1
|
Akagi Y, Takayama Y, Nihashi Y, Yamashita A, Yoshida R, Miyamoto Y, Kida YS. Functional engineering of human iPSC-derived parasympathetic neurons enhances responsiveness to gastrointestinal hormones. FEBS Open Bio 2024; 14:63-78. [PMID: 38013211 PMCID: PMC10761937 DOI: 10.1002/2211-5463.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
Food-derived biological signals are transmitted to the brain via peripheral nerves through the paracrine activity of gastrointestinal (GI) hormones. The signal transduction circuit of the brain-gut axis has been analyzed in animals; however, species-related differences and animal welfare concerns necessitate investigation using in vitro human experimental models. Here, we focused on the receptors of five GI hormones (CCK, GLP1, GLP2, PYY, and serotonin (5-HT)), and established human induced pluripotent stem cell (iPSC) lines that functionally expressed each receptor. Compared to the original iPSCs, iPSCs expressing one of the receptors did not show any differences in global mRNA expression, genomic stability, or differentiation capacities of the three germ layers. We induced parasympathetic neurons from these established iPSC lines to assess vagus nerve activity. We generated GI hormone receptor-expressing neurons (CCKAR, GLP1R, and NPY2R-neuron) and tested their responsiveness to each ligand using Ca2+ imaging and microelectrode array recording. GI hormone receptor-expressing neurons (GLP2R and HTR3A) were generated directly by gene induction into iPSC-derived peripheral nerve progenitors. These receptor-expressing neurons promise to contribute to a better understanding of how the body responds to GI hormones via the brain-gut axis, aid in drug development, and offer an alternative to animal studies.
Collapse
Affiliation(s)
- Yuka Akagi
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Tsukuba Life Science Innovation Program (T‐LSI), School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yuzo Takayama
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Azusa Yamashita
- Analytical Science Laboratories, Asahi Quality & Innovations, Ltd.MoriyaJapan
| | - Risa Yoshida
- Analytical Science Laboratories, Asahi Quality & Innovations, Ltd.MoriyaJapan
| | - Yasuhisa Miyamoto
- Analytical Science Laboratories, Asahi Quality & Innovations, Ltd.MoriyaJapan
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- School of Integrative & Global Majors (SIGMA)University of TsukubaTsukubaJapan
| |
Collapse
|
2
|
Dady A, Davidson L, Halley PA, Storey KG. Human spinal cord in vitro differentiation pace is initially maintained in heterologous embryonic environments. eLife 2022; 11:e67283. [PMID: 35188104 PMCID: PMC8929931 DOI: 10.7554/elife.67283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Species-specific differentiation pace in vitro indicates that some aspects of neural differentiation are governed by cell intrinsic properties. Here we describe a novel in vitro human neural-rosette assay that recapitulates dorsal spinal cord differentiation but proceeds more rapidly than in the human embryo, suggesting that it lacks endogenous signalling dynamics. To test whether in vitro conditions represent an intrinsic differentiation pace, human iPSC-derived neural rosettes were challenged by grafting into the faster differentiating chicken embryonic neural tube iso-chronically, or hetero-chronically into older embryos. In both contexts in vitro differentiation pace was initially unchanged, while long-term analysis revealed iso-chronic slowed and hetero-chronic conditions promoted human neural differentiation. Moreover, hetero-chronic conditions did not alter the human neural differentiation programme, which progressed to neurogenesis, while the host embryo advanced into gliogenesis. This study demonstrates that intrinsic properties limit human differentiation pace, and that timely extrinsic signals are required for progression through an intrinsic human neural differentiation programme.
Collapse
Affiliation(s)
- Alwyn Dady
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Lindsay Davidson
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Pamela A Halley
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
3
|
A Novel In Vitro Assay Using Human iPSC-Derived Sensory Neurons to Evaluate the Effects of External Chemicals on Neuronal Morphology: Possible Implications in the Prediction of Abnormal Skin Sensation. Int J Mol Sci 2021; 22:ijms221910525. [PMID: 34638865 PMCID: PMC8508715 DOI: 10.3390/ijms221910525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal morphological changes in the epidermis are considered to be one of causes of abnormal skin sensations in dry skin-based skin diseases. The present study aimed to develop an in vitro model optimised for human skin to test the external factors that lead to its exacerbation. Human-induced pluripotent stem cell-derived sensory neurons (hiPSC-SNs) were used as a model of human sensory neurons. The effects of chemical substances on these neurons were evaluated by observing the elongation of nerve fibers, incidence of blebs (bead-like swellings), and the expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2). The nerve fiber length increased upon exposure to two common cosmetic preservatives-methylparaben and phenoxyethanol-but not to benzo[a]pyrene, an air pollutant at the estimated concentrations in the epidermis. Furthermore, the incidence of blebs increased upon exposure to benzo[a]pyrene. However, there was a decrease in the expression of NMNAT2 in nerve fibers, suggesting degenerative changes. No such degeneration was found after methylparaben or phenoxyethanol at the estimated concentrations in the epidermis. These findings suggest that methylparaben and phenoxyethanol promote nerve elongation in hiPSC-SNs, whereas benzo[a]pyrene induces nerve degeneration. Such alterations may be at least partly involved in the onset and progression of sensitive skin.
Collapse
|
4
|
Kannan S, Lee M, Muthusamy S, Blasiak A, Sriram G, Cao T. Peripheral sensory neurons promote angiogenesis in neurovascular models derived from hESCs. Stem Cell Res 2021; 52:102231. [PMID: 33601097 DOI: 10.1016/j.scr.2021.102231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/10/2021] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
In the adult tissues, blood vessels traverse the body with neurons side by side; and share common signaling molecules. Developmental studies on animal models have shown that peripheral sensory neurons (PSNs) secrete angiogenic factors and endothelial cells (ECs) secrete neurotrophic factors which contribute to their coexistence, thereby forming the peripheral neurovascular (PNV) unit. Despite the large number of studies showing that innervation and vascularization complement each other, the interaction between human PSNs and ECs is still largely unknown. To study this interaction and to evaluate if PSNs affect angiogenesis, we derived both PSNs and ECs from human embryonic stem cells (hESCs) and developed a co-culture system. Seeding the two cell types together showed that PSNs induced endothelial morphogenesis with formation of vessel-like structures (VLSs). The PSN precursors, neural crest stem cells also induced VLS formation in the co-culture system; however, to a lesser extent. This sheds new light on the in vitro angiogenic potential of these cell types. PSNs derived from hESCs are powerful tools for studying development and disease as human PSNs are inaccessible for in vitro assays. Our novel approach, with optimized media condition allowed for integrating hESC-derived PSNs with hESC-derived ECs in three-dimensional (3D) collagen gel for creating a completely humanised PNV model. This preliminary model showed that innervation improves the development of vascularized channels in vitro, and provides insight to the development of innervated 3D models in future.
Collapse
Affiliation(s)
- Sathya Kannan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Marcus Lee
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Agata Blasiak
- The N.1 Institute for Health, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore.
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Pérez-Luz S, Loria F, Katsu-Jiménez Y, Oberdoerfer D, Yang OL, Lim F, Muñoz-Blanco JL, Díaz-Nido J. Altered Secretome and ROS Production in Olfactory Mucosa Stem Cells Derived from Friedreich's Ataxia Patients. Int J Mol Sci 2020; 21:ijms21186662. [PMID: 32933002 PMCID: PMC7555998 DOI: 10.3390/ijms21186662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Friedreich’s ataxia is the most common hereditary ataxia for which there is no cure or approved treatment at present. However, therapeutic developments based on the understanding of pathological mechanisms underlying the disease have advanced considerably, with the implementation of cellular models that mimic the disease playing a crucial role. Human olfactory ecto-mesenchymal stem cells represent a novel model that could prove useful due to their accessibility and neurogenic capacity. Here, we isolated and cultured these stem cells from Friedreich´s ataxia patients and healthy donors, characterizing their phenotype and describing disease-specific features such as reduced cell viability, impaired aconitase activity, increased ROS production and the release of cytokines involved in neuroinflammation. Importantly, we observed a positive effect on patient-derived cells, when frataxin levels were restored, confirming the utility of this in vitro model to study the disease. This model will improve our understanding of Friedreich´s ataxia pathogenesis and will help in developing rationally designed therapeutic strategies.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Molecular Genetics Unit, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km 2,200, 28220 Madrid, Spain
| | - Frida Loria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Calle Budapest 1, 28922 Madrid, Spain
- Correspondence: ; Tel.: +34-911-964-594
| | - Yurika Katsu-Jiménez
- Karolinska Institutet, Department of Microbiology Tumor and Cell Biology, Solnaväjen 1, 171 77 Stockholm, Sweden;
| | - Daniel Oberdoerfer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Oscar-Li Yang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Filip Lim
- Department of Molecular Biology, Autonomous University of Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - José Luis Muñoz-Blanco
- Department of Neurology, Hospital Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| |
Collapse
|
6
|
Selective Induction of Human Autonomic Neurons Enables Precise Control of Cardiomyocyte Beating. Sci Rep 2020; 10:9464. [PMID: 32528170 PMCID: PMC7289887 DOI: 10.1038/s41598-020-66303-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
The autonomic nervous system (ANS) regulates tissue homeostasis and remodelling through antagonistic effects of noradrenergic sympathetic and cholinergic parasympathetic signalling. Despite numerous reports on the induction of sympathetic neurons from human pluripotent stem cells (hPSCs), no induction methods have effectively derived cholinergic parasympathetic neurons from hPSCs. Considering the antagonistic effects of noradrenergic and cholinergic inputs on target organs, both sympathetic and parasympathetic neurons are expected to be induced. This study aimed to develop a stepwise chemical induction method to induce sympathetic-like and parasympathetic-like ANS neurons. Autonomic specification was achieved through restricting signals inducing sensory or enteric neurogenesis and activating bone morphogenetic protein (BMP) signals. Global mRNA expression analyses after stepwise induction, including single-cell RNA-seq analysis of induced neurons and functional assays revealed that each induced sympathetic-like or parasympathetic-like neuron acquired pharmacological and electrophysiological functional properties with distinct marker expression. Further, we identified selective induction methods using appropriate seeding cell densities and neurotrophic factor concentrations. Neurons were individually induced, facilitating the regulation of the beating rates of hiPSC-derived cardiomyocytes in an antagonistic manner. The induction methods yield specific neuron types, and their influence on various tissues can be studied by co-cultured assays.
Collapse
|
7
|
Saito-Diaz K, Zeltner N. Induced pluripotent stem cells for disease modeling, cell therapy and drug discovery in genetic autonomic disorders: a review. Clin Auton Res 2019; 29:367-384. [PMID: 30631982 DOI: 10.1007/s10286-018-00587-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
The autonomic nervous system (ANS) regulates all organs in the body independent of consciousness, and is thus essential for maintaining homeostasis of the entire organism. Diseases of the ANS can arise due to environmental insults such as injury, toxins/drugs and infections or due to genetic lesions. Human studies and animal models have been instrumental to understanding connectivity and regulation of the ANS and its disorders. However, research into cellular pathologies and molecular mechanisms of ANS disorders has been hampered by the difficulties in accessing human patient-derived ANS cells in large numbers to conduct meaningful research, mainly because patient neurons cannot be easily biopsied and primary human neuronal cultures cannot be expanded.Human-induced pluripotent stem cell (hiPSC) technology can elegantly bridge these issues, allowing unlimited access of patient-derived ANS cell types for cellular, molecular and biochemical analysis, facilitating the discovery of novel therapeutic targets, and eventually leading to drug discovery. Additionally, such cells may provide a source for cell replacement therapy to replenish lost or injured ANS tissue in patients.Here, we first review the anatomy and embryonic development of the ANS, as this knowledge is crucial for understanding disease modeling approaches. We then review the current advances in human stem cell technology for modeling diseases of the ANS, recent strides toward cell replacement therapy and drug discovery initiatives.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA. .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA. .,Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain. Handb Exp Pharmacol 2018; 246:355-369. [PMID: 29374838 DOI: 10.1007/164_2017_91] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Chronic pain patients are often left with insufficient treatment as the pathophysiology especially of neuropathic pain remains enigmatic. Recently, genetic variations in the genes of the voltage-gated sodium channels (Navs) were linked to inherited neuropathic pain syndromes, opening a research pathway to foster our understanding of the pathophysiology of neuropathic pain. More than 10 years ago, the rare, inherited pain syndrome erythromelalgia was linked to mutations in the subtype Nav1.7, and since then a plethora of mutations and genetic variations in this and other Nav genes were identified. Often the biophysical changes induced by the genetic alteration offer a straightforward explanation for the clinical symptoms, but mutations in some channels, especially Nav1.9, paint a more complex picture. Although efforts were undertaken to significantly advance our knowledge, translation from heterologous or animal model systems to humans remains a challenge. Here we present recent advances in translation using stem cell-derived human sensory neurons and their potential application for identification of better, effective, and more precise treatment for the individual pain patient.
Collapse
|
9
|
Zhu Q, Li M, Yan C, Lu Q, Wei S, Gao R, Yu M, Zou Y, Sriram G, Tong HJ, Hunziker W, Seneviratne CJ, Gong Z, Olsen BR, Cao T. Directed Differentiation of Human Embryonic Stem Cells to Neural Crest Stem Cells, Functional Peripheral Neurons, and Corneal Keratocytes. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Zhu
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Mingming Li
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Chuan Yan
- Department of Biological Sciences; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Qiqi Lu
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Shunhui Wei
- Epithelial Cell Biology Laboratory; Institute of Molecular and Cell Biology; Singapore Singapore
| | - Rong Gao
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Mengfei Yu
- The Affiliated Stomatology Hospital; Zhejiang University; Hangzhou 310003 China
| | - Yu Zou
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Gopu Sriram
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- Institute of Medical Biology; Agency for Science Technology and Research; Singapore Singapore
| | - Huei J. Tong
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Walter Hunziker
- The Affiliated Stomatology Hospital; Zhejiang University; Hangzhou 310003 China
| | | | - Zhiyuan Gong
- Department of Biological Sciences; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Bjorn R. Olsen
- Harvard Medical School, and Harvard School of Dental Medicine; Boston MA 02115 USA
| | - Tong Cao
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
- National University of Singapore Tissue Engineering Program (NUSTEP), Life Sciences Institute; National University of Singapore; Singapore Singapore
| |
Collapse
|
10
|
Animal and cellular models of familial dysautonomia. Clin Auton Res 2017; 27:235-243. [PMID: 28667575 DOI: 10.1007/s10286-017-0438-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Since Riley and Day first described the clinical phenotype of patients with familial dysautonomia (FD) over 60 years ago, the field has made considerable progress clinically, scientifically, and translationally in treating and understanding the etiology of FD. FD is classified as a hereditary sensory and autonomic neuropathy (HSAN type III) and is both a developmental and a progressive neurodegenerative condition that results from an autosomal recessive mutation in the gene IKBKAP, also known as ELP1. FD primarily impacts the peripheral nervous system but also manifests in central nervous system disruption, especially in the retina and optic nerve. While the disease is rare, the rapid progress being made in elucidating the molecular and cellular mechanisms mediating the demise of neurons in FD should provide insight into degenerative pathways common to many neurological disorders. Interestingly, the protein encoded by IKBKAP/ELP1, IKAP or ELP1, is a key scaffolding subunit of the six-subunit Elongator complex, and variants in other Elongator genes are associated with amyotrophic lateral sclerosis (ALS), intellectual disability, and Rolandic epilepsy. Here we review the recent model systems that are revealing the molecular and cellular pathophysiological mechanisms mediating FD. These powerful model systems can now be used to test targeted therapeutics for mitigating neuronal loss in FD and potentially other disorders.
Collapse
|
11
|
Lenk K, Priwitzer B, Ylä-Outinen L, Tietz LHB, Narkilahti S, Hyttinen JAK. Simulation of developing human neuronal cell networks. Biomed Eng Online 2016; 15:105. [PMID: 27576323 PMCID: PMC5006268 DOI: 10.1186/s12938-016-0226-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Background Microelectrode array (MEA) is a widely used technique to study for example the functional properties of neuronal networks derived from human embryonic stem cells (hESC-NN). With hESC-NN, we can investigate the earliest developmental stages of neuronal network formation in the human brain. Methods In this paper, we propose an in silico model of maturating hESC-NNs based on a phenomenological model called INEX. We focus on simulations of the development of bursts in hESC-NNs, which are the main feature of neuronal activation patterns. The model was developed with data from developing hESC-NN recordings on MEAs which showed increase in the neuronal activity during the investigated six measurement time points in the experimental and simulated data. Results Our simulations suggest that the maturation process of hESC-NN, resulting in the formation of bursts, can be explained by the development of synapses. Moreover, spike and burst rate both decreased at the last measurement time point suggesting a pruning of synapses as the weak ones are removed. Conclusions To conclude, our model reflects the assumption that the interaction between excitatory and inhibitory neurons during the maturation of a neuronal network and the spontaneous emergence of bursts are due to increased connectivity caused by the forming of new synapses.
Collapse
Affiliation(s)
- Kerstin Lenk
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, PL100, Tampere, Finland.
| | - Barbara Priwitzer
- Faculty of Engineering and Computer Science, Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046, Cottbus, Germany
| | - Laura Ylä-Outinen
- NeuroGroup, Institute of Biomedical Technology, University of Tampere, BioMediTech, PL100, Tampere, Finland
| | - Lukas H B Tietz
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, PL100, Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, Institute of Biomedical Technology, University of Tampere, BioMediTech, PL100, Tampere, Finland
| | - Jari A K Hyttinen
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, PL100, Tampere, Finland
| |
Collapse
|
12
|
High-throughput platforms for the screening of new therapeutic targets for neurodegenerative diseases. Drug Discov Today 2016; 21:1355-1366. [PMID: 27178019 DOI: 10.1016/j.drudis.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/01/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
Despite the recent progress in the understanding of neurodegenerative disorders, a lack of solid fundamental knowledge on the etiology of many of the major neurodegenerative diseases has made it difficult to obtain effective therapies to treat these conditions. Scientists have been looking to carry out more-human-relevant studies, with strong statistical power, to overcome the limitations of preclinical animal models that have contributed to the failure of numerous therapeutics in clinical trials. Here, we identify currently existing platforms to mimic central nervous system tissues, healthy and diseased, mainly focusing on cell-based platforms and discussing their strengths and limitations in the context of the high-throughput screening of new therapeutic targets and drugs.
Collapse
|
13
|
Lefler S, Cohen MA, Kantor G, Cheishvili D, Even A, Birger A, Turetsky T, Gil Y, Even-Ram S, Aizenman E, Bashir N, Maayan C, Razin A, Reubinoff BE, Weil M. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation. PLoS One 2015; 10:e0138807. [PMID: 26437462 PMCID: PMC4593545 DOI: 10.1371/journal.pone.0138807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/03/2015] [Indexed: 12/21/2022] Open
Abstract
A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.
Collapse
Affiliation(s)
- Sharon Lefler
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Malkiel A Cohen
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Gal Kantor
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - David Cheishvili
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Aviel Even
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Anastasya Birger
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Tikva Turetsky
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Yaniv Gil
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Sharona Even-Ram
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Einat Aizenman
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Nibal Bashir
- Department of Obstetric and Gynecology, Hadassah Hospital Mount Scopus, Hebrew University Medical School, Jerusalem, Israel
| | - Channa Maayan
- Department of Pediatrics, Hadassah Hospital Mount Scopus, Hebrew University Medical School, Jerusalem, Israel
| | - Aharon Razin
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Benjamim E Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Wiethoff S, Arber C, Li A, Wray S, Houlden H, Patani R. Using human induced pluripotent stem cells to model cerebellar disease: hope and hype. J Neurogenet 2015; 29:95-102. [PMID: 25985846 PMCID: PMC4673530 DOI: 10.3109/01677063.2015.1053478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
The cerebellum forms a highly ordered and indispensible component of motor function within the adult neuraxis, consisting of several distinct cellular subtypes. Cerebellar disease, through a variety of genetic and acquired causes, results in the loss of function of defined subclasses of neurons, and remains a significant and untreatable health care burden. The scarcity of therapies in this arena can partially be explained by unresolved disease mechanisms due to inaccessibility of human cerebellar neurons in a relevant experimental context where initiating disease mechanisms could be functionally elucidated, or drug screens conducted. In this review we discuss the potential promise of human induced pluripotent stem cells (hiPSCs) for regenerative neurology, with a particular emphasis on in vitro modelling of cerebellar degeneration. We discuss progress made thus far using hiPSC-based models of neurodegeneration, noting the relatively slower pace of discovery made in modelling cerebellar dysfunction. We conclude by speculating how strategies attempting cerebellar differentiation from hiPSCs can be refined to allow the generation of accurate disease models. This in turn will permit a greater understanding of cerebellar pathophysiology to inform mechanistically rationalised therapies, which are desperately needed in this field.
Collapse
Affiliation(s)
- Sarah Wiethoff
- National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| | - Charles Arber
- Department of Molecular Neuroscience and Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Abi Li
- Department of Molecular Neuroscience and Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Selina Wray
- Department of Molecular Neuroscience and Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Henry Houlden
- National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
| | - Rickie Patani
- National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience and Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Engraftable neural crest stem cells derived from cynomolgus monkey embryonic stem cells. Biomaterials 2015; 39:75-84. [DOI: 10.1016/j.biomaterials.2014.10.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/19/2014] [Indexed: 12/29/2022]
|
16
|
Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons. PLoS One 2014; 9:e113428. [PMID: 25409162 PMCID: PMC4237409 DOI: 10.1371/journal.pone.0113428] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/27/2014] [Indexed: 01/30/2023] Open
Abstract
A splicing mutation in the ikbkap gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we attempted to elucidate the role of IKAP in PNS development in the chick embryo and found that IKAP is required for proper axonal outgrowth, branching, and peripheral target innervation. Moreover, we demonstrate that IKAP colocalizes with activated JNK (pJNK), dynein, and β-tubulin at the axon terminals of dorsal root ganglia (DRG) neurons, and may be involved in transport of specific target derived signals required for transcription of JNK and NGF responsive genes in the nucleus. These results suggest the novel role of IKAP in neuronal transport and specific signaling mediated transcription, and provide, for the first time, the basis for a molecular mechanism behind the FD phenotype.
Collapse
|
17
|
Zhang D, Ighaniyan S, Stathopoulos L, Rollo B, Landman K, Hutson J, Newgreen D. The neural crest: a versatile organ system. ACTA ACUST UNITED AC 2014; 102:275-98. [PMID: 25227568 DOI: 10.1002/bdrc.21081] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023]
Abstract
The neural crest is the name given to the strip of cells at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos, which is later brought to the dorsal neural tube as the neural folds elevate. The neural crest is a heterogeneous and multipotent progenitor cell population whose cells undergo EMT then extensively and accurately migrate throughout the embryo. Neural crest cells contribute to nearly every organ system in the body, with derivatives of neuronal, glial, neuroendocrine, pigment, and also mesodermal lineages. This breadth of developmental capacity has led to the neural crest being termed the fourth germ layer. The neural crest has occupied a prominent place in developmental biology, due to its exaggerated migratory morphogenesis and its remarkably wide developmental potential. As such, neural crest cells have become an attractive model for developmental biologists for studying these processes. Problems in neural crest development cause a number of human syndromes and birth defects known collectively as neurocristopathies; these include Treacher Collins syndrome, Hirschsprung disease, and 22q11.2 deletion syndromes. Tumors in the neural crest lineage are also of clinical importance, including the aggressive melanoma and neuroblastoma types. These clinical aspects have drawn attention to the selection or creation of neural crest progenitor cells, particularly of human origin, for studying pathologies of the neural crest at the cellular level, and also for possible cell therapeutics. The versatility of the neural crest lends itself to interlinked research, spanning basic developmental biology, birth defect research, oncology, and stem/progenitor cell biology and therapy.
Collapse
|
18
|
Srikanth P, Young-Pearse TL. Stem cells on the brain: modeling neurodevelopmental and neurodegenerative diseases using human induced pluripotent stem cells. J Neurogenet 2014; 28:5-29. [PMID: 24628482 PMCID: PMC4285381 DOI: 10.3109/01677063.2014.881358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seven years have passed since the initial report of the generation of induced pluripotent stem cells (iPSCs) from adult human somatic cells, and in the intervening time the field of neuroscience has developed numerous disease models using this technology. Here, we review progress in the field and describe both the advantages and potential pitfalls of modeling neurodegenerative and neurodevelopmental diseases using this technology. We include tables with information on neural differentiation protocols and studies that developed human iPSC lines to model neurological diseases. We also discuss how one can: investigate effects of genetic mutations with iPSCs, examine cell fate-specific phenotypes, best determine the specificity of a phenotype, and bring in vivo relevance to this in vitro technique.
Collapse
Affiliation(s)
- Priya Srikanth
- Center for Neurologic Diseases, Brigham and Women's Hospital , Boston, Massachusetts , USA
| | | |
Collapse
|
19
|
Eigentler A, Boesch S, Schneider R, Dechant G, Nat R. Induced pluripotent stem cells from friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons. Stem Cells Dev 2013; 22:3271-82. [PMID: 23879205 DOI: 10.1089/scd.2013.0126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The value of human disease models, which are based on induced pluripotent stem cells (iPSCs), depends on the capacity to generate specifically those cell types affected by pathology. We describe a new iPSC-based model of Friedreich ataxia (FRDA), an autosomal recessive neurodegenerative disorder with an intronic GAA repeat expansion in the frataxin gene. As the peripheral sensory neurons are particularly susceptible to neurodegeneration in FRDA, we applied a development-based differentiation protocol to generate specifically these cells. FRDA and control iPSC lines were efficiently differentiated toward neural crest progenitors and peripheral sensory neurons. The progress of the cell lines through discrete steps of in vitro differentiation was closely monitored by expression levels of key markers for peripheral neural development. Since it had been suggested that FRDA pathology might start early during ontogenesis, we investigated frataxin expression in our development-related model. A pronounced frataxin deficit was found in FRDA iPSCs and neural crest cells compared to controls. Whereas we identified an upregulation of frataxin expression during sensory specification for control cells, this increase was not observed for FRDA peripheral sensory neurons. This early failure, aggravating frataxin deficiency in a specifically vulnerable human cell population, indicates a developmental component in FRDA.
Collapse
Affiliation(s)
- Andreas Eigentler
- 1 Department of Neurology, Innsbruck Medical University , Innsbruck, Austria
| | | | | | | | | |
Collapse
|
20
|
Gomes CM, Santos R. Neurodegeneration in Friedreich's ataxia: from defective frataxin to oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:487534. [PMID: 23936609 PMCID: PMC3725840 DOI: 10.1155/2013/487534] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/14/2013] [Indexed: 02/08/2023]
Abstract
Friedreich's ataxia is the most common inherited autosomal recessive ataxia and is characterized by progressive degeneration of the peripheral and central nervous systems and cardiomyopathy. This disease is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. This small protein with an α / β sandwich fold undergoes complex processing and imports into the mitochondria, generating isoforms with distinct N-terminal lengths which may underlie different functionalities, also in respect to oligomerization. Missense mutations in the FXN coding region, which compromise protein folding, stability, and function, are found in 4% of FRDA heterozygous patients and are useful to understand how loss of functional frataxin impacts on FRDA physiopathology. In cells, frataxin deficiency leads to pleiotropic phenotypes, including deregulation of iron homeostasis and increased oxidative stress. Increasing amount of data suggest that oxidative stress contributes to neurodegeneration in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cláudio M. Gomes
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2784-505 Oeiras, Portugal
| | - Renata Santos
- Development of the Nervous System, IBENS, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| |
Collapse
|
21
|
Lee KS, Zhou W, Scott-McKean JJ, Emmerling KL, Cai GY, Krah DL, Costa AC, Freed CR, Levin MJ. Human sensory neurons derived from induced pluripotent stem cells support varicella-zoster virus infection. PLoS One 2012; 7:e53010. [PMID: 23285249 PMCID: PMC3532467 DOI: 10.1371/journal.pone.0053010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022] Open
Abstract
After primary infection, varicella-zoster virus (VZV) establishes latency in neurons of the dorsal root and trigeminal ganglia. Many questions concerning the mechanism of VZV pathogenesis remain unanswered, due in part to the strict host tropism and inconsistent availability of human tissue obtained from autopsies and abortions. The recent development of induced pluripotent stem (iPS) cells provides great potential for the study of many diseases. We previously generated human iPS cells from skin fibroblasts by introducing four reprogramming genes with non-integrating adenovirus. In this study, we developed a novel protocol to generate sensory neurons from iPS cells. Human iPS cells were exposed to small molecule inhibitors for 10 days, which efficiently converted pluripotent cells into neural progenitor cells (NPCs). The NPCs were then exposed for two weeks to growth factors required for their conversion to sensory neurons. The iPS cell-derived sensory neurons were characterized by immunocytochemistry, flow cytometry, RT-qPCR, and electrophysiology. After differentiation, approximately 80% of the total cell population expressed the neuron-specific protein, βIII-tubulin. Importantly, 15% of the total cell population co-expressed the markers Brn3a and peripherin, indicating that these cells are sensory neurons. These sensory neurons could be infected by both VZV and herpes simplex virus (HSV), a related alphaherpesvirus. Since limited neuronal populations are capable of supporting the entire VZV and HSV life cycles, our iPS-derived sensory neuron model may prove useful for studying alphaherpesvirus latency and reactivation.
Collapse
Affiliation(s)
- Katherine S Lee
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado Denver, Aurora, Colorado, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stuhlmiller TJ, García-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 2012; 69:3715-37. [PMID: 22547091 PMCID: PMC3478512 DOI: 10.1007/s00018-012-0991-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 01/05/2023]
Abstract
The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.
Collapse
Affiliation(s)
- Timothy J Stuhlmiller
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
23
|
Malgrange B, Borgs L, Grobarczyk B, Purnelle A, Ernst P, Moonen G, Nguyen L. Using human pluripotent stem cells to untangle neurodegenerative disease mechanisms. Cell Mol Life Sci 2011; 68:635-49. [PMID: 20976521 PMCID: PMC11115022 DOI: 10.1007/s00018-010-0557-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/14/2010] [Accepted: 10/04/2010] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders.
Collapse
|
24
|
Boone N, Loriod B, Bergon A, Sbai O, Formisano-Tréziny C, Gabert J, Khrestchatisky M, Nguyen C, Féron F, Axelrod FB, Ibrahim EC. Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One 2010; 5:e15590. [PMID: 21187979 PMCID: PMC3004942 DOI: 10.1371/journal.pone.0015590] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/13/2010] [Indexed: 12/29/2022] Open
Abstract
Background Familial dysautonomia (FD) is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC) from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells. Methodology/Principal Findings We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion):MU (exon 20 skipping) ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation. Conclusions/Significance hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better understand genetic expression and possible therapeutic approaches. This model could also be applied to other neurological genetic diseases.
Collapse
Affiliation(s)
- Nathalie Boone
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | | | - Oualid Sbai
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | - Jean Gabert
- Plateforme Transcriptome, CRO2, Faculté de Médecine, Marseille, France
- Biochemistry and Molecular Biology, Hôpital Nord, AP-HM, Marseille, France
| | - Michel Khrestchatisky
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | - François Féron
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | - Felicia B. Axelrod
- Department of Pediatrics, New York University School of Medicine, New York, New York, United States of America
| | - El Chérif Ibrahim
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
- * E-mail:
| |
Collapse
|
25
|
Goldstein RS. Transplantation of mammalian embryonic stem cells and their derivatives to avian embryos. Stem Cell Rev Rep 2010; 6:473-83. [PMID: 20533000 DOI: 10.1007/s12015-010-9161-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Xenografting of normal and transformed mammalian tissues and cells to chick embryos has been performed for almost 100 years. Embryonic stem cells, derived more than 25 years ago from murine, and more than 10 years ago from human blastocysts, have transformed many fields of biological research. There is a growing body of studies combining these two widely-used experimental systems. This review surveys those reports in which murine or human embryonic stem cells, or differentiated derivatives of these pluripotent stem cells, were transplanted to embryonated chick eggs. Many of these studies have utilized the unique characteristics of both experimental models to obtain answers to developmental questions that are difficult or impossible to approach with xenografting to adult rodents or tissue culture-only techniques.
Collapse
Affiliation(s)
- Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|