1
|
Sneve MA, Piatkevich KD. Towards a Comprehensive Optical Connectome at Single Synapse Resolution via Expansion Microscopy. Front Synaptic Neurosci 2022; 13:754814. [PMID: 35115916 PMCID: PMC8803729 DOI: 10.3389/fnsyn.2021.754814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Mapping and determining the molecular identity of individual synapses is a crucial step towards the comprehensive reconstruction of neuronal circuits. Throughout the history of neuroscience, microscopy has been a key technology for mapping brain circuits. However, subdiffraction size and high density of synapses in brain tissue make this process extremely challenging. Electron microscopy (EM), with its nanoscale resolution, offers one approach to this challenge yet comes with many practical limitations, and to date has only been used in very small samples such as C. elegans, tadpole larvae, fruit fly brain, or very small pieces of mammalian brain tissue. Moreover, EM datasets require tedious data tracing. Light microscopy in combination with tissue expansion via physical magnification-known as expansion microscopy (ExM)-offers an alternative approach to this problem. ExM enables nanoscale imaging of large biological samples, which in combination with multicolor neuronal and synaptic labeling offers the unprecedented capability to trace and map entire neuronal circuits in fully automated mode. Recent advances in new methods for synaptic staining as well as new types of optical molecular probes with superior stability, specificity, and brightness provide new modalities for studying brain circuits. Here we review advanced methods and molecular probes for fluorescence staining of the synapses in the brain that are compatible with currently available expansion microscopy techniques. In particular, we will describe genetically encoded probes for synaptic labeling in mice, zebrafish, Drosophila fruit flies, and C. elegans, which enable the visualization of post-synaptic scaffolds and receptors, presynaptic terminals and vesicles, and even a snapshot of the synaptic activity itself. We will address current methods for applying these probes in ExM experiments, as well as appropriate vectors for the delivery of these molecular constructs. In addition, we offer experimental considerations and limitations for using each of these tools as well as our perspective on emerging tools.
Collapse
Affiliation(s)
- Madison A. Sneve
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, United States
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
2
|
Jin I, Kassabov S, Kandel ER, Hawkins RD. Possible novel features of synaptic regulation during long-term facilitation in Aplysia. ACTA ACUST UNITED AC 2021; 28:218-227. [PMID: 34131053 PMCID: PMC8212780 DOI: 10.1101/lm.053124.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/23/2021] [Indexed: 11/24/2022]
Abstract
Most studies of molecular mechanisms of synaptic plasticity have focused on the sequence of changes either at individual synapses or in the cell nucleus. However, studies of long-term facilitation at Aplysia sensory neuron–motor neuron synapses in isolated cell culture suggest two additional features of facilitation. First, that there is also regulation of the number of synaptic contacts between two neurons, which may occur at the level of cell pair-specific branch points in the neuronal arbor. Branch points contain many molecules that are involved in protein synthesis-dependent long-term facilitation including neurotrophins and the RNA binding protein CPEB. Second, the regulation involves homeostatic feedback and tends to keep the total number of contacts between two neurons at a fairly constant level both at rest and following facilitation. That raises the question of how facilitation and homeostasis can coexist. A possible answer is suggested by the findings that they both involve spontaneous transmission and postsynaptic Ca2+, which can have bidirectional effects similar to LTP and LTD in hippocampus. In addition, long-term facilitation can involve a change in the set point of homeostasis, which could be encoded by plasticity molecules such as CPEB and/or PKM. A computational model based on these ideas can qualitatively simulate the basic features of both facilitation and homeostasis of the number of contacts.
Collapse
Affiliation(s)
- Iksung Jin
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Stefan Kassabov
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,New York State Psychiatric Institute, New York, New York 10032, USA.,Howard Hughes Medical Institute, New York, New York 10032, USA
| | - Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,New York State Psychiatric Institute, New York, New York 10032, USA
| |
Collapse
|
3
|
Anterograde and retrograde signaling by an Aplysia neurotrophin forms a transsynaptic functional unit. Proc Natl Acad Sci U S A 2018; 115:E10951-E10960. [PMID: 30377269 DOI: 10.1073/pnas.1810650115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Whereas short-term synaptic plasticity is often either pre- or postsynaptic, intermediate- and long-term plasticity generally require coordinated pre- and postsynaptic mechanisms. Thus, the transition from presynaptic short-term facilitation (STF) to intermediate-term facilitation (ITF) induced by 5HT at Aplysia sensory-to-motor neuron synapses requires the recruitment of postsynaptic mechanisms and activation of protein synthesis in both neurons. In the companion paper to this report, we found that presynaptic autocrine signaling by an Aplysia neurotrophin (ApNT) forms a positive feedback loop that drives the synapses from STF to ITF. Here we report that ApNT also acts through both anterograde and retrograde signaling to form a transsynaptic positive feedback loop that orchestrates cellular functions in both the presynaptic and postsynaptic neurons during the induction of ITF. These two feedback loops activate protein synthesis in each synaptic compartment, which in both cases depends on signaling from the other synaptic compartment. These results suggest that the pre- and postsynaptic compartments act as one functional unit during the consolidation of learning-related facilitation induced by 5HT.
Collapse
|
4
|
Bourne JN, Chirillo MA, Harris KM. Presynaptic ultrastructural plasticity along CA3→CA1 axons during long-term potentiation in mature hippocampus. J Comp Neurol 2013; 521:3898-912. [PMID: 23784793 PMCID: PMC3838200 DOI: 10.1002/cne.23384] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/30/2013] [Accepted: 06/07/2013] [Indexed: 11/12/2022]
Abstract
In area CA1 of the mature hippocampus, synaptogenesis occurs within 30 minutes after the induction of long-term potentiation (LTP); however, by 2 hours many small dendritic spines are lost, and those remaining have larger synapses. Little is known, however, about associated changes in presynaptic vesicles and axonal boutons. Axons in CA1 stratum radiatum were evaluated with 3D reconstructions from serial section electron microscopy at 30 minutes and 2 hours after induction of LTP by theta-burst stimulation (TBS). The frequency of axonal boutons with a single postsynaptic partner was decreased by 33% at 2 hours, corresponding perfectly to the 33% loss specifically of small dendritic spines (head diameters <0.45 μm). Docked vesicles were reduced at 30 minutes and then returned to control levels by 2 hours following induction of LTP. By 2 hours there were fewer small synaptic vesicles overall in the presynaptic vesicle pool. Clathrin-mediated endocytosis was used as a marker of local activity, and axonal boutons containing clathrin-coated pits showed a more pronounced decrease in presynaptic vesicles at both 30 minutes and 2 hours after induction of LTP relative to control values. Putative transport packets, identified as a cluster of less than 10 axonal vesicles occurring between synaptic boutons, were stable at 30 minutes but markedly reduced by 2 hours after the induction of LTP. APV blocked these effects, suggesting that the loss of axonal boutons and presynaptic vesicles was dependent on N-methyl-D-aspartic acid (NMDA) receptor activation during LTP. These findings show that specific presynaptic ultrastructural changes complement postsynaptic ultrastructural plasticity during LTP.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Section of Neurobiology, Institute for Neuroscience, University of Texas, Austin, Texas, 78712; Department of Physiology and Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045
| | | | | |
Collapse
|
5
|
DiBenedictis BT, Helfand AI, Baum MJ, Cherry JA. A quantitative comparison of the efferent projections of the anterior and posterior subdivisions of the medial amygdala in female mice. Brain Res 2013; 1543:101-8. [PMID: 24262912 DOI: 10.1016/j.brainres.2013.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022]
Abstract
In rodents, many aspects of sociosexual behavior are mediated by chemosignals released by opposite-sex conspecifics. These chemosignals are relayed via the main (MOS) and accessory olfactory systems (AOS) to the medial amygdala (Me). The Me is subdivided into anterior (MeA) and posterior (MeP) subnuclei, and lesions targeting these regions have different effects on proceptive courtship behaviors in female mice. Differential behavioral effects of MeA vs. MeP lesions could reflect a difference in the projections of neurons located in these Me subnuclei. To examine this question, we injected female mice with the anterograde tracer, Fluoro-Ruby into either the MeA or MeP and quantified labeled puncta in 11 forebrain target sites implicated in courtship behaviors using confocal fluorescence microscopy. We found that the MeP more densely innervates the medial and intermediate regions of the posterior bed nucleus of the stria terminalis (pBNST) and the posteromedial cortical amygdala (PMCo), while the MeA more densely innervates the horizontal diagonal band of Broca (HDB) and the medial olfactory tubercle (mOT), a region that may be a component of the circuitry responsible for olfactory-mediated motivated behaviors.
Collapse
Affiliation(s)
| | | | - Michael J Baum
- Department of Biology, Boston University, Boston, MA 02215, United States
| | - James A Cherry
- Department of Psychology, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
6
|
Spontaneous transmitter release is critical for the induction of long-term and intermediate-term facilitation in Aplysia. Proc Natl Acad Sci U S A 2012; 109:9131-6. [PMID: 22619320 DOI: 10.1073/pnas.1206914109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Long-term plasticity can differ from short-term in recruiting the growth of new synaptic connections, a process that requires the participation of both the presynaptic and postsynaptic components of the synapse. How does information about synaptic plasticity spread from its site of origin to recruit the other component? The answer to this question is not known in most systems. We have investigated the possible role of spontaneous transmitter release as such a transsynaptic signal. Until recently, relatively little has been known about the functions of spontaneous release. In this paper, we report that spontaneous release is critical for the induction of a learning-related form of synaptic plasticity, long-term facilitation in Aplysia. In addition, we have found that this signaling is engaged quite early, during an intermediate-term stage that is the first stage to involve postsynaptic as well as presynaptic molecular mechanisms. In a companion paper, we show that spontaneous release from the presynaptic neuron acts as an orthograde signal to recruit the postsynaptic mechanisms of intermediate-term facilitation and initiates a cascade that can culminate in synaptic growth with additional stimulation during long-term facilitation. Spontaneous release could make a similar contribution to learning-related synaptic plasticity in mammals.
Collapse
|
7
|
Spontaneous transmitter release recruits postsynaptic mechanisms of long-term and intermediate-term facilitation in Aplysia. Proc Natl Acad Sci U S A 2012; 109:9137-42. [PMID: 22619333 DOI: 10.1073/pnas.1206846109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Whereas short-term (minutes) facilitation at Aplysia sensory-motor neuron synapses is presynaptic, long-term (days) facilitation involves synaptic growth, which requires both presynaptic and postsynaptic mechanisms. How are the postsynaptic mechanisms recruited, and when does that process begin? We have been investigating the possible role of spontaneous transmitter release from the presynaptic neuron. In the previous paper, we found that spontaneous release is critical for the induction of long-term facilitation, and this process begins during an intermediate-term stage of facilitation that is the first stage to involve postsynaptic as well as presynaptic mechanisms. We now report that increased spontaneous release during the short-term stage acts as an orthograde signal to recruit postsynaptic mechanisms of intermediate-term facilitation including increased IP3, Ca(2+), and membrane insertion and recruitment of clusters of AMPA-like receptors, which may be first steps in synaptic growth during long-term facilitation. These results suggest that the different stages of facilitation involve a cascade of pre- and postsynaptic mechanisms, which is initiated by spontaneous release and may culminate in synaptic growth.
Collapse
|
8
|
Ratnayaka A, Marra V, Bush D, Burden JJ, Branco T, Staras K. Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons. J Physiol 2012; 590:1585-97. [PMID: 22271866 PMCID: PMC3413500 DOI: 10.1113/jphysiol.2011.226688] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most presynaptic terminals in the central nervous system are characterized by two functionally distinct vesicle populations: a recycling pool, which supports action potential-driven neurotransmitter release via vesicle exocytosis, and a resting pool. The relative proportions of these two pools are highly variable between individual synapses, prompting speculation on their specific relationship, and on the possible functions of the resting pool. Using fluorescence imaging of FM-styryl dyes and synaptophysinI-pHluorin (sypHy) as well as correlative electron microscopy approaches, we show here that Hebbian plasticity-dependent changes in synaptic strength in rat hippocampal neurons can increase the recycling pool fraction at the expense of the resting pool in individual synaptic terminals. This recruitment process depends on NMDA-receptor activation, nitric oxide signalling and calcineurin and is accompanied by an increase in the probability of neurotransmitter release at individual terminals. Blockade of actin-mediated intersynaptic vesicle exchange does not prevent recycling pool expansion demonstrating that vesicle recruitment is intrasynaptic. We propose that the conversion of resting pool vesicles to the functionally recycling pool provides a rapid mechanism to implement long-lasting changes in presynaptic efficacy.
Collapse
Affiliation(s)
- Arjuna Ratnayaka
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | | | | | | |
Collapse
|
9
|
Li W, Keifer J. Rapid enrichment of presynaptic protein in boutons undergoing classical conditioning is mediated by brain-derived neurotrophic factor. Neuroscience 2011; 203:50-8. [PMID: 22202461 DOI: 10.1016/j.neuroscience.2011.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/28/2011] [Accepted: 12/12/2011] [Indexed: 12/29/2022]
Abstract
Presynaptic structural modifications are thought to accompany activity-dependent synaptic plasticity and learning. This may involve the conversion of nonfunctional synapses into active ones or the generation of entirely new synapses. Here, using an in vitro neural analog of classical conditioning, we investigated presynaptic structural changes restricted to auditory nerve synapses that convey the conditioned stimulus (CS) by tract tracing using fluorescent tracers combined with immunostaining for the synaptic vesicle-associated protein synaptophysin. The results show that the size of presynaptic auditory boutons increased and the area and fluorescence intensity of punctate staining for synaptophysin were enhanced after conditioning. This occurred only for auditory nerve boutons apposed to the dendrites but not the somata of abducens motor neurons. Conditioning increased the percentage of boutons that were immunopositive for synaptophysin and enhanced the number of synaptophysin puncta they contained. Pretreatment with antibodies against brain-derived neurotrophic factor (BDNF) inhibited these conditioning-induced structural changes. There was also a net increase in the number of boutons apposed to abducens motor neurons after conditioning or BDNF treatment. These data indicate that the rapid enrichment of presynaptic boutons with proteins required for neurotransmitter recycling and release occurs during classical conditioning and that these processes are mediated by BDNF.
Collapse
Affiliation(s)
- W Li
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, SD 57010, USA
| | | |
Collapse
|
10
|
Abstract
Filamentous (F)-actin is a known regulator of the synaptic vesicle (SV) cycle, with roles in SV mobilization, fusion, and endocytosis. However, the molecular pathways that regulate its dynamic assembly within presynaptic boutons remain unclear. In this study, we have used shRNA-mediated knockdown to demonstrate that Piccolo, a multidomain protein of the active zone cytomatrix, is a key regulator of presynaptic F-actin assembly. Boutons lacking Piccolo exhibit enhanced activity-dependent Synapsin1a dispersion and SV exocytosis, and reduced F-actin polymerization and CaMKII recruitment. These phenotypes are rescued by stabilizing F-actin filaments and mimicked by knocking down Profilin2, another regulator of presynaptic F-actin assembly. Importantly, we find that mice with a targeted deletion of exon 14 from the Pclo gene, reported to lack >95% of Piccolo, continue to express multiple Piccolo isoforms. Furthermore, neurons cultured from these mice exhibit no defects in presynaptic F-actin assembly due to the expression of these isoforms at presynaptic boutons. These data reveal that Piccolo regulates neurotransmitter release by facilitating activity-dependent F-actin assembly and the dynamic recruitment of key signaling molecules into presynaptic boutons, and highlight the need for new genetic models with which to study Piccolo loss of function.
Collapse
|
11
|
Rapid increase in clusters of synaptophysin at onset of homosynaptic potentiation in Aplysia. Proc Natl Acad Sci U S A 2011; 108:11656-61. [PMID: 21709228 DOI: 10.1073/pnas.1102695108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Imaging studies have shown that even the earliest phases of long-term plasticity are accompanied by the rapid recruitment of synaptic components, which generally requires actin polymerization and may be one of the first steps in a program that can lead to the formation of new stable synapses during late-phase plasticity. However, most of those results come from studies of long-term potentiation in rodent hippocampus and might not generalize to other forms of synaptic plasticity or plasticity in other brain areas and species. For example, recruitment of presynaptic proteins during long-term facilitation by 5HT in Aplysia is delayed for several hours, suggesting that whereas activity-dependent forms of plasticity, such as long-term potentiation, involve rapid recruitment of presynaptic proteins, neuromodulatory forms of plasticity, such as facilitation by 5HT, involve more delayed recruitment. To begin to explore this hypothesis, we examined an activity-dependent form of plasticity, homosynaptic potentiation produced by tetanic stimulation of the presynaptic neuron in Aplysia. We found that homosynaptic potentiation involves presynaptic but not postsynaptic actin and a rapid (under 10 min) increase in the number of clusters of the presynaptic vesicle-associated protein synaptophysin. These results indicate that rapid recruitment of synaptic components is not limited to hippocampal potentiation and support the hypothesis that activity-dependent types of plasticity involve rapid recruitment of presynaptic proteins, whereas neuromodulatory types of plasticity involve more delayed recruitment.
Collapse
|
12
|
Bednarek E, Caroni P. β-Adducin Is Required for Stable Assembly of New Synapses and Improved Memory upon Environmental Enrichment. Neuron 2011; 69:1132-46. [DOI: 10.1016/j.neuron.2011.02.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2011] [Indexed: 12/15/2022]
|