1
|
Shiri H, Javan M. Sox2-mediated transdifferentiation of hAT-MSCs into induced neural progenitor-like cells for remyelination therapies. Tissue Cell 2024; 91:102553. [PMID: 39255744 DOI: 10.1016/j.tice.2024.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Mesenchymal stem cells (MSCs) are converted to neural cells using growth factors and chemicals. Although these neural cells are effective at modulating disease symptoms, they are less effective at replacing lost neural cells. Direct transdifferentiation seems to be a promising method for generating the required cells for regenerative medicine applications. Sox2 is a key transcription factor in neural progenitor (NP) fate determination and has been frequently used for transdifferentiating different cell types to NPs. Here, we demonstrated that the overexpression of a single transcription factor, Sox2, in human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) led to the generation of induced NPs-like cells that were clonogenic, proliferative and passageable, and showed the potential to differentiate into three neural lineages. NPs are known as progenitors with the potential to differentiate into oligodendrocytes. In vivo, following transplantation into demyelinated adult mouse brains, they survived, differentiated and integrated into the adult brain while participating in the remyelination process and behavioral improvement. This report introduces a beneficial, low-cost and effective approach for generating NPs from an accessible adult source for autologous applications in treating neurodegenerative diseases, including remyelination therapies for multiple sclerosis and other demyelinating diseases.
Collapse
Affiliation(s)
- Hamed Shiri
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Luciani M, Garsia C, Beretta S, Cifola I, Peano C, Merelli I, Petiti L, Miccio A, Meneghini V, Gritti A. Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice. Nat Commun 2024; 15:9433. [PMID: 39487141 PMCID: PMC11530573 DOI: 10.1038/s41467-024-53613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NSCs) hold promise for treating neurodegenerative and demyelinating disorders. However, comprehensive studies on their identity and safety remain limited. In this study, we demonstrate that hiPSC-NSCs adopt a radial glia-associated signature, sharing key epigenetic and transcriptional characteristics with human fetal neural stem cells (hfNSCs) while exhibiting divergent profiles from glioblastoma stem cells. Long-term transplantation studies in mice showed robust and stable engraftment of hiPSC-NSCs, with predominant differentiation into glial cells and no evidence of tumor formation. Additionally, we identified the Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) as a regulator of astroglial differentiation in hiPSC-NSCs. These findings provide valuable transcriptional and epigenetic reference datasets to prospectively define the maturation stage of NSCs derived from different hiPSC sources and demonstrate the long-term safety of hiPSC-NSCs, reinforcing their potential as a viable alternative to hfNSCs for clinical applications.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Garsia
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
- Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Luca Petiti
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Annarita Miccio
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
3
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
4
|
Jiang Y, Yang J, Liang R, Zan X, Fan R, Shan B, Liu H, Li L, Wang Y, Wu M, Qi X, Chen H, Ren Q, Liu Z, Wang Y, Zhang J, Zhou P, Li Q, Tian M, Yang J, Wang C, Li X, Jiang S, Zhou L, Zhang G, Chen Y, Xu J. Single-cell RNA sequencing highlights intratumor heterogeneity and intercellular network featured in adamantinomatous craniopharyngioma. SCIENCE ADVANCES 2023; 9:eadc8933. [PMID: 37043580 PMCID: PMC10096597 DOI: 10.1126/sciadv.adc8933] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Despite improvements in microscopically neurosurgical techniques made in recent years, the prognosis of adamantinomatous craniopharyngioma (ACP) is still unsatisfactory. Little is known about cellular atlas and biological features of ACP. Here, we carried out integrative analysis of 44,038 single-cell transcriptome profiles to characterize the landscape of intratumoral heterogeneity and tumor microenvironment (TME) in ACP. Four major neoplastic cell states with distinctive expression signatures were defined, which further revealed the histopathological features and elucidated unknown cellular atlas of ACP. Pseudotime analyses suggested potential evolutionary trajectories between specific neoplastic cell states. Notably, a distinct oligodendrocyte lineage was identified in ACP, which was associated with immunological infiltration and neural damage. In addition, we described a tumor-centric regulatory network based on intercellular communication in TME. Together, our findings represent a unique resource for deciphering tumor heterogeneity of ACP, which will improve clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinlong Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Zan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baoyin Shan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250000, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Qi
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongxu Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingqing Ren
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peizhi Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhao Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chaoyang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueying Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, 999077, Hong Kong
| | - Yaohui Chen
- Department of Thoracic Surgery/Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Zhou H, Lu S, Li K, Yang Y, Hu C, Wang Z, Wang Q, He Y, Wang X, Ye D, Guan Q, Zang J, Liu C, Qu S, Luan Z. Study on the Safety of Human Oligodendrocyte Precursor Cell Transplantation in Young Animals and Its Efficacy on Myelination. Stem Cells Dev 2021; 30:587-600. [PMID: 33823616 PMCID: PMC8165470 DOI: 10.1089/scd.2021.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) can differentiate into myelinating oligodendrocytes during embryonic development, thereby representing an important potential source for myelin repair or regeneration. To the best of our knowledge, there are very few OPCs from human sources (human-derived OPCs [hOPCs]). In this study, we aimed to evaluate the safety and remyelination capacity of hOPCs developed in our laboratory, transplanted into the lateral ventricles of young animals. Several acute and chronic toxicity experiments were conducted in which different doses of hOPCs were transplanted into the lateral ventricles of Sprague–Dawley rats of different ages. The toxicity, biodistribution, and tumor formation ability of the injected hOPCs were examined by evaluating the rats' vital signs, developmental indicators, neural reflexes, as well as by hematology, immunology, and pathology. In addition, the hOPCs were transplanted into the corpus callosum of the shiverer mouse to verify cell myelination efficacy. Overall, our results show that transplanted hOPCs into young mice are nontoxic to their organ function or immune system. The transplanted cells engrafted in the brain and did not appear in other organs, nor did they cause tissue proliferation or tumor formation. In terms of efficacy, the transplanted hOPCs were able to form myelin in the corpus callosum, alleviate the trembling phenotype of shiverer mice, and promote normal development. The transplantation of hOPCs is safe; they can effectively form myelin in the brain, thereby providing a theoretical basis for the future clinical transplantation of hOPCs.
Collapse
Affiliation(s)
- Haipeng Zhou
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Siliang Lu
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Ke Li
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yinxiang Yang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Caiyan Hu
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaoyan Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Ying He
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohua Wang
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dou Ye
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Guan
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jing Zang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Chang Liu
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Suqing Qu
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zuo Luan
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Li S, Zheng J, Chai L, Lin M, Zeng R, Lu J, Bian J. Rapid and Efficient Differentiation of Rodent Neural Stem Cells into Oligodendrocyte Progenitor Cells. Dev Neurosci 2019; 41:79-93. [DOI: 10.1159/000499364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) may have beneficial effects in cell replacement therapy of neurodegenerative disease owing to their unique capability to differentiate into myelinogenic oligodendrocytes (OLs) in response to extrinsic signals. Therefore, it is of significance to establish an effective differentiation methodology to generate highly pure OPCs and OLs from some easily accessible stem cell sources. To achieve this goal, in this study, we present a rapid and efficient protocol for oligodendroglial lineage differentiation from mouse neural stem cells (NSCs), rat NSCs, or mouse embryonic stem cell-derived neuroepithelial stem cells. In a defined culture medium containing Smoothened Agonist, basic fibroblast growth factor, and platelet-derived growth factor-AA, OPCs could be generated from the above stem cells over a time course of 4–6 days, achieving a cell purity as high as ∼90%. In particular, these derived OPCs showed high expandability and could further differentiate into myelin basic protein-positive OLs within 3 days or alternatively into glial fibrillary acidic protein-positive astrocytes within 7 days. Furthermore, transplantation of rodent NSC-derived OPCs into injured spinal cord indicated that it is a feasible strategy to treat spinal cord injury. Our results suggest a differentiation strategy for robust production of OPCs and OLs from rodent stem cells, which could provide an abundant OPC source for spinal cord injury.
Collapse
|
7
|
Zhang Y, Lu XY, Casella G, Tian J, Ye ZQ, Yang T, Han JJ, Jia LY, Rostami A, Li X. Generation of Oligodendrocyte Progenitor Cells From Mouse Bone Marrow Cells. Front Cell Neurosci 2019; 13:247. [PMID: 31231194 PMCID: PMC6561316 DOI: 10.3389/fncel.2019.00247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/17/2019] [Indexed: 01/20/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7–8 weeks. Within 2–3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7–8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture.
Collapse
Affiliation(s)
- Yuan Zhang
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin-Yu Lu
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jing Tian
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ze-Qing Ye
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ting Yang
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juan-Juan Han
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ling-Yu Jia
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xing Li
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
8
|
Yu X, Cheng G, Zhang L, Zhang Y, Wang Q, Zhao M, Zeng L, Hu Y, Feng L. N-Phenylquinazolin-2-amine Yhhu4952 as a novel promotor for oligodendrocyte differentiation and myelination. Sci Rep 2018; 8:14040. [PMID: 30232349 PMCID: PMC6145871 DOI: 10.1038/s41598-018-32326-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/23/2018] [Indexed: 11/19/2022] Open
Abstract
Oligodendrocytes are a type of glial cells that ensheath multiple neuronal axons and form myelin. Under pathological conditions, such as multiple sclerosis (MS), inflammatory damage to myelin and oligodendrocytes leads to demyelination. Although the demyelinated regions can partially resolve functional deficits through remyelination, however, as the disease progresses, remyelination typically becomes incomplete and ultimately fails. One possible explanation for this failure is the activation of the Notch pathway in MS lesions, which impedes oligodendrocyte precursor cells (OPCs) at maturation. This leads to a potential target for remyelination. Here, we have identified a compound Yhhu4952 that promoted the maturation of cultured OPCs in a dose-dependent and time-dependent manner. Neonatal rats showed a significant increase in the expression of myelin basic protein (MBP) and the prevalence of mature oligodendrocytes in the corpus callosum after Yhhu4952 treatment. The compound was also effective in promoting remyelination in cuprizone-induced demyelination model and improving severity scores in experimental autoimmune encephalomyelitis (EAE) model. Mechanism studies revealed that Yhhu4952 promotes OPC differentiation through the inhibition of the Jagged1-Notch1 pathway. These findings suggest Yhhu4952 is potentially useful for proceeding oligodendrocyte differentiation and remyelination.
Collapse
Affiliation(s)
- Xueli Yu
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Qing Wang
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Mengxue Zhao
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Limin Zeng
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Youhong Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Linyin Feng
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
9
|
Wang L, Schlagal CR, Gao J, Hao Y, Dunn TJ, McGrath EL, Labastida JA, Yu Y, Feng SQ, Liu SY, Wu P. Oligodendrocyte differentiation from human neural stem cells: A novel role for c-Src. Neurochem Int 2018; 120:21-32. [PMID: 30041015 DOI: 10.1016/j.neuint.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
Human neural stem cells (hNSCs) can differentiate into an oligodendrocyte lineage to facilitate remyelination in patients. Molecular mechanisms underlying oligodendrocyte fate specification remains unknown, hindering the development of efficient methods to generate oligodendrocytes from hNSCs. We have found that Neurobasal-A medium (NB) is capable of inducing hNSCs to oligodendrocyte progenitor cells (OPCs). We identified several signaling molecules are altered after cultivation in NB medium, including Akt, ERK1/2 and c-Src. While sustained activation of Akt and ERK1/2 during both NB induction and subsequent differentiation was required for OPC differentiation, c-Src phosphorylation was increased temporally during the period of NB induction. Both pharmacological inhibition and RNA interference confirmed that a transient elevation of phospho-c-Src is critical for OPC induction. Furthermore, inactivation of c-Src inhibited phosphorylation of Akt and ERK1/2. In summary, we identified a novel and critical role of c-Src in guiding hNSC differentiation to an oligodendrocyte lineage.
Collapse
Affiliation(s)
- Le Wang
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Rd, Yuexiu Qu, Guangzhou Shi, Guangdong Sheng, China
| | - Caitlin R Schlagal
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Yan Hao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA; Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Rd, Heping Qu, 300051, China
| | - Tiffany J Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Erica L McGrath
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Javier Allende Labastida
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Rd, Heping Qu, 300051, China
| | - Shao-Yu Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Rd, Yuexiu Qu, Guangzhou Shi, Guangdong Sheng, China
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
10
|
Ferrari D, Gelati M, Profico DC, Vescovi AL. Human Fetal Neural Stem Cells for Neurodegenerative Disease Treatment. Results Probl Cell Differ 2018; 66:307-329. [DOI: 10.1007/978-3-319-93485-3_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Dolci S, Pino A, Berton V, Gonzalez P, Braga A, Fumagalli M, Bonfanti E, Malpeli G, Pari F, Zorzin S, Amoroso C, Moscon D, Rodriguez FJ, Fumagalli G, Bifari F, Decimo I. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy. Front Pharmacol 2017; 8:703. [PMID: 29075188 PMCID: PMC5643910 DOI: 10.3389/fphar.2017.00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks). Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.
Collapse
Affiliation(s)
- Sissi Dolci
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Valeria Berton
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pau Gonzalez
- Group of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Alice Braga
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisabetta Bonfanti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giorgio Malpeli
- Section of General and Pancreatic Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Francesca Pari
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Stefania Zorzin
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Clelia Amoroso
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Denny Moscon
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Marei HE, Shouman Z, Althani A, Afifi N, A AE, Lashen S, Hasan A, Caceci T, Rizzi R, Cenciarelli C, Casalbore P. Differentiation of human olfactory bulb-derived neural stem cells toward oligodendrocyte. J Cell Physiol 2017; 233:1321-1329. [PMID: 28500734 DOI: 10.1002/jcp.26008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/12/2017] [Indexed: 12/24/2022]
Abstract
In the central nervous system (CNS), oligodendrocytes are the glial element in charge of myelin formation. Obtaining an overall presence of oligodendrocyte precursor cells/oligodendrocytes (OPCs/OLs) in culture from different sources of NSCs is an important research area, because OPCs/OLs may provide a promising therapeutic strategy for diseases affecting myelination of axons. The present study was designed to differentiate human olfactory bulb NSCs (OBNSCs) into OPCs/OLs and using expression profiling (RT-qPCR) gene, immunocytochemistry, and specific protein expression to highlight molecular mechanism(s) underlying differentiation of human OBNSCs into OPCs/OLs. The differentiation of OBNSCs was characterized by a simultaneous appearance of neurons and glial cells. The differentiation medium, containing cAMP, PDGFA, T3, and all-trans-retinoic acid (ATRA), promotes OBNSCs to generate mostly oligodendrocytes (OLs) displaying morphological changes, and appearance of long cytoplasmic processes. OBNSCs showed, after 5 days in OLs differentiation medium, a considerable decrease in the number of nestin positive cells, which was associated with a concomitant increase of NG2 immunoreactive cells and few O4(+)-OPCs. In addition, a significant up regulation in gene and protein expression profile of stage specific cell markers for OPCs/OLs (CNPase, Galc, NG2, MOG, OLIG1, OLIG2, MBP), neurons, and astrocytes (MAP2, β-TubulinIII, GFAP) and concomitant decrease of OBNSCs pluripotency markers (Oct4, Sox2, Nestin), was demonstrated following induction of OBNSCs differentiation. Taken together, the present study demonstrate the marked ability of a cocktail of factors containing PDGFA, T3, cAMP, and ATRA, to induce OBNSCs differentiation into OPCs/OLs and shed light on the key genes and pathological pathways involved in this process.
Collapse
Affiliation(s)
- Hany E Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Zeinab Shouman
- Faculty of Veterinary Medicine, Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Abd-Elmaksoud A
- Faculty of Veterinary Medicine, Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | - Samah Lashen
- Faculty of Veterinary Medicine, Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Roberto Rizzi
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Rome, Italy
| | | | - Patrizia Casalbore
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
13
|
Xiao J, Yang R, Biswas S, Zhu Y, Qin X, Zhang M, Zhai L, Luo Y, He X, Mao C, Deng W. Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis. Mol Neurobiol 2017; 55:3152-3171. [PMID: 28466274 DOI: 10.1007/s12035-017-0566-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory, and demyelinating disorder of the central nervous system (CNS), which ultimately leads to axonal loss and permanent neurological disability. Current treatments for MS are largely comprised of medications that are either immunomodulatory or immunosuppressive and are aimed at reducing the frequency and intensity of relapses. Neural stem cells (NSCs) in the adult brain can differentiate into oligodendrocytes in a context-specific manner and are shown to be involved in the remyelination in these patients. NSCs may exert their beneficial effects not only through oligodendrocyte replacement but also by providing trophic support and immunomodulation, a phenomenon now known as "therapeutic plasticity." In this review, we first provided an update on the current knowledge regarding MS pathogenesis and the role of immune cells, microglia, and oligodendrocytes in MS disease progression. Next, we reviewed the current progress on research aimed toward stimulating endogenous NSC proliferation and differentiation to oligodendrocytes in vivo and in animal models of demyelination. In addition, we explored the neuroprotective and immunomodulatory effects of transplanted exogenous NSCs on T cell activation, microglial activation, and endogenous remyelination and their effects on the pathological process and prognosis in animal models of MS. Finally, we examined various protocols to generate genetically engineered NSCs as a potential therapy for MS. Overall, this review highlights the studies involving the immunomodulatory, neurotrophic, and regenerative effects of NSCs and novel methods aiming at stimulating the potential of NSCs for the treatment of MS.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China.,Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Rongbing Yang
- Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Sangita Biswas
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Yunhua Zhu
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xin Qin
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Min Zhang
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lihong Zhai
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yi Luo
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaoming He
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Chun Mao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
14
|
Meneghini V, Frati G, Sala D, De Cicco S, Luciani M, Cavazzin C, Paulis M, Mentzen W, Morena F, Giannelli S, Sanvito F, Villa A, Bulfone A, Broccoli V, Martino S, Gritti A. Generation of Human Induced Pluripotent Stem Cell-Derived Bona Fide Neural Stem Cells for Ex Vivo Gene Therapy of Metachromatic Leukodystrophy. Stem Cells Transl Med 2016; 6:352-368. [PMID: 28191778 PMCID: PMC5442804 DOI: 10.5966/sctm.2015-0414] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Allogeneic fetal‐derived human neural stem cells (hfNSCs) that are under clinical evaluation for several neurodegenerative diseases display a favorable safety profile, but require immunosuppression upon transplantation in patients. Neural progenitors derived from patient‐specific induced pluripotent stem cells (iPSCs) may be relevant for autologous ex vivo gene‐therapy applications to treat genetic diseases with unmet medical need. In this scenario, obtaining iPSC‐derived neural stem cells (NSCs) showing a reliable “NSC signature” is mandatory. Here, we generated human iPSC (hiPSC) clones via reprogramming of skin fibroblasts derived from normal donors and patients affected by metachromatic leukodystrophy (MLD), a fatal neurodegenerative lysosomal storage disease caused by genetic defects of the arylsulfatase A (ARSA) enzyme. We differentiated hiPSCs into NSCs (hiPS‐NSCs) sharing molecular, phenotypic, and functional identity with hfNSCs, which we used as a “gold standard” in a side‐by‐side comparison when validating the phenotype of hiPS‐NSCs and predicting their performance after intracerebral transplantation. Using lentiviral vectors, we efficiently transduced MLD hiPSCs, achieving supraphysiological ARSA activity that further increased upon neural differentiation. Intracerebral transplantation of hiPS‐NSCs into neonatal and adult immunodeficient MLD mice stably restored ARSA activity in the whole central nervous system. Importantly, we observed a significant decrease of sulfatide storage when ARSA‐overexpressing cells were used, with a clear advantage in those mice receiving neonatal as compared with adult intervention. Thus, we generated a renewable source of ARSA‐overexpressing iPSC‐derived bona fide hNSCs with improved features compared with clinically approved hfNSCs. Patient‐specific ARSA‐overexpressing hiPS‐NSCs may be used in autologous ex vivo gene therapy protocols to provide long‐lasting enzymatic supply in MLD‐affected brains. Stem Cells Translational Medicine2017;6:352–368
Collapse
Affiliation(s)
- Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Giacomo Frati
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Davide Sala
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Silvia De Cicco
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Chiara Cavazzin
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Marianna Paulis
- National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Francesco Morena
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Serena Giannelli
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Francesca Sanvito
- Anatomy and Histopathology Department, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
- National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Vania Broccoli
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Sabata Martino
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| |
Collapse
|
15
|
Bian J, Zheng J, Li S, Luo L, Ding F. Sequential Differentiation of Embryonic Stem Cells into Neural Epithelial-Like Stem Cells and Oligodendrocyte Progenitor Cells. PLoS One 2016; 11:e0155227. [PMID: 27192219 PMCID: PMC4871441 DOI: 10.1371/journal.pone.0155227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/26/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Recent advances in stem cell technology afford an unlimited source of neural progenitors and glial cells for cell based therapy in central nervous system (CNS) disorders. However, current differentiation strategies still need to be improved due to time-consuming processes, poorly defined culture conditions, and low yield of target cell populations. METHODOLOGY/PRINCIPLE FINDINGS This study aimed to provide a precise sequential differentiation to capture two transient stages: neural epithelia-like stem cells (NESCs) and oligodendrocytes progenitor cells (OPCs) derived from mouse embryonic stem cells (ESCs). CHIR99021, a glycogen synthase kinase 3 (GSK-3) inhibitor, in combination with dual SMAD inhibitors, could induce ESCs to rapidly differentiate into neural rosette-like colonies, which facilitated robust generation of NESCs that had a high self-renewal capability and stable neuronal and glial differentiation potentials. Furthermore, SHH combined with FGF-2 and PDGF-AA could induce NESCs to differentiate into highly expandable OPCs. These OPCs not only robustly differentiated into oligodendrocytes, but also displayed an increased migratory activity in vitro. CONCLUSIONS/SIGNIFICANCE We developed a precise and reliable strategy for sequential differentiation to capture NESCs and OPCs derived from ESCs, thus providing unlimited cell source for cell transplantation and drug screening towards CNS repair.
Collapse
Affiliation(s)
- Jing Bian
- Jiangsu Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- * E-mail:
| | - Jiao Zheng
- Xijing Hospital, The fourth Military Medical University, Xi’an, Shanxi, China
| | - Shen Li
- Jiangsu Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Lan Luo
- Department of Gerontology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Isolation and culture of human oligodendrocyte precursor cells from neurospheres. Brain Res Bull 2015; 118:17-24. [DOI: 10.1016/j.brainresbull.2015.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 11/17/2022]
|
17
|
Ricca A, Rufo N, Ungari S, Morena F, Martino S, Kulik W, Alberizzi V, Bolino A, Bianchi F, Del Carro U, Biffi A, Gritti A. Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy. Hum Mol Genet 2015; 24:3372-89. [PMID: 25749991 PMCID: PMC4498152 DOI: 10.1093/hmg/ddv086] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical–pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Nicole Rufo
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Silvia Ungari
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Wilem Kulik
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands and
| | - Valeria Alberizzi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Bolino
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Francesca Bianchi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Biffi
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Angela Gritti
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy,
| |
Collapse
|
18
|
Wang C, Luan Z, Yang Y, Wang Z, Wang Q, Lu Y, Du Q. High purity of human oligodendrocyte progenitor cells obtained from neural stem cells: Suitable for clinical application. J Neurosci Methods 2015; 240:61-6. [DOI: 10.1016/j.jneumeth.2014.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 02/08/2023]
|
19
|
Tingjun C, Zhaohui L, Zhaocai J, Zihao L, Quangang X, Dehui H, Qing L, Shihui W. Changes of CXCL12, CXCL14 and PDGF levels in the brain of patients with idiopathic demyelinating optic neuritis and neuromyelitis optica. J Neuroimmunol 2014; 279:1-6. [PMID: 25669992 DOI: 10.1016/j.jneuroim.2014.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/27/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
The CXC chemokines (CXC-motif ligand 12 and CXC-motif ligand 14) and platelet-derived growth factor are suggested to modulate remyelination in the course of many demyelinating diseases. The present study compared the difference in the brain levels of these chemokines between patients with idiopathic demyelinating optic neuritis (IDON) and neuromyelitis optica (NMO) by measuring their concentrations in the cerebrospinal fluid using an enzyme linked immunosorbent assay. Our data indicate that the prognosis of neuritis depends on the remyelinating process that is impaired due to decreased chemokines. The much lower levels of chemokines would specifically indicate the severe neuritis, such as NMO.
Collapse
Affiliation(s)
- Chen Tingjun
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Li Zhaohui
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiang Zhaocai
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Ophthalmology, LongFu Hospital, Beijing, China
| | - Liu Zihao
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Ophthalmology, Dongzhimen Hospital, Beijing, China
| | - Xu Quangang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Huang Dehui
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lin Qing
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA.
| | - Wei Shihui
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
20
|
Czepiel M, Boddeke E, Copray S. Human oligodendrocytes in remyelination research. Glia 2014; 63:513-30. [DOI: 10.1002/glia.22769] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/05/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Marcin Czepiel
- Department of Neuroscience; University Medical Center Groningen; A.Deusinglaan 1, 9713AV Groningen The Netherlands
| | - Erik Boddeke
- Department of Neuroscience; University Medical Center Groningen; A.Deusinglaan 1, 9713AV Groningen The Netherlands
| | - Sjef Copray
- Department of Neuroscience; University Medical Center Groningen; A.Deusinglaan 1, 9713AV Groningen The Netherlands
| |
Collapse
|
21
|
Abbaszadeh HA, Tiraihi T, Delshad A, Saghedizadeh M, Taheri T, Kazemi H, Hassoun HK. Differentiation of neurosphere-derived rat neural stem cells into oligodendrocyte-like cells by repressing PDGF-α and Olig2 with triiodothyronine. Tissue Cell 2014; 46:462-9. [PMID: 25200619 DOI: 10.1016/j.tice.2014.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 07/22/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022]
Abstract
One of the approaches for treating demyelination diseases is cytotherapy, and adult stem cells are potential sources. In this investigation, we tried to increase the yield of oligodendrocyte-like cells (OLCs) by inducing neural stem cells generated from BMSCs-derived neurospheres, which were used for deriving the neural stem cells (NSCs). The latter were induced into OLCs by heregulin, PDGF-AA, bFGF and triiodothyronine (T3). The BMSCs, NS, NSCs and OLCs were characterized by using immunocytochemistry for fibronectin, CD44, CD90, CD45, Oct-4, O4, Olig2, O1 and MBP markers. PDGF receptor α (PDGFR-α), Olig2 and MOG expression were evaluated by RT-PCR. The BMSCs expressed CD44, CD90, CD106 and Oct-4; the NSCs were immunoreactive to nestin and neurofilament 68. Incubation of the NSCs for 4 days with heregulin, PDGF-AA and bFGF resulted in their induction into oligodendrocyte progenitor-like cells (OPLCs), which immunoreacted to O4, Olig2 and O1, while Olig2 and PDGFR-α were detected by RT-PCR. Replacing heregulin, PDGF-AA and bFGF with T3 for 6 days resulted in repression of O4, O1, Olig2 and PDGFR-α. The OLCs were co-cultured with motoneurons resulted in induction of MOG and MBP, which were expressed in functional OLCs. The latter can be generated from BMSCs-derive NS with high yield.
Collapse
Affiliation(s)
- Hojjat-Allah Abbaszadeh
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Taki Tiraihi
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran; Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran.
| | | | - Majid Saghedizadeh
- Department of genetics, School of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taher Taheri
- Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| | - Hadi Kazemi
- Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| | - Hayder K Hassoun
- Middle Euphrates Neuroscience Center, Kufa University,College of Medicine, Annajaf Al-Ashraf, Iraq
| |
Collapse
|
22
|
Thomas AM, Seidlits SK, Goodman AG, Kukushliev TV, Hassani DM, Cummings BJ, Anderson AJ, Shea LD. Sonic hedgehog and neurotrophin-3 increase oligodendrocyte numbers and myelination after spinal cord injury. Integr Biol (Camb) 2014; 6:694-705. [PMID: 24873988 DOI: 10.1039/c4ib00009a] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited available therapies. Multiple channel bridges have been investigated as a means to create a permissive environment for regeneration, with channels supporting axonal growth through the injury. Bridges support robust axon growth and myelination. Here, we investigated the cell types that myelinate axons in the bridges and whether over-expression of trophic factors can enhance myelination. Lentivirus encoding for neurotrophin-3 (NT3), sonic hedgehog (SHH) and the combination of these factors was delivered from bridges implanted into a lateral hemisection defect at T9/T10 in mice, and the response of endogenous progenitor cells within the spinal cord was investigated. Relative to control, the localized, sustained expression of these factors significantly increased growth of regenerating axons into the bridge and enhanced axon myelination 8 weeks after injury. SHH decreased the number of Sox2(+) cells and increased the number of Olig2(+) cells, whereas NT3 alone or in combination with SHH enhanced the numbers of GFAP(+) and Olig2(+) cells relative to control. For delivery of lentivirus encoding for either factor, we identified cells at various stages of differentiation along the oligodendrocyte lineage (e.g., O4(+), GalC(+)). Expression of NT3 enhanced myelination primarily by infiltrating Schwann cells, whereas SHH over-expression substantially increased myelination by oligodendrocytes. These studies further establish biomaterial-mediated gene delivery as a promising tool to direct activation and differentiation of endogenous progenitor cells for applications in regenerative medicine.
Collapse
Affiliation(s)
- Aline M Thomas
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Stephanie K Seidlits
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.,Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
| | - Ashley G Goodman
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Todor V Kukushliev
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Donna M Hassani
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Brian J Cummings
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Center, Irvine, CA, USA.,Institute for Memory Impairments and Neurological Disorders (MIND), Irvine, CA, USA
| | - Aileen J Anderson
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Center, Irvine, CA, USA.,Institute for Memory Impairments and Neurological Disorders (MIND), Irvine, CA, USA
| | - Lonnie D Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.,Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA.,Center for Reproductive Science (CRS), Northwestern University, Evanston, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.,Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA
| |
Collapse
|
23
|
Abbaszadeh HA, Tiraihi T, Delshad AR, Saghedi Zadeh M, Taheri T. Bone marrow stromal cell transdifferentiation into oligodendrocyte-like cells using triiodothyronine as a inducer with expression of platelet-derived growth factor α as a maturity marker. IRANIAN BIOMEDICAL JOURNAL 2014; 17:62-70. [PMID: 23567847 DOI: 10.6091/ibj.11162.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The present study investigated the functional maturity of oligodendrocyte derived from rat bone marrow stromal cells (BMSC). METHODS The BMSC were isolated from female Sprague-Dawley rats and evaluated for different markers, such as fibronectin, CD106, CD90, Oct-4 and CD45. Transdifferentiation of OLC from BMSC was obtained by exposing the BMSC to DMSO and 1 µM all-trans-retinoic acid during the pre-induction stage and then induced by heregulin (HRG), platelet-derived growth factor AA (PDGFR-alpha), fibroblast growth factor and T3. The neuroprogenitor cells (NPC) were evaluated for nestin, neurofilament 68, neurofilament 160 and glial fibrillary acidic protein gene expression using immunocytochemistry. The OLC were assessed by immunocytochemistry for O4, oligo2, O1 and MBP marker and gene expression of PDGFR-alpha was examined by RT-PCR. RESULTS Our results showed that the fibronectin, CD106, CD90, CD45 and Oct-4 were expressed after the fourth passage. Also, the yield of OLC differentiation was about 71% when using the O1, O4 and oligo2 markers. Likewise, the expression of PDGFR-alpha in pre-oligodendrocytes was noticed, while MBP expression was detected in oligodendrocyte after 6 days of the induction. CONCLUSION The conclusion of the study showed that BMSC can be induced to transdifferentiate into mature OLC.
Collapse
Affiliation(s)
- Hojjat-Allah Abbaszadeh
- Dept. of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taki Tiraihi
- Dept. of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| | | | - Majid Saghedi Zadeh
- Dept. of Genetics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taher Taheri
- Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| |
Collapse
|
24
|
Ultrasmall superparamagnetic iron oxide nanoparticle prelabelling of human neural precursor cells. Biomaterials 2014; 35:5549-64. [PMID: 24726535 DOI: 10.1016/j.biomaterials.2014.03.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/21/2014] [Indexed: 12/31/2022]
Abstract
Stem cells prelabelled with iron oxide nanoparticles can be visualised using magnetic resonance imaging (MRI). This technique allows for noninvasive long-term monitoring of migration, integration and stem cell fate following transplantation into living animals. In order to determine biocompatibility, the present study investigated the biological impact of introducing ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) into primary human fetal neural precursor cells (hNPCs) in vitro. USPIOs with a mean diameter of 10-15 nm maghemite iron oxide core were sterically stabilised by 95% methoxy-poly(ethylene glycol) (MPEG) and either 5% cationic (NH2) end-functionalised, or 5% Rhodamine B end-functionalised, polyacrylamide. The stabilising polymer diblocks were synthesised by reversible addition-fragmentation chain transfer (RAFT) polymerisation. Upon loading, cellular viability, total iron capacity, differentiation, average distance of migration and changes in intracellular calcium ion concentration were measured to determine optimal loading conditions. Taken together we demonstrate that prelabelling of hNPCs with USPIOs has no significant detrimental effect on cell biology and that USPIOs, when utilised at an optimised dosage, are an effective means of noninvasively tracking prelabelled hNPCs.
Collapse
|
25
|
Ortega JA, Radonjić NV, Zecevic N. Sonic hedgehog promotes generation and maintenance of human forebrain Olig2 progenitors. Front Cell Neurosci 2013; 7:254. [PMID: 24379757 PMCID: PMC3861791 DOI: 10.3389/fncel.2013.00254] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022] Open
Abstract
Function of oligodendrocytes (OLs), myelin forming cells in the CNS, is disrupted in demyelinating diseases such as periventricular leukomalacia or multiple sclerosis. It is, thus, important to better understand factors that can affect generation or differentiation of human OLs. In rodents, Sonic hedgehog (Shh) is influencing expression of Olig2, a helix-loop-helix transcription factor required for development of OLs. In humans, Olig2 is present in cortical progenitors at midgestation, however the role of Shh in the specification of human OLs, including Olig2 positive (Olig2+) progenitors, is not fully understood. Here we studied in vitro effects of Shh signaling on proliferation and specification of human cortical Olig2+ progenitors at midgestation. First, we established that the spatial pattern of Olig2 expression in the human developing CNS, described on cryosections, was preserved in mixed and enriched radial glia cell (RGC) cultures. Next, we demonstrated that in vitro treatment with Shh induced an increase in the number of Olig2+ progenitors. Shh treatment increased the density of early oligodendrocyte progenitors (OPCs) at the expense of RGC, while the number of late OPCs, did not change. However, inhibition of endogenous Shh with cyclopamine did not reduce the density of Olig2+ cells, implying the presence of an additional Shh-independent mechanism for OLs generation in vitro. These results suggest that the primary role of Shh signaling in the human dorsal oligodendrogenesis is the expansion and specification of multipotent radial glia progenitors into Olig2+ early OPCs. These results obtained in vitro are relevant to understand primary myelination during CNS development, as well as remyelination in demyelinating diseases.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA
| | - Nevena V Radonjić
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA ; Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade Belgrade, Serbia
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
26
|
Stem cells and regenerative medicine: accomplishments to date and future promise. Ther Deliv 2012; 1:693-705. [PMID: 21113422 DOI: 10.4155/tde.10.57] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
More than 50 years have passed since the first allogeneic hematopoietic stem cell transplant in patients; however, the promise of other stem cell populations for tissue replacement and repair remains unachieved. When considering cell-based interventions for personalized medicine, the factors influencing therapeutic success and safety are more complicated than for traditional small-molecule pharmacological agents and protein biologics. Failure to progress personalized stem cell therapies to the clinic has resulted from complications that include an incomplete understanding of developmental programs and the diversity of host-donor interactions. In order to more rapidly extend the use of stem cells to the clinic, a better understanding of the different stem cell sources and the implications of their host interactions is required. In this review, we introduce the currently available sources and highlight recent literature that instructs the potential and limitations of their use.
Collapse
|
27
|
Ferrari D, Zalfa C, Nodari LR, Gelati M, Carlessi L, Delia D, Vescovi AL, De Filippis L. Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model. Cell Mol Life Sci 2012; 69:1193-210. [PMID: 22076651 PMCID: PMC11115189 DOI: 10.1007/s00018-011-0873-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/22/2011] [Accepted: 10/18/2011] [Indexed: 01/02/2023]
Abstract
Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells' activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.
Collapse
Affiliation(s)
- Daniela Ferrari
- Department of Biotechnology and Biosciences, Università Milano Bicocca, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Neri M, Ricca A, di Girolamo I, Alcala'-Franco B, Cavazzin C, Orlacchio A, Martino S, Naldini L, Gritti A. Neural stem cell gene therapy ameliorates pathology and function in a mouse model of globoid cell leukodystrophy. Stem Cells 2012; 29:1559-71. [PMID: 21809420 PMCID: PMC3229988 DOI: 10.1002/stem.701] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of β-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of enzyme activity in brain and spinal cord tissues were enhanced when GALC-overexpressing NSC were used. Enzymatic correction correlated with reduced tissue storage, decreased activation of astroglia and microglia, delayed onset of symptoms, and longer lifespan. Mechanisms underlying the therapeutic effect of mNSC included widespread enzyme distribution, cross-correction of host cells, anti-inflammatory activity, and neuroprotection. Similar cell engraftment and metabolic correction were reproduced using human NSC. Thus, NSC gene therapy rapidly reconstitutes sustained and long-lasting enzyme activity in central nervous system tissues. Combining this approach with treatments targeting the systemic disease associated with leukodystrophies may provide significant therapeutic benefit. Stem Cells 2011;29:1559–1571
Collapse
Affiliation(s)
- Margherita Neri
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Arboleda D, Forostyak S, Jendelova P, Marekova D, Amemori T, Pivonkova H, Masinova K, Sykova E. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol 2011; 31:1113-22. [PMID: 21630007 DOI: 10.1007/s10571-011-9712-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/13/2011] [Indexed: 01/15/2023]
Abstract
Adipose-derived stromal cells (ASCs) are an alternative source of stem cells for cell-based therapies of neurological disorders such as spinal cord injury (SCI). In the present study, we predifferentiated ASCs (pASCs) and compared their behavior with naïve ASCs in vitro and after transplantation into rats with a balloon-induced compression lesion. ASCs were predifferentiated into spheres before transplantation, then pASCs or ASCs were injected intraspinally 1 week after SCI. The cells' fate and the rats' functional outcome were assessed using behavioral, histological, and electrophysiological methods. Immunohistological analysis of pASCs in vitro revealed the expression of NCAM, NG2, S100, and p75. Quantitative RT-PCR at different intervals after neural induction showed the up-regulated expression of the glial markers NG2 and p75 and the neural precursor markers NCAM and Nestin. Patch clamp analysis of pASCs revealed three different types of membrane currents; however, none were fast activating Na(+) currents indicating a mature neuronal phenotype. Significant improvement in both the pASC and ASC transplanted groups was observed in the BBB motor test. In vivo, pASCs survived better than ASCs did and interacted closely with the host tissue, wrapping host axons and oligodendrocytes. Some transplanted cells were NG2- or CD31-positive, but no neuronal markers were detected. The predifferentiation of ASCs plays a beneficial role in SCI repair by promoting the protection of denuded axons; however, functional improvements were comparable in both the groups, indicating that repair was induced mainly through paracrine mechanisms.
Collapse
Affiliation(s)
- David Arboleda
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Titomanlio L, Bouslama M, Le Verche V, Dalous J, Kaindl AM, Tsenkina Y, Lacaud A, Peineau S, Ghouzzi VE, Lelièvre V, Gressens P. Implanted Neurosphere-Derived Precursors Promote Recovery After Neonatal Excitotoxic Brain Injury. Stem Cells Dev 2011; 20:865-79. [DOI: 10.1089/scd.2010.0302] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Luigi Titomanlio
- Inserm, U676; Hopital Robert Debré, Paris, France
- Faculté de Médecine Denis Diderot, IFR02 and IFR25, Paris, France
- Université Paris 7, Paris, France
- Pediatric Emergency Department, AP-HP, Hopital Robert Debré, Paris, France
| | - Myriam Bouslama
- Inserm, U676; Hopital Robert Debré, Paris, France
- Faculté de Médecine Denis Diderot, IFR02 and IFR25, Paris, France
- Université Paris 7, Paris, France
| | - Virginia Le Verche
- Inserm, U676; Hopital Robert Debré, Paris, France
- Faculté de Médecine Denis Diderot, IFR02 and IFR25, Paris, France
- Université Paris 7, Paris, France
| | - Jérémie Dalous
- Inserm, U676; Hopital Robert Debré, Paris, France
- Faculté de Médecine Denis Diderot, IFR02 and IFR25, Paris, France
- Université Paris 7, Paris, France
| | - Angela M. Kaindl
- Inserm, U676; Hopital Robert Debré, Paris, France
- Faculté de Médecine Denis Diderot, IFR02 and IFR25, Paris, France
- Université Paris 7, Paris, France
- Department for Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Yanina Tsenkina
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, Université de Strasbourg, Strasbourg, France
| | - Adrien Lacaud
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, Université de Strasbourg, Strasbourg, France
| | - Stéphane Peineau
- Inserm, U676; Hopital Robert Debré, Paris, France
- Faculté de Médecine Denis Diderot, IFR02 and IFR25, Paris, France
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, Bristol, United Kingdom
| | - Vincent El Ghouzzi
- Inserm, U676; Hopital Robert Debré, Paris, France
- Faculté de Médecine Denis Diderot, IFR02 and IFR25, Paris, France
- Université Paris 7, Paris, France
| | - Vincent Lelièvre
- Inserm, U676; Hopital Robert Debré, Paris, France
- Faculté de Médecine Denis Diderot, IFR02 and IFR25, Paris, France
- Université Paris 7, Paris, France
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, Université de Strasbourg, Strasbourg, France
| | - Pierre Gressens
- Inserm, U676; Hopital Robert Debré, Paris, France
- Faculté de Médecine Denis Diderot, IFR02 and IFR25, Paris, France
- Université Paris 7, Paris, France
| |
Collapse
|
31
|
Rota Nodari L, Ferrari D, Giani F, Bossi M, Rodriguez-Menendez V, Tredici G, Delia D, Vescovi AL, De Filippis L. Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 2010; 5:e14035. [PMID: 21124963 PMCID: PMC2988794 DOI: 10.1371/journal.pone.0014035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/29/2010] [Indexed: 12/20/2022] Open
Abstract
Understanding the physiology of human neural stem cells (hNSCs) in the context of cell therapy for neurodegenerative disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs) from the fetal brain. Here, we investigated the fate of these IhNSC's immediate progeny (i.e. neural progenitors; IhNSC-Ps) upon unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event. Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells) and of glial, GFAP+ cells was also observed in the ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment, underwent differentiation into GFAP+ astrocytes, and β-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient immunosuppressive conditions. Most notably, transplanted IhNSC-P can significantly dampen the inflammatory response in the lesioned host brain. This work further supports hNSCs as a reliable and safe source of cells for transplantation therapy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Laura Rota Nodari
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
| | - Daniela Ferrari
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
| | - Fabrizio Giani
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
| | - Mario Bossi
- Department of Neurosciences and Biomedical Technologies, University Milano Bicocca, Milan, Italy
| | | | - Giovanni Tredici
- Department of Neurosciences and Biomedical Technologies, University Milano Bicocca, Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy
| | - Angelo Luigi Vescovi
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
- IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietralcina, San Giovanni Rotondo, Italy
- * E-mail: (LDF); (ALV)
| | - Lidia De Filippis
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
- * E-mail: (LDF); (ALV)
| |
Collapse
|
32
|
Oroxylin A, a flavonoid, stimulates adult neurogenesis in the hippocampal dentate gyrus region of mice. Neurochem Res 2010; 35:1725-32. [PMID: 20680459 DOI: 10.1007/s11064-010-0235-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Previously, we reported the cognitive enhancing effects of oroxylin A in unimpaired mice and its memory ameliorating activity in various memory impaired mice. To elucidate the mechanism mediating the cognitive effects of oroxylin A, this study examined the consequences of oroxylin A administration on neurogenesis in the hippocampal dentate gyrus using immunostaining for 5-bromo-2-deoxyuridine (BrdU) incorporation. In addition, we determined whether the new cells adopted a neuronal or glial fate by examining the co-localization of BrdU staining with neuronal or glial markers. Administration of oroxylin A in a dose-dependent and time-dependent manner increased the number of BrdU-incorporating cells. Moreover, the percentage of BrdU-incorporating cells co-localized with neuronal markers, neuronal nuclei, was significantly increased by the oroxylin A administration. These results suggest that the increased neurogenesis induced by the administration of oroxylin A could be, at least in part, associated with its positive effects on cognitive processing.
Collapse
|