1
|
Eriksson M, Nylén S, Grönvik KO. Passive immunization of mice with IgY anti-H5N1 protects against experimental influenza virus infection and allows development of protective immunity. Vaccine 2024; 42:126133. [PMID: 39019655 DOI: 10.1016/j.vaccine.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Influenza virus contributes substantially to the global human and animal disease burden. To protect individuals against disease, strategies are needed to minimize the time an individual is at risk of developing disease symptoms. Passive immunization using avian IgY antibodies can protect individuals against a variety of pathogens, including influenza virus. Yet the effect of IgY administration on generation of protective immunity is largely unknown. To address the effect of passive immunization on the host immune response development, adult or aged, male and female C57BL/6NCrl mice received chicken IgY anti-H5N1, normal IgY or PBS intranasally four hours before, and 20 hours after intranasal infection with H1N1 influenza A virus (PR8). The mice receiving cross-reactive IgY anti-H5N1 were protected from disease and developed influenza virus-specific memory T cells similar to control-treated mice. When re-challenged with PR8 35 days post primary infection IgY anti-H5N1-treated mice were fully protected. Moreover, when challenged with heterologous H3N2 influenza A virus (X-31) or with PR8 three months post infection the mice were protected against severe disease and death, albeit a slight transient weight loss was noted. The results show that passive immunization with IgY anti-H5N1 is safe and protects mice against disease induced by influenza virus without inhibiting development of protective immunity after virus exposure. This indicate that passive immunization can be used as prophylactic therapy in combination with immunization to prevent disease.
Collapse
Affiliation(s)
- Malin Eriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Department of Microbiology, Swedish Veterinary Agency, 751 89 Uppsala, Sweden.
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| | - Kjell-Olov Grönvik
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Uppsala Immunobiology Lab, 752 37 Uppsala, Sweden.
| |
Collapse
|
2
|
Schön J, Aebischer A, Halwe NJ, Ulrich L, Hoffmann D, Reiche S, Beer M, Grund C. Evaluation of SARS-CoV-2-Specific IgY Antibodies: Production, Reactivity, and Neutralizing Capability against Virus Variants. Int J Mol Sci 2024; 25:7976. [PMID: 39063218 PMCID: PMC11277173 DOI: 10.3390/ijms25147976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of SARS-CoV-2 in late 2019 initiated a global pandemic, which led to a need for effective therapeutics and diagnostic tools, including virus-specific antibodies. Here, we investigate different antigen preparations to produce SARS-CoV-2-specific and virus-neutralizing antibodies in chickens (n = 3/antigen) and rabbits (n = 2/antigen), exploring, in particular, egg yolk for large-scale production of immunoglobulin Y (IgY). Reactivity profiles of IgY preparations from chicken sera and yolk and rabbit sera were tested in parallel. We compared three types of antigens based on ancestral SARS-CoV-2: an inactivated whole-virus preparation, an S1 spike-protein subunit (S1 antigen) and a receptor-binding domain (RBD antigen, amino acids 319-519) coated on lumazine synthase (LS) particles using SpyCather/SpyTag technology. The RBD antigen proved to be the most efficient immunogen, and the resulting chicken IgY antibodies derived from serum or yolk, displayed strong reactivity with ELISA and indirect immunofluorescence and broad neutralizing activity against SARS-CoV-2 variants, including Omicron BA.1 and BA.5. Preliminary in vivo studies using RBD-lumazine synthase yolk preparations in a hamster model showed that local application was well tolerated and not harmful. However, despite the in vitro neutralizing capacity, this antibody preparation did not show protective effect. Further studies on galenic properties seem to be necessary. The RBD-lumazine antigen proved to be suitable for producing SARS-CoV-2 specific antibodies that can be applied to such therapeutic approaches and as reference reagents for SARS-CoV-2 diagnostics, including virus neutralization assays.
Collapse
Affiliation(s)
- Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (J.S.); (N.J.H.); (L.U.); (D.H.); (M.B.)
| | - Andrea Aebischer
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (A.A.); (S.R.)
| | - Nico Joël Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (J.S.); (N.J.H.); (L.U.); (D.H.); (M.B.)
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (J.S.); (N.J.H.); (L.U.); (D.H.); (M.B.)
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (J.S.); (N.J.H.); (L.U.); (D.H.); (M.B.)
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (A.A.); (S.R.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (J.S.); (N.J.H.); (L.U.); (D.H.); (M.B.)
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (J.S.); (N.J.H.); (L.U.); (D.H.); (M.B.)
| |
Collapse
|
3
|
Lv T, Xie X, Diao L, Jiang S, Ding Y, Yuan X, Gong L, Chen X, Zhang W, Cao Y. Leptospira-specific immunoglobulin Y (IgY) is protective in infected hamsters. Vaccine 2024; 42:3220-3229. [PMID: 38641497 DOI: 10.1016/j.vaccine.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Leptospirosis, a globally significant zoonotic disease caused by pathogenic Leptospira, continues to threaten the health and public safety of both humans and animals. Current clinical treatment of leptospirosis mainly relies on antibiotics but their efficacy in severe cases is controversial. Passive immunization has a protective effect in the treatment of infectious diseases. In addition, chicken egg yolk antibody (IgY) has gained increasing attention as a safe passive immunization agent. This study aimed to investigate whether hens produce specific IgY after immunization with inactivated Leptospira and the protective effect of specific IgY against leptospirosis. First, it was demonstrated that specific IgY could be extracted from the eggs of hens vaccinated with inactivated Leptospira and that specific IgY can specifically recognize and bind homotypic Leptospira with a high titre, as shown by MAT and ELISA. Next, we tested the therapeutic effects of IgY in early and late leptospirosis using a hamster model. The results showed that early specific IgY treatment increased the survival rate of hamsters to 100%, alleviated pathological damage to the liver, kidney, and lung, reduced leptospiral burden, and restored haematological indices as well as functional indicators of the liver and kidney. The therapeutic effect of early specific IgY was comparable to that of doxycycline. Late IgY treatment also enhanced the survival rate of hamsters and improved the symptoms of leptospirosis similar to early IgY treatment. However, the therapeutic effect of late IgY treatment was better when combined with doxycycline. Furthermore, no Leptospira colonization was observed in the kidneys, livers, or lungs of the surviving hamsters treated with specific IgY. Mechanistically, IgY was found to inhibit the growth and adhesion to cells of Leptospira. In conclusion, passive immunotherapy with specific IgY can be considered an effective treatment for leptospirosis, and may replace antibiotics regarding its therapeutic effects.
Collapse
Affiliation(s)
- Tianbao Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Luteng Diao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuang Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yue Ding
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lingling Gong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Xia M, Cui Z, Zeng T, Lu L, Sheng L, Cai Z. pH-responsive multi-network composite cellulose-based hydrogels for stable delivery of oral IgY-Fab fragments. Food Chem 2024; 435:137567. [PMID: 37778256 DOI: 10.1016/j.foodchem.2023.137567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Yolk immunoglobulin (IgY) is perfect supplement to mammalian immunoglobulin G in passive immune protection but with poor delivery stability. This work succeeded in pH-responsive oral delivery of IgY-Fab fragments with cellulose based multi-network composite hydrogels. Data displayed that the hydrogel 2 showed superior mechanical properties and load performance (encapsulation efficiency of 99.25% and loading capacity of 45.11 mg/100 mg). The stability of the released Fab was confirmed by HPLC with Fab purity up to 79.65% at the end of digestion. The FTIR spectra revealed the potential interactions between Fab and the hydrogel matrix of the formation of hydrogen bonds or electrostatic interactions between the groups of -OH, -CH2, and -COO-. The excellent rehydration of the hydrogels wouldn't be impacted by low-temperature freeze drying. In sum, this work is of great significance to the development of Fab-themed health-care food, intensive processing of poultry eggs and the economic construction of related industries.
Collapse
Affiliation(s)
- Minquan Xia
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhaoyu Cui
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, China
| | - LiZhi Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, China.
| | - Long Sheng
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
6
|
Budama-Kilinc Y, Kurtur OB, Gok B, Cakmakci N, Kecel-Gunduz S, Unel NM, Ozturk TK. Use of Immunoglobulin Y Antibodies: Biosensor-based Diagnostic Systems and Prophylactic and Therapeutic Drug Delivery Systems for Viral Respiratory Diseases. Curr Top Med Chem 2024; 24:973-985. [PMID: 38561616 DOI: 10.2174/0115680266289898240322073258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Respiratory viruses have caused many pandemics from past to present and are among the top global public health problems due to their rate of spread. The recently experienced COVID-19 pandemic has led to an understanding of the importance of rapid diagnostic tests to prevent epidemics and the difficulties of developing new vaccines. On the other hand, the emergence of resistance to existing antiviral drugs during the treatment process poses a major problem for society and global health systems. Therefore, there is a need for new approaches for the diagnosis, prophylaxis, and treatment of existing or new types of respiratory viruses. Immunoglobulin Y antibodies (IgYs) obtained from the yolk of poultry eggs have significant advantages, such as high production volumes, low production costs, and high selectivity, which enable the development of innovative and strategic products. Especially in diagnosing respiratory viruses, antibody-based biosensors in which these antibodies are integrated have the potential to provide superiority in making rapid and accurate diagnosis as a practical diagnostic tool. This review article aims to provide information on using IgY antibodies in diagnostic, prophylactic, and therapeutic applications for respiratory viruses and to provide a perspective for future innovative applications.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Ozan Baris Kurtur
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Nisanur Cakmakci
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Serda Kecel-Gunduz
- Physics Department, Faculty of Science, Istanbul University, Istanbul, Turkiye
| | - Necdet Mehmet Unel
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Plantomics Research Laboratory, Kastamonu, Turkiye
- Research and Application Center, Kastamonu University, Kastamonu, Turkiye
| | | |
Collapse
|
7
|
Wang H, Zhong Q, Lin J. Egg Yolk Antibody for Passive Immunization: Status, Challenges, and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5053-5061. [PMID: 36960586 DOI: 10.1021/acs.jafc.2c09180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The immunoglobulin Y (IgY) derived from hyperimmune egg yolk is a promising passive immune agent to combat microbial infections in humans and livestock. Numerous studies have been performed to develop specific egg yolk IgY for pathogen control, but with limited success. To date, the efficacy of commercial IgY products, which are all delivered through an oral route, has not been approved or endorsed by any regulatory authorities. Several challenging issues of the IgY-based passive immunization, which were not fully recognized and holistically discussed in previous publications, have impeded the development of effective egg yolk IgY products for humans and animals. This review summarizes major challenges of this technology, including in vivo stability, purification, heterologous immunogenicity, and repertoire diversity of egg yolk IgY. To tackle these challenges, potential solutions, such as encapsulation technologies to stabilize IgY, are discussed. Exploration of this technology to combat the COVID-19 pandemic is also updated in this review.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
8
|
Zhang M, Zhang L, Yang J, Zhao D, Han K, Huang X, Liu Q, Xiao Y, Gu Y, Li Y. An IgY Effectively Prevents Goslings from Virulent GAstV Infection. Vaccines (Basel) 2022; 10:vaccines10122090. [PMID: 36560500 PMCID: PMC9781778 DOI: 10.3390/vaccines10122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Goose astrovirus (GAstV) leads to viscera and joints urate deposition in 1- to 20-day-old goslings, with a mortality rate of up to 50%, posing a severe threat to entire colonies; however, there is no efficient prevention and control method for GAstV infection. This study describes a prophylactic anti-GAstV strategy based on the specific immunoglobulin Y (IgY) from egg yolk. The specific IgY was produced by 22-week-old laying hens intramuscularly immunized with the inactivated GAstV three consecutive times, with 2-week intervals. The egg yolk was collected weekly after the immunization and the anti-GAstV IgY titer was monitored using an agar gel immune diffusion assay (AGID). The results revealed that the AGID titer began to increase on day 7, reached a peak on day 49, and remained at a high level until day 77 after the first immunization. The specific IgY was prepared from the combinations of egg yolk from day 49 to day 77 through PEG-6000 precipitation. Animal experiments were conducted to evaluate the effects of prevention and treatment. The result of the minimum prophylactic dose of the IgY showed that the protection rate was 90.9% when 2.5 mg was administrated. Results of the prevention and the treatment experiments showed prevention and cure rates of over 80% when yolk antibody was administered in the early stages of the GAstV infection. These results suggested that the specific IgY obtained from immunized hens with the inactivated GAstV could be a novel strategy for preventing and treating GAstV infection.
Collapse
Affiliation(s)
- Mengran Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Yichen Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
9
|
Wallach MG. Opinion: The use of chicken IgY in the control of pandemics. Front Immunol 2022; 13:954310. [PMID: 36032157 PMCID: PMC9405881 DOI: 10.3389/fimmu.2022.954310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Michael G. Wallach
- University of Technology Sydney, Sydney, NSW, Australia
- The Centre for Innovative Medical Research, SPARK Oceania, Sydney, NSW, Australia
- *Correspondence: Michael G. Wallach,
| |
Collapse
|
10
|
Agurto-Arteaga A, Poma-Acevedo A, Rios-Matos D, Choque-Guevara R, Montesinos-Millán R, Montalván Á, Isasi-Rivas G, Cauna-Orocollo Y, Cauti-Mendoza MDG, Pérez-Martínez N, Gutierrez-Manchay K, Ramirez-Ortiz I, Núñez-Fernández D, Salguedo-Bohorquez MI, Quiñones-Garcia S, Fernández Díaz M, Guevara Sarmiento LA, Zimic M. Preclinical Assessment of IgY Antibodies Against Recombinant SARS-CoV-2 RBD Protein for Prophylaxis and Post-Infection Treatment of COVID-19. Front Immunol 2022; 13:881604. [PMID: 35664008 PMCID: PMC9157249 DOI: 10.3389/fimmu.2022.881604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Within the framework of the current COVID-19 pandemic, there is a race against time to find therapies for the outbreak to be controlled. Since vaccines are still tedious to develop and partially available for low-income countries, passive immunity based on egg-yolk antibodies (IgY) is presented as a suitable approach to preclude potential death of infected patients, based on its high specificity/avidity/production yield, cost-effective manufacture, and ease of administration. In the present study, IgY antibodies against a recombinant RBD protein of SARS-CoV-2 were produced in specific-pathogen-free chickens and purified from eggs using a biocompatible method. In vitro immunoreactivity was tested, finding high recognition and neutralization values. Safety was also demonstrated prior to efficacy evaluation, in which body weight, kinematics, and histopathological assessments of hamsters challenged with SARS-CoV-2 were performed, showing a protective effect administering IgY intranasally both as a prophylactic treatment or a post-infection treatment. The results of this study showed that intranasally delivered IgY has the potential to both aid in prevention and in overcoming COVID-19 infection, which should be very useful to control the advance of the current pandemic and the associated mortality.
Collapse
Affiliation(s)
- Andres Agurto-Arteaga
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Astrid Poma-Acevedo
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Dora Rios-Matos
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Ricardo Choque-Guevara
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Ricardo Montesinos-Millán
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Ángela Montalván
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Gisela Isasi-Rivas
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Yudith Cauna-Orocollo
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - María de Grecia Cauti-Mendoza
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Norma Pérez-Martínez
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Kristel Gutierrez-Manchay
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Ingrid Ramirez-Ortiz
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Dennis Núñez-Fernández
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mario I Salguedo-Bohorquez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stefany Quiñones-Garcia
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manolo Fernández Díaz
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Luis A Guevara Sarmiento
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Mirko Zimic
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru.,Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | |
Collapse
|
11
|
da Silva MTL, Deodato RM, Villar LM. Exploring the potential usefulness of IgY for antiviral therapy: A current review. Int J Biol Macromol 2021; 189:785-791. [PMID: 34416265 DOI: 10.1016/j.ijbiomac.2021.08.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Immunoglobulin yolk (IgY) is therapeutic antibodies presented in yolk eggs of birds, reptiles, and amphibians. These proteins produced by the immune system of the animal, are capable of neutralizing antigenic molecules, including viral antigens, fulfilling a role in the body defense. The specificity of these antibodies and the facility for their production, make these molecules capable of being used as tools for diagnosis and immunotherapy. Regarding this last aspect, it is common knowledge that the field of virology, is racing against time in the development of new drugs and vaccines to try to contain pandemics and local epidemics and, in counterproposal, avian antibodies are neutralizing molecules that can help in the control and spread of disease. These molecules have been explored for years and currently chicken eggs are produced in large quantities from the animal's immunization against a specific pathogen. Thus, on this subject, this review made a survey of these researches and presents a summary of all the successful cases and perspectives in the use of IgYs as tools for viral immunization.
Collapse
Affiliation(s)
| | - Raissa Martins Deodato
- Viral Hepatitis Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Livia Melo Villar
- Viral Hepatitis Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Cruz, Tipantiza N, Torres, Arias M. Tecnología IgY: Estrategia en el tratamiento de enfermedades infecciosas humanas. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La aparición de microorganismos resistentes a antibióticos, el descubrimiento de nuevos agentes patógenos con potencial pandémico y el aumento de una población inmunocomprometida han dejado casi obsoleta la terapia antimicrobiana, terapia comúnmente usada para tratar enfermedades infecciosas. Por otro lado, las investigaciones acerca del uso del anticuerpo IgY para desarrollar inmunidad pasiva han demostrado el potencial que tiene la tecnología IgY para tratar enfermedades infecciosas víricas y bacterianas. Donde los anticuerpos IgY de aves se destacan por su alta especificidad, rendimiento y escalabilidad de producción a menor costo, con relación a los anticuerpos IgG de mamíferos. El objetivo de esta revisión es determinar la importancia del uso de los anticuerpos IgY como tratamiento terapéutico y profiláctico frente a los patógenos causantes de infecciones virales y bacterianas en humanos, mediante la recopilación de ensayos clínicos, productos comerciales y patentes registradas en el período de 2010-2021. Finalmente, con este estudio se estableció que la tecnología IgY es una herramienta biotecnológica versátil y eficaz para tratar y prevenir enfermedades infecciosas, al reducir los síntomas y la carga del patógeno.
Collapse
Affiliation(s)
- Nathaly Cruz, Tipantiza
- Departamento de Ciencias de la Vida y la Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE
| | - Marbel Torres, Arias
- Departamento de Ciencias de la Vida y la Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, ESPE
| |
Collapse
|
13
|
Lee L, Samardzic K, Wallach M, Frumkin LR, Mochly-Rosen D. Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Front Immunol 2021; 12:696003. [PMID: 34177963 PMCID: PMC8220206 DOI: 10.3389/fimmu.2021.696003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
Antiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases. IgY is fast-acting, easy to produce, and low cost. IgY antibodies can readily be generated in large quantities with minimal environmental harm or infrastructure investment by using egg-laying hens. We summarize a variety of IgY uses, focusing on their potential for the detection, prevention, and treatment of human and animal infections.
Collapse
Affiliation(s)
- Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kate Samardzic
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Wallach
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
14
|
Artman C, Brumfield KD, Khanna S, Goepp J. Avian antibodies (IgY) targeting spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibit receptor binding and viral replication. PLoS One 2021; 16:e0252399. [PMID: 34048457 PMCID: PMC8162713 DOI: 10.1371/journal.pone.0252399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The global pandemic of Coronavirus infectious disease 2019 (COVID-19), caused by SARS-CoV-2, has plunged the world into both social and economic disarray, with vaccines still emerging and a continued paucity of personal protective equipment; the pandemic has also highlighted the potential for rapid emergence of aggressive respiratory pathogens and the need for preparedness. Avian immunoglobulins (IgY) have been previously shown in animal models to protect against new infection and mitigate established infection when applied intranasally. We carried out a proof-of-concept study to address the feasibility of using such antibodies as mucosally-applied prophylaxis against SARS-CoV-2. METHODS Hens were immunized with recombinant S1 spike glycoprotein of the virus, and the resulting IgY was evaluated for binding specificity, inhibition of glycoprotein binding to angiotensin converting enzyme-2 (ACE2) protein (the requisite binding site for the virus), and inhibition of viral replication in Vero cell culture. RESULTS Titers of anti-S1 glycoprotein IgY were evident in yolks at 14 days post-immunization, peaking at 21 days, and at peak concentrations of 16.8 mg/ml. IgY showed strong and significant inhibition of S1/ACE2 binding interactions, and significantly inhibited viral replication at a concentration of 16.8 mg/ml. Four weeks' collection from eggs of two hens produced a total of 1.55 grams of IgY. CONCLUSIONS In this proof-of-concept study we showed that avian immunoglobulins (IgY) raised against a key virulence factor of the SARS-CoV-2 virus successfully inhibited the critical initial adhesion of viral spike glycoproteins to human ACE2 protein receptors and inhibited viral replication in vitro, in a short period using only two laying hens. We conclude that production of large amounts of IgY inhibiting viral binding and replication of SARS-CoV-2 is feasible, and that incorporation of this or similar material into an intranasal spray and/or other mucosal protecting products may be effective at reducing infection and spread of COVID-19.
Collapse
Affiliation(s)
- Chad Artman
- Scaled Microbiomics, LLC, Hagerstown, MD, United States of America
| | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Julius Goepp
- Scaled Microbiomics, LLC, Hagerstown, MD, United States of America
| |
Collapse
|
15
|
Immunotherapeutic Efficacy of IgY Antibodies Targeting the Full-Length Spike Protein in an Animal Model of Middle East Respiratory Syndrome Coronavirus Infection. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021. [PMID: 34073502 DOI: 10.3390/ph14060511.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identified in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often fatal acute respiratory illness in humans. No approved prophylactic or therapeutic interventions are currently available. In this study, we developed chicken egg yolk antibodies (IgY Abs) specific to the MERS-CoV spike (S) protein and evaluated their neutralizing efficiency against MERS-CoV infection. S-specific IgY Abs were produced by injecting chickens with the purified recombinant S protein of MERS-CoV at a high titer (4.4 mg/mL per egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated specific binding to the MERS-CoV S protein. In vitro neutralization of the generated IgY Abs against MERS-CoV was evaluated and showed a 50% neutralizing concentration of 51.42 μg/mL. In vivo testing using a human-transgenic mouse model showed a reduction of viral antigen positive cells in treated mice, compared to the adjuvant-only controls. Moreover, the lung cells of the treated mice showed significantly reduced inflammation, compared to the controls. Our results show efficient neutralization of MERS-CoV infection both in vitro and in vivo using S-specific IgY Abs. Clinical trials are needed to evaluate the efficiency of the IgY Abs in camels and humans.
Collapse
|
16
|
El-Kafrawy SA, Abbas AT, Sohrab SS, Tabll AA, Hassan AM, Iwata-Yoshikawa N, Nagata N, Azhar EI. Immunotherapeutic Efficacy of IgY Antibodies Targeting the Full-Length Spike Protein in an Animal Model of Middle East Respiratory Syndrome Coronavirus Infection. Pharmaceuticals (Basel) 2021; 14:511. [PMID: 34073502 PMCID: PMC8229159 DOI: 10.3390/ph14060511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Identified in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often fatal acute respiratory illness in humans. No approved prophylactic or therapeutic interventions are currently available. In this study, we developed chicken egg yolk antibodies (IgY Abs) specific to the MERS-CoV spike (S) protein and evaluated their neutralizing efficiency against MERS-CoV infection. S-specific IgY Abs were produced by injecting chickens with the purified recombinant S protein of MERS-CoV at a high titer (4.4 mg/mL per egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated specific binding to the MERS-CoV S protein. In vitro neutralization of the generated IgY Abs against MERS-CoV was evaluated and showed a 50% neutralizing concentration of 51.42 μg/mL. In vivo testing using a human-transgenic mouse model showed a reduction of viral antigen positive cells in treated mice, compared to the adjuvant-only controls. Moreover, the lung cells of the treated mice showed significantly reduced inflammation, compared to the controls. Our results show efficient neutralization of MERS-CoV infection both in vitro and in vivo using S-specific IgY Abs. Clinical trials are needed to evaluate the efficiency of the IgY Abs in camels and humans.
Collapse
Affiliation(s)
- Sherif A. El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aymn T. Abbas
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biotechnology Research Laboratories, Gastroenterology, Surgery Centre, Mansoura University, Mansoura 35516, Egypt
| | - Sayed S. Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki 12622, Egypt;
- Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Ahmed M. Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (N.I.-Y.); (N.N.)
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (N.I.-Y.); (N.N.)
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Maskoep WI, Nasronudin N, Khairunisa S, Sudjarwo SA. The Influence of Anti-Hiv-1 Specific IgY In Inhibiting HIV-1 Infection in Binding Phase with Syncytium Examination of CD4 Receptor Density Using the Flowcytometry Method. FOLIA MEDICA INDONESIANA 2021. [DOI: 10.20473/fmi.v56i4.24636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HIV/ AIDS infections have increased and spread very quickly in the world, including in Indonesia. The absence of an effective vaccine and the fact that antiretroviral drugs can only suppress the progression of infection but cannot eradicate it lead to the efforts to find materials containing immunoglobulins that can replace the immune system which greatly declines in HIV/ AIDS patients. The successful use of specific IgY in other studies opens up opportunities for the use of anti-HIV-1 specific IgY as passive immunotherapy. This type of research is true experimental research design with post-test only control group design. IgY was obtained from Lohmann Laying hens chicken eggs immunized with the inactivated HIV-1 virus. The concentration of IgY was determined using the Bradford method and then the characterization test was continued using the AGPT, ELISA, SDS-PAGE and Western blot tests which showed anti-HIV-1 specific IgY. The results of the test showed specific anti-HIV-1 IgY was effective in inhibiting the formation of syncytium in HIV-1 infection against CD4+ T lymphocytes in the binding phase (entry stage) in the treatment group p-value 0.000 (p <0.05). The results of CD4 receptor density tests using the Flowcytometry method showed that specific anti-HIV-1 IgY was effective in inhibiting HIV-1 infection against CD4+ T lymphocytes in the binding phase (entry stage) in the treatment group p-value 0.047 (p <0.05).HIV/ AIDS infections have increased and spread very quickly in the world, including in Indonesia. The absence of an effective vaccine and the fact that antiretroviral drugs can only suppress the progression of infection but cannot eradicate it lead to the efforts to find materials containing immunoglobulins that can replace the immune system which greatly declines in HIV/ AIDS patients. The successful use of specific IgY in other studies opens up opportunities for the use of anti-HIV-1 specific IgY as passive immunotherapy. This type of research is true experimental research design with post-test only control group design. IgY was obtained from Lohmann Laying hens chicken eggs immunized with the inactivated HIV-1 virus. The concentration of IgY was determined using the Bradford method and then the characterization test was continued using the AGPT, ELISA, SDS-PAGE and Western blot tests which showed anti-HIV-1 specific IgY. The results of the test showed specific anti-HIV-1 IgY was effective in inhibiting the formation of syncytium in HIV-1 infection against CD4+ T lymphocytes in the binding phase (entry stage) in the treatment group p-value 0.000 (p <0.05). The results of CD4 receptor density tests using the Flowcytometry method showed that specific anti-HIV-1 IgY was effective in inhibiting HIV-1 infection against CD4+ T lymphocytes in the binding phase (entry stage) in the treatment group p-value 0.047 (p <0.05).
Collapse
|
18
|
Taheri F, Nazarian S, Ahmadi TS, Gargari SLM. Protective effects of egg yolk immunoglobulins (IgYs) developed against recombinant immunogens CtxB, OmpW and TcpA on infant mice infected with Vibrio cholerae. Int Immunopharmacol 2020; 89:107054. [DOI: 10.1016/j.intimp.2020.107054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
|
19
|
Abbas AT, El-Kafrawy SA, Sohrab SS, Tabll AA, Hassan AM, Iwata-Yoshikawa N, Nagata N, Azhar EI. Anti-S1 MERS-COV IgY Specific Antibodies Decreases Lung Inflammation and Viral Antigen Positive Cells in the Human Transgenic Mouse Model. Vaccines (Basel) 2020; 8:634. [PMID: 33139631 PMCID: PMC7712919 DOI: 10.3390/vaccines8040634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in 2012 and causes severe and often fatal acute respiratory illness in humans. No approved prophylactic and therapeutic interventions are currently available. In this study, we have developed egg yolk antibodies (immunoglobulin Y (IgY)) specific for MERS-CoV spike protein (S1) in order to evaluate their neutralizing efficiency against MERS-CoV infection. S1-specific immunoglobulins were produced by injecting chickens with purified recombinant S1 protein of MERS-CoV at a high titer (5.7 mg/mL egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated that the IgY antibody specifically bound to the MERS-CoV S1 protein. Anti-S1 antibodies were also able to recognize MERS-COV inside cells, as demonstrated by an immunofluorescence assay. Plaque reduction and microneutralization assays showed the neutralization of MERS-COV in Vero cells by anti-S1 IgY antibodies and non-significantly reduced virus titers in the lungs of MERS-CoV-infected mice during early infection, with a nonsignificant decrease in weight loss. However, a statistically significant (p = 0.0196) quantitative reduction in viral antigen expression and marked reduction in inflammation were observed in lung tissue. Collectively, our data suggest that the anti-MERS-CoV S1 IgY could serve as a potential candidate for the passive treatment of MERS-CoV infection.
Collapse
Affiliation(s)
- Aymn T. Abbas
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biotechnology Research Laboratories, Gastroenterology, Surgery Centre, Mansoura University, Mansoura 35511, Egypt
| | - Sherif A. El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Clinical Pathology, National Liver Institute, Menoufiya University, Shebin El-Kom 32511, Egypt
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf A. Tabll
- Genetic Engineering and Biotechnology Division, Microbial Biotechnology Department (Biomedical Technology Group), National Research Centre, Dokki 12622, Egypt;
- Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Ahmed M. Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (N.I.-Y.); (N.N.)
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (N.I.-Y.); (N.N.)
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Anti-S1 MERS-COV IgY Specific Antibodies Decreases Lung Inflammation and Viral Antigen Positive Cells in the Human Transgenic Mouse Model. Vaccines (Basel) 2020. [PMID: 33139631 DOI: 10.3390/vaccines8040634.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in 2012 and causes severe and often fatal acute respiratory illness in humans. No approved prophylactic and therapeutic interventions are currently available. In this study, we have developed egg yolk antibodies (immunoglobulin Y (IgY)) specific for MERS-CoV spike protein (S1) in order to evaluate their neutralizing efficiency against MERS-CoV infection. S1-specific immunoglobulins were produced by injecting chickens with purified recombinant S1 protein of MERS-CoV at a high titer (5.7 mg/mL egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated that the IgY antibody specifically bound to the MERS-CoV S1 protein. Anti-S1 antibodies were also able to recognize MERS-COV inside cells, as demonstrated by an immunofluorescence assay. Plaque reduction and microneutralization assays showed the neutralization of MERS-COV in Vero cells by anti-S1 IgY antibodies and non-significantly reduced virus titers in the lungs of MERS-CoV-infected mice during early infection, with a nonsignificant decrease in weight loss. However, a statistically significant (p = 0.0196) quantitative reduction in viral antigen expression and marked reduction in inflammation were observed in lung tissue. Collectively, our data suggest that the anti-MERS-CoV S1 IgY could serve as a potential candidate for the passive treatment of MERS-CoV infection.
Collapse
|
21
|
Pérez de la Lastra JM, Baca-González V, Asensio-Calavia P, González-Acosta S, Morales-delaNuez A. Can Immunization of Hens Provide Oral-Based Therapeutics against COVID-19? Vaccines (Basel) 2020; 8:E486. [PMID: 32872186 PMCID: PMC7565424 DOI: 10.3390/vaccines8030486] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
In the current worldwide pandemic situation caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the newest coronavirus disease (COVID-19), therapeutics and prophylactics are urgently needed for a large population. Some of the prophylaxis strategies are based on the development of antibodies targeting viral proteins. IgY antibodies are a type of immunoglobulin present in birds, amphibians, and reptiles. They are usually obtained from egg yolk of hyper-immunized hens and represent a relatively inexpensive source of antibodies. Specific IgY can be produced by immunizing chickens with the target antigen and then purifying from the egg yolk. Chicken IgY has been widely explored as a clinical anti-infective material for prophylaxis, preventive medicine, and therapy of infectious diseases. Administered non-systemically, IgY antibodies are safe and effective drugs. Moreover, passive immunization with avian antibodies could become an effective alternative therapy, as these can be obtained relatively simply, cost-efficiently, and produced on a large scale. Here, we highlight the potential use of polyclonal avian IgY antibodies as an oral prophylactic treatment for respiratory viral diseases, such as COVID-19, for which no vaccine is yet available.
Collapse
Affiliation(s)
- José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| | - Victoria Baca-González
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| | - Patricia Asensio-Calavia
- Biological Activity Service, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain;
| | - Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| |
Collapse
|
22
|
Immunotherapy with IgY Antibodies toward Outer Membrane Protein F Protects Burned Mice against Pseudomonas aeruginosa Infection. J Immunol Res 2020; 2020:7840631. [PMID: 32566689 PMCID: PMC7275967 DOI: 10.1155/2020/7840631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022] Open
Abstract
Burn patients with multidrug-resistant Pseudomonas aeruginosa infections commonly suffer from high morbidity and mortality, which present a major challenge to healthcare systems throughout the world. Outer membrane protein F (OprF), as a main outer membrane porin, is required for full virulence expression of P. aeruginosa. The aim of this study was to evaluate the protective efficacy of egg yolk-specific antibody (IgY) raised against recombinant OprF (r-OprF) protein in a murine burn model of infection. The hens were immunized with r-OprF, and anti-r-OprF IgY was purified using salt precipitation. Groups of mice were injected with different regimens of anti-OprF IgY or control IgY (C-IgY). Infections were caused by subcutaneous injection of P. aeruginosa strain PAO1 at the burn site. Mice were monitored for mortality for 5 days. The functional activity of anti-OprF IgY was determined by in vitro invasion assays. Immunotherapy with anti-OprF IgY resulted in a significant improvement in the survival of mice infected by P. aeruginosa from 25% to 87.5% compared with the C-IgY and PBS. The anti-OprF IgY decreased the invasion of P. aeruginosa PAO1 into the A549. Passive immunization with anti-OprF IgY led to an efficacious protection against P. aeruginosa burn infection in the burn model.
Collapse
|
23
|
Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C, Kumar R. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol 2020; 85:106639. [PMID: 32473573 PMCID: PMC7255167 DOI: 10.1016/j.intimp.2020.106639] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
The advancements in technology and manufacturing processes have allowed the development of new derivatives, biosimilar or advanced improved versions for approved antibodies each year for treatment regimen. There are more than 700 antibody-based molecules that are in different stages of phase I/II/ III clinical trials targeting new unique targets. To date, approximately more than 80 monoclonal antibodies (mAbs) have been approved. A total of 7 novel antibody therapeutics had been granted the first approval either in the United States or European Union in the year 2019, representing approximately 20% of the total number of approved drugs. Most of these licenced mAbs or their derivatives are either of hybridoma origin or their improvised engineered versions. Even with the recent development of high throughput mAb generation technologies, hybridoma is the most favoured method due to its indigenous nature to preserve natural cognate antibody pairing information and preserves innate functions of immune cells. The recent advent of antibody engineering technology has superseded the species level barriers and has shown success in isolation of hybridoma across phylogenetically distinct species. This has led to the isolation of monoclonal antibodies against human targets that are conserved and non-immunogenic in the rodent. In this review, we have discussed in detail about hybridoma technology, its expansion towards different animal species, the importance of antibodies isolated from different animal sources that are useful in biological applications, advantages, and limitations. This review also summarizes the challenges and recent progress associated with hybridoma development, and how it has been overcome in these years to provide new insights for the isolation of mAbs.
Collapse
Affiliation(s)
- Hilal Ahmed Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
24
|
Constantin C, Neagu M, Diana Supeanu T, Chiurciu V, A Spandidos D. IgY - turning the page toward passive immunization in COVID-19 infection (Review). Exp Ther Med 2020; 20:151-158. [PMID: 32536989 PMCID: PMC7282020 DOI: 10.3892/etm.2020.8704] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
The world is facing one of the major outbreaks of viral infection of the modern history, however, as vaccine development workflow is still tedious and can not control the infection spreading, researchers are turning to passive immunization as a good and quick alternative to treat and contain the spreading. Within passive immunization domain, raising specific immunoglobulin (Ig)Y against acute respiratory tract infection has been developing for more than 20 years. Far from being an obsolete chapter we will revise the IgY-technology as a new frontier for research and clinic. A wide range of IgY applications has been effectively confirmed in both human and animal health. The molecular particularities of IgY give them functional advantages recommending them as good candidates in this endeavor. Obtaining specific IgY is sustained by reliable and nature friendly methodology as an alternative for mammalian antibodies. The aria of application is continuously enlarging from bacterial and viral infections to tumor biology. Specific anti-viral IgY were previously tested in several designs, thus its worth pointing out that in the actual COVID-19 pandemic context, respiratory infections need an enlarged arsenal of therapeutic approaches and clearly the roles of IgY should be exploited in depth.
Collapse
Affiliation(s)
- Carolina Constantin
- Immunology Laboratory, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Laboratory, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania.,Doctoral School of Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | | | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
25
|
Mendoza M, Gunasekera D, Pratt KP, Qiu Q, Casares S, Brumeanu TD. The humanized DRAGA mouse (HLA-A2. HLA-DR4. RAG1 KO. IL-2R g c KO. NOD) establishes inducible and transmissible models for influenza type A infections. Hum Vaccin Immunother 2020; 16:2222-2237. [PMID: 32129705 DOI: 10.1080/21645515.2020.1713605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have engineered a Human Immune System (HIS)-reconstituted mouse strain (DRAGA mouse: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD) in which the murine immune system has been replaced by a long-term, functional HIS via infusion of CD34+ hematopoietic stem cells (HSC) from cord blood. Herein, we report that the DRAGA mice can sustain inducible and transmissible H1N1 and H3N2 influenza A viral (IAV) infections. DRAGA female mice were significantly more resilient than the males to the H3N2/Aichi infection, but not to H3N2/Hong Kong, H3N2/Victoria, or H1N1/PR8 sub-lethal infections. Consistently associated with large pulmonary hemorrhagic areas, both human and murine Factor 8 mRNA transcripts were undetectable in the damaged lung tissues but not in livers of DRAGA mice advancing to severe H1N1/PR8 infection. Infected DRAGA mice mounted a neutralizing anti-viral antibody response and developed lung-resident CD103 T cells. These results indicate that the DRAGA mouse model for IAV infections can more closely approximate the human lung pathology and anti-viral immune responses compared to non-HIS mice. This mouse model may also allow further investigations into gender-based resilience to IAV infections, and may potentially be used to evaluate the efficacy of IAV vaccine regimens for humans.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,Department of Pathology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Devi Gunasekera
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Kathleen P Pratt
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Qi Qiu
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,US Military Malaria Vaccine Development, Naval Medical Research Center/Walter Reed Army Institute of Research , Silver Spring, MD, USA
| | - Sofia Casares
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,US Military Malaria Vaccine Development, Naval Medical Research Center/Walter Reed Army Institute of Research , Silver Spring, MD, USA
| | - Teodor-D Brumeanu
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| |
Collapse
|
26
|
Ranjbar M, Behrouz B, Norouzi F, Mousavi Gargari SL. Anti-PcrV IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound models. Mol Immunol 2019; 116:98-105. [PMID: 31634816 DOI: 10.1016/j.molimm.2019.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen in burn patients, and rapidly acquires antibiotic resistance; thus, developing an effective therapeutic approach is the most promising strategy for combating infection. Type III secretion system (T3SS) translocates bacterial toxins into the cytosol of the targeted eukaryotic cells, which plays important roles in the virulence of P. aeruginosa infections in both acute pneumonia and burn wound models. The PcrV protein, a T3SS translocating protein, is required for T3SS function and is a well-validated target in animal models of immunoprophylactic strategies targeting P. aeruginosa. In the present study, we evaluated the protective efficacy of chicken egg yolk antibodies (IgY) raised against recombinant PcrV (r-PcrV) in both acute pneumonia and burn wound models. R-PcrV protein was generated by expressing the pcrV gene (cloned in pET-28a vector) in E. coli BL-21. Anti-PcrV IgY was obtained by immunization of hen. Anti-PcrV IgY induced greater protection in P. aeruginosamurine acute pneumonia and burn wound models than control IgY (C-IgY) and PBS groups. Anti-PcrV IgY improved opsonophagocytic killing and inhibition of bacterial invasion of host cells. Taken together, our data provide evidence that anti-PcrV IgY can be a promising therapeutic candidate for combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Mahya Ranjbar
- Department of Microbiology, Shahed University, Faculty of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Bahador Behrouz
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Fatemeh Norouzi
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | | |
Collapse
|
27
|
Pereira EPV, van Tilburg MF, Florean EOPT, Guedes MIF. Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. Int Immunopharmacol 2019; 73:293-303. [PMID: 31128529 PMCID: PMC7106195 DOI: 10.1016/j.intimp.2019.05.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
Egg yolk constitutes a relevant alternative source of antibodies. It presents some advantages over mammalian serum immunoglobulins regarding productivity, animal welfare and specificity. The main immunoglobulin present in avian blood (IgY) is transmitted to their offspring and accumulates in egg yolks, which enables the non-invasive harvesting of high amounts of antibodies. Moreover, due to structural differences and phylogenetic distance, IgY is more suitable for diagnostic purposes than mammalian antibodies, since it does not react with certain components of the human immune system and displays greater avidity for mammalian conserved proteins. IgY has been extensively used in health researches, as both therapeutic and diagnostic tool. This article aims to review its applications in both human and veterinary health.
Collapse
Affiliation(s)
- E P V Pereira
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil.
| | - M F van Tilburg
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil
| | - E O P T Florean
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil
| | - M I F Guedes
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil
| |
Collapse
|
28
|
de Faria LS, de Souza DLN, Ribeiro RP, de Sousa JEN, Borges IP, Ávila VMR, Ferreira-Júnior Á, Goulart LR, Costa-Cruz JM. Highly specific and sensitive anti-Strongyloides venezuelensis IgY antibodies applied to the human strongyloidiasis immunodiagnosis. Parasitol Int 2019; 72:101933. [PMID: 31128257 DOI: 10.1016/j.parint.2019.101933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/12/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Due to the epidemiological problem of the neglected condition of human strongyloidiasis, rapid and effective diagnosis is extremely important, with the development of new diagnostic tools being essential to reduce infections and chronic cases. Avian immunoglobulin Y (IgY) technology is an alternative for antibody production that has high specificity and profitability. This study aimed to produce and fractionate IgY antibodies from the egg yolks of hens that were immunized with the total antigenic extracts of Strongyloides venezuelensis infectious filariform larvae (iL3) and parthenogenetic females (pF). IgY antibodies were then evaluated by their recognition of antigenic proteins, evolutive helminth forms, and serological diagnosis of human strongyloidiasis by the detection of immune complexes in serum samples. Egg yolks were fractionated to obtain IgY antibodies by thiophilic interaction chromatography. Immune complex detection in serum samples showed diagnostic values for anti-iL3 IgY and anti-pF IgY antibodies at 95.56% and 88.89% sensitivity and 95.56% and 91.11% specificity, respectively. Therefore, IgY technology is a promising tool for the detection of blood circulating Strongyloides antigens, with possible application as a serological diagnostic method.
Collapse
Affiliation(s)
- Lucas S de Faria
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Dayane L N de Souza
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Raphaella P Ribeiro
- Programa de Pós-Graduação em Sanidade e Produção Animal nos Trópicos, Universidade de Uberaba, Campus Aeroporto. Av. Nenê Sabino, sala 2D05,Uberaba, Minas Gerais 38055-500, Brazil
| | - José Eduardo N de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Isabela P Borges
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Veridiana M R Ávila
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Álvaro Ferreira-Júnior
- Programa de Pós-Graduação em Sanidade e Produção Animal nos Trópicos, Universidade de Uberaba, Campus Aeroporto. Av. Nenê Sabino, sala 2D05,Uberaba, Minas Gerais 38055-500, Brazil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândi, Av Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Julia M Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil.
| |
Collapse
|
29
|
Zhu Y, Ma Y, Lu M, Zhang Y, Li A, Liang X, Li J. Efficient Production of Human Norovirus-Specific IgY in Egg Yolks by Vaccination of Hens with a Recombinant Vesicular Stomatitis Virus Expressing VP1 Protein. Viruses 2019; 11:v11050444. [PMID: 31100802 PMCID: PMC6563233 DOI: 10.3390/v11050444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Human norovirus (HuNoV) is responsible for more than 95% of outbreaks of acute nonbacterial gastroenteritis worldwide. Despite major efforts, there are no vaccines or effective therapeutic interventions against this virus. Chicken immunoglobulin Y (IgY)-based passive immunization has been shown to be an effective strategy to prevent and treat many enteric viral diseases. Here, we developed a highly efficient bioreactor to generate high titers of HuNoV-specific IgY in chicken yolks using a recombinant vesicular stomatitis virus expressing HuNoV capsid protein (rVSV-VP1) as an antigen. We first demonstrated that HuNoV VP1 protein was highly expressed in chicken cells infected by rVSV-VP1. Subsequently, we found that White Leghorn hens immunized intramuscularly with rVSV-VP1 triggered a high level of HuNoV-specific yolk IgY antibodies. The purified yolk IgY was efficiently recognized by HuNoV virus-like particles (VLPs). Importantly, HuNoV-specific IgY efficiently blocked the binding of HuNoV VLPs to all three types (A, B, and O) of histo-blood group antigens (HBGAs), the attachment factors for HuNoV. In addition, the receptor blocking activity of IgY remained stable at temperature below 70 °C and at pH ranging from 4 to 9. Thus, immunization of hens with VSV-VP1 could be a cost-effective and practical strategy for large-scale production of anti-HuNoV IgY antibodies for potential use as prophylactic and therapeutic treatment against HuNoV infection.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Program in Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuanmei Ma
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Mijia Lu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Yu Zhang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Anzhong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Xueya Liang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Abbas AT, El-Kafrawy SA, Sohrab SS, Azhar EIA. IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. Hum Vaccin Immunother 2018; 15:264-275. [PMID: 30230944 PMCID: PMC6363154 DOI: 10.1080/21645515.2018.1514224] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023] Open
Abstract
Emergence of drug resistance among the causative organisms for respiratory tract infections represents a critical challenge to the global health care community. Further, although vaccination can prevent disease, vaccine development is impeded by several factors. Therefore, novel approaches to treat and manage respiratory infections are urgently needed. Passive immunization represents a possible alternative to meet this need. Immunoglobulin Y antibodies (IgYs) from the yolk of chicken eggs have previously been used against bacterial and viral infections in human and animals. Their advantages include lack of reaction with mammalian Fc receptors, low production cost, and ease of extraction. Compared to mammalian IgGs, they have higher target specificity and greater binding avidity. They also possess remarkable pathogen-neutralizing activity in the respiratory tract and lungs. In this review, we provide an overview of avian IgYs and describe their potential therapeutic applications for the prevention and treatment of respiratory infections.
Collapse
Affiliation(s)
- Aymn Talat Abbas
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biotechnology Research Laboratories, Gastroeneterology, Surgery Centre, Mansoura University, Mansoura, Egypt
| | - Sherif Aly El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam Ibraheem Ahmed Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Yi L, Qin Z, Lin H, Zhou Y, Li J, Xu Z, Babu V S, Lin L. Features of chicken egg yolk immunoglobulin (IgY) against the infection of red-spotted grouper nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2018; 80:534-539. [PMID: 29906624 DOI: 10.1016/j.fsi.2018.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/05/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Red-spotted grouper nervous necrosis virus (RGNNV) is one of the most important viruses which mainly infects the larva of marine and freshwater fish with high mortality and affects the fishery industry worldwide. Currently, there are no effective vaccines available for the fish larva infected with NNV. Immunoglobulin yolk (IgY) origin of oviparous animals is passed from the blood serum and concentrated in the egg yolk. With the advantages of high yield, cost-effectiveness, and high stability, IgY can be widely used in passive immunization, especially in young animals in which adaptive immunity is not fully developed. In this study, we have cloned and expressed the recombinant capsid protein of RGNNV in Escherichia coli and used as an immunogen for generating specific anti-RGNNV IgY antibody in laying hens. Water-soluble fractions (WSF) of the specific IgY were isolated from egg yolk and purified by two-step precipitation with saturated ammonium sulfate salting. By Enzyme linked immunosorbent assay (ELISA), the titer of the IgY reached a peak at the 6th week post of immunization and had a strong stability at a wide range of temperature, pH, and pepsin enzyme digestion. The purified IgY was competent to neutralize and completely inhibited the RGNNV replication in the grouper fin cell line (GF-1), indicating that it was highly specific and effectively recognized RGNNV. The results will pave a new way for the prevention of RGNNV infection.
Collapse
Affiliation(s)
- Lizhu Yi
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhendong Qin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Hanzuo Lin
- Faculty of Arts, University of British Columbia, Vancouver, British Columbia, V6T1W9, Canada
| | - Yang Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiabo Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Sarath Babu V
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
32
|
Lanzarini NM, Bentes GA, Volotão EDM, Pinto MA. Use of chicken immunoglobulin Y in general virology. J Immunoassay Immunochem 2018; 39:235-248. [DOI: 10.1080/15321819.2018.1500375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Natália Maria Lanzarini
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ, Brazil
| | - Gentil Arthur Bentes
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ, Brazil
| | - Eduardo de Mello Volotão
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ, Brazil
| | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro/RJ, Brazil
| |
Collapse
|
33
|
Production and application of anti-nucleoprotein IgY antibodies for influenza A virus detection in swine. J Immunol Methods 2018; 461:100-105. [PMID: 30158073 DOI: 10.1016/j.jim.2018.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/16/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
Influenza A virus (IAV) causes an important respiratory disease in mammals and birds leading to concerns in animal production industry and public health. Usually, antibodies produced in mammals are employed in diagnostic tests. However, due to animal welfare concerns, technical advantages and the high cost of production, alternatives to the production of antibodies in mammals have been investigated. The aim of this study was to produce egg yolk immunoglobulin (IgY) in laying hens against a highly conserved protein (nucleoprotein- NP) of IAV and to evaluate the application of anti-NP IgY antibodies in virus detection by immunocytochemistry (ICC) and immunohistochemistry (IHC). Three laying hens of the White Leghorn line were inoculated seven times with a recombinant NP protein and their eggs collected seven days after the 3rd, 5th and 7th inoculations. Immunoglobulin Y antibodies were purified from egg yolk through precipitation with ammonium sulfate. The titers and specificity of the purified antibodies were determined by ELISA, western blotting, ICC and IHC. High levels of specific anti-NP antibodies were detected by ELISA after the 5th inoculation, reaching a peak after the 7th inoculation. The mean yield of total protein in yolk after the 7th inoculation was 13.5 mg/mL. The use of western blotting and ICC demonstrated that anti-NP IgY binds specifically to NP protein. Moreover, the use of anti-NP IgY antibody in ICC test revealed positive staining of MDCK cells infected with IAV of the three subtypes circulating in swine (H1N1, H1N2, and H3N2). However, no staining was observed in lung tissues through the IHC test. The data obtained showed that anti-NP IgY antibodies bound specifically to influenza virus NP protein, detecting the main virus subtypes circulating in swine, reinforcing their usefulness in the influenza diagnosis.
Collapse
|
34
|
Mendoza M, Ballesteros A, Qiu Q, Pow Sang L, Shashikumar S, Casares S, Brumeanu TD. Generation and testing anti-influenza human monoclonal antibodies in a new humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD). Hum Vaccin Immunother 2017; 14:345-360. [PMID: 29135340 DOI: 10.1080/21645515.2017.1403703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pandemic outbreaks of influenza type A viruses have resulted in numerous fatalities around the globe. Since the conventional influenza vaccines (CIV) provide less than 20% protection for individuals with weak immune system, it has been considered that broadly cross-neutralizing antibodies may provide a better protection. Herein, we showed that a recently generated humanized mouse (DRAGA mouse; HLA-A2. HLA-DR4. Rag1KO. IL-2Rgc KO. NOD) that lacks the murine immune system and expresses a functional human immune system can be used to generate cross-reactive, human anti-influenza monoclonal antibodies (hu-mAb). DRAGA mouse was also found to be suitable for influenza virus infection, as it can clear a sub-lethal infection and sustain a lethal infection with PR8/A/34 influenza virus. The hu-mAbs were designed for targeting a human B-cell epitope (180WGIHHPPNSKEQ QNLY195) of hemagglutinin (HA) envelope protein of PR8/A/34 (H1N1) virus with high homology among seven influenza type A viruses. A single administration of HA180-195 specific hu-mAb in PR8-infected DRAGA mice significantly delayed the lethality by reducing the lung damage. The results demonstrated that DRAGA mouse is a suitable tool to (i) generate heterotype cross-reactive, anti-influenza human monoclonal antibodies, (ii) serve as a humanized mouse model for influenza infection, and (iii) assess the efficacy of anti-influenza antibody-based therapeutics for human use.
Collapse
Affiliation(s)
- Mirian Mendoza
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A
| | - Angela Ballesteros
- b National Institute of Neurological Disorders and Stroke, Molecular Physiology and Biophysics Section , Bethesda , MD
| | - Qi Qiu
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A
| | - Luis Pow Sang
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A
| | - Soumya Shashikumar
- c Naval Medical Research Center/Walter Reed Army Institute of Research, US Military Malaria Vaccine Development , Silver Spring , MD , U.S.A
| | - Sofia Casares
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A.,c Naval Medical Research Center/Walter Reed Army Institute of Research, US Military Malaria Vaccine Development , Silver Spring , MD , U.S.A
| | - Teodor-D Brumeanu
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A
| |
Collapse
|
35
|
Kim EH, Han GY, Nguyen H. An Adenovirus-Vectored Influenza Vaccine Induces Durable Cross-Protective Hemagglutinin Stalk Antibody Responses in Mice. Viruses 2017; 9:v9080234. [PMID: 28825679 PMCID: PMC5580491 DOI: 10.3390/v9080234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022] Open
Abstract
Currently licensed vaccines against the influenza A virus (IAV) need to be updated annually to match the constantly evolving antigenicity of the influenza virus glycoproteins, hemagglutinin (HA), and neuramidiase (NA). Attempts to develop universal vaccines that provide broad protection have resulted in some success. Herein, we have shown that a replication-deficient adenovirus expressing H5/M2e induced significant humoral immunity against the conserved HA stalk. Compared to the humoral responses induced by an inactivated influenza vaccine, the humoral responses induced by the adenovirus-vectored vaccine against the conserved stalk domain mediated cross-protection against heterosubtypic influenza viruses. Importantly, virus inactivation by formaldehyde significantly reduced the binding of monoclonal antibodies (mAbs) to the conserved nucleoprotein (NP), M2e, and HA stalk. These results suggest that inactivation by formaldehyde significantly alters the antigenicity of the HA stalk, and suggest that the conformation of the intact HA stalk provided by vector-based vaccines is important for induction of HA stalk-binding Abs. Our study provides insight into the mechanism by which a vector-based vaccine induces broad protection by stimulation of cross-protective Abs targeting conserved domains of viral proteins. The findings support further strategies to develop a vectored vaccine as a universal influenza vaccine for the control of influenza epidemics and unpredicted pandemics.
Collapse
Affiliation(s)
- Eun Hye Kim
- Viral Immunology Laboratory, International Vaccine Institute, SNU Research Park, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Gye-Yeong Han
- Viral Immunology Laboratory, International Vaccine Institute, SNU Research Park, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Huan Nguyen
- Viral Immunology Laboratory, International Vaccine Institute, SNU Research Park, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
36
|
Pizarro-Guajardo M, Díaz-González F, Álvarez-Lobos M, Paredes-Sabja D. Characterization of Chicken IgY Specific to Clostridium difficile R20291 Spores and the Effect of Oral Administration in Mouse Models of Initiation and Recurrent Disease. Front Cell Infect Microbiol 2017; 7:365. [PMID: 28856119 PMCID: PMC5557795 DOI: 10.3389/fcimb.2017.00365] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) are the leading cause of world-wide nosocomial acquired diarrhea. The current main clinical challenge in CDI is the elevated rate of infection recurrence that may reach up to 30% of the patients, which has been associated to the formation of dormant spores during the infection. We sought to characterize the effects of oral administration of specific anti-spore IgY in mouse models of CDI and recurrent CDI. The specificity of anti-spore IgY was evaluated in vitro. In both, initiation mouse model and recurrence mouse model, we evaluated the prophylactic and therapeutic effect of anti-spore IgY, respectively. Our results demonstrate that anti-spore IgY exhibited high specificity and titers against C. difficile spores and reduced spore adherence to intestinal cells in vitro. Administration of anti-spore IgY to C57BL/6 mice prior and during CDI delayed the appearance of the diarrhea by 1.5 day, and spore adherence to the colonic mucosa by 90%. Notably, in the recurrence model, co-administration of anti-spore IgY coupled with vancomycin delayed the appearance of recurrent diarrhea by a median of 2 days. Collectively, these observations suggest that anti-spore IgY antibodies may be used as a novel prophylactic treatment for CDI, or in combination with antibiotics to treat CDI and prevent recurrence of the infection.
Collapse
Affiliation(s)
- Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Fernando Díaz-González
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Manuel Álvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad CatólicaSantiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
37
|
Thu HM, Myat TW, Win MM, Thant KZ, Rahman S, Umeda K, Nguyen SV, Icatlo FC, Higo-Moriguchi K, Taniguchi K, Tsuji T, Oguma K, Kim SJ, Bae HS, Choi HJ. Chicken Egg Yolk Antibodies (IgY) for Prophylaxis and Treatment of Rotavirus Diarrhea in Human and Animal Neonates: A Concise Review. Korean J Food Sci Anim Resour 2017; 37:1-9. [PMID: 28316465 PMCID: PMC5355572 DOI: 10.5851/kosfa.2017.37.1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/22/2023] Open
Abstract
The rotavirus-induced diarrhea of human and animal neonates is a major public health concern worldwide. Until recently, no effective therapy is available to specifically inactivate the rotavirion particles within the gut. Passive immunotherapy by oral administration of chicken egg yolk antibody (IgY) has emerged of late as a fresh alternative strategy to control infectious diseases of the alimentary tract and has been applied in the treatment of diarrhea due to rotavirus infection. The purpose of this concise review is to evaluate evidence on the properties and performance of anti-rotavirus immunoglobulin Y (IgY) for prevention and treatment of rotavirus diarrhea in human and animal neonates. A survey of relevant anti-rotavirus IgY basic studies and clinical trials among neonatal animals (since 1994-2015) and humans (since 1982-2015) have been reviewed and briefly summarized. Our analysis of a number of rotavirus investigations involving animal and human clinical trials revealed that anti-rotavirus IgY significantly reduced the severity of clinical manifestation of diarrhea among IgY-treated subjects relative to a corresponding control or placebo group. The accumulated information as a whole depicts oral IgY to be a safe and efficacious option for treatment of rotavirus diarrhea in neonates. There is however a clear need for more randomized, placebo controlled and double-blind trials with bigger sample size to further solidify and confirm claims of efficacy and safety in controlling diarrhea caused by rotavirus infection especially among human infants with health issues such as low birth weights or compromised immunity in whom it is most needed.
Collapse
Affiliation(s)
- Hlaing Myat Thu
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Theingi Win Myat
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Mo Mo Win
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, No. 5, Ziwaka road, Dagon township, P.O. 11191, Yangon, Myanmar
| | - Shofiqur Rahman
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Kouji Umeda
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Sa Van Nguyen
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Faustino C Icatlo
- Immunology Research Institute in Gifu, EW Nutrition Japan, 839-7 Sano, Gifu 501-1101, Japan
| | - Kyoko Higo-Moriguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Keiji Oguma
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Sang Jong Kim
- Dairy Team, Lotte R&D Center, 30 Seonyu-ro 9-gil, Yeongdeungpo-gu, Seoul, Korea
| | - Hyun Suk Bae
- Dairy Team, Lotte R&D Center, 30 Seonyu-ro 9-gil, Yeongdeungpo-gu, Seoul, Korea
| | - Hyuk Joon Choi
- BK bio, #2706-38, Iljudong-ro, Gujwa-eup, Jeju-si, Jeju-do, 63359, Korea
| |
Collapse
|
38
|
Abdelwhab EM, Grund C, Aly MM, Beer M, Harder TC, Hafez HM. Benefits and Limits of Egg Yolkvs. Serum Samples for Avian Influenza Virus Serosurveillance. Avian Dis 2016; 60:496-9. [DOI: 10.1637/11207-060115-resnote] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Huang T, Chen X, Zhao C, Liu X, Zhang Z, Li T, Sun R, Gu H, Gu J. Sialylated immunoglobulin G can neutralize influenza virus infection through receptor mimicry. Oncotarget 2016; 7:15606-17. [PMID: 26870994 PMCID: PMC4941264 DOI: 10.18632/oncotarget.7244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/24/2016] [Indexed: 02/05/2023] Open
Abstract
Influenza viruses possess a great threat to human health, but there is still no effective drug to deal with the outbreak of possible new influenza subtypes. In this study, we first fractionated sialylated immunoglobulin G (IgG), mainly Fab sialylated fraction, with sambucus nigra agglutinin affinity chromatography. We then demonstrated that sialylated IgG possessed more effective neutralizing activity against 2009 A (H1N1) subtype than that of IgG mixture, and sialosides on the Fab is crucial in this neutralization reaction as when such residues were removed with neuraminidase A digestion the blocking effect was significantly reduced. It appears that sialic acid residues attached to Fab could serve as binding moieties to receptor binding site of influenza virus. These findings indicate that sialylated IgG probably is an effective anti-influenza broad-spectrum drug utilizing its receptor mimicry to competitively inhibit the attachment of influenza viruses with sialic acid receptors on target cells. This property would be particularly useful if it can be applied to prevent newly emerged influenza virus strain infections in future epidemics.
Collapse
Affiliation(s)
- Tao Huang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xueling Chen
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Conghui Zhao
- Department of Oral Pathology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
- Department of Pathology, Beijing University Health Science Center, Beijing, 100083, China
| | - Xingmu Liu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Department of General Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zaiping Zhang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Tongfei Li
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Ruiman Sun
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Huan Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Department of Pathology, Beijing University Health Science Center, Beijing, 100083, China
| |
Collapse
|
40
|
Thomsen K, Christophersen L, Jensen PØ, Bjarnsholt T, Moser C, Høiby N. Anti-Pseudomonas aeruginosa IgY antibodies promote bacterial opsonization and augment the phagocytic activity of polymorphonuclear neutrophils. Hum Vaccin Immunother 2016; 12:1690-9. [PMID: 26901841 DOI: 10.1080/21645515.2016.1145848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Moderation of polymorphonuclear neutrophils (PMNs) as part of a critical defense against invading pathogens may offer a promising therapeutic approach to supplement the antibiotic eradication of Pseudomonas aeruginosa infection in non-chronically infected cystic fibrosis (CF) patients. We have observed that egg yolk antibodies (IgY) harvested from White leghorn chickens that target P. aeruginosa opsonize the pathogen and enhance the PMN-mediated respiratory burst and subsequent bacterial killing in vitro. The effects on PMN phagocytic activity were observed in different Pseudomonas aeruginosa strains, including clinical isolates from non-chronically infected CF patients. Thus, oral prophylaxis with anti-Pseudomonas aeruginosa IgY may boost the innate immunity against Pseudomonas aeruginosa in the CF setting by facilitating a rapid and prompt bacterial clearance by PMNs.
Collapse
Affiliation(s)
- Kim Thomsen
- a Department of Clinical Microbiology , Rigshospitalet, Copenhagen University Hospital , Copenhagen , Denmark
| | - Lars Christophersen
- a Department of Clinical Microbiology , Rigshospitalet, Copenhagen University Hospital , Copenhagen , Denmark
| | - Peter Østrup Jensen
- a Department of Clinical Microbiology , Rigshospitalet, Copenhagen University Hospital , Copenhagen , Denmark
| | - Thomas Bjarnsholt
- a Department of Clinical Microbiology , Rigshospitalet, Copenhagen University Hospital , Copenhagen , Denmark.,b Department of Immunology and Microbiology , Faculty of Health Sciences University of Copenhagen , Copenhagen , Denmark
| | - Claus Moser
- a Department of Clinical Microbiology , Rigshospitalet, Copenhagen University Hospital , Copenhagen , Denmark
| | - Niels Høiby
- a Department of Clinical Microbiology , Rigshospitalet, Copenhagen University Hospital , Copenhagen , Denmark.,b Department of Immunology and Microbiology , Faculty of Health Sciences University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
41
|
Chen X, Yang B, Qi C, Sun TW, Chen F, Wu J, Feng XP, Zhu YJ. DNA-templated microwave-hydrothermal synthesis of nanostructured hydroxyapatite for storing and sustained release of an antibacterial protein. Dalton Trans 2016; 45:1648-56. [DOI: 10.1039/c5dt03357h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite nanostructured materials are prepared by a DNA-templated microwave-hydrothermal method and used for IgY loading/release and antibacterial study.
Collapse
Affiliation(s)
- Xi Chen
- Department of Preventive Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Bin Yang
- Department of Preventive Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Xi-Ping Feng
- Department of Preventive Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
42
|
Malik A, Mallajosyula VVA, Mishra NN, Varadarajan R, Gupta SK. Generation and Characterization of Monoclonal Antibodies Specific to Avian Influenza H5N1 Hemagglutinin Protein. Monoclon Antib Immunodiagn Immunother 2015; 34:436-41. [PMID: 26683184 DOI: 10.1089/mab.2015.0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus has in the past breached the species barrier from infected domestic poultry to humans in close contact. Although human-to-human transmission has previously not been reported, HPAI H5N1 virus has pandemic potential owing to gain of function mutation(s) and/or genetic reassortment with human influenza A viruses. Monoclonal antibodies (MAbs) have been used for diagnosis as well as specific therapeutic candidates in several disease conditions including viral infections in humans. In this study, we describe the preliminary characterization of four murine MAbs developed against recombinant hemagglutinin (rHA) protein of avian H5N1 A/turkey/Turkey/1/2005 virus that are either highly specific or broadly reactive against HA from other H5N1 subtype viruses, such as A/Hong Kong/213/03, A/Common magpie/Hong Kong/2256/2006, and A/Barheaded goose/Quinghai/14/2008. The antibody binding is specific to H5N1 HAs, as none of the antibodies bound H1N1, H2N2, H3N2, or B/Brisbane/60/2008 HAs. Out of the four MAbs, one of them (MA-7) also reacted weakly with the rHA protein of H7N9 A/Anhui/1/2013. All four MAbs bound H5 HA (A/turkey/Turkey/1/2005) with high affinity with an equilibrium dissociation constant (KD) ranging between 0.05 and 10.30 nM. One of the MAbs (MA-1) also showed hemagglutination inhibition activity (HI titer; 31.25 μg/mL) against the homologous A/turkey/Turkey/1/2005 H5N1 virus. These antibodies may be useful in developing diagnostic tools for detection of influenza H5N1 virus infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Viral/biosynthesis
- Antibody Specificity
- Ascites/immunology
- Cross Reactions
- Female
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/analysis
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/chemistry
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/chemistry
- Influenza A Virus, H7N9 Subtype/immunology
- Kinetics
- Mice
- Mice, Inbred BALB C
- Protein Binding
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/analysis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Ankita Malik
- 1 Reproductive Cell Biology Lab, National Institute of Immunology , New Delhi, India
| | | | - Nripendra Nath Mishra
- 1 Reproductive Cell Biology Lab, National Institute of Immunology , New Delhi, India
| | | | - Satish Kumar Gupta
- 1 Reproductive Cell Biology Lab, National Institute of Immunology , New Delhi, India
| |
Collapse
|
43
|
Monoclonal antibodies: Principles and applications of immmunodiagnosis and immunotherapy for hepatitis C virus. World J Hepatol 2015. [PMID: 26464752 DOI: 10.4254/wjh.v7.i22.2369.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hepatitis C virus (HCV) is a major health problem worldwide. Early detection of the infection will help better management of the infected cases. The monoclonal antibodies (mAb) of mice are predominantly used for the immunodiagnosis of several viral, bacterial, and parasitic antigens. Serological detection of HCV antigens and antibodies provide simple and rapid methods of detection but lack sensitivity specially in the window phase between the infection and antibody development. Human mAb are used in the immunotherapy of several blood malignancies, such as lymphoma and leukemia, as well as for autoimmune diseases. In this review article, we will discuss methods of mouse and human monoclonal antibody production. We will demonstrate the role of mouse mAb in the detection of HCV antigens as rapid and sensitive immunodiagnostic assays for the detection of HCV, which is a major health problem throughout the world, particularly in Egypt. We will discuss the value of HCV-neutralizing antibodies and their roles in the immunotherapy of HCV infections and in HCV vaccine development. We will also discuss the different mechanisms by which the virus escape the effect of neutralizing mAb. Finally, we will discuss available and new trends to produce antibodies, such as egg yolk-based antibodies (IgY), production in transgenic plants, and the synthetic antibody mimics approach.
Collapse
|
44
|
Tabll A, Abbas AT, El-Kafrawy S, Wahid A. Monoclonal antibodies: Principles and applications of immmunodiagnosis and immunotherapy for hepatitis C virus. World J Hepatol 2015; 7:2369-2383. [PMID: 26464752 PMCID: PMC4598607 DOI: 10.4254/wjh.v7.i22.2369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/05/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major health problem worldwide. Early detection of the infection will help better management of the infected cases. The monoclonal antibodies (mAb) of mice are predominantly used for the immunodiagnosis of several viral, bacterial, and parasitic antigens. Serological detection of HCV antigens and antibodies provide simple and rapid methods of detection but lack sensitivity specially in the window phase between the infection and antibody development. Human mAb are used in the immunotherapy of several blood malignancies, such as lymphoma and leukemia, as well as for autoimmune diseases. In this review article, we will discuss methods of mouse and human monoclonal antibody production. We will demonstrate the role of mouse mAb in the detection of HCV antigens as rapid and sensitive immunodiagnostic assays for the detection of HCV, which is a major health problem throughout the world, particularly in Egypt. We will discuss the value of HCV-neutralizing antibodies and their roles in the immunotherapy of HCV infections and in HCV vaccine development. We will also discuss the different mechanisms by which the virus escape the effect of neutralizing mAb. Finally, we will discuss available and new trends to produce antibodies, such as egg yolk-based antibodies (IgY), production in transgenic plants, and the synthetic antibody mimics approach.
Collapse
Affiliation(s)
- Ashraf Tabll
- Ashraf Tabll, Microbial Biotechnology Department (Biomedical Technology Group), Genetic Engineering and Biotechnology Division, National Research Centre, Dokki 12622, Egypt
| | - Aymn T Abbas
- Ashraf Tabll, Microbial Biotechnology Department (Biomedical Technology Group), Genetic Engineering and Biotechnology Division, National Research Centre, Dokki 12622, Egypt
| | - Sherif El-Kafrawy
- Ashraf Tabll, Microbial Biotechnology Department (Biomedical Technology Group), Genetic Engineering and Biotechnology Division, National Research Centre, Dokki 12622, Egypt
| | - Ahmed Wahid
- Ashraf Tabll, Microbial Biotechnology Department (Biomedical Technology Group), Genetic Engineering and Biotechnology Division, National Research Centre, Dokki 12622, Egypt
| |
Collapse
|
45
|
Thomsen K, Christophersen L, Bjarnsholt T, Jensen PØ, Moser C, Høiby N. Anti-Pseudomonas aeruginosa IgY Antibodies Induce Specific Bacterial Aggregation and Internalization in Human Polymorphonuclear Neutrophils. Infect Immun 2015; 83:2686-93. [PMID: 25895968 PMCID: PMC4468541 DOI: 10.1128/iai.02970-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/10/2015] [Indexed: 01/24/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are essential cellular constituents in the innate host response, and their recruitment to the lungs and subsequent ubiquitous phagocytosis controls primary respiratory infection. Cystic fibrosis pulmonary disease is characterized by progressive pulmonary decline governed by a persistent, exaggerated inflammatory response dominated by PMNs. The principal contributor is chronic Pseudomonas aeruginosa biofilm infection, which attracts and activates PMNs and thereby is responsible for the continuing inflammation. Strategies to prevent initial airway colonization with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness, which enhances bacterial killing by PMN-mediated phagocytosis and thereby may facilitate a rapid bacterial clearance in airways of people with cystic fibrosis.
Collapse
Affiliation(s)
- K Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - L Christophersen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - T Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, Copenhagen, Denmark
| | - P Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - C Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - N Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Kim CS, Park YJ. A nonfusogenic antigen mimic of influenza hemagglutinin glycoproteins constituted with soluble full-length HA1 and truncated HA2 proteins expressed in E. coli. Mol Biotechnol 2015; 57:128-37. [PMID: 25288022 DOI: 10.1007/s12033-014-9808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A novel method is proposed to produce a soluble recombinant antigen mimic, constituted with full-length HA1 and truncated HA2 individually expressed in E. coli, instead of a precursor form of hemagglutinin protein, that is similar to the naturally processed and disulfide-linked HA1/HA2 on the envelope of the influenza A virus strain X-31 (H3N2). A truncated ectodomain of HA2 subunit, HA2(23-185)/C137S, lacked two membrane-interacting sequences, i.e., the N-terminal fusion peptide as well as the transmembrane domain and short cytoplasmic segment at the C terminus. A recombinant HA1 (rHA1) subunit protein, HA1(1-328)/C14S/L157S, lacked the signal peptide. Mutations C137S and C14S in the HA2 and HA1 subunits, respectively, were introduced to prevent any possible disulfide linkage between the two subunit proteins. The rHA antigen mimic would be nonfusogenic mainly due to the absence of the N-terminal fusion peptide as well as the C-terminal transmembrane domain in the truncated HA2, and eventually less cytotoxic as well. Antibody responses induced by two soluble rHA antigens were evaluated by ELISA assays to detect rHA antigens injected and to validate both anti-HA1 and anti-HA2 antibodies produced in the mice sera. Antigenic rHA proteins also elicited neutralizing antibodies against homologous H3N2 influenza virus in the immunized mice, without severe body weight loss or any other adverse symptoms.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/therapeutic use
- Humans
- Immunization
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Chang Sup Kim
- Department of Chemical & Biological Engineering, Hanbat National University, Daejeon, 305-719, Republic of Korea,
| | | |
Collapse
|
47
|
Chen F, Yang B, Qi C, Sun TW, Jiang YY, Wu J, Chen X, Zhu YJ. An amorphous calcium phosphate nanocomposite for storing and sustained release of IgY protein with antibacterial activity. RSC Adv 2015. [DOI: 10.1039/c5ra19065g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amorphous calcium phosphate nanospheres with/without La doping are prepared and used for IgY storing, sustained release and antibacterial study.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Bin Yang
- Department of Preventive Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Xi Chen
- Department of Preventive Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
48
|
Abstract
Whereas active immunity refers to the process of exposing the individual to an antigen to generate an adaptive immune response, passive immunity refers to the transfer of antibodies from one individual to another. Passive immunity provides immediate but short-lived protection, lasting several weeks up to 3 or 4 months. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta or from breast milk to the gut of the infant. It can also be produced artificially, when antibody preparations derived from sera or secretions of immunized donors or, more recently, different antibody producing platforms are transferred via systemic or mucosal route to nonimmune individuals. Passive immunization has recently become an attractive approach because of the emergence of new and drug-resistant microorganisms, diseases that are unresponsive to drug therapy and individuals with an impaired immune system who are unable to respond to conventional vaccines. This chapter addresses the contributions of natural and artificial acquired passive immunity in understanding the concept of passive immunization. We will mainly focus on administration of antibodies for protection against various infectious agents entering through mucosal surfaces.
Collapse
|
49
|
Intranasal adenovirus-vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice. J Virol 2014; 88:9693-703. [PMID: 24920793 DOI: 10.1128/jvi.00823-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes. We report here that single intranasal immunization with a recombinant adenovirus (rAd) vector encoding both HA of H5 virus and M2e (rAdH5/M2e) induced significant HA- and M2e-specific Ab responses, along with protection against heterosubtypic challenge in mice. The protection is superior compared to that induced by rAd vector encoding either HA (rAdH5), or M2e (rAdM2e). While protection against homotypic H5 virus is primarily mediated by virus-neutralizing Abs, the cross-protection is associated with Abs directed to conserved stalk HA and M2e that seem to have an additive effect. Consistently, adoptive transfer of antisera induced by rAdH5/M2e provided the best protection against heterosubtypic challenge compared to that provided by antisera derived from mice immunized with rAdH5 or rAdM2e. These results support the development of rAd-vectored vaccines encoding both H5 and M2e as universal vaccines against different IAV subtypes. IMPORTANCE Current licensed influenza vaccines provide protection limited to the infection with same virus strains; therefore, the composition of influenza vaccines has to be revised every year. We have developed a new universal influenza vaccine that is highly efficient in induction of long-lasting cross-protection against different influenza virus strains. The cross-protection is associated with a high level of vaccine-induced antibodies against the conserved stalk domain of influenza virus hemagglutinin and the ectodomain of matrix protein. The vaccine could be used to stimulate cross-protective antibodies for the prevention and treatment of influenza with immediate effect for individuals who fail to respond to or receive the vaccine in due time. The vaccine offers a new tool to control influenza outbreaks, including pandemics.
Collapse
|
50
|
Yang YE, Wen J, Zhao S, Zhang K, Zhou Y. Prophylaxis and therapy of pandemic H1N1 virus infection using egg yolk antibody. J Virol Methods 2014; 206:19-26. [PMID: 24880066 DOI: 10.1016/j.jviromet.2014.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 01/06/2023]
Abstract
Influenza A virus infects the human respiratory system and causes acute and fatal pulmonary diseases. The emergence of drug-resistant viral strains highlights the need for alternative therapeutic approaches. In this work, IgY antibody was raised in immunized laying hens, and its antiviral activity was evaluated in the context of passive immunization. With inactivated whole H1N1 virus, high-titer IgY antibody 9.18 mg/mL egg yolk was induced by the eighth week after immunization. Western blotting and the hemagglutination inhibition (HI) test demonstrated that the IgY antibody could specifically bind the neuraminidase and hemagglutinin of the H1N1 virus. In the plaque reduction assay, the IgY antibody reduced the H1N1 viral infection in MDCK (Madin-Darby canine kidney) cells. In a mouse model, the anti-H1N1 IgY antibody exhibited in vivo protection by reducing the infectious titer of the virus in the lung while maintaining the weight and normal structure of the lung tissue. Additionally, the anti-H1N1 IgY antibody exhibited protective activity comparable to the neuraminidase inhibitor oseltamivir. These results demonstrated that IgY can be easily produced and can offers an effective alternative approach for influenza control.
Collapse
Affiliation(s)
- Yuan-e Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Junlin Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kun Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingliang Zhou
- Department of Biomedical Engineering, Syracuse University, Syracuse 13244, USA
| |
Collapse
|