9, were expressed in mouse oocytes and embryos. In addition, their mRNA expression levels, except Kcnk3, were up-regulated by above ninefold in morula-stage embryos compared with 2-cell stage embryos (2-cells). Immunocytochemical data showed that KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9 channel proteins were expressed in the membrane of oocytes, 2-cells, and blastocysts. Each siRNA injection targeted at Kcnk2, Kcnk10, Kcnk4, Kcnk3, and Kcnk9 significantly decreased blastocyst formation by ∼38% compared with scrambled siRNA injection (P<0.05). The blockade of K2P channels acidified the intracellular pH and depolarized the membrane potential. These results suggest that K2P channels could improve mouse embryonic development through the modulation of gating by activators.
Collapse
|
15
|
Song LJ, Liu RJ, Zeng Z, Alper SL, Cui HJ, Lu Y, Zheng L, Yan ZW, Fu GH. Gastrin inhibits a novel, pathological colon cancer signaling pathway involving EGR1, AE2, and P-ERK. J Mol Med (Berl) 2012; 90:707-18. [PMID: 22228178 DOI: 10.1007/s00109-011-0851-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/23/2011] [Indexed: 12/22/2022]
Abstract
Human anion exchanger 2 (AE2) is a plasma membrane protein that regulates intracellular pH and cell volume. AE2 contributes to transepithelial transport of chloride and bicarbonate in normal colon and other epithelial tissues. We now report that AE2 overexpression in colon cancer cells is correlated with expression of the nuclear proliferation marker, Ki67. Survival analysis of 24 patients with colon cancer in early stage or 33 patients with tubular adenocarcinoma demonstrated that expression of AE2 is correlated with poor prognosis. Cellular and molecular experiments indicated that AE2 expression promoted proliferation of colon cancer cells. In addition, we found that transcription factor EGR1 underlies AE2 upregulation and the AE2 sequester p16INK4a (P16) in the cytoplasm of colon cancer cells. Cytoplasmic P16 enhanced ERK phosphorylation and promoted proliferation of colon cancer cells. Gastrin inhibited proliferation of colon cancer cells by suppressing expression of EGR1 and AE2 and by blocking ERK phosphorylation. Taken together, our data describe a novel EGR1/AE2/P16/P-ERK signaling pathway in colon carcinogenesis, with implications for pathologic prognosis and for novel therapeutic approaches.
Collapse
Affiliation(s)
- Ling-Jun Song
- Department of Pathology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Arredouani A, Yu F, Sun L, Machaca K. Regulation of store-operated Ca2+ entry during the cell cycle. J Cell Sci 2010; 123:2155-62. [PMID: 20554894 DOI: 10.1242/jcs.069690] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic Ca(2+) signals are central to numerous cell physiological processes, including cellular proliferation. Historically, much of the research effort in this area has focused on the role of Ca(2+) signals in cell-cycle progression. It is becoming clear, however, that the relationship between Ca(2+) signaling and the cell cycle is a 'two-way street'. Specifically, Ca(2+)-signaling pathways are remodeled during M phase, leading to altered Ca(2+) dynamics. Such remodeling probably better serves the large variety of functions that cells must perform during cell division compared with during interphase. This is clearly the case during oocyte meiosis, because remodeling of Ca(2+) signals partially defines the competence of the egg to activate at fertilization. Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+)-signaling pathway that is regulated during M phase. In this Commentary, we discuss the latest advances in our understanding of how SOCE is regulated during cell division.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Doha, Qatar
| | | | | | | |
Collapse
|
17
|
Harada K, Fukuda E, Hirohashi N, Chiba K. Regulation of intracellular pH by p90Rsk-dependent activation of an Na(+)/H(+) exchanger in starfish oocytes. J Biol Chem 2010; 285:24044-54. [PMID: 20507995 DOI: 10.1074/jbc.m109.072553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Starfish oocytes arrest at metaphase of the first meiotic division (MI arrest) in the ovary and resume meiosis after spawning into seawater. MI arrest is maintained by lower intracellular pH (pH(i)) and release from arrest by cellular alkalization. To elucidate pH(i) regulation in oocytes, we cloned the starfish (Asterina pectinifera) Na(+)/H(+) exchanger 3 (ApNHE3) expressed in the plasma membrane of oocytes. The cytoplasmic domain of ApNHE3 contains p90 ribosomal S6 kinase (p90Rsk) phosphorylation sites, and injection of a constitutively active p90Rsk and the upstream regulator Mos to immature oocytes, stimulated an increase in pH(i). This increase was blocked by 5-(N-ethyl-N-isopropyl)-amiloride, a NHE inhibitor, and SL0101, a specific Rsk inhibitor. The MAPK kinase (MEK) inhibitor U0126 blocked the Mos-induced, but not the p90Rsk-induced, pH(i) increase, suggesting that the Mos-MEK-MAPK-p90Rsk pathway promotes ApNHE3 activation. In a cell-free extract, the Mos-MEK-MAPK-p90Rsk pathway phosphorylates ApNHE3 at Ser-590, -606, and -673. When p90Rsk-dependent ApNHE3 phosphorylation was blocked by a dominant-negative C-terminal fragment, or neutralizing antibody, the p90Rsk-induced pH(i) increase was suppressed in immature oocytes. However, ApNHE3 is up-regulated via the upstream phosphatidylinositol 3-kinase pathway before MAPK activation and the active state is maintained until spawning, suggesting that the p90Rsk-dependent ApNHE3 phosphorylation is unlikely to be the primary regulatory mechanism involved in MI arrest exit. After meiosis is completed, unfertilized eggs maintain their elevated pH(i) ( approximately 7.4) until the onset of apoptosis. We suggest that the p90Rsk/ApNHE3-dependent elevation of pH(i) increases fertilization success by delaying apoptosis initiation.
Collapse
Affiliation(s)
- Kaori Harada
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | | | | | | |
Collapse
|