1
|
Formstone C, Aldeiri B, Davenport M, Francis-West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2024. [PMID: 39319771 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, UK
| | - Bashar Aldeiri
- Department of Paediatric Surgery, Chelsea and Westminster Hospital, London, UK
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| | | |
Collapse
|
2
|
Liu Y, Chen Y, Duffy CR, VanLeuven AJ, Byers JB, Schriever HC, Ball RE, Carpenter JM, Gunderson CE, Filipov NM, Ma P, Kner PA, Lauderdale JD. Decreased GABA levels during development result in increased connectivity in the larval zebrafish tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612511. [PMID: 39314470 PMCID: PMC11419034 DOI: 10.1101/2024.09.11.612511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
γ-aminobutyric acid (GABA) is an abundant neurotransmitter that plays multiple roles in the vertebrate central nervous system (CNS). In the early developing CNS, GABAergic signaling acts to depolarize cells. It mediates several aspects of neural development, including cell proliferation, neuronal migration, neurite growth, and synapse formation, as well as the development of critical periods. Later in CNS development, GABAergic signaling acts in an inhibitory manner when it becomes the predominant inhibitory neurotransmitter in the brain. This behavior switch occurs due to changes in chloride/cation transporter expression. Abnormalities of GABAergic signaling appear to underlie several human neurological conditions, including seizure disorders. However, the impact of reduced GABAergic signaling on brain development has been challenging to study in mammals. Here we take advantage of zebrafish and light sheet imaging to assess the impact of reduced GABAergic signaling on the functional circuitry in the larval zebrafish optic tectum. Zebrafish have three gad genes: two gad1 paralogs known as gad1a and gad1b, and gad2. The gad1b and gad2 genes are expressed in the developing optic tectum. Null mutations in gad1b significantly reduce GABA levels in the brain and increase electrophysiological activity in the optic tectum. Fast light sheet imaging of genetically encoded calcium indicator (GCaMP)-expressing gab1b null larval zebrafish revealed patterns of neural activity that were different than either gad1b-normal larvae or gad1b-normal larvae acutely exposed to pentylenetetrazole (PTZ). These results demonstrate that reduced GABAergic signaling during development increases functional connectivity and concomitantly hyper-synchronization of neuronal networks.
Collapse
Affiliation(s)
- Yang Liu
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yongkai Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Carly R Duffy
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Ariel J VanLeuven
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - John Branson Byers
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Hannah C Schriever
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca E Ball
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| | - Chelsea E Gunderson
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Peter A Kner
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
4
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
5
|
Ultra-Rare Variants Identify Biological Pathways and Candidate Genes in the Pathobiology of Non-Syndromic Cleft Palate Only. Biomolecules 2023; 13:biom13020236. [PMID: 36830605 PMCID: PMC9953608 DOI: 10.3390/biom13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
In recent decades, many efforts have been made to elucidate the genetic causes of non-syndromic cleft palate (nsCPO), a complex congenital disease caused by the interaction of several genetic and environmental factors. Since genome-wide association studies have evidenced a minor contribution of common polymorphisms in nsCPO inheritance, we used whole exome sequencing data to explore the role of ultra-rare variants in this study. In a cohort of 35 nsCPO cases and 38 controls, we performed a gene set enrichment analysis (GSEA) and a hypergeometric test for assessing significant overlap between genes implicated in nsCPO pathobiology and genes enriched in ultra-rare variants in our cohort. GSEA highlighted an enrichment of ultra-rare variants in genes principally belonging to cytoskeletal protein binding pathway (Probability Density Function corrected p-value = 1.57 × 10-4); protein-containing complex binding pathway (p-value = 1.06 × 10-2); cell adhesion molecule binding pathway (p-value = 1.24 × 10-2); ECM-receptor interaction pathway (p-value = 1.69 × 10-2); and in the Integrin signaling pathway (p-value = 1.28 × 10-2). Two genes implicated in nsCPO pathobiology, namely COL2A1 and GLI3, ranked among the genes (n = 34) with nominal enrichment in the ultra-rare variant collapsing analysis (Fisher's exact test p-value < 0.05). These genes were also part of an independent list of genes highly relevant to nsCPO biology (n = 25). Significant overlap between the two sets of genes (hypergeometric test p-value = 5.86 × 10-3) indicated that enriched genes are likely to be implicated in physiological palate development and/or the pathological processes of oral clefting. In conclusion, ultra-rare variants collectively impinge on biological pathways crucial to nsCPO pathobiology and point to candidate genes that may contribute to the individual risk of disease. Sequencing can be an effective approach to identify candidate genes and pathways for nsCPO.
Collapse
|
6
|
Suzuki A, Iwata J. Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone 2021; 146:115881. [PMID: 33578033 PMCID: PMC8462526 DOI: 10.1016/j.bone.2021.115881] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Bone is an active organ that is continuously remodeled throughout life via formation and resorption; therefore, a fine-tuned bone (re)modeling is crucial for bone homeostasis and is closely connected with energy metabolism. Amino acids are essential for various cellular functions as well as an energy source, and their synthesis and catabolism (e.g., metabolism of carbohydrates and fatty acids) are regulated through numerous enzymatic cascades. In addition, the intracellular levels of amino acids are maintained by autophagy, a cellular recycling system for proteins and organelles; under nutrient deprivation conditions, autophagy is strongly induced to compensate for cellular demands and to restore the amino acid pool. Metabolites derived from amino acids are known to be precursors of bioactive molecules such as second messengers and neurotransmitters, which control various cellular processes, including cell proliferation, differentiation, and homeostasis. Thus, amino acid metabolism and autophagy are tightly and reciprocally regulated in our bodies. This review discusses the current knowledge and potential links between bone diseases and deficiencies in amino acid metabolism and autophagy.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Han W, Shepard RD, Lu W. Regulation of GABA ARs by Transmembrane Accessory Proteins. Trends Neurosci 2021; 44:152-165. [PMID: 33234346 PMCID: PMC7855156 DOI: 10.1016/j.tins.2020.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Neuray C, Maroofian R, Scala M, Sultan T, Pai GS, Mojarrad M, Khashab HE, deHoll L, Yue W, Alsaif HS, Zanetti MN, Bello O, Person R, Eslahi A, Khazaei Z, Feizabadi MH, Efthymiou S, El-Bassyouni HT, Soliman DR, Tekes S, Ozer L, Baltaci V, Khan S, Beetz C, Amr KS, Salpietro V, Jamshidi Y, Alkuraya FS, Houlden H. Early-infantile onset epilepsy and developmental delay caused by bi-allelic GAD1 variants. Brain 2020; 143:2388-2397. [PMID: 32705143 PMCID: PMC7447512 DOI: 10.1093/brain/awaa178] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/31/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) and glutamate are the most abundant amino acid neurotransmitters in the brain. GABA, an inhibitory neurotransmitter, is synthesized by glutamic acid decarboxylase (GAD). Its predominant isoform GAD67, contributes up to ∼90% of base-level GABA in the CNS, and is encoded by the GAD1 gene. Disruption of GAD1 results in an imbalance of inhibitory and excitatory neurotransmitters, and as Gad1-/- mice die neonatally of severe cleft palate, it has not been possible to determine any potential neurological dysfunction. Furthermore, little is known about the consequence of GAD1 disruption in humans. Here we present six affected individuals from six unrelated families, carrying bi-allelic GAD1 variants, presenting with developmental and epileptic encephalopathy, characterized by early-infantile onset epilepsy and hypotonia with additional variable non-CNS manifestations such as skeletal abnormalities, dysmorphic features and cleft palate. Our findings highlight an important role for GAD1 in seizure induction, neuronal and extraneuronal development, and introduce GAD1 as a new gene associated with developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Caroline Neuray
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Reza Maroofian
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marcello Scala
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Tipu Sultan
- Department of Pediatric Neurology, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | | | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Heba El Khashab
- Department of Pediatrics, Children's Hospital, Ain Shams University, Cairo, Egypt.,Department of Pediatrics, Dr. Suliman Al Habib Medical Group, Riyadh, Saudi Arabia
| | | | - Wyatt Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Hessa S Alsaif
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria N Zanetti
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Oscar Bello
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | | | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Masoumeh H Feizabadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephanie Efthymiou
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | | | - Doaa R Soliman
- Department of Pediatrics, Faculty of Medicine, Benha University, Benha, Egypt
| | - Selahattin Tekes
- Dicle University, School of Medicine, Department of Medical Genetics, Diyarbakir, Turkey
| | - Leyla Ozer
- Yuksek Ihtisas University, School of Medicine, Department of Medical Genetics, Ankara, Turkey
| | | | | | | | - Khalda S Amr
- Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Vincenzo Salpietro
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Yalda Jamshidi
- Molecular and Clinical Sciences Institute St George's, University of London, UK
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center Riyadh, Saudi Arabia
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
9
|
Chatron N, Becker F, Morsy H, Schmidts M, Hardies K, Tuysuz B, Roselli S, Najafi M, Alkaya DU, Ashrafzadeh F, Nabil A, Omar T, Maroofian R, Karimiani EG, Hussien H, Kok F, Ramos L, Gunes N, Bilguvar K, Labalme A, Alix E, Sanlaville D, de Bellescize J, Poulat AL, Moslemi AR, Lerche H, May P, Lesca G, Weckhuysen S, Tajsharghi H. Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy. Brain 2020; 143:1447-1461. [PMID: 32282878 PMCID: PMC7241960 DOI: 10.1093/brain/awaa085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/13/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele.
Collapse
Affiliation(s)
- Nicolas Chatron
- Genetics Department, Lyon University Hospital, Lyon, France.,Institut NeuroMyoGène CNRS UMR 5310 - INSERM U1217 Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Felicitas Becker
- Department of Neurology, University of Ulm, Ulm, Germany.,University of Tübingen, Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Heba Morsy
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands.,Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany
| | - Katia Hardies
- Neurogenetics Group, VIB-Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Medical Faculty, Istanbul, Turkey
| | - Sandra Roselli
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | - Maryam Najafi
- Genome Research Division, Human Genetics Department, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands
| | - Dilek Uludag Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Medical Faculty, Istanbul, Turkey
| | - Farah Ashrafzadeh
- Department of Paediatric Neurology, Ghaem Medical Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amira Nabil
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek Omar
- Pediatrics Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Innovative medical research center, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | - Haytham Hussien
- Pediatrics Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fernando Kok
- Universidade de Sao Paulo Faculdade de Medicina, Sao Paulo, SP, Brazil
| | - Luiza Ramos
- Universidade de Sao Paulo Faculdade de Medicina, Sao Paulo, SP, Brazil
| | - Nilay Gunes
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Medical Faculty, Istanbul, Turkey
| | - Kaya Bilguvar
- Department of Genetics, Yale Center for Genome Analysis (YCGA), Yale University, School of Medicine, New Haven, Connecticut
| | - Audrey Labalme
- Genetics Department, Lyon University Hospital, Lyon, France
| | - Eudeline Alix
- Genetics Department, Lyon University Hospital, Lyon, France
| | - Damien Sanlaville
- Institut NeuroMyoGène CNRS UMR 5310 - INSERM U1217 Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Julitta de Bellescize
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, ERN EpiCARE, University Hospitals of Lyon, Lyon, France
| | - Anne-Lise Poulat
- Department of Pediatric Neurology, Lyon University Hospital, Lyon, France
| | | | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | - Holger Lerche
- University of Tübingen, Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Patrick May
- Luxemburg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Gaetan Lesca
- Genetics Department, Lyon University Hospital, Lyon, France.,Institut NeuroMyoGène CNRS UMR 5310 - INSERM U1217 Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Weckhuysen
- Neurogenetics Group, VIB-Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Homa Tajsharghi
- School of Health Sciences, Division Biomedicine, University of Skovde, Skovde, Sweden
| |
Collapse
|
10
|
Friedl RM, Raja S, Metzler MA, Patel ND, Brittian KR, Jones SP, Sandell LL. RDH10 function is necessary for spontaneous fetal mouth movement that facilitates palate shelf elevation. Dis Model Mech 2019; 12:12/7/dmm039073. [PMID: 31300413 PMCID: PMC6679383 DOI: 10.1242/dmm.039073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Cleft palate is a common birth defect, occurring in approximately 1 in 1000 live births worldwide. Known etiological mechanisms of cleft palate include defects within developing palate shelf tissues, defects in mandibular growth and defects in spontaneous fetal mouth movement. Until now, experimental studies directly documenting fetal mouth immobility as an underlying cause of cleft palate have been limited to models lacking neurotransmission. This study extends the range of anomalies directly demonstrated to have fetal mouth movement defects correlated with cleft palate. Here, we show that mouse embryos deficient in retinoic acid (RA) have mispatterned pharyngeal nerves and skeletal elements that block spontaneous fetal mouth movement in utero. Using X-ray microtomography, in utero ultrasound video, ex vivo culture and tissue staining, we demonstrate that proper retinoid signaling and pharyngeal patterning are crucial for the fetal mouth movement needed for palate formation. Embryos with deficient retinoid signaling were generated by stage-specific inactivation of retinol dehydrogenase 10 (Rdh10), a gene crucial for the production of RA during embryogenesis. The finding that cleft palate in retinoid deficiency results from a lack of fetal mouth movement might help elucidate cleft palate etiology and improve early diagnosis in human disorders involving defects of pharyngeal development. Summary: Fetal mouth immobility and defects in pharyngeal patterning underlie cleft palate in retinoid-deficient Rdh10 mutant mouse embryos.
Collapse
Affiliation(s)
- Regina M Friedl
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Swetha Raja
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Niti D Patel
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Kenneth R Brittian
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Steven P Jones
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Yu K, Yonemitsu MA. In Vitro Analysis of Palatal Shelf Elevation During Secondary Palate Formation. Anat Rec (Hoboken) 2019; 302:1594-1604. [PMID: 30730607 DOI: 10.1002/ar.24076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023]
Abstract
Palatal shelf elevation is an essential morphogenetic process during secondary palate formation. It has been proposed that shelf elevation results from an intrinsic elevating force and is regulated by extrinsic factors that are associated with development of other orofacial structures. Although dynamic palate culture is a common in vitro approach for studying shelf elevation, it requires the tongue or the tongue and mandible to be removed before culture, which prevents any determination of the role of the extrinsic factors in regulating shelf elevation. We showed that ex vivo removal of the tongue and mandible from unfixed embryonic heads led to spontaneous shelf movements that were more pronounced at late E13.5 and early E14.5 than those of E12.5 and early E13.5, suggesting that the strength of the elevating force increases over time during palate development. We further used a suspension culture technique to analyze palatal shelf movement in an intact oral cavity by culturing the orofacial portion of embryonic heads that include the maxilla, palatal shelves, mandible, and tongue (MPMT). MPMT explants were cultured in the serum-free medium with slow rotation for 24-48 hr. The palatal shelves successfully elevated during culture and displayed intermediate morphologies that closely resemble those of in vivo shelf elevation. We demonstrate that the tongue and mandible facilitate shelf medial movement/growth during shelf elevation and further suggest that the interaction of the palatal shelves and tongue could be one of the extrinsic factors that regulate the elevation process. Anat Rec, 302:1594-1604, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Kai Yu
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Marisa A Yonemitsu
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
12
|
Determinants of orofacial clefting I: Effects of 5-Aza-2'-deoxycytidine on cellular processes and gene expression during development of the first branchial arch. Reprod Toxicol 2016; 67:85-99. [PMID: 27915011 DOI: 10.1016/j.reprotox.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022]
Abstract
In this study, we identify gene targets and cellular events mediating the teratogenic action(s) of 5-Aza-2'-deoxycytidine (AzaD), an inhibitor of DNA methylation, on secondary palate development. Exposure of pregnant mice (on gestation day (GD) 9.5) to AzaD for 12h resulted in the complete penetrance of cleft palate (CP) in fetuses. Analysis of cells of the embryonic first branchial arch (1-BA), in fetuses exposed to AzaD, revealed: 1) significant alteration in expression of genes encoding several morphogenetic factors, cell cycle inhibitors and regulators of apoptosis; 2) a decrease in cell proliferation; and, 3) an increase in apoptosis. Pyrosequencing of selected genes, displaying pronounced differential expression in AzaD-exposed 1-BAs, failed to reveal significant alterations in CpG methylation levels in their putative promoters or gene bodies. CpG methylation analysis suggested that the effects of AzaD on gene expression were likely indirect.
Collapse
|
13
|
Hozyasz KK, Mostowska A, Wójcicki P, Lasota A, Zadurska M, Dunin-Wilczyńska I, Jagodziński PP. Nucleotide Variants of the BH4 Biosynthesis Pathway Gene GCH1 and the Risk of Orofacial Clefts. Mol Neurobiol 2016; 53:769-776. [PMID: 26215833 PMCID: PMC4703629 DOI: 10.1007/s12035-015-9342-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
Abstract
A deficiency of GTP cyclohydrolase, encoded by the GCH1 gene, results in two neurological diseases: hyperphenylalaninaemia type HPABH4B and DOPA-responsive dystonia. Genes involved in neurotransmitter metabolism and motor systems may contribute to palatogenesis. The purpose of the study was to analyse polymorphic variants of the GCH1 gene as risk factors for non-syndromic cleft lip with or without cleft palate (NSCL/P). Genotyping of nine polymorphisms was conducted in a group of 281 NSCL/P patients and 574 controls. The GCH1 variant rs17128077 was associated with a 1.7-fold higher risk for NSCL/P (95 %CI = 1.224-2.325; p = 0.001). We also found a significant correlation between the rs8004018 and rs17128050 variants and an increased risk of oral clefts (p trend = 0.003 and 0.004, respectively). The best evidence of the global haplotype association was observed for rs17128050 and rs8004018 (p corr = 0.0152). This study demonstrates that the risk of NSCL/P is associated with variants of the GCH1 gene related to BH4 metabolism and provides some evidence of the relationships between morphological/functional shifts in the central nervous system and orofacial clefts.
Collapse
Affiliation(s)
- Kamil K Hozyasz
- Department of Paediatrics, Institute of Mother and Child, 17a Kasprzaka Str., 01-211, Warsaw, Poland.
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Agnieszka Lasota
- Department of Jaw Orthopaedics, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Zadurska
- Department of Orthodontics, Institute of Dentistry, The Medical University of Warsaw, Warsaw, Poland
| | | | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
Funato N, Nakamura M, Yanagisawa H. Molecular basis of cleft palates in mice. World J Biol Chem 2015; 6:121-138. [PMID: 26322171 PMCID: PMC4549757 DOI: 10.4331/wjbc.v6.i3.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
Cleft palate, including complete or incomplete cleft palates, soft palate clefts, and submucosal cleft palates, is the most frequent congenital craniofacial anomaly in humans. Multifactorial conditions, including genetic and environmental factors, induce the formation of cleft palates. The process of palatogenesis is temporospatially regulated by transcription factors, growth factors, extracellular matrix proteins, and membranous molecules; a single ablation of these molecules can result in a cleft palate in vivo. Studies on knockout mice were reviewed in order to identify genetic errors that lead to cleft palates. In this review, we systematically describe these mutant mice and discuss the molecular mechanisms of palatogenesis.
Collapse
|
15
|
GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice. Neuroscience 2015; 288:86-93. [DOI: 10.1016/j.neuroscience.2014.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 12/24/2022]
|
16
|
Genetics of cleft lip and/or cleft palate: Association with other common anomalies. Eur J Med Genet 2014; 57:381-93. [DOI: 10.1016/j.ejmg.2014.04.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
|
17
|
Genetic ablation of VIAAT in glycinergic neurons causes a severe respiratory phenotype and perinatal death. Brain Struct Funct 2014; 220:2835-49. [PMID: 25027639 DOI: 10.1007/s00429-014-0829-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/21/2014] [Indexed: 12/14/2022]
Abstract
Both glycinergic and GABAergic neurons require the vesicular inhibitory amino acid transporter (VIAAT) for synaptic vesicle filling. Presynaptic GABA concentrations are determined by the GABA-synthesizing enzymes glutamate decarboxylase (GAD)65 and GAD67, whereas the presynaptic glycine content depends on the plasma membrane glycine transporter 2 (GlyT2). Although severely impaired, glycinergic transmission is not completely absent in GlyT2-knockout mice, suggesting that other routes of glycine uptake or de novo synthesis of glycine exist in presynaptic terminals. To investigate the consequences of a complete loss of glycinergic transmission, we generated a mouse line with a conditional ablation of VIAAT in glycinergic neurons by crossing mice with loxP-flanked VIAAT alleles with a GlyT2-Cre transgenic mouse line. Interestingly, conditional VIAAT knockout (VIAAT cKO) mice were not viable at birth. In addition to the dominant respiratory failure, VIAAT cKO showed an umbilical hernia and a cleft palate. Immunohistochemistry revealed an almost complete depletion of VIAAT in the brainstem. Electrophysiology revealed the absence of both spontaneous glycinergic and GABAergic inhibitory postsynaptic currents from hypoglossal motoneurons. Our results demonstrate that the deletion of VIAAT in GlyT2-Cre expressing neurons also strongly affects GABAergic transmission and suggest a large overlap of the glycinergic and the GABAergic neuron population during early development in the caudal parts of the brain.
Collapse
|
18
|
Ohtsuka N, Badurek S, Busslinger M, Benes FM, Minichiello L, Rudolph U. GABAergic neurons regulate lateral ventricular development via transcription factor Pax5. Genesis 2013; 51:234-45. [PMID: 23349049 DOI: 10.1002/dvg.22370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 12/27/2022]
Abstract
Postmortem studies have revealed a downregulation of the transcription factor Pax5 in GABAergic neurons in bipolar disorder, a neurodevelopmental disorder, raising the question whether Pax5 in GABAergic neurons has a role in normal brain development. In a genetic approach to study functions of Pax5 in GABAergic neurons, Pax5 was specifically deleted in GABAergic neurons from Pax5 floxed mice using a novel Gad1-Cre transgenic mouse line expressing Cre recombinase in Gad1-positive, that is, GABAergic neurons. Surprisingly, these mice developed a marked enlargement of the lateral ventricles at approximately 7 weeks of age, which was lethal within 1-2 weeks of its appearance. This hydrocephalus phenotype was observed in mice homozygous or heterozygous for the Pax5 conditional knockout, with a gene dosage-dependent penetrance. By QTL (quantitative trait loci) mapping, a 3.5 Mb segment on mouse chromosome 4 flanked by markers D4Mit237 and D4Mit214 containing approximately 92 genes including Pax5 has previously been linked to differences in lateral ventricular size. Our findings are consistent with Pax5 being a relevant gene underlying this QTL phenotype and demonstrate that Pax5 in GABAergic neurons is essential for normal ventricular development.
Collapse
Affiliation(s)
- Nobuhisa Ohtsuka
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Obata K. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:139-56. [PMID: 23574805 PMCID: PMC3669732 DOI: 10.2183/pjab.89.139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/25/2013] [Indexed: 05/26/2023]
Abstract
Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented.
Collapse
Affiliation(s)
- Kunihiko Obata
- National Institute for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
20
|
Casoni F, Ian Hutchins B, Donohue D, Fornaro M, Condie BG, Wray S. SDF and GABA interact to regulate axophilic migration of GnRH neurons. J Cell Sci 2012; 125:5015-25. [PMID: 22976302 PMCID: PMC3533389 DOI: 10.1242/jcs.101675] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 12/13/2022] Open
Abstract
Stromal derived growth factor (SDF-1) and gamma-aminobutyric acid (GABA) are two extracellular cues that regulate the rate of neuronal migration during development and may act synergistically. The molecular mechanisms of this interaction are still unclear. Gonadotropin releasing hormone-1 (GnRH) neurons are essential for vertebrate reproduction. During development, these neurons emerge from the nasal placode and migrate through the cribriform plate into the brain. Both SDF-1 and GABA have been shown to regulate the rate of GnRH neuronal migration by accelerating and slowing migration, respectively. As such, this system was used to explore the mechanism by which these molecules act to produce coordinated cell movement during development. In the present study, GABA and SDF-1 are shown to exert opposite effects on the speed of cell movement by activating depolarizing or hyperpolarizing signaling pathways, GABA via changes in chloride and SDF-1 via changes in potassium. GABA and SDF-1 were also found to act synergistically to promote linear rather than random movement. The simultaneous activation of these signaling pathways, therefore, results in tight control of cellular speed and improved directionality along the migratory pathway of GnRH neurons.
Collapse
Affiliation(s)
- Filippo Casoni
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
| | - B. Ian Hutchins
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
| | - Duncan Donohue
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
| | - Michele Fornaro
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
- Department of Anatomy, Midwestern University, Downers Grove, Illinois, USA
| | - Brian G. Condie
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
| |
Collapse
|