1
|
Singh S, Granek R. Active fractal networks with stochastic force monopoles and force dipoles: Application to subdiffusion of chromosomal loci. CHAOS (WOODBURY, N.Y.) 2024; 34:113107. [PMID: 39485136 DOI: 10.1063/5.0227341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
Motivated by the well-known fractal packing of chromatin, we study the Rouse-type dynamics of elastic fractal networks with embedded, stochastically driven, active force monopoles and force dipoles that are temporally correlated. We compute, analytically-using a general theoretical framework-and via Langevin dynamics simulations, the mean square displacement (MSD) of a network bead. Following a short-time superdiffusive behavior, force monopoles yield anomalous subdiffusion with an exponent identical to that of the thermal system. In contrast, force dipoles do not induce subdiffusion, and the early superdiffusive MSD crosses over to a relatively small, system-size-independent saturation value. In addition, we find that force dipoles may lead to "crawling" rotational motion of the whole network, reminiscent of that found for triangular micro-swimmers and consistent with general theories of the rotation of deformable bodies. Moreover, force dipoles lead to network collapse beyond a critical force strength, which persists with increasing system size, signifying a true first-order dynamical phase transition. We apply our results to the motion of chromosomal loci in bacteria and yeast cells' chromatin, where anomalous sub-diffusion, MSD∼tν with ν≃0.4, was found in both normal and cells depleted of adenosine triphosphate (ATP), albeit with different apparent diffusion coefficients. We show that the combination of thermal, monopolar, and dipolar forces in chromatin is typically dominated by the active monopolar and thermal forces, explaining the observed normal cells vs the ATP-depleted cells behavior.
Collapse
Affiliation(s)
- Sadhana Singh
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rony Granek
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Physics, and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
2
|
Luo X, Bao JD, Fan WY. Multiple diffusive behaviors of the random walk in inhomogeneous environments. Phys Rev E 2024; 109:014130. [PMID: 38366502 DOI: 10.1103/physreve.109.014130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
Anomalous diffusive behaviors are observed in highly inhomogeneous but relatively stable environments such as intracellular media and are increasingly attracting attention. In this paper we develop a coupled continuous-time random walk model in which the waiting time is power-law coupled with the local environmental diffusion coefficient. We provide two forms of the waiting time density, namely, a heavy-tailed density and an exponential density. For different waiting time densities, anomalous diffusions with the diffusion exponent between 0 and 2 and Brownian yet non-Gaussian diffusion can be realized within the present model. The diffusive behaviors are analyzed and discussed by deriving the mean-squared displacement and probability density function. In addition we derive the effective jump length density corresponding to the decoupled form to help distinguish the diffusion types. Our model unifies two kinds of anomalous diffusive behavior with different characteristics in the same inhomogeneous environment into a theoretical framework. The model interprets the random motion of particles in a complex inhomogeneous environment and reproduces the experimental results of different biological and physical systems.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jing-Dong Bao
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen-Yue Fan
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
3
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. E-cadherin adhesion dynamics as revealed by an accelerated force ramp are dependent upon the presence of α-catenin. Biochem Biophys Res Commun 2023; 682:308-315. [PMID: 37837751 PMCID: PMC10615569 DOI: 10.1016/j.bbrc.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA; Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
4
|
Nakul U, Roy S, Nalupurackal G, Chakraborty S, Siwach P, Goswami J, Edwina P, Bajpai SK, Singh R, Roy B. Studying fluctuating trajectories of optically confined passive tracers inside cells provides familiar active forces. BIOMEDICAL OPTICS EXPRESS 2023; 14:5440. [PMID: 37810271 PMCID: PMC7615170 DOI: 10.1364/boe.499990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
In recent years, there has been a growing interest in studying the trajectories of microparticles inside living cells. Among other things, such studies are useful in understanding the spatio-temporal properties of a cell. In this work, we study the stochastic trajectories of a passive microparticle inside a cell using experiments and theory. Our theory is based on modeling the microparticle inside a cell as an active particle in a viscoelastic medium. The activity is included in our model from an additional stochastic term with non-zero persistence in the Langevin equation describing the dynamics of the microparticle. Using this model, we are able to predict the power spectral density (PSD) measured in the experiment and compute active forces. This caters to the situation where a tracer particle is optically confined and then yields a PSD for positional fluctuations. The low frequency part of the PSD yields information about the active forces that the particle feels. The fit to the model extracts such active force. Thus, we can conclude that trapping the particle does not affect the values of the forces extracted from the active fits if accounted for appropriately by proper theoretical models. In addition, the fit also provides system properties and optical tweezers trap stiffness.
Collapse
Affiliation(s)
- Urvashi Nakul
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Srestha Roy
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Gokul Nalupurackal
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Snigdhadev Chakraborty
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Priyanka Siwach
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Jayesh Goswami
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Privita Edwina
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
- Department of Applied Mechanics, IIT Madras, Chennai 600036, India
| | | | - Rajesh Singh
- Department of Physics, IIT Madras, Chennai 600036, India
| | - Basudev Roy
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| |
Collapse
|
5
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. α-Catenin Dependent E-cadherin Adhesion Dynamics as Revealed by an Accelerated Force Ramp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550975. [PMID: 37645773 PMCID: PMC10461907 DOI: 10.1101/2023.07.28.550975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
- Bioengineering, George Mason University, Fairfax, VA 22030
| | - Jolene I. Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
6
|
Liang Y, Wang W, Metzler R. Anomalous diffusion, non-Gaussianity, and nonergodicity for subordinated fractional Brownian motion with a drift. Phys Rev E 2023; 108:024143. [PMID: 37723819 DOI: 10.1103/physreve.108.024143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023]
Abstract
The stochastic motion of a particle with long-range correlated increments (the moving phase) which is intermittently interrupted by immobilizations (the trapping phase) in a disordered medium is considered in the presence of an external drift. In particular, we consider trapping events whose times follow a scale-free distribution with diverging mean trapping time. We construct this process in terms of fractional Brownian motion with constant forcing in which the trapping effect is introduced by the subordination technique, connecting "operational time" with observable "real time." We derive the statistical properties of this process such as non-Gaussianity and nonergodicity, for both ensemble and single-trajectory (time) averages. We demonstrate nice agreement with extensive simulations for the probability density function, skewness, kurtosis, as well as ensemble and time-averaged mean-squared displacements. We place a specific emphasis on the comparisons between the cases with and without drift.
Collapse
Affiliation(s)
- Yingjie Liang
- College of Mechanics and Materials, Hohai University, 211100 Nanjing, China
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
| | - Wei Wang
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
7
|
Lee S, Jiao M, Zhang Z, Yu Y. Nanoparticles for Interrogation of Cell Signaling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:333-351. [PMID: 37314874 PMCID: PMC10627408 DOI: 10.1146/annurev-anchem-092822-085852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell functions rely on signal transduction-the cascades of molecular interactions and biochemical reactions that relay extracellular signals to the cell interior. Dissecting principles governing the signal transduction process is critical for the fundamental understanding of cell physiology and the development of biomedical interventions. The complexity of cell signaling is, however, beyond what is accessible by conventional biochemistry assays. Thanks to their unique physical and chemical properties, nanoparticles (NPs) have been increasingly used for the quantitative measurement and manipulation of cell signaling. Even though research in this area is still in its infancy, it has the potential to yield new, paradigm-shifting knowledge of cell biology and lead to biomedical innovations. To highlight this importance, we summarize in this review studies that pioneered the development and application of NPs for cell signaling, from quantitative measurements of signaling molecules to spatiotemporal manipulation of cell signal transduction.
Collapse
Affiliation(s)
- Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
8
|
Erlich A, Étienne J, Fouchard J, Wyatt T. How dynamic prestress governs the shape of living systems, from the subcellular to tissue scale. Interface Focus 2022; 12:20220038. [PMID: 36330322 PMCID: PMC9560792 DOI: 10.1098/rsfs.2022.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 10/16/2023] Open
Abstract
Cells and tissues change shape both to carry out their function and during pathology. In most cases, these deformations are driven from within the systems themselves. This is permitted by a range of molecular actors, such as active crosslinkers and ion pumps, whose activity is biologically controlled in space and time. The resulting stresses are propagated within complex and dynamical architectures like networks or cell aggregates. From a mechanical point of view, these effects can be seen as the generation of prestress or prestrain, resulting from either a contractile or growth activity. In this review, we present this concept of prestress and the theoretical tools available to conceptualize the statics and dynamics of living systems. We then describe a range of phenomena where prestress controls shape changes in biopolymer networks (especially the actomyosin cytoskeleton and fibrous tissues) and cellularized tissues. Despite the diversity of scale and organization, we demonstrate that these phenomena stem from a limited number of spatial distributions of prestress, which can be categorized as heterogeneous, anisotropic or differential. We suggest that in addition to growth and contraction, a third type of prestress-topological prestress-can result from active processes altering the microstructure of tissue.
Collapse
Affiliation(s)
| | - Jocelyn Étienne
- Université Grenoble Alpes, CNRS, LIPHY, 38000 Grenoble, France
| | - Jonathan Fouchard
- Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS (UMR 7622), INSERM (URL 1156), 7 quai Saint Bernard, 75005 Paris, France
| | - Tom Wyatt
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Mao Y, Nielsen P, Ali J. Passive and Active Microrheology for Biomedical Systems. Front Bioeng Biotechnol 2022; 10:916354. [PMID: 35866030 PMCID: PMC9294381 DOI: 10.3389/fbioe.2022.916354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Collapse
Affiliation(s)
- Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Paige Nielsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| |
Collapse
|
10
|
Shi Y, Sivarajan S, Xiang KM, Kostecki GM, Tung L, Crocker JC, Reich DH. Pervasive cytoquakes in the actomyosin cortex across cell types and substrate stiffness. Integr Biol (Camb) 2021; 13:246-257. [PMID: 34875067 DOI: 10.1093/intbio/zyab017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
The actomyosin cytoskeleton enables cells to resist deformation, crawl, change their shape and sense their surroundings. Despite decades of study, how its molecular constituents can assemble together to form a network with the observed mechanics of cells remains poorly understood. Recently, it has been shown that the actomyosin cortex of quiescent cells can undergo frequent, abrupt reconfigurations and displacements, called cytoquakes. Notably, such fluctuations are not predicted by current physical models of actomyosin networks, and their prevalence across cell types and mechanical environments has not previously been studied. Using micropost array detectors, we have performed high-resolution measurements of the dynamic mechanical fluctuations of cells' actomyosin cortex and stress fiber networks. This reveals cortical dynamics dominated by cytoquakes-intermittent events with a fat-tailed distribution of displacements, sometimes spanning microposts separated by 4 μm, in all cell types studied. These included 3T3 fibroblasts, where cytoquakes persisted over substrate stiffnesses spanning the tissue-relevant range of 4.3 kPa-17 kPa, and primary neonatal rat cardiac fibroblasts and myofibroblasts, human embryonic kidney cells and human bone osteosarcoma epithelial (U2OS) cells, where cytoquakes were observed on substrates in the same stiffness range. Overall, these findings suggest that the cortex self-organizes into a marginally stable mechanical state whose physics may contribute to cell mechanical properties, active behavior and mechanosensing.
Collapse
Affiliation(s)
- Yu Shi
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shankar Sivarajan
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Katherine M Xiang
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Geran M Kostecki
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - John C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel H Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Goychuk I, Pöschel T. Fingerprints of viscoelastic subdiffusion in random environments: Revisiting some experimental data and their interpretations. Phys Rev E 2021; 104:034125. [PMID: 34654105 DOI: 10.1103/physreve.104.034125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022]
Abstract
Many experimental studies revealed subdiffusion of various nanoparticles in diverse polymer and colloidal solutions, cytosol and plasma membrane of biological cells, which are viscoelastic and, at the same time, highly inhomogeneous randomly fluctuating environments. The observed subdiffusion often combines features of ergodic fractional Brownian motion (reflecting viscoelasticity) and nonergodic jumplike non-Markovian diffusional processes (reflecting disorder). Accordingly, several theories were proposed to explain puzzling experimental findings. Below we show that some of the significant and profound published experimental results are better rationalized within the viscoelastic subdiffusion approach in random environments, which is based on generalized Langevin dynamics in random potentials, than some earlier proposed theories.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Multiscale Simulation, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Thorsten Pöschel
- Institute for Multiscale Simulation, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
12
|
Åberg C, Poolman B. Glass-like characteristics of intracellular motion in human cells. Biophys J 2021; 120:2355-2366. [PMID: 33887228 DOI: 10.1016/j.bpj.2021.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
The motion in the cytosol of microorganisms such as bacteria and yeast has been observed to undergo a dramatic slowing down upon cell energy depletion. These observations have been interpreted as the motion being "glassy," but whether this notion is useful also for active, motor-protein-driven transport in eukaryotic cells is less clear. Here, we use fluorescence microscopy of beads in human (HeLa) cells to probe the motion of membrane-surrounded structures that are carried along the cytoskeleton by motor proteins. Evaluating several hallmarks of glassy dynamics, we show that at short length scales, the motion is heterogeneous, is nonergodic, is well described by a model for the displacement distribution in glassy systems, and exhibits a decoupling of the exchange and persistence times. Overall, these results suggest that the short length scale behavior of objects that can be transported actively by motor proteins in human cells shares features with the motion in glassy systems.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Wang W, Cherstvy AG, Liu X, Metzler R. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise. Phys Rev E 2020; 102:012146. [PMID: 32794926 DOI: 10.1103/physreve.102.012146] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
Heterogeneous diffusion processes (HDPs) feature a space-dependent diffusivity of the form D(x)=D_{0}|x|^{α}. Such processes yield anomalous diffusion and weak ergodicity breaking, the asymptotic disparity between ensemble and time averaged observables, such as the mean-squared displacement. Fractional Brownian motion (FBM) with its long-range correlated yet Gaussian increments gives rise to anomalous and ergodic diffusion. Here, we study a combined model of HDPs and FBM to describe the particle dynamics in complex systems with position-dependent diffusivity driven by fractional Gaussian noise. This type of motion is, inter alia, relevant for tracer-particle diffusion in biological cells or heterogeneous complex fluids. We show that the long-time scaling behavior predicted theoretically and by simulations for the ensemble- and time-averaged mean-squared displacements couple the scaling exponents α of HDPs and the Hurst exponent H of FBM in a characteristic way. Our analysis of the simulated data in terms of the rescaled variable y∼|x|^{1/(2/(2-α))}/t^{H} coupling particle position x and time t yields a simple, Gaussian probability density function (PDF), P_{HDP-FBM}(y)=e^{-y^{2}}/sqrt[π]. Its universal shape agrees well with theoretical predictions for both uni- and bimodal PDF distributions.
Collapse
Affiliation(s)
- Wei Wang
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China.,Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Xianbin Liu
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
15
|
Xu P, Zhou T, Metzler R, Deng W. Lévy walk dynamics in an external harmonic potential. Phys Rev E 2020; 101:062127. [PMID: 32688557 DOI: 10.1103/physreve.101.062127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Lévy walks (LWs) are spatiotemporally coupled random-walk processes describing superdiffusive heat conduction in solids, propagation of light in disordered optical materials, motion of molecular motors in living cells, or motion of animals, humans, robots, and viruses. We here investigate a key feature of LWs-their response to an external harmonic potential. In this generic setting for confined motion we demonstrate that LWs equilibrate exponentially and may assume a bimodal stationary distribution. We also show that the stationary distribution has a horizontal slope next to a reflecting boundary placed at the origin, in contrast to correlated superdiffusive processes. Our results generalize LWs to confining forces and settle some longstanding puzzles around LWs.
Collapse
Affiliation(s)
- Pengbo Xu
- School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tian Zhou
- School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-St 24/25, 14476 Potsdam, Germany
| | - Weihua Deng
- School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Blackwell R, Jung D, Bukenberger M, Smith AS. The Impact of Rate Formulations on Stochastic Molecular Motor Dynamics. Sci Rep 2019; 9:18373. [PMID: 31804523 PMCID: PMC6895049 DOI: 10.1038/s41598-019-54344-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Cells are complex structures which require considerable amounts of organization via transport of large intracellular cargo. While passive diffusion is often sufficiently fast for the transport of smaller cargo, active transport is necessary to organize large structures on the short timescales necessary for biological function. The main mechanism of this transport is by cargo attachment to motors which walk in a directed fashion along intracellular filaments. There are a number of models which seek to describe the motion of motors with attached cargo, from detailed microscopic to coarse phenomenological descriptions. We focus on the intermediate-detailed discrete stochastic hopping models, and explore how cargo transport changes depending on the number of motors, motor interaction, system constraints and rate formulations, which are derived from common thermodynamic assumptions. We find that, despite obeying the same detailed balance constraint, the choice of rate formulation considerably affects the characteristics of the overall motion of the system, with one rate formulation exhibiting novel behavior of loaded motor groups moving faster than a single unloaded motor.
Collapse
Affiliation(s)
- R Blackwell
- PULS group, Physics Department and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058, Erlangen, Germany
| | - D Jung
- PULS group, Physics Department and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058, Erlangen, Germany
| | - M Bukenberger
- PULS group, Physics Department and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058, Erlangen, Germany
| | - A-S Smith
- PULS group, Physics Department and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058, Erlangen, Germany. .,Group for Computational Life Sciences, Division of Physical Chemistry, Insitut Rūder Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
17
|
Bohec P, Tailleur J, van Wijland F, Richert A, Gallet F. Distribution of active forces in the cell cortex. SOFT MATTER 2019; 15:6952-6966. [PMID: 31432058 DOI: 10.1039/c9sm00441f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we study in detail the distribution of stochastic forces generated by the molecular motors activity, in the actin cortex of pre-muscular cells. By combining active and passive rheology experiments, performed on the same micro-bead bound to the actin network through membrane adhesive receptors, we measure the auto-correlation function Cff(τ) of the average force pulling on the bead. As for any out-of-equilibrium system, the force distribution differs from the thermodynamical equilibrium one, especially at long time scale τ⪆ 1 s where the bead motion becomes partially directed. Thus the fluctuation-dissipation theorem does not apply and one can measure the distance from equilibrium through its violation. We investigate the influence of different parameters on the force distribution, focusing particularly on the role of ligand density: a detailed study shows how the amplitude of active forces increases when the bead is more tightly attached to the cortex. We introduce and study a model, which takes into account the number of bonds between the bead and the cytoskeleton, as well as the viscoelastic properties of the medium. This model faithfully accounts for the experimental observations. Also, it is shown that the amplitude of active forces increases with temperature. Finally, our data confirm that ATP depletion in the cell, or partial inhibition of the actomyosin activity, leads to a decrease of the amplitude of the force distribution. Altogether, we propose a consistent and quantitative description for the motion of a micrometric probe interacting with the actin network, and for the amplitude of the stochastic forces generated by molecular motors in the cortex surrounding this probe.
Collapse
Affiliation(s)
- P Bohec
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, F-75013 Paris, France.
| | - J Tailleur
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, F-75013 Paris, France.
| | - F van Wijland
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, F-75013 Paris, France.
| | - A Richert
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, F-75013 Paris, France.
| | - F Gallet
- Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, F-75013 Paris, France.
| |
Collapse
|
18
|
Shi Y, Porter CL, Crocker JC, Reich DH. Dissecting fat-tailed fluctuations in the cytoskeleton with active micropost arrays. Proc Natl Acad Sci U S A 2019; 116:13839-13846. [PMID: 31239336 PMCID: PMC6628664 DOI: 10.1073/pnas.1900963116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of animal cells to crawl, change their shape, and respond to applied force is due to their cytoskeleton: A dynamic, cross-linked network of actin protein filaments and myosin motors. How these building blocks assemble to give rise to cells' mechanics and behavior remains poorly understood. Using active micropost array detectors containing magnetic actuators, we have characterized the mechanics and fluctuations of cells' actomyosin cortex and stress fiber network in detail. Here, we find that both structures display remarkably consistent power law viscoelastic behavior along with highly intermittent fluctuations with fat-tailed distributions of amplitudes. Notably, this motion in the cortex is dominated by occasional large, step-like displacement events, with a spatial extent of several micrometers. Overall, our findings for the cortex appear contrary to the predictions of a recent active gel model, while suggesting that different actomyosin contractile units act in a highly collective and cooperative manner. We hypothesize that cells' actomyosin components robustly self-organize into marginally stable, plastic networks that give cells' their unique biomechanical properties.
Collapse
Affiliation(s)
- Yu Shi
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218
| | - Christopher L Porter
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - John C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel H Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218;
| |
Collapse
|
19
|
Liu H, Ye Z, Wang X, Wei L, Xiao L. Molecular and living cell dynamic assays with optical microscopy imaging techniques. Analyst 2019; 144:859-871. [PMID: 30444498 DOI: 10.1039/c8an01420e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Generally, the message elucidated by the conventional analytical methods overlooks the heterogeneity of single objects, where the behavior of individual molecules is shielded. With the advent of optical microscopy imaging techniques, it is possible to identify, visualize and track individual molecules or nanoparticles under a biological environment with high temporal and spatial resolution. In this work, we summarize the commonly adopted optical microscopy techniques for bio-analytical assays in living cells, including total internal reflection fluorescence microscopy (TIRFM), super-resolution optical microscopy (SRM), and dark-field optical microscopy (DFM). The basic principles of these methods and some recent interesting applications in molecular detection and single-particle tracking are introduced. Moreover, the development in high-dimensional optical microscopy to achieve three-dimensional (3-D) as well as sub-diffraction localization and tracking of biomolecules is also highlighted.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | | | | | | | | |
Collapse
|
20
|
Ahmed WW, Fodor É, Almonacid M, Bussonnier M, Verlhac MH, Gov N, Visco P, van Wijland F, Betz T. Active Mechanics Reveal Molecular-Scale Force Kinetics in Living Oocytes. Biophys J 2019; 114:1667-1679. [PMID: 29642036 PMCID: PMC5954280 DOI: 10.1016/j.bpj.2018.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 11/27/2022] Open
Abstract
Active diffusion of intracellular components is emerging as an important process in cell biology. This process is mediated by complex assemblies of molecular motors and cytoskeletal filaments that drive force generation in the cytoplasm and facilitate enhanced motion. The kinetics of molecular motors have been precisely characterized in vitro by single molecule approaches, but their in vivo behavior remains elusive. Here, we study the active diffusion of vesicles in mouse oocytes, where this process plays a key role in nuclear positioning during development, and combine an experimental and theoretical framework to extract molecular-scale force kinetics (force, power stroke, and velocity) of the in vivo active process. Assuming a single dominant process, we find that the nonequilibrium activity induces rapid kicks of duration τ ∼ 300 μs resulting in an average force of F ∼ 0.4 pN on vesicles in in vivo oocytes, remarkably similar to the kinetics of in vitro myosin-V. Our results reveal that measuring in vivo active fluctuations allows extraction of the molecular-scale activity in agreement with single-molecule studies and demonstrates a mesoscopic framework to access force kinetics.
Collapse
Affiliation(s)
- Wylie W Ahmed
- Department of Physics, California State University, Fullerton, California; Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC Université Paris 06, Paris, France.
| | - Étienne Fodor
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom; Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France
| | - Maria Almonacid
- CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Équipe Labellisée Fondation pour la Recherche Médicale, Paris, France
| | - Matthias Bussonnier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Marie-Hélène Verlhac
- CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Équipe Labellisée Fondation pour la Recherche Médicale, Paris, France
| | - Nir Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Paolo Visco
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France
| | - Frédéric van Wijland
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France
| | - Timo Betz
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC Université Paris 06, Paris, France; Institute of Cell Biology, Center for Molecular Biology of Inflammation, Cells-in-Motion Cluster of Excellence, Münster University, Münster, Germany
| |
Collapse
|
21
|
Goychuk I. Perfect anomalous transport of subdiffusive cargos by molecular motors in viscoelastic cytosol. Biosystems 2018; 177:56-65. [PMID: 30419266 DOI: 10.1016/j.biosystems.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022]
Abstract
Multiple experiments show that various submicron particles such as magnetosomes, RNA messengers, viruses, and even much smaller nanoparticles such as globular proteins diffuse anomalously slow in viscoelastic cytosol of living cells. Hence, their sufficiently fast directional transport by molecular motors such as kinesins is crucial for the cell operation. It has been shown recently that the traditional flashing Brownian ratchet models of molecular motors are capable to describe both normal and anomalous transport of such subdiffusing cargos by molecular motors with a very high efficiency. This work elucidates further an important role of mechanochemical coupling in such an anomalous transport. It shows a natural emergence of a perfect subdiffusive ratchet regime due to allosteric effects, where the random rotations of a "catalytic wheel" at the heart of the motor operation become perfectly synchronized with the random stepping of a heavily loaded motor, so that only one ATP molecule is consumed on average at each motor step along microtubule. However, the number of rotations made by the catalytic engine and the traveling distance both scale sublinearly in time. Nevertheless, this anomalous transport can be very fast in absolute terms.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
22
|
Goychuk I. Viscoelastic subdiffusion in a random Gaussian environment. Phys Chem Chem Phys 2018; 20:24140-24155. [PMID: 30206605 DOI: 10.1039/c8cp05238g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viscoelastic subdiffusion governed by a fractional Langevin equation is studied numerically in a random Gaussian environment modeled by stationary Gaussian potentials with decaying spatial correlations. This anomalous diffusion is archetypal for living cells, where cytoplasm is known to be viscoelastic and a spatial disorder also naturally emerges. We obtain some first important insights into it within a model one-dimensional study. Two basic types of potential correlations are studied: short-range exponentially decaying and algebraically slow decaying with an infinite correlation length, both for a moderate (several kBT, in the units of thermal energy), and strong (5-10kBT) disorder. For a moderate disorder, it is shown that on the ensemble level viscoelastic subdiffusion can easily overcome the medium's disorder. Asymptotically, it is not distinguishable from the disorder-free subdiffusion. However, a strong scatter in single-trajectory averages is nevertheless seen even for a moderate disorder. It features a weak ergodicity breaking, which occurs on a very long yet transient time scale. Furthermore, for a strong disorder, a very long transient regime of logarithmic, Sinai-type diffusion emerges. It can last longer and be faster in the absolute terms for weakly decaying correlations as compared with the short-range correlations. Residence time distributions in a finite spatial domain are of a generalized log-normal type and are reminiscent also of a stretched exponential distribution. They can be easily confused for power-law distributions in view of the observed weak ergodicity breaking. This suggests a revision of some experimental data and their interpretation.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
23
|
Vitali S, Sposini V, Sliusarenko O, Paradisi P, Castellani G, Pagnini G. Langevin equation in complex media and anomalous diffusion. J R Soc Interface 2018; 15:20180282. [PMID: 30158182 PMCID: PMC6127165 DOI: 10.1098/rsif.2018.0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022] Open
Abstract
The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modelling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can also be somewhat alternative to each other, e.g. continuous time random walk and fractional Brownian motion. To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modelling of velocity dynamics. The complexity of the medium is parametrized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particle's dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.
Collapse
Affiliation(s)
- Silvia Vitali
- Department of Physics and Astronomy, Bologna University, Viale Berti Pichat 6/2, 40126 Bologna, Italy
| | - Vittoria Sposini
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
| | - Oleksii Sliusarenko
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
| | - Paolo Paradisi
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
- ISTI-CNR, Institute of Information Science and Technologies 'A. Faedo' (Consiglio Nazionale delle Ricerche), Via Moruzzi 1, 56124 Pisa, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, Bologna University, Viale Berti Pichat 6/2, 40126 Bologna, Italy
| | - Gianni Pagnini
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
- Ikerbasque-Basque Foundation for Science, Calle de María Díaz de Haro 3, 48013 Bilbao, Basque Country, Spain
| |
Collapse
|
24
|
Goychuk I. Sensing Magnetic Fields with Magnetosensitive Ion Channels. SENSORS (BASEL, SWITZERLAND) 2018; 18:E728. [PMID: 29495645 PMCID: PMC5877195 DOI: 10.3390/s18030728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
[-15]Magnetic nanoparticles are met across many biological species ranging from magnetosensitive bacteria, fishes, bees, bats, rats, birds, to humans. They can be both of biogenetic origin and due to environmental contamination, being either in paramagnetic or ferromagnetic state. The energy of such naturally occurring single-domain magnetic nanoparticles can reach up to 10-20 room k B T in the magnetic field of the Earth, which naturally led to supposition that they can serve as sensory elements in various animals. This work explores within a stochastic modeling framework a fascinating hypothesis of magnetosensitive ion channels with magnetic nanoparticles serving as sensory elements, especially, how realistic it is given a highly dissipative viscoelastic interior of living cells and typical sizes of nanoparticles possibly involved.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
25
|
Charrier EE, Montel L, Asnacios A, Delort F, Vicart P, Gallet F, Batonnet-Pichon S, Hénon S. The desmin network is a determinant of the cytoplasmic stiffness of myoblasts. Biol Cell 2018; 110:77-90. [PMID: 29388701 DOI: 10.1111/boc.201700040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND INFORMATION The mechanical properties of cells are essential to maintain their proper functions, and mainly rely on their cytoskeleton. A lot of attention has been paid to actin filaments, demonstrating their central role in the cells mechanical properties, but much less is known about the participation of intermediate filament (IF) networks. Indeed the contribution of IFs, such as vimentin, keratins and lamins, to cell mechanics has only been assessed recently. We study here the involvement of desmin, an IF specifically expressed in muscle cells, in the rheology of immature muscle cells. Desmin can carry mutations responsible for a class of muscle pathologies named desminopathies. RESULTS In this study, using three types of cell rheometers, we assess the consequences of expressing wild-type (WT) or mutated desmin on the rheological properties of single myoblasts. We find that the mechanical properties of the cell cortex are not correlated to the quantity, nor the quality of desmin expressed. On the contrary, the overall cell stiffness increases when the amount of WT or mutated desmin polymerised in cytoplasmic networks increases. However, myoblasts become softer when the desmin network is partially depleted by the formation of aggregates induced by the expression of a desmin mutant. CONCLUSIONS We demonstrate that desmin plays a negligible role in the mechanical properties of the cell cortex but is a determinant of the overall cell stiffness. More particularly, desmin participates to the cytoplasm viscoelasticity. SIGNIFICANCE Desminopathies are associated with muscular weaknesses attributed to a disorganisation of the structure of striated muscle that impairs the active force generation. The present study evidences for the first time the key role of desmin in the rheological properties of myoblasts, raising the hypothesis that desmin mutations could also alter the passive mechanical properties of muscles, thus participating to the lack of force build up in muscle tissue.
Collapse
Affiliation(s)
- Elisabeth E Charrier
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France.,Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France.,Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorraine Montel
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France.,Département de Chimie, École Normale Supérieure, PSL Research University, Paris, F-75005, France.,Sorbonne Universités, UPMC, PASTEUR, Paris, F-75005, France.,CNRS, UMR 8640 PASTEUR, Paris, F-75005, France
| | - Atef Asnacios
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France
| | - Florence Delort
- Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France
| | - Patrick Vicart
- Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France
| | - François Gallet
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France
| | - Sabrina Batonnet-Pichon
- Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France
| | - Sylvie Hénon
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France
| |
Collapse
|
26
|
Colin R, Rosazza C, Vaknin A, Sourjik V. Multiple sources of slow activity fluctuations in a bacterial chemosensory network. eLife 2017; 6:26796. [PMID: 29231168 PMCID: PMC5809148 DOI: 10.7554/elife.26796] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/02/2017] [Indexed: 12/31/2022] Open
Abstract
Cellular networks are intrinsically subject to stochastic fluctuations, but analysis of the resulting noise remained largely limited to gene expression. The pathway controlling chemotaxis of Escherichia coli provides one example where posttranslational signaling noise has been deduced from cellular behavior. This noise was proposed to result from stochasticity in chemoreceptor methylation, and it is believed to enhance environment exploration by bacteria. Here we combined single-cell FRET measurements with analysis based on the fluctuation-dissipation theorem (FDT) to characterize origins of activity fluctuations within the chemotaxis pathway. We observed surprisingly large methylation-independent thermal fluctuations of receptor activity, which contribute to noise comparably to the energy-consuming methylation dynamics. Interactions between clustered receptors involved in amplification of chemotactic signals are also necessary to produce the observed large activity fluctuations. Our work thus shows that the high response sensitivity of this cellular pathway also increases its susceptibility to noise, from thermal and out-of-equilibrium processes.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Christelle Rosazza
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
27
|
Li Y, Xu Y, Kurths J, Yue X. Transports in a rough ratchet induced by Lévy noises. CHAOS (WOODBURY, N.Y.) 2017; 27:103102. [PMID: 29092429 DOI: 10.1063/1.4996264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the transport of a particle subjected to a Lévy noise in a rough ratchet potential which is constructed by superimposing a fast oscillating trigonometric function on a common ratchet background. Due to the superposition of roughness, the transport process exhibits significantly different properties under the excitation of Lévy noises compared to smooth cases. The influence of the roughness on the directional motion is explored by calculating the mean velocities with respect to the Lévy stable index α and the spatial asymmetry parameter q of the ratchet. Variations in the splitting probability have been analyzed to illustrate how roughness affects the transport. In addition, we have examined the influences of roughness on the mean first passage time to know when it accelerates or slows down the first passage process. We find that the roughness can lead to a fast reduction of the absolute value of the mean velocity for small α, however the influence is small for large α. We have illustrated that the ladder-like roughness on the potential wall increases the possibility for particles to cross the gentle side of the ratchet, which results in an increase of the splitting probability to right for the right-skewed ratchet potential. Although the roughness increases the corresponding probability, it does not accelerate the mean first passage process to the right adjacent well. Our results show that the influences of roughness on the mean first passage time are sensitive to the combination of q and α. Hence, the proper q and α can speed up the passage process, otherwise it will slow down it.
Collapse
Affiliation(s)
- Yongge Li
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yong Xu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juergen Kurths
- Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
| | - Xiaole Yue
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
28
|
Alvarado J, Sheinman M, Sharma A, MacKintosh FC, Koenderink GH. Force percolation of contractile active gels. SOFT MATTER 2017; 13:5624-5644. [PMID: 28812094 DOI: 10.1039/c7sm00834a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and molecular motors inside cells. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (∼nN and greater) on cellular, tissue, and organismal length scales. Here we review experimental and theoretical studies on contractile active gels composed of actin filaments and myosin motors. Unlike other active soft matter systems, which tend to form ordered patterns, actin-myosin systems exhibit a generic tendency to contract. Experimental studies of reconstituted actin-myosin model systems have long suggested that a mechanical interplay between motor activity and the network's connectivity governs this contractile behavior. Recent theoretical models indicate that this interplay can be understood in terms of percolation models, extended to include effects of motor activity on the network connectivity. Based on concepts from percolation theory, we propose a state diagram that unites a large body of experimental observations. This framework provides valuable insights into the mechanisms that drive cellular shape changes and also provides design principles for synthetic active materials.
Collapse
Affiliation(s)
- José Alvarado
- Systems Biophysics Department, AMOLF, 1098 XG Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Aubertin K, Tailleur J, Wilhelm C, Gallet F. Impact of a mechanical shear stress on intracellular trafficking. SOFT MATTER 2017; 13:5298-5306. [PMID: 28682417 DOI: 10.1039/c7sm00732a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intracellular trafficking mainly takes place along the microtubules, and its efficiency depends on the local architecture and organization of the cytoskeletal network. In this work, the cytoplasm of stem cells is subjected to mechanical vortexing at a frequency of up to 1 Hz, by using magnetic chains of endosomes embedded in the cell body, in order to locally perturb the network structure. The consequences are evaluated on the directionality and processivity of the spontaneous motion of endosomes. When the same chains are used both to shear the cell medium and to probe the intracellular traffic, a substantial decrease in transport efficiency is detected after applying the mechanical shear. Interestingly, when using different objects to apply the shear and to probe the spontaneous motion, no alteration of the transport efficiency can be detected. We conclude that shaking the vesicles mainly causes their unbinding from the cytoskeletal tracks, but has little influence on the integrity of the network itself. This is corroborated by active microrheology measurements, performed with chains actuated by a magnetic field, and showing that the mechanical compliance of the cytoplasm is similar before and after slow vortexing.
Collapse
Affiliation(s)
- Kelly Aubertin
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, Paris, France.
| | | | | | | |
Collapse
|
30
|
Kurzawa L, Vianay B, Senger F, Vignaud T, Blanchoin L, Théry M. Dissipation of contractile forces: the missing piece in cell mechanics. Mol Biol Cell 2017; 28:1825-1832. [PMID: 28684608 PMCID: PMC5526557 DOI: 10.1091/mbc.e16-09-0672] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics.
Collapse
Affiliation(s)
- Laetitia Kurzawa
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Benoit Vianay
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| | - Fabrice Senger
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Timothée Vignaud
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| | - Manuel Théry
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| |
Collapse
|
31
|
Abstract
Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes.
Collapse
|
32
|
Huang YF, Zhuo GY, Chou CY, Lin CH, Hsieh CL. Label-free, ultrahigh-speed, 3D observation of bidirectional and correlated intracellular cargo transport by coherent brightfield microscopy. NANOSCALE 2017; 9:6567-6574. [PMID: 28470293 DOI: 10.1039/c7nr00604g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The investigation of intracellular transport at the molecular scale requires measurements at high spatial and temporal resolutions. We demonstrate the label-free, direct imaging and tracking of native cell vesicles in live cells at an ultrahigh spatiotemporal resolution. Using coherent brightfield (COBRI) microscopy, we monitor individual cell vesicles traveling inside the cell with nanometer spatial precision in 3D at 30 000 frames per second. The stepwise directional motion of the vesicle on the cytoskeletal track is clearly resolved. We also observe the repeated switching of the transport direction of the vesicle in a continuous trajectory. Our high-resolution measurement unveils the transient pausing and subtle bidirectional motion of the vesicle, taking place over tens of nanometers in tens of milliseconds. By tracking multiple particles simultaneously, we found strong correlations between the motions of two neighboring vesicles. Our label-free ultrahigh-speed optical imaging provides the opportunity to visualize intracellular cargo transport at the nanoscale in the microsecond timescale with minimal perturbation.
Collapse
Affiliation(s)
- Yi-Fan Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
33
|
Gibson LJ, Zhang S, Stilgoe AB, Nieminen TA, Rubinsztein-Dunlop H. Active rotational and translational microrheology beyond the linear spring regime. Phys Rev E 2017; 95:042608. [PMID: 28505719 DOI: 10.1103/physreve.95.042608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Active particle tracking microrheometers have the potential to perform accurate broadband measurements of viscoelasticity within microscopic systems. Generally, their largest possible precision is limited by Brownian motion and low frequency changes to the system. The signal to noise ratio is usually improved by increasing the size of the driven motion compared to the Brownian as well as averaging over repeated measurements. New theory is presented here whereby error in measurements of the complex shear modulus can be significantly reduced by analyzing the motion of a spherical particle driven by nonlinear forces. In some scenarios error can be further reduced by applying a variable transformation which linearizes the equation of motion. This enables normalization that eliminates error introduced by low frequency drift in the particle's equilibrium position. Our measurements indicate that this can further resolve an additional decade of viscoelasticity at high frequencies. Using this method will easily increase the signal strength enough to significantly reduce the measurement time for the same error. Thus the method is more conducive to measuring viscoelasticity in slowly changing microscopic systems, such as a living cell.
Collapse
Affiliation(s)
- Lachlan J Gibson
- The University of Queensland, School of Mathematics and Physics, Brisbane QLD 4072, Australia
| | - Shu Zhang
- The University of Queensland, School of Mathematics and Physics, Brisbane QLD 4072, Australia
| | - Alexander B Stilgoe
- The University of Queensland, School of Mathematics and Physics, Brisbane QLD 4072, Australia
| | - Timo A Nieminen
- The University of Queensland, School of Mathematics and Physics, Brisbane QLD 4072, Australia
| | | |
Collapse
|
34
|
Yasuda K, Okamoto R, Komura S. Anomalous diffusion in viscoelastic media with active force dipoles. Phys Rev E 2017; 95:032417. [PMID: 28415254 DOI: 10.1103/physreve.95.032417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Indexed: 06/07/2023]
Abstract
With the use of the "two-fluid model," we discuss anomalous diffusion induced by active force dipoles in viscoelastic media. Active force dipoles, such as proteins and bacteria, generate nonthermal fluctuating flows that lead to a substantial increment of the diffusion. Using the partial Green's function of the two-fluid model, we first obtain passive (thermal) two-point correlation functions such as the displacement cross-correlation function between the two-point particles separated by a finite distance. We then calculate active (nonthermal) one-point and two-point correlation functions due to active force dipoles. The time correlation of a force dipole is assumed to decay exponentially with a characteristic time scale. We show that the active component of the displacement cross-correlation function exhibits various crossovers from super-diffusive to subdiffusive behaviors depending on the characteristic time scales and the particle separation. Our theoretical results are intimately related to the microrheology technique to detect fluctuations in nonequilibrium environment.
Collapse
Affiliation(s)
- Kento Yasuda
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryuichi Okamoto
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
35
|
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chem Rev 2017; 117:4342-4375. [PMID: 28156096 DOI: 10.1021/acs.chemrev.6b00638] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.
Collapse
Affiliation(s)
- Kamilla Norregaard
- Cluster for Molecular Imaging, Department of Biomedical Science and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam , 14476 Potsdam-Golm, Germany
| | - Christine M Ritter
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| |
Collapse
|
36
|
Gefen A, Weihs D. Cytoskeleton and plasma-membrane damage resulting from exposure to sustained deformations: A review of the mechanobiology of chronic wounds. Med Eng Phys 2016; 38:828-33. [DOI: 10.1016/j.medengphy.2016.05.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
|
37
|
Bodrova AS, Chechkin AV, Cherstvy AG, Safdari H, Sokolov IM, Metzler R. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion. Sci Rep 2016; 6:30520. [PMID: 27462008 PMCID: PMC4962320 DOI: 10.1038/srep30520] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/04/2016] [Indexed: 01/23/2023] Open
Abstract
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
Collapse
Affiliation(s)
- Anna S Bodrova
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany.,Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aleksei V Chechkin
- Akhiezer Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine.,Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany.,Department of Physics &Astronomy, University of Padova, 35122 Padova, Italy
| | - Andrey G Cherstvy
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Hadiseh Safdari
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany.,Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
38
|
Fodor É, Nardini C, Cates ME, Tailleur J, Visco P, van Wijland F. How Far from Equilibrium Is Active Matter? PHYSICAL REVIEW LETTERS 2016; 117:038103. [PMID: 27472145 DOI: 10.1103/physrevlett.117.038103] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 05/18/2023]
Abstract
Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.
Collapse
Affiliation(s)
- Étienne Fodor
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Cesare Nardini
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Michael E Cates
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Paolo Visco
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Frédéric van Wijland
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
39
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
40
|
Harrison R, Markides H, Morris RH, Richards P, El Haj AJ, Sottile V. Autonomous magnetic labelling of functional mesenchymal stem cells for improved traceability and spatial control in cell therapy applications. J Tissue Eng Regen Med 2016; 11:2333-2348. [PMID: 27151571 PMCID: PMC5573958 DOI: 10.1002/term.2133] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/13/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and targeting. This study shows efficient live MSC labelling using silica‐coated magnetic particles (MPs), which enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP‐based approaches to cell targeting. The potential of these silica‐coated MPs for MRI cell tracking of MSC populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight silica‐coated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for therapeutic applications and improve patient outcomes. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Richard Harrison
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, UK
| | - Hareklea Markides
- Institute of Science and Technology in Medicine, Keele University, UK
| | - Robert H Morris
- School of Science and Technology, Nottingham Trent University, UK
| | - Paula Richards
- Institute of Science and Technology in Medicine, Keele University, UK
| | - Alicia J El Haj
- Institute of Science and Technology in Medicine, Keele University, UK
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, UK
| |
Collapse
|
41
|
|
42
|
Goychuk I. Molecular machines operating on the nanoscale: from classical to quantum. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:328-50. [PMID: 27335728 PMCID: PMC4901870 DOI: 10.3762/bjnano.7.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
The main physical features and operating principles of isothermal nanomachines in the microworld, common to both classical and quantum machines, are reviewed. Special attention is paid to the dual, constructive role of dissipation and thermal fluctuations, the fluctuation-dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. This work examines some common fallacies that continue to plague the literature. In particular, the erroneous beliefs that one should minimize friction and lower the temperature for high performance of Brownian machines, and that the thermodynamic efficiency at maximum power cannot exceed one-half are discussed. The emerging topic of anomalous molecular motors operating subdiffusively but very efficiently in the viscoelastic environment of living cells is also discussed.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
43
|
Metzler R, Jeon JH, Cherstvy AG. Non-Brownian diffusion in lipid membranes: Experiments and simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2451-2467. [PMID: 26826272 DOI: 10.1016/j.bbamem.2016.01.022] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 12/14/2022]
Abstract
The dynamics of constituents and the surface response of cellular membranes-also in connection to the binding of various particles and macromolecules to the membrane-are still a matter of controversy in the membrane biophysics community, particularly with respect to crowded membranes of living biological cells. We here put into perspective recent single particle tracking experiments in the plasma membranes of living cells and supercomputing studies of lipid bilayer model membranes with and without protein crowding. Special emphasis is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes significantly longer ranged on the addition of disorder-through the addition of cholesterol or proteins-and on passing of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed in the experiments-the effective diffusivity of the measured particles is a decreasing function of time. Moreover, we present results for the time dependent local scaling exponent of the mean squared displacement of the monitored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in protein crowded membranes are reported. The properties of the displacement autocorrelation function of the lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for non-crowded and crowded membranes. In the last part of this review we address the upcoming field of membrane distortion by elongated membrane-binding particles. We discuss how membrane compartmentalisation and the particle-membrane binding energy may impact the dynamics and response of lipid membranes. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- R Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany; Department of Physics, Tampere University of Technology, 33101 Tampere, Finland.
| | - J-H Jeon
- Korea Institute for Advanced Study (KIAS), Seoul, Republic of Korea
| | - A G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
44
|
Cherstvy AG, Metzler R. Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes. Phys Chem Chem Phys 2016; 18:23840-52. [DOI: 10.1039/c6cp03101c] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigate the diffusive and ergodic properties of massive and confined particles in a model disordered medium, in which the local diffusivity fluctuates in time while its mean has a power law dependence on the diffusion time.
Collapse
Affiliation(s)
- Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
45
|
Vandebroek H, Vanderzande C. Dynamics of a polymer in an active and viscoelastic bath. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:060601. [PMID: 26764617 DOI: 10.1103/physreve.92.060601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 06/05/2023]
Abstract
We study the dynamics of an ideal polymer chain in a viscoelastic medium and in the presence of active forces. The motion of the center of mass and of individual monomers is calculated. On time scales that are comparable to the persistence time of the active forces, monomers can move superdiffusively, while on larger time scales subdiffusive behavior occurs. The difference between this subdiffusion and that in the absence of active forces is quantified. We show that the polymer swells in response to active processes and determine how this swelling depends on the viscoelastic properties of the environment. Our results are compared to recent experiments on the motion of chromosomal loci in bacteria.
Collapse
Affiliation(s)
- Hans Vandebroek
- Faculty of Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Carlo Vanderzande
- Faculty of Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Instituut Theoretische Fysica, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| |
Collapse
|
46
|
Mardoukhi Y, Jeon JH, Metzler R. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster. Phys Chem Chem Phys 2015; 17:30134-47. [PMID: 26503611 DOI: 10.1039/c5cp03548a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law ∼T(-h) with h < 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.
Collapse
Affiliation(s)
- Yousof Mardoukhi
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
47
|
Goychuk I. Modeling magnetosensitive ion channels in the viscoelastic environment of living cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042711. [PMID: 26565276 DOI: 10.1103/physreve.92.042711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 05/07/2023]
Abstract
We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats, and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor, which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and can open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model channel can operate in the magnetic field of Earth for a small number (five to seven) of single-domain magnetosomes constituting the sensor rod, each of which has a typical size found in magnetotactic bacteria and other organisms or even just one sufficiently large nanoparticle of a characteristic size also found in nature. It is shown that, due to the viscoelasticity of the medium, the bistable gating dynamics generally exhibits power law and stretched exponential distributions of the residence times of the channels in their open and closed states. This provides a generic physical mechanism for the explanation of the origin of such anomalous kinetics for other ionic channels whose sensors move in a viscoelastic environment provided by either cytosol or biological membrane, in a quite general context, beyond the fascinating hypothesis of magnetosensitive ionic channels we explore.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
48
|
Goychuk I, Kharchenko VO, Metzler R. Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion. Phys Chem Chem Phys 2015; 16:16524-35. [PMID: 24985765 DOI: 10.1039/c4cp01234h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
49
|
Lisowski B, Valenti D, Spagnolo B, Bier M, Gudowska-Nowak E. Stepping molecular motor amid Lévy white noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042713. [PMID: 25974533 DOI: 10.1103/physreve.91.042713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 06/04/2023]
Abstract
We consider a model of a stepping molecular motor consisting of two connected heads. Directional motion of the stepper takes place along a one-dimensional track. Each head is subject to a periodic potential without spatial reflection symmetry. When the potential for one head is switched on, it is switched off for the other head. Additionally, the system is subject to the influence of symmetric, white Lévy noise that mimics the action of external random forcing. The stepper exhibits motion with a preferred direction which is examined by analyzing the median of the displacement of a midpoint between the positions of the two heads. We study the modified dynamics of the stepper by numerical simulations. We find flux reversals as noise parameters are changed. Speed and direction appear to very sensitively depend on characteristics of the noise.
Collapse
Affiliation(s)
- Bartosz Lisowski
- M. Smoluchowski Institute of Physics Jagiellonian University, Kraków, Poland and Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Davide Valenti
- Dipartimento di Fisica e Chimica, Group of Interdisciplinary Theoretical Physics, Viale delle Scienze, Ed. 18, Università di Palermo and CNISM, Unità di Palermo, Palermo I-90128, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Via S. Sofia 64, I-90123 Catania, Italy
| | - Bernardo Spagnolo
- Dipartimento di Fisica e Chimica, Group of Interdisciplinary Theoretical Physics, Viale delle Scienze, Ed. 18, Università di Palermo and CNISM, Unità di Palermo, Palermo I-90128, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Via S. Sofia 64, I-90123 Catania, Italy
| | - Martin Bier
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, USA
| | - Ewa Gudowska-Nowak
- Mark Kac Center for Complex Systems Research and Malopolska Center of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
50
|
Safdari H, Chechkin AV, Jafari GR, Metzler R. Aging scaled Brownian motion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042107. [PMID: 25974439 DOI: 10.1103/physreve.91.042107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.
Collapse
Affiliation(s)
- Hadiseh Safdari
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Aleksei V Chechkin
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
- Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Gholamreza R Jafari
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
| |
Collapse
|