1
|
Fu Y, Zhou Y, Zhang Q, Dong J, Zheng J, Li M, Liu J. A novel homozygous missense variant in LRP4 causing Cenani-Lenz syndactyly syndrome and literature review. Mol Genet Genomic Med 2024; 12:e2319. [PMID: 38013226 PMCID: PMC10767612 DOI: 10.1002/mgg3.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/11/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Cenani-Lenzsyndactyly syndrome (CLSS; OMIM 212780) is a rare autosomal recessive acral deformity, which is mainly manifested in the fusion of fingers or toes, disordered phalangeal structure, shortening or fusion of the radius and ulna, and renal hypoplasia. CASE PRESENTATION Our report described an individual with mild phenotypes from China. His parents were not consanguineous. The affected individual was non-dysmorphic. Standard X-ray showed that the both hands have only four metacarpal bones. The distal end of the first metacarpal bone on the right was relatively slender, and the distal phalanx was absent. Multiple phalanges and some soft tissues of both hands were fused. Exome sequencing revealed a novel biallelic c.282C⟩Avariant in low-density lipoprotein receptor-related protein 4 (LRP4; OMIM604270; NM_002334.4) causing p. (Asn94Lys) change in the encoded protein. This variant is predicted to be potentially pathogenic, affecting protein structure and function. CONCLUSION We report a novel missense variant present in homozygosity in LRP4 to broaden the pathogenic spectrum of LRP4 in syndactyly, and exome sequencing technology is a powerful tool for genetic analysis in prenatal diagnosis and medical research, as a preferred method for the diagnosis of syndactyly and related phenotypes.
Collapse
Affiliation(s)
- Yadong Fu
- Medical Genetic CenterThe Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University Medical SchoolYanchengChina
| | - Yueyun Zhou
- Prenatal Diagnosis CenterThe Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University Medical SchoolYanchengChina
| | - Qing'e Zhang
- Prenatal Diagnosis CenterThe Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University Medical SchoolYanchengChina
| | - Jingjing Dong
- Prenatal Diagnosis CenterThe Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University Medical SchoolYanchengChina
| | - Jianli Zheng
- Medical Genetic CenterThe Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University Medical SchoolYanchengChina
| | - Min Li
- Prenatal Diagnosis CenterThe Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University Medical SchoolYanchengChina
| | - Jianbing Liu
- Medical Genetic CenterThe Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University Medical SchoolYanchengChina
| |
Collapse
|
2
|
Khan H, Ullah K, Jan A, Ali H, Ullah I, Ahmad W. A variant in the LDL receptor-related protein encoding gene LRP4 underlying polydactyly and phalangeal synostosis in a family of Pakistani origin. Congenit Anom (Kyoto) 2023; 63:190-194. [PMID: 37563890 DOI: 10.1111/cga.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/07/2023] [Accepted: 06/04/2023] [Indexed: 08/12/2023]
Abstract
A family of Pakistani origin, segregating polydactyly, and phalangeal synostosis in an autosomal dominant manner, has been investigated and presented in the present report. Whole-exome sequencing (WES), followed by segregation analysis using Sanger sequencing, revealed a heterozygous missense variant [c.G1696A, p.(Gly566Ser)] in the LRP4 gene located on human chromosome 11p11.2. Homology protein modeling revealed the mutant Ser566 generated new interactions with at least four other amino acids and disrupted protein folding and function. Our findings demonstrated the first direct evidence of involvement of LRP4 in causing polydactyly and phalangeal synostosis in the same family. This study highlighted the importance of inclusion of LRP4 gene in screening individuals presenting polydactyly in hands and feet, and phalangeal synostosis in the same family.
Collapse
Affiliation(s)
- Hammal Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kifayat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abid Jan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Pakistan
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
3
|
Oh S, Mao X, Manfredo-Vieira S, Lee J, Patel D, Choi EJ, Alvarado A, Cottman-Thomas E, Maseda D, Tsao PY, Ellebrecht CT, Khella SL, Richman DP, O'Connor KC, Herzberg U, Binder GK, Milone MC, Basu S, Payne AS. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol 2023; 41:1229-1238. [PMID: 36658341 PMCID: PMC10354218 DOI: 10.1038/s41587-022-01637-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Muscle-specific tyrosine kinase myasthenia gravis (MuSK MG) is an autoimmune disease that causes life-threatening muscle weakness due to anti-MuSK autoantibodies that disrupt neuromuscular junction signaling. To avoid chronic immunosuppression from current therapies, we engineered T cells to express a MuSK chimeric autoantibody receptor with CD137-CD3ζ signaling domains (MuSK-CAART) for precision targeting of B cells expressing anti-MuSK autoantibodies. MuSK-CAART demonstrated similar efficacy as anti-CD19 chimeric antigen receptor T cells for depletion of anti-MuSK B cells and retained cytolytic activity in the presence of soluble anti-MuSK antibodies. In an experimental autoimmune MG mouse model, MuSK-CAART reduced anti-MuSK IgG without decreasing B cells or total IgG levels, reflecting MuSK-specific B cell depletion. Specific off-target interactions of MuSK-CAART were not identified in vivo, in primary human cell screens or by high-throughput human membrane proteome array. These data contributed to an investigational new drug application and phase 1 clinical study design for MuSK-CAART for the treatment of MuSK autoantibody-positive MG.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuming Mao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Eun Jung Choi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Y Tsao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sami L Khella
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Richman
- Department of Neurology, University of California - Davis, Davis, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
González-Prendes R, Derks MFL, Groenen MAM, Quintanilla R, Amills M. Assessing the relationship between the in silico predicted consequences of 97 missense mutations mapping to 68 genes related to lipid metabolism and their association with porcine fatness traits. Genomics 2023; 115:110589. [PMID: 36842749 DOI: 10.1016/j.ygeno.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In general, the relationship between the predicted functional consequences of missense mutations mapping to genes known to be involved in human diseases and the severity of disease manifestations is weak. In this study, we tested in pigs whether missense single nucleotide polymorphisms (SNPs), predicted to have consequences on the function of genes related to lipid metabolism are associated with lipid phenotypes. Association analysis demonstrated that nine out of 72 nominally associated SNPs were classified as "highly" or "very highly consistent" in silico-predicted functional mutations and did not show association with lipid traits expected to be affected by inactivation of the corresponding gene. Although the lack of endophenotypes and the limited sample size of certain genotypic classes might have limited to some extent the reach of the current study, our data indicate that present-day bioinformatic tools have a modest ability to predict the impact of missense mutations on complex phenotypes.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
5
|
Geng S, Paul F, Kowalczyk I, Raimundo S, Sporbert A, Mamo TM, Hammes A. Balancing WNT signalling in early forebrain development: The role of LRP4 as a modulator of LRP6 function. Front Cell Dev Biol 2023; 11:1173688. [PMID: 37091972 PMCID: PMC10119419 DOI: 10.3389/fcell.2023.1173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The specification of the forebrain relies on the precise regulation of WNT/ß-catenin signalling to support neuronal progenitor cell expansion, patterning, and morphogenesis. Imbalances in WNT signalling activity in the early neuroepithelium lead to congenital disorders, such as neural tube defects (NTDs). LDL receptor-related protein (LRP) family members, including the well-studied receptors LRP5 and LRP6, play critical roles in modulating WNT signalling capacity through tightly regulated interactions with their co-receptor Frizzled, WNT ligands, inhibitors and intracellular WNT pathway components. However, little is known about the function of LRP4 as a potential modulator of WNT signalling in the central nervous system. In this study, we investigated the role of LRP4 in the regulation of WNT signalling during early mouse forebrain development. Our results demonstrate that LRP4 can modulate LRP5- and LRP6-mediated WNT signalling in the developing forebrain prior to the onset of neurogenesis at embryonic stage 9.5 and is therefore essential for accurate neural tube morphogenesis. Specifically, LRP4 functions as a genetic modifier for impaired mitotic activity and forebrain hypoplasia, but not for NTDs in LRP6-deficient mutants. In vivo and in vitro data provide evidence that LRP4 is a key player in fine-tuning WNT signalling capacity and mitotic activity of mouse neuronal progenitors and of human retinal pigment epithelial (hTERT RPE-1) cells. Our data demonstrate the crucial roles of LRP4 and LRP6 in regulating WNT signalling and forebrain development and highlight the need to consider the interaction between different signalling pathways to understand the underlying mechanisms of disease. The findings have significant implications for our mechanistic understanding of how LRPs participate in controlling WNT signalling.
Collapse
Affiliation(s)
- Shuang Geng
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Fabian Paul
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Izabela Kowalczyk
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Sandra Raimundo
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tamrat Meshka Mamo
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- *Correspondence: Tamrat Meshka Mamo, ; Annette Hammes,
| | - Annette Hammes
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- *Correspondence: Tamrat Meshka Mamo, ; Annette Hammes,
| |
Collapse
|
6
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
7
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
8
|
Novel variants in the LRP4 underlying Cenani-Lenz Syndactyly syndrome. J Hum Genet 2021; 67:253-259. [PMID: 34857885 DOI: 10.1038/s10038-021-00995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Cenani-Lenz syndrome (CLS) is a rare autosomal-recessive congenital disorder affecting development of distal limbs. It is characterized mainly by syndactyly and/or oligodactyly, renal anomalies, and characteristic facial features. Mutations in the LRP4 gene, located on human chromosome 11p11.2-q13.1, causes the CLS. The gene LRP4 encodes a low-density lipoprotein receptor-related protein-4, which mediates SOST-dependent inhibition of bone formation and Wnt signaling. In the study, presented here, three families of Pakistani origin, segregating CLS in the autosomal recessive manner were clinically and genetically characterized. In two families (A and B), microsatellite-based homozygosity mapping followed by Sanger sequencing identified a novel homozygous missense variant [NM_002334.3: c.295G>C; p.(Asp99His)] in the LRP4 gene. In the third family C, exome sequencing revealed a second novel homozygous missense variant [NM_002334.3: c.1633C>T; p.(Arg545Trp)] in the same gene. To determine the functional relevance of these variants, we tested their ability to inhibit canonical WNT signaling in a luciferase assay. Wild type LRP4 was able to inhibit LRP6-dependent WNT signaling robustly. The two mutants p.(Asp99His) and p.(Arg545Trp) inhibited WNT signaling less effectively, suggesting they reduced LRP4 function.
Collapse
|
9
|
Wendling O, Hentsch D, Jacobs H, Lemercier N, Taubert S, Pertuy F, Vonesch JL, Sorg T, Di Michele M, Le Cam L, Rosahl T, Carballo-Jane E, Liu M, Mu J, Mark M, Herault Y. High Resolution Episcopic Microscopy for Qualitative and Quantitative Data in Phenotyping Altered Embryos and Adult Mice Using the New "Histo3D" System. Biomedicines 2021; 9:767. [PMID: 34356832 PMCID: PMC8301480 DOI: 10.3390/biomedicines9070767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
3D imaging in animal models, during development or in adults, facilitates the identification of structural morphological changes that cannot be achieved with traditional 2D histological staining. Through the reconstruction of whole embryos or a region-of-interest, specific changes are better delimited and can be easily quantified. We focused here on high-resolution episcopic microscopy (HREM), and its potential for visualizing and quantifying the organ systems of normal and genetically altered embryos and adult organisms. Although the technique is based on episcopic images, these are of high resolution and are close to histological quality. The images reflect the tissue structure and densities revealed by histology, albeit in a grayscale color map. HREM technology permits researchers to take advantage of serial 2D aligned stacks of images to perform 3D reconstructions. Three-dimensional visualization allows for an appreciation of topology and morphology that is difficult to achieve with classical histological studies. The nature of the data lends itself to novel forms of computational analysis that permit the accurate quantitation and comparison of individual embryos in a manner that is impossible with histology. Here, we have developed a new HREM prototype consisting of the assembly of a Leica Biosystems Nanocut rotary microtome with optics and a camera. We describe some examples of applications in the prenatal and adult lifestage of the mouse to show the added value of HREM for phenotyping experimental cohorts to compare and quantify structure volumes. At prenatal stages, segmentations and 3D reconstructions allowed the quantification of neural tissue and ventricular system volumes of normal brains at E14.5 and E16.5 stages. 3D representations of normal cranial and peripheric nerves at E15.5 and of the normal urogenital system from stages E11.5 to E14.5 were also performed. We also present a methodology to quantify the volume of the atherosclerotic plaques of ApoEtm1Unc/tm1Unc mutant mice and illustrate a 3D reconstruction of knee ligaments in adult mice.
Collapse
Affiliation(s)
- Olivia Wendling
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Didier Hentsch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Hugues Jacobs
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | | | - Serge Taubert
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Fabien Pertuy
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | - Jean-Luc Vonesch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Tania Sorg
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | - Michela Di Michele
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, 34298 Montpellier, France; (M.D.M.); (L.L.C.)
- Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, 34298 Montpellier, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, 34298 Montpellier, France; (M.D.M.); (L.L.C.)
- Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, 34298 Montpellier, France
| | - Thomas Rosahl
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Ester Carballo-Jane
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Mindy Liu
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - James Mu
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Manuel Mark
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), CEDEX, 67091 Strasbourg, France
| | - Yann Herault
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| |
Collapse
|
10
|
Mao Z, Wang Z, Zhang S, Pu Y, Wang J, Zhang T, Long Y, Liu Y, Ma Y, Zhu J. LRP4 promotes migration and invasion of gastric cancer under the regulation of microRNA-140-5p. Cancer Biomark 2021; 29:245-253. [PMID: 32675391 DOI: 10.3233/cbm-190571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 4 (LRP4) has been reported to be implicated in multiple types of cancers. However, the significance of LRP4 in gastric cancer (GC) remains poorly elucidated. Therefore, it's urgent to investigate the importance and underlying mechanisms of LRP4 in GC. OBJECTIVE To investigate the clinical roles of LRP4 in GC. METHODS The LRP4 mRNA and miR-140-5p was measured by qRT-PCR. The protein expression was determined Western blot. Kaplan-Meier survival curves and Cox proportional hazard regression models were performed to evaluate prognosis. RESULTS We demonstrated that LRP4 mRNA and protein was up-regulated in GC tissues for the first time. Its high expression was significantly correlated with malignant clinical features including TNM stage and lymph-node metastasis and poor prognosis for GC patients. LRP4 promotes migration, invasion and epithelial-mesenchymal transition (EMT) progress of GC cells. Mechanically, LRP4 regulated PI3K/AKT in GC cells. AKT inhibitors reversed the effects of LRP4. Finally, LRP4 was regulated by miR-140-5p in GC. CONCLUSIONS Our findings showed that LRP4 has an important function in GC progression and promotes GC migration, invasion and EMT by regulating PI3K/AKT under regulation of miR-140-5p, providing a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Zhijun Mao
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhen Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Shiping Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yansong Pu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jianhua Wang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Tao Zhang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yanbin Long
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yi Liu
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yu Ma
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Zhu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Ohkawara B, Ito M, Ohno K. Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22052455. [PMID: 33671084 PMCID: PMC7957818 DOI: 10.3390/ijms22052455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert–Eaton myasthenic syndrome, Isaacs’ syndrome, Schwartz–Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/β-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Correspondence: ; Tel.: +81-52-744-2447; Fax: +81-52-744-2449
| | | | | |
Collapse
|
12
|
Abstract
The WNT/β-catenin signalling pathway is a rich and complex network of cellular proteins that orchestrates diverse short-range cell-to-cell communication in metazoans and is essential for both embryonic development and adult homeostasis. Due to its fundamental importance in controlling cell behaviour at multiple levels, its deregulation is associated with a wide range of diseases in humans and identification of drugs targeting the pathway has attracted strong interest in the pharmaceutical sector. Transduction of WNT signals across the plasma membrane of cells involves a staggering degree of complexity and variety with respect to ligand-receptor, receptor-receptor and receptor-co-receptor interactions (Niehrs, Nat Rev Mol Cell Biol 13:767-779, 2012). Although the low-density-lipoprotein-receptor-related-protein (LRP) family is best known for its role in binding and endocytosis of lipoproteins, specific members appear to have additional roles in cellular communication. Indeed, for WNT/β-catenin signalling one apparently universal requirement is the presence of either LRP5 or LRP6 in combination with one of the ten Frizzled (FZD) WNT receptors (FZD1-10). In the 20 years since their discovery as WNT/FZD co-receptors, research on the LRP family has contributed greatly to our understanding of WNT signalling and LRPs have emerged as central players in WNT/β-catenin signalling. LRP5/6 are highly similar and represent the least redundant class of WNT receptor that transduce WNT/β-catenin signalling from a wide range of different WNT and FZD subtypes. This apparent simplicity however belies the complex arrangement of binding sites in the extracellular domain (ECD) of LRP5/6, which regulate interaction not only with WNTs but also with several inhibitors of WNT signalling. This chapter provides a historical overview, chronologically charting this remarkable progress in the field during the last 20 years of research on LRPs and their role in WNT/-catenin signalling. A more focused overview of the structural, functional and mechanistic aspects of LRP biology is also provided, together with the implications this has for pharmacological targeting of this notoriously intractable pathway.
Collapse
Affiliation(s)
- Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBSC-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
13
|
Yesodharan D, Krishnan V, Nair IR, Ganapathy A, Mannan AU, Nampoothiri S. Lethal Cenani Lenz syndrome in two consecutive pregnancies: Further extension of phenotype from Maldives. Am J Med Genet A 2020; 185:620-624. [PMID: 33179409 DOI: 10.1002/ajmg.a.61971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/07/2022]
Abstract
Cenani Lenz syndrome is a rare autosomal recessive disorder associated with variable degree of limb malformations, dysmorphism, and renal agenesis. It is caused due to pathogenic variants in the LRP4 gene, which plays an important role in limb and renal development. Mutations in the APC gene have also been occasionally associated with CLS. The phenotypic spectrum ranges from mild to very severe perinatal lethal type depending on the type of variant. We report a pathogenic variant, c.2710 del T (p.Trp904GlyfsTer5) in theLRP4 gene, in a fetus with lethal Cenani Lenz syndrome with antenatal presentation of tetraphocomelia and symmetrical involvement of hands and feet.
Collapse
Affiliation(s)
- Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, Cochin, India
| | - Vivek Krishnan
- Department of Perinatology, Amrita Institute of Medical Sciences and Research Center, Cochin, India
| | - Indu R Nair
- Department of Pathology, Amrita Institute of Medical Sciences and Research Center, Cochin, India
| | | | | | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, Cochin, India
| |
Collapse
|
14
|
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT Signaling and Bone: Lessons From Skeletal Dysplasias and Disorders. Front Endocrinol (Lausanne) 2020; 11:165. [PMID: 32328030 PMCID: PMC7160326 DOI: 10.3389/fendo.2020.00165] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal dysplasias are a diverse group of heritable diseases affecting bone and cartilage growth. Throughout the years, the molecular defect underlying many of the diseases has been identified. These identifications led to novel insights in the mechanisms regulating bone and cartilage growth and homeostasis. One of the pathways that is clearly important during skeletal development and bone homeostasis is the Wingless and int-1 (WNT) signaling pathway. So far, three different WNT signaling pathways have been described, which are all activated by binding of the WNT ligands to the Frizzled (FZD) receptors. In this review, we discuss the skeletal disorders that are included in the latest nosology of skeletal disorders and that are caused by genetic defects involving the WNT signaling pathway. The number of skeletal disorders caused by defects in WNT signaling genes and the clinical phenotype associated with these disorders illustrate the importance of the WNT signaling pathway during skeletal development as well as later on in life to maintain bone mass. The knowledge gained through the identification of the genes underlying these monogenic conditions is used for the identification of novel therapeutic targets. For example, the genes underlying disorders with altered bone mass are all involved in the canonical WNT signaling pathway. Consequently, targeting this pathway is one of the major strategies to increase bone mass in patients with osteoporosis. In addition to increasing the insights in the pathways regulating skeletal development and bone homeostasis, knowledge of rare skeletal dysplasias can also be used to predict possible adverse effects of these novel drug targets. Therefore, this review gives an overview of the skeletal and extra-skeletal phenotype of the different skeletal disorders linked to the WNT signaling pathway.
Collapse
|
15
|
Tian J, Shao J, Liu C, Hou HY, Chou CW, Shboul M, Li GQ, El-Khateeb M, Samarah OQ, Kou Y, Chen YH, Chen MJ, Lyu Z, Chen WL, Chen YF, Sun YH, Liu YW. Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged-Notch signaling in fin and limb development. Cell Mol Life Sci 2019; 76:163-178. [PMID: 30327840 PMCID: PMC11105680 DOI: 10.1007/s00018-018-2928-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
Abstract
Low-density lipoprotein receptor-related protein 4 (LRP4) is a multi-functional protein implicated in bone, kidney and neurological diseases including Cenani-Lenz syndactyly (CLS), sclerosteosis, osteoporosis, congenital myasthenic syndrome and myasthenia gravis. Why different LRP4 mutation alleles cause distinct and even contrasting disease phenotypes remain unclear. Herein, we utilized the zebrafish model to search for pathways affected by a deficiency of LRP4. The lrp4 knockdown in zebrafish embryos exhibits cyst formations at fin structures and the caudal vein plexus, malformed pectoral fins, defective bone formation and compromised kidney morphogenesis; which partially phenocopied the human LRP4 mutations and were reminiscent of phenotypes resulting form a perturbed Notch signaling pathway. We discovered that the Lrp4-deficient zebrafish manifested increased Notch outputs in addition to enhanced Wnt signaling, with the expression of Notch ligand jagged1b being significantly elevated at the fin structures. To examine conservatism of signaling mechanisms, the effect of LRP4 missense mutations and siRNA knockdowns, including a novel missense mutation c.1117C > T (p.R373W) of LRP4, were tested in mammalian kidney and osteoblast cells. The results showed that LRP4 suppressed both Wnt/β-Catenin and Notch signaling pathways, and these activities were perturbed either by LRP4 missense mutations or by a knockdown of LRP4. Our finding underscore that LRP4 is required for limiting Jagged-Notch signaling throughout the fin/limb and kidney development, whose perturbation representing a novel mechanism for LRP4-related diseases. Moreover, our study reveals an evolutionarily conserved relationship between LRP4 and Jagged-Notch signaling, which may shed light on how the Notch signaling is fine-tuned during fin/limb development.
Collapse
Affiliation(s)
- Jing Tian
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, China.
| | - Jinhui Shao
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Cong Liu
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Hsin-Yu Hou
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Chih-Wei Chou
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Guo-Qing Li
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | | | - Omar Q Samarah
- Orthopedic Division, Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - Yao Kou
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Yu-Hsuan Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Mei-Jen Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Zhaojie Lyu
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Wei-Leng Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yu-Fu Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, China
| | - Yi-Wen Liu
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan.
| |
Collapse
|
16
|
Al-Qattan MM, Alkuraya FS. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Am J Med Genet A 2018; 179:266-279. [PMID: 30569497 DOI: 10.1002/ajmg.a.60694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022]
Abstract
Cenani-Lenz (C-L) syndrome is characterized by oligosyndactyly, metacarpal synostosis, phalangeal disorganization, and other variable facial and systemic features. Most cases are caused by homozygous and compound heterozygous missense and splice mutations of the LRP4 gene. Currently, the syndrome carries one OMIM number (212780). However, C-L syndrome-like phenotypes as well as other syndactyly disorders with or without metacarpal synostosis/phalangeal disorganization are also known to be associated with specific LRP4 mutations, adenomatous polyposis coli (APC) truncating mutations, genomic rearrangements of the GREM1-FMN1 locus, as well as FMN1 mutations. Surprisingly, patients with C-L syndrome-like phenotype caused by APC truncating mutations have no polyposis despite the increased levels of β catenin. The LRP4 and APC proteins act on the WNT (wingless-type integration site family) canonical pathway, whereas the GREM-1 and FMN1 proteins act on the bone morphogenetic protein (BMP) pathway. In this review, we discuss the different mutations associated with C-L syndrome, classify its clinical features, review familial adenomatous polyposis caused by truncating APC mutations and compare these mutations to the splicing APC mutation associated with syndactyly, and finally, explore the pathophysiology through a review of the cross talks between the WNT canonical and the BMP antagonistic pathways.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia.,Division of Plastic Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Tanahashi H, Suzuki T. Deletion of Lrp4 increases the incidence of microphthalmia. Biochem Biophys Res Commun 2018; 506:478-484. [PMID: 30352686 DOI: 10.1016/j.bbrc.2018.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
Microphthalmia is a malformation that reduces the size of the ocular globe. The etiologies of this anomaly are various, but the genetic background appears to have a predominant influence on its development through mutations of genes controlling ocular developmental processes. LRP4 is a type I single transmembrane protein that is essential for the formation of neuromuscular junctions. We created and experimented on homozygous Lrp4-deficient mice and found the microphthalmia phenotype in their eyes. The loss of Lrp4 resulted in an elevated incidence of microphthalmia and affected the mRNA expression of the members of bone morphogenetic protein, fibroblast growth factor, Sonic hedgehog, and WNT signaling pathways and of several pathogenic genes for microphthalmia. Moreover, the loss of Lrp4 enhanced the incidence of aberrant retinal folds, which appeared pleated and corrugated in the eyeball.
Collapse
Affiliation(s)
- Hiroshi Tanahashi
- Department of Neuroplasticity, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Tatsuo Suzuki
- Department of Molecular & Cellular Physiology, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
18
|
Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. Int J Mol Sci 2018; 19:ijms19020490. [PMID: 29415504 PMCID: PMC5855712 DOI: 10.3390/ijms19020490] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance.
Collapse
|
19
|
Yan M, Xing GL, Xiong WC, Mei L. Agrin and LRP4 antibodies as new biomarkers of myasthenia gravis. Ann N Y Acad Sci 2018; 1413:126-135. [PMID: 29377176 DOI: 10.1111/nyas.13573] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/13/2022]
Abstract
Myasthenia gravis (MG) is a common disorder that affects the neuromuscular junction. It is caused by antibodies against acetylcholine receptor and muscle-specific tyrosine kinase; however, some MG patients do not have antibodies against either of the proteins. Recent studies have revealed antibodies against agrin and its receptor LRP4-both critical for neuromuscular junction formation and maintenance-in MG patients from various populations. Results from experimental autoimmune MG animal models indicate that anti-LRP4 antibodies are causal to MG. Clinical studies have begun to reveal the significance of the new biomarkers. With their identification, MG appears to be a complex disease entity that can be classified into different subtypes with different etiology, each with unique symptoms. Future systematic studies of large cohorts of well-diagnosed MG patients are needed to determine whether each subtype of patients would respond to different therapeutic strategies. Results should contribute to the goal of precision medicine for MG patients. Anti-agrin and anti-LRP4 antibodies are also detectable in some patients with amyotrophic lateral sclerosis or Lou Gehrig's disease; however, whether they are a cause or response to the disorder remains unclear.
Collapse
Affiliation(s)
- Min Yan
- Institute of Life Science, Nanchang University, Nanchang, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Guang-Lin Xing
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Cheng Xiong
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Louis Stokes Cleveland VAMC, Cleveland, Ohio
| | - Lin Mei
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Louis Stokes Cleveland VAMC, Cleveland, Ohio
| |
Collapse
|
20
|
Abstract
A role for low-density lipoprotein-related receptor 5 (LRP5) in human bone was first established by the identification of genetic alterations that led to dramatic changes in bone mass. Shortly thereafter, mutations that altered the function of the sclerostin (SOST) gene were also associated with altered human bone mass. Subsequent studies of LRP5 and sclerostin have provided important insights into the mechanisms by which these proteins regulate skeletal homeostasis. Sclerostin normally binds to LRP5 and the related LRP6 protein and prevents their activation by Wnts, the LRP5/LRP6 ligands. The interaction of sclerostin with LRP5 or LRP6 is facilitated by the LRP4 protein. Loss of LRP5 leads to defective osteoblast function and low bone mass, while loss of SOST or mutations in LRP5, which produce a protein that can no longer be bound by SOST, result in high bone mass. Insights gained from the use of genetically engineered mouse models are presented, as well as a brief summary of the status of antibodies in clinical trials that block the function of SOST as a mechanism to increase bone mass.
Collapse
Affiliation(s)
- Bart O Williams
- Center for Cancer and Cell Biology and Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, United States.
| |
Collapse
|
21
|
Yang T, Williams BO. Low-Density Lipoprotein Receptor-Related Proteins in Skeletal Development and Disease. Physiol Rev 2017; 97:1211-1228. [PMID: 28615463 DOI: 10.1152/physrev.00013.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The identification of the low-density lipoprotein receptor (LDLR) provided a foundation for subsequent studies in lipoprotein metabolism, receptor-mediated endocytosis, and many other fundamental biological functions. The importance of the LDLR led to numerous studies that identified homologous molecules and ultimately resulted in the description of the LDL-receptor superfamily, a group of proteins that contain domains also found in the LDLR. Subsequent studies have revealed that members of the LDLR-related protein family play roles in regulating many aspects of signal transduction. This review is focused on the roles of selected members of this protein family in skeletal development and disease. We present background on the identification of this subgroup of receptors, discuss the phenotypes associated with alterations in their function in human patients and mouse models, and describe the current efforts to therapeutically target these proteins to treat human skeletal disease.
Collapse
Affiliation(s)
- Tao Yang
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Bart O Williams
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
22
|
Boudin E, Yorgan T, Fijalkowski I, Sonntag S, Steenackers E, Hendrickx G, Peeters S, De Maré A, Vervaet B, Verhulst A, Mortier G, D'Haese P, Schinke T, Van Hul W. The Lrp4R1170Q Homozygous Knock-In Mouse Recapitulates the Bone Phenotype of Sclerosteosis in Humans. J Bone Miner Res 2017; 32:1739-1749. [PMID: 28477420 DOI: 10.1002/jbmr.3160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/13/2017] [Accepted: 04/22/2017] [Indexed: 01/08/2023]
Abstract
Sclerosteosis is a rare autosomal recessive bone disorder marked by hyperostosis of the skull and tubular bones. Initially, we and others reported that sclerosteosis was caused by loss-of-function mutations in SOST, encoding sclerostin. More recently, we identified disease-causing mutations in LRP4, a binding partner of sclerostin, in three sclerosteosis patients. Upon binding to sclerostin, LRP4 can inhibit the canonical WNT signaling that is known to be an important pathway in the regulation of bone formation. To further investigate the role of LRP4 in the bone formation process, we generated an Lrp4 mutated sclerosteosis mouse model by introducing the p.Arg1170Gln mutation in the mouse genome. Extensive analysis of the bone phenotype of the Lrp4R1170Q/R1170Q knock-in (KI) mouse showed the presence of increased trabecular and cortical bone mass as a consequence of increased bone formation by the osteoblasts. In addition, three-point bending analysis also showed that the increased bone mass results in increased bone strength. In contrast to the human sclerosteosis phenotype, we could not observe syndactyly in the forelimbs or hindlimbs of the Lrp4 KI animals. Finally, we could not detect any significant changes in the bone formation and resorption markers in the serum of the mutant mice. However, the serum sclerostin levels were strongly increased and the level of sclerostin in the tibia was decreased in Lrp4R1170Q/R1170Q mice, confirming the role of LRP4 as an anchor for sclerostin in bone. In conclusion, the Lrp4R1170Q/R1170Q mouse is a good model for the human sclerosteosis phenotype caused by mutations in LRP4 and can be used in the future for further investigation of the mechanism whereby LRP4 regulates bone formation. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eveline Boudin
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Igor Fijalkowski
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | | | - Ellen Steenackers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Gretl Hendrickx
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Silke Peeters
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Annelies De Maré
- Laboratory of Pathophysiology, Department Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Benjamin Vervaet
- Laboratory of Pathophysiology, Department Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Patrick D'Haese
- Laboratory of Pathophysiology, Department Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
23
|
Ahn Y, Sims C, Murray MJ, Kuhlmann PK, Fuentes-Antrás J, Weatherbee SD, Krumlauf R. Multiple modes of Lrp4 function in modulation of Wnt/β-catenin signaling during tooth development. Development 2017; 144:2824-2836. [PMID: 28694256 DOI: 10.1242/dev.150680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022]
Abstract
During development and homeostasis, precise control of Wnt/β-catenin signaling is in part achieved by secreted and membrane proteins that negatively control activity of the Wnt co-receptors Lrp5 and Lrp6. Lrp4 is related to Lrp5/6 and is implicated in modulation of Wnt/β-catenin signaling, presumably through its ability to bind to the Wise (Sostdc1)/sclerostin (Sost) family of Wnt antagonists. To gain insights into the molecular mechanisms of Lrp4 function in modulating Wnt signaling, we performed an array of genetic analyses in murine tooth development, where Lrp4 and Wise play important roles. We provide genetic evidence that Lrp4 mediates the Wnt inhibitory function of Wise and also modulates Wnt/β-catenin signaling independently of Wise. Chimeric receptor analyses raise the possibility that the Lrp4 extracellular domain interacts with Wnt ligands, as well as the Wnt antagonists. Diverse modes of Lrp4 function are supported by severe tooth phenotypes of mice carrying a human mutation known to abolish Lrp4 binding to Sost. Our data suggest a model whereby Lrp4 modulates Wnt/β-catenin signaling via interaction with Wnt ligands and antagonists in a context-dependent manner.
Collapse
Affiliation(s)
- Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA .,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Carrie Sims
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Megan J Murray
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Paige K Kuhlmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Scott D Weatherbee
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
24
|
Lane-Donovan C, Herz J. ApoE, ApoE Receptors, and the Synapse in Alzheimer's Disease. Trends Endocrinol Metab 2017; 28:273-284. [PMID: 28057414 PMCID: PMC5366078 DOI: 10.1016/j.tem.2016.12.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 01/24/2023]
Abstract
As the population ages, neurodegenerative diseases such as Alzheimer's disease (AD) are becoming a significant burden on patients, their families, and health-care systems. Neurodegenerative processes may start up to 15 years before outward signs and symptoms of AD, as evidenced by data from AD patients and mouse models. A major genetic risk factor for late-onset AD is the ɛ4 isoform of apolipoprotein E (ApoE4), which is present in almost 20% of the population. In this review we discuss the contribution of ApoE receptor signaling to the function of each component of the tripartite synapse - the axon terminal, the postsynaptic dendritic spine, and the astrocyte - and examine how these systems fail in the context of ApoE4 and AD.
Collapse
Affiliation(s)
- Courtney Lane-Donovan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Neuroscience, Department of Neuroanatomy, Albert Ludwig University, Freiburg, Germany.
| |
Collapse
|
25
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
26
|
Vogel P, Read RW, Hansen GM, Powell DR, Kantaputra PN, Zambrowicz B, Brommage R. Dentin Dysplasia in Notum Knockout Mice. Vet Pathol 2016; 53:853-62. [DOI: 10.1177/0300985815626778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Secreted WNT proteins control cell differentiation and proliferation in many tissues, and NOTUM is a secreted enzyme that modulates WNT morphogens by removing a palmitoleoylate moiety that is essential for their activity. To better understand the role this enzyme in development, the authors produced NOTUM-deficient mice by targeted insertional disruption of the Notum gene. The authors discovered a critical role for NOTUM in dentin morphogenesis suggesting that increased WNT activity can disrupt odontoblast differentiation and orientation in both incisor and molar teeth. Although molars in Notum-/- mice had normal-shaped crowns and normal mantle dentin, the defective crown dentin resulted in enamel prone to fracture during mastication and made teeth more susceptible to endodontal inflammation and necrosis. The dentin dysplasia and short roots contributed to tooth hypermobility and to the spread of periodontal inflammation, which often progressed to periapical abscess formation. The additional incidental finding of renal agenesis in some Notum -/- mice indicated that NOTUM also has a role in kidney development, with undiagnosed bilateral renal agenesis most likely responsible for the observed decreased perinatal viability of Notum-/- mice. The findings support a significant role for NOTUM in modulating WNT signaling pathways that have pleiotropic effects on tooth and kidney development.
Collapse
Affiliation(s)
- P. Vogel
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - R. W. Read
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - G. M. Hansen
- Molecular Genetics, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - D. R. Powell
- Metabolism, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - P. N. Kantaputra
- Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
- The Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - B. Zambrowicz
- Molecular Genetics, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - R. Brommage
- Metabolism, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| |
Collapse
|
27
|
Tanahashi H, Tian QB, Hara Y, Sakagami H, Endo S, Suzuki T. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance. Sci Rep 2016; 6:20241. [PMID: 26847765 PMCID: PMC4742865 DOI: 10.1038/srep20241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4(-/-)) mice. Most Lrp4(-/-) foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4(-/-) foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume.
Collapse
Affiliation(s)
- Hiroshi Tanahashi
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Qing-Bao Tian
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Shogo Endo
- Research Team for Aging Neuroscience, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Sakae-cho, Itabashi, Tokyo 173-0015, Japan
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
28
|
Shen C, Xiong WC, Mei L. LRP4 in neuromuscular junction and bone development and diseases. Bone 2015; 80:101-108. [PMID: 26071838 DOI: 10.1016/j.bone.2015.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 02/08/2023]
Abstract
Low-density lipoprotein receptor-related protein 4 (LRP4) is a member of the low-density lipoprotein receptor (LDLR) family. Recent studies have revealed multiple functions and complex signaling mechanisms of LRP4 in different organs and tissues. LPR4 mutation or malfunction has been implicated in neurological disorders including congenital myasthenic syndrome, myasthenia gravis, and diseases of bone or kidney. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Chengyong Shen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
29
|
Deng H, Tan T. Advances in the Molecular Genetics of Non-syndromic Syndactyly. Curr Genomics 2015; 16:183-93. [PMID: 26069458 PMCID: PMC4460222 DOI: 10.2174/1389202916666150317233103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/16/2015] [Indexed: 12/16/2022] Open
Abstract
Syndactyly, webbing of adjacent digits with or without bony fusion, is one of the most common hereditary limb malformations. It occurs either as an isolated abnormality or as a component of more than 300 syndromic anomalies. There are currently nine types of phenotypically diverse nonsyndromic syndactyly. Non-syndromic syndactyly is usually inherited as an autosomal dominant trait, although the more severe presenting types and subtypes may show autosomal recessive or X-linked pattern of inheritance. The phenotype appears to be not only caused by a main gene, but also dependant on genetic background and subsequent signaling pathways involved in limb formation. So far, the principal genes identified to be involved in congenital syndactyly are mainly involved in the zone of polarizing activity and sonic hedgehog pathway. This review summarizes the recent progress made in the molecular genetics, including known genes and loci responsible for non-syndromic syndactyly, and the signaling pathways those genetic factors involved in, as well as clinical features and animal models. We hope our review will contribute to the understanding of underlying pathogenesis of this complicated disorder and have implication on genetic counseling.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine ; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ting Tan
- Center for Experimental Medicine
| |
Collapse
|
30
|
Pohlkamp T, Durakoglugil M, Lane-Donovan C, Xian X, Johnson EB, Hammer RE, Herz J. Lrp4 domains differentially regulate limb/brain development and synaptic plasticity. PLoS One 2015; 10:e0116701. [PMID: 25688974 PMCID: PMC4331535 DOI: 10.1371/journal.pone.0116701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein E (ApoE) genotype is the strongest predictor of Alzheimer’s Disease (AD) risk. ApoE is a cholesterol transport protein that binds to members of the Low-Density Lipoprotein (LDL) Receptor family, which includes LDL Receptor Related Protein 4 (Lrp4). Lrp4, together with one of its ligands Agrin and its co-receptors Muscle Specific Kinase (MuSK) and Amyloid Precursor Protein (APP), regulates neuromuscular junction (NMJ) formation. All four proteins are also expressed in the adult brain, and APP, MuSK, and Agrin are required for normal synapse function in the CNS. Here, we show that Lrp4 is also required for normal hippocampal plasticity. In contrast to the closely related Lrp8/Apoer2, the intracellular domain of Lrp4 does not appear to be necessary for normal expression and maintenance of long-term potentiation at central synapses or for the formation and maintenance of peripheral NMJs. However, it does play a role in limb development.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- * E-mail: (TP); (JH)
| | - Murat Durakoglugil
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Courtney Lane-Donovan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Xunde Xian
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Eric B. Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- * E-mail: (TP); (JH)
| |
Collapse
|
31
|
Abstract
Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease (AD) pathogenesis and neurodegeneration. This Review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction.
Collapse
|
32
|
Gomez AM, Froemke RC, Burden SJ. Synaptic plasticity and cognitive function are disrupted in the absence of Lrp4. eLife 2014; 3:e04287. [PMID: 25407677 PMCID: PMC4270049 DOI: 10.7554/elife.04287] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
Lrp4, the muscle receptor for neuronal Agrin, is expressed in the hippocampus and areas involved in cognition. The function of Lrp4 in the brain, however, is unknown, as Lrp4−/− mice fail to form neuromuscular synapses and die at birth. Lrp4−/− mice, rescued for Lrp4 expression selectively in muscle, survive into adulthood and showed profound deficits in cognitive tasks that assess learning and memory. To learn whether synapses form and function aberrantly, we used electrophysiological and anatomical methods to study hippocampal CA3–CA1 synapses. In the absence of Lrp4, the organization of the hippocampus appeared normal, but the frequency of spontaneous release events and spine density on primary apical dendrites were reduced. CA3 input was unable to adequately depolarize CA1 neurons to induce long-term potentiation. Our studies demonstrate a role for Lrp4 in hippocampal function and suggest that patients with mutations in Lrp4 or auto-antibodies to Lrp4 should be evaluated for neurological deficits. DOI:http://dx.doi.org/10.7554/eLife.04287.001 LRP4 is a muscle protein that is found in the hippocampus, a region of the brain that controls cognitive processes such as learning and memory. However, we know very little about what exactly LRP4 does in the hippocampus, and how it affects learning and memory. A standard way to figure out what a protein does is to study mice that have been genetically modified so that they cannot produce that protein. However, deleting the gene for LRP4 leads to muscle problems that kill these mutant mice at birth. To get around this problem, Gomez et al. have developed a method to restore the production of LRP4 in the muscles of mutant mice but not in their brains. These mutant mice were then subjected to a battery of tests to measure their ability to learn and recall new memories. These tests showed that LRP4 must be present in the brain, otherwise learning and memory are impaired. Gomez et al. also explored a process known as long-term potentiation. This process, which involves strengthening the functional connections between neurons, is believed to be essential for learning and other cognitive process. Gomez et al. demonstrated that long-term potentiation was disrupted by the lack of LRP4. Further experiments are needed to work out how LRP4 controls the learning process in the hippocampus and to explore the connection between LRP4 and various neuromuscular and neurological diseases. DOI:http://dx.doi.org/10.7554/eLife.04287.002
Collapse
Affiliation(s)
- Andrea M Gomez
- Graduate Program in Developmental Genetics, Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, NYU Medical Center, New York, United States
| | - Robert C Froemke
- Graduate Program in Developmental Genetics, Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, NYU Medical Center, New York, United States
| | - Steven J Burden
- Graduate Program in Developmental Genetics, Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, NYU Medical Center, New York, United States
| |
Collapse
|
33
|
Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels. Proc Natl Acad Sci U S A 2014; 111:E5187-95. [PMID: 25404300 DOI: 10.1073/pnas.1413828111] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We identified previously in vitro LRP4 (low-density lipoprotein receptor-related protein 4) as a facilitator of the WNT (Wingless-type) antagonist sclerostin and found mutations disrupting this function to be associated with high bone mass in humans similar to patients lacking sclerostin. To further delineate the role of LRP4 in bone in vivo, we generated mice lacking Lrp4 in osteoblasts/osteocytes or osteocytes only. Lrp4 deficiency promoted progressive cancellous and cortical bone gain in both mutants, although more pronouncedly in mice deficient in osteoblast/osteocyte Lrp4, consistent with our observation in human bone that LRP4 is most strongly expressed by osteoblasts and early osteocytes. Bone gain was related primarily to increased bone formation. Interestingly, Lrp4 deficiency in bone dramatically elevated serum sclerostin levels whereas bone expression of Sost encoding for sclerostin was unaltered, indicating that osteoblastic Lrp4 retains sclerostin within bone. Moreover, we generated anti-LRP4 antibodies selectively blocking sclerostin facilitator function while leaving unperturbed LRP4-agrin interaction, which is essential for neuromuscular junction function. These antibodies increased bone formation and thus cancellous and cortical bone mass in skeletally mature rodents. Together, we demonstrate a pivotal role of LRP4 in bone homeostasis by retaining and facilitating sclerostin action locally and provide a novel avenue to bone anabolic therapy by antagonizing LRP4 sclerostin facilitator function.
Collapse
|
34
|
Asai N, Ohkawara B, Ito M, Masuda A, Ishiguro N, Ohno K. LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation. Biochem Biophys Res Commun 2014; 451:302-7. [PMID: 25091481 DOI: 10.1016/j.bbrc.2014.07.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023]
Abstract
Endochondral ossification is an essential step for skeletal development, which requires chondrocyte differentiation in growth cartilage. The low-density lipoprotein receptor-related protein 4 (LRP4), a member of LDLR family, is an inhibitor for Wnt signaling, but its roles in chondrocyte differentiation remain to be investigated. Here we found by laser capture microdissection that LRP4 expression was induced during chondrocyte differentiation in growth plate. In order to address the roles, we overexpressed recombinant human LRP4 or knocked down endogenous LRP4 by lentivirus in mouse ATDC5 chondrocyte cells. We found that LRP4 induced gene expressions of extracellular matrix proteins of type II collagen (Col2a1), aggrecan (Acan), and type X collagen (Col10a1), as well as production of total proteoglycans in ATDC5 cells, whereas LRP4 knockdown had opposite effects. Interestingly, LRP4-knockdown reduced mRNA expression of Sox9, a master regulator for chondrogenesis, as well as Dkk1, an extracellular Wnt inhibitor. Analysis of Wnt signaling revealed that LRP4 blocked the Wnt/β-catenin signaling activity in ATDC5 cells. Finally, the reduction of these extracellular matrix productions by LRP4-knockdown was rescued by a β-catenin/TCF inhibitor, suggesting that LRP4 is an important regulator for extracellular matrix productions and chondrocyte differentiation by suppressing Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Nobuyuki Asai
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
35
|
Lindy AS, Bupp CP, McGee SJ, Steed E, Stevenson RE, Basehore MJ, Friez MJ. Truncating mutations inLRP4lead to a prenatal lethal form of Cenani-Lenz syndrome. Am J Med Genet A 2014; 164A:2391-7. [DOI: 10.1002/ajmg.a.36647] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Erin Steed
- Greenwood Genetic Center; Greenwood South Carolina
| | | | | | | |
Collapse
|
36
|
Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA. Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol 2014; 29:553-64. [PMID: 24005792 PMCID: PMC3944192 DOI: 10.1007/s00467-013-2597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be "reprogrammed" to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eric D. de Groh
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
37
|
Ohkawara B, Cabrera-Serrano M, Nakata T, Milone M, Asai N, Ito K, Ito M, Masuda A, Ito Y, Engel AG, Ohno K. LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner. Hum Mol Genet 2013; 23:1856-68. [PMID: 24234652 DOI: 10.1093/hmg/ddt578] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Using Sanger and exome sequencing in a CMS patient, we identified two heteroallelic mutations, p.Glu1233Lys and p.Arg1277His, in LRP4 coding for the postsynaptic low-density lipoprotein receptor-related protein 4. LRP4, expressed on the surface of the postsynaptic membrane of the neuromuscular junction, is a receptor for neurally secreted agrin, and LRP4 bound by agrin activates MuSK. Activated MuSK in concert with Dok-7 stimulates rapsyn to concentrate and anchor AChR on the postsynaptic membrane and interacts with other proteins implicated in the assembly and maintenance of the neuromuscular junction. LRP4 also functions as an inhibitor of Wnt/beta-catenin signaling. The identified mutations in LRP4 are located at the edge of its 3rd beta-propeller domain and decrease binding affinity of LRP4 for both MuSK and agrin. Mutations in the LRP4 3rd beta-propeller domain were previously reported to impair Wnt signaling and cause bone diseases including Cenani-Lenz syndactyly syndrome and sclerosteosis-2. By analyzing naturally occurring and artificially introduced mutations in the LRP4 3rd beta-propeller domain, we show that the edge of the domain regulates the MuSK signaling whereas its central cavity governs Wnt signaling. We conclude that LRP4 is a new CMS disease gene and that the 3rd beta propeller domain of LRP4 mediates the two signaling pathways in a position-specific manner.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shen C, Lu Y, Zhang B, Figueiredo D, Bean J, Jung J, Wu H, Barik A, Yin DM, Xiong WC, Mei L. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J Clin Invest 2013; 123:5190-202. [PMID: 24200689 DOI: 10.1172/jci66039] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022] Open
Abstract
Myasthenia gravis (MG) is the most common disorder affecting the neuromuscular junction (NMJ). MG is frequently caused by autoantibodies against acetylcholine receptor (AChR) and a kinase critical for NMJ formation, MuSK; however, a proportion of MG patients are double-negative for anti-AChR and anti-MuSK antibodies. Recent studies in these subjects have identified autoantibodies against low-density lipoprotein receptor-related protein 4 (LRP4), an agrin receptor also critical for NMJ formation. LRP4 autoantibodies have not previously been implicated in MG pathogenesis. Here we demonstrate that mice immunized with the extracellular domain of LRP4 generated anti-LRP4 antibodies and exhibited MG-associated symptoms, including muscle weakness, reduced compound muscle action potentials (CMAPs), and compromised neuromuscular transmission. Additionally, fragmented and distorted NMJs were evident at both the light microscopic and electron microscopic levels. We found that anti-LRP4 sera decreased cell surface LRP4 levels, inhibited agrin-induced MuSK activation and AChR clustering, and activated complements, revealing potential pathophysiological mechanisms. To further confirm the pathogenicity of LRP4 antibodies, we transferred IgGs purified from LRP4-immunized rabbits into naive mice and found that they exhibited MG-like symptoms, including reduced CMAP and impaired neuromuscular transmission. Together, these data demonstrate that LRP4 autoantibodies induce MG and that LRP4 contributes to NMJ maintenance in adulthood.
Collapse
|
39
|
Choi HY, Liu Y, Tennert C, Sugiura Y, Karakatsani A, Kröger S, Johnson EB, Hammer RE, Lin W, Herz J. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. eLife 2013; 2:e00220. [PMID: 23986861 PMCID: PMC3748711 DOI: 10.7554/elife.00220] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 07/18/2013] [Indexed: 12/22/2022] Open
Abstract
ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer’s disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP−/−;LRP4ECD/ECD mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance. DOI:http://dx.doi.org/10.7554/eLife.00220.001 One of the hallmarks of Alzheimer’s disease is the formation of plaques in the brain by a protein called β-amyloid. This protein is generated by the cleavage of a precursor protein, and mutations in the gene that encodes amyloid precursor protein greatly increase the risk of developing a familial, early-onset form of Alzheimer’s disease in middle age. Individuals with a particular variant of a lipoprotein called ApoE (ApoE4) are also more likely to develop Alzheimer’s disease at a younger age than the rest of the population. Due to its prevalence—approximately 20% of the world’s population are carriers of at least one allele—ApoE4 is the single-most important risk factor for the late-onset form of Alzheimer’s disease. Amyloid precursor protein and the receptors for ApoE—in particular one called LRP4—are also essential for the development of the specialized synapse that forms between motor neurons and muscles. However, the mechanisms by which they, individually or together, contribute to the formation of these neuromuscular junctions are incompletely understood. Now, Choi et al. have shown that amyloid precursor protein and LRP4 interact at the developing neuromuscular junction. A protein called agrin, which is produced by motor neurons and which must bind to LRP4 to induce neuromuscular junction formation, also binds directly to amyloid precursor protein. This latter interaction leads to the formation of a complex between LRP4 and amyloid precursor protein that robustly promotes the formation of the neuromuscular junction. Mutations that remove the part of LRP4 that anchors it to the cell membrane weaken this complex and thus reduce the development of neuromuscular junctions in mice, especially if the animals also lack amyloid precursor protein. These three proteins thus seem to influence the development and maintenance of neuromuscular junctions by regulating the activity of a fourth protein, called MuSK, which is present on the surface of muscle cells. Activation of MuSK by agrin bound to LRP4 promotes the clustering of acetylcholine receptors in the membrane, which is a crucial step in the formation of the neuromuscular junction. Intriguingly, Choi et al. have now shown that amyloid precursor protein can, by interacting directly with LRP4, also activate MuSK even in the absence of agrin, albeit only to a small extent. The work of Choi et al. suggests that the complex formed between agrin, amyloid precursor protein and LRP4 helps to focus the activation of MuSK, and thus the clustering of acetylcholine receptors, to the site of the developing neuromuscular junction. Since all four proteins are also found in the central nervous system, similar processes might well be at work during the development and maintenance of synapses in the brain. Further studies of these interactions, both at the neuromuscular junction and in the brain, should shed new light on both normal synapse formation and the synaptic dysfunction that is seen in Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.00220.002
Collapse
Affiliation(s)
- Hong Y Choi
- Department of Molecular Genetics , University of Texas Southwestern Medical Center , Dallas , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 2:a006312. [PMID: 22393530 DOI: 10.1101/cshperspect.a006312] [Citation(s) in RCA: 578] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer disease (AD); the ε4 allele increases risk and the ε2 allele is protective. In the central nervous system (CNS), apoE is produced by glial cells, is present in high-density-like lipoproteins, interacts with several receptors that are members of the low-density lipoprotein receptor (LDLR) family, and is a protein that binds to the amyloid-β (Aβ) peptide. There are a variety of mechanisms by which apoE isoform may influence risk for AD. There is substantial evidence that differential effects of apoE isoform on AD risk are influenced by the ability of apoE to affect Aβ aggregation and clearance in the brain. Other mechanisms are also likely to play a role in the ability of apoE to influence CNS function as well as AD, including effects on synaptic plasticity, cell signaling, lipid transport and metabolism, and neuroinflammation. ApoE receptors, including LDLRs, Apoer2, very low-density lipoprotein receptors (VLDLRs), and lipoprotein receptor-related protein 1 (LRP1) appear to influence both the CNS effects of apoE as well as Aβ metabolism and toxicity. Therapeutic strategies based on apoE and apoE receptors may include influencing apoE/Aβ interactions, apoE structure, apoE lipidation, LDLR receptor family member function, and signaling. Understanding the normal and disease-related biology connecting apoE, apoE receptors, and AD is likely to provide novel insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- David M Holtzman
- Department of Neurology, Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
41
|
Cenani-Lenz syndrome restricted to limb and kidney anomalies associated with a novel LRP4 missense mutation. Eur J Med Genet 2013; 56:371-4. [PMID: 23664847 DOI: 10.1016/j.ejmg.2013.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/29/2013] [Indexed: 01/22/2023]
Abstract
Cenani-Lenz syndrome (CLS) is a rare autosomal recessive developmental disorder of the limbs. The disorder is characterized by complete syndactyly with metacarpal fusions and/or oligodactyly sometimes accompanied by radioulnar synostosis. The clinical expression is variable and kidney agenesis/hypoplasia, craniofacial dysmorphism and teeth abnormalities are frequent features as well as lower limb involvement. CLS was recently associated with mutations in the low-density lipoprotein receptor-related protein 4 (LRP4) gene and dysregulated canonical WNT signaling. We have identified a large consanguineous Pakistani pedigree with 9 members affected by CLS. The affected individuals present with a consistent expression of the syndrome restricted to the limbs and kidneys. Symptoms from the lower limb are mild or absent and there were no radioulnar synostosis or craniofacial involvement. Genetic analysis using autozygosity mapping and sequencing revealed homozygosity for a novel missense mutation c.2858T > C (p.L953P) in the LRP4 gene. The mutation is located in a region encoding the highly conserved low-density lipoprotein receptor repeat class B domain of LRP4. Our findings add to the genotype-phenotype correlations in CLS and support kidney anomalies as a frequent associated feature.
Collapse
|
42
|
Kariminejad A, Stollfuß B, Li Y, Bögershausen N, Boss K, Hennekam RCM, Wollnik B. Severe Cenani-Lenz syndrome caused by loss of LRP4 function. Am J Med Genet A 2013; 161A:1475-9. [PMID: 23636941 DOI: 10.1002/ajmg.a.35920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 12/12/2022]
Abstract
Limb patterning and growth are complex embryonic processes in which the elaborately orchestrated interplay of diverse endocrine and paracrine factors is crucial to limb integrity. LRP4 is a lipoprotein receptor known for its regulatory effects on LRP5- and LRP6-mediated Wnt signaling, a pathway that plays a pivotal role in limb development. Recessive mutations in LRP4 have been shown to cause Cenani-Lenz syndrome, which is characterized by severe limb malformations, an unusual face, and renal abnormalities. We report on a child with severe Cenani-Lenz syndrome caused by a novel homozygous nonsense mutation in LRP4. The severity of the phenotype in a patient with absent residual LRP4 function may point to a genotype-phenotype correlation.
Collapse
|
43
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
44
|
Ahn Y, Sims C, Logue JM, Weatherbee SD, Krumlauf R. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development 2013; 140:583-93. [PMID: 23293290 DOI: 10.1242/dev.085118] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The future site of skin appendage development is marked by a placode during embryogenesis. Although Wnt/β-catenin signaling is known to be essential for skin appendage development, it is unclear which cellular processes are controlled by the signaling and how the precise level of the signaling activity is achieved during placode formation. We have investigated roles for Lrp4 and its potential ligand Wise (Sostdc1) in mammary and other skin appendage placodes. Lrp4 mutant mice displayed a delay in placode initiation and changes in distribution and number of mammary precursor cells leading to abnormal morphology, number and position of mammary placodes. These Lrp4 mammary defects, as well as limb defects, were associated with elevated Wnt/β-catenin signaling and were rescued by reducing the dose of the Wnt co-receptor genes Lrp5 and Lrp6, or by inactivating the gene encoding β-catenin. Wise-null mice phenocopied a subset of the Lrp4 mammary defects and Wise overexpression reduced the number of mammary precursor cells. Genetic epistasis analyses suggest that Wise requires Lrp4 to exert its function and that, together, they have a role in limiting mammary fate, but Lrp4 has an early Wise-independent role in facilitating placode formation. Lrp4 and Wise mutants also share defects in vibrissa and hair follicle development, suggesting that the roles played by Lrp4 and Wise are common to skin appendages. Our study presents genetic evidence for interplay between Lrp4 and Wise in inhibiting Wnt/β-catenin signaling and provides an insight into how modulation of Wnt/β-catenin signaling controls cellular processes important for skin placode formation.
Collapse
Affiliation(s)
- Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
45
|
Willnow TE, Christ A, Hammes A. Endocytic receptor-mediated control of morphogen signaling. Development 2013; 139:4311-9. [PMID: 23132241 DOI: 10.1242/dev.084467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Receptor-mediated endocytosis provides a mechanism by which cells take up signaling molecules from the extracellular space. Recent studies have shown that one class of endocytic receptors, the low-density lipoprotein receptor-related proteins (LRPs), is of particular relevance for embryonic development. In this Primer, we describe how LRPs constitute central pathways that modulate morphogen presentation to target tissues and cellular signal reception, and how LRP dysfunction leads to developmental disturbances in many species.
Collapse
Affiliation(s)
- Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, D-13125 Berlin, Germany.
| | | | | |
Collapse
|
46
|
Chi L, Saarela U, Railo A, Prunskaite-Hyyryläinen R, Skovorodkin I, Anthony S, Katsu K, Liu Y, Shan J, Salgueiro AM, Belo JA, Davies J, Yokouchi Y, Vainio SJ. A secreted BMP antagonist, Cer1, fine tunes the spatial organization of the ureteric bud tree during mouse kidney development. PLoS One 2011; 6:e27676. [PMID: 22114682 PMCID: PMC3219680 DOI: 10.1371/journal.pone.0027676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/21/2011] [Indexed: 01/02/2023] Open
Abstract
The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.
Collapse
Affiliation(s)
- Lijun Chi
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antti Railo
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Renata Prunskaite-Hyyryläinen
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilya Skovorodkin
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shelagh Anthony
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu Liu
- Texas A&M Health Science Center, Center for Development and Diseases, Institute of Biosciences and Technology, Houston, Texas, United States of America
| | - Jingdong Shan
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ana Marisa Salgueiro
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - José António Belo
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - Jamie Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuji Yokouchi
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Seppo J. Vainio
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
47
|
Pevzner A, Schoser B, Peters K, Cosma NC, Karakatsani A, Schalke B, Melms A, Kröger S. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol 2011; 259:427-35. [PMID: 21814823 DOI: 10.1007/s00415-011-6194-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/27/2011] [Accepted: 07/14/2011] [Indexed: 11/25/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder characterized by a defect in synaptic transmission at the neuromuscular junction causing fluctuating muscle weakness with a decremental response to repetitive nerve stimulation or altered jitter in single-fiber electromyography (EMG). Approximately 80% of all myasthenia gravis patients have autoantibodies against the nicotinic acetylcholine receptor in their serum. Autoantibodies against the tyrosine kinase muscle-specific kinase (MuSK) are responsible for 5-10% of all myasthenia gravis cases. The autoimmune target in the remaining cases is unknown. Recently, low-density lipoprotein receptor-related protein (LRP4) has been identified as the agrin receptor. LRP4 interacts with agrin, and the binding of agrin activates MuSK, which leads to the formation of most if not all postsynaptic specializations, including aggregates containing acetylcholine receptors (AChRs) in the junctional plasma membrane. In the present study we tested if autoantibodies against LRP4 are detectable in patients with myasthenia gravis. To this end we analyzed 13 sera from patients with generalized myasthenia gravis but without antibodies against AChR or MuSK. The results showed that 12 out of 13 antisera from double-seronegative MG patients bound to proteins concentrated at the neuromuscular junction of adult mouse skeletal muscle and that approximately 50% of the tested sera specifically bound to HEK293 cells transfected with human LRP4. Moreover, 4 out of these 13 sera inhibited agrin-induced aggregation of AChRs in cultured myotubes by more than 50%, suggesting a pathogenic role regarding the dysfunction of the neuromuscular endplate. These results indicate that LRP4 is a novel target for autoantibodies and is a diagnostic marker in seronegative MG patients.
Collapse
Affiliation(s)
- Alexandra Pevzner
- Department of Physiological Genomics, Institute for Physiology, Ludwig-Maximilians University, Pettenkoferstrasse 12, 80336, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dieckmann M, Dietrich MF, Herz J. Lipoprotein receptors--an evolutionarily ancient multifunctional receptor family. Biol Chem 2011; 391:1341-63. [PMID: 20868222 DOI: 10.1515/bc.2010.129] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The evolutionarily ancient low-density lipoprotein (LDL) receptor gene family represents a class of widely expressed cell surface receptors. Since the dawn of the first primitive multicellular organisms, several structurally and functionally distinct families of lipoprotein receptors have evolved. In accordance with the now obsolete 'one-gene-one-function' hypothesis, these cell surface receptors were originally perceived as mere transporters of lipoproteins, lipids, and nutrients or as scavenger receptors, which remove other kinds of macromolecules, such as proteases and protease inhibitors from the extracellular environment and the cell surface. This picture has since undergone a fundamental change. Experimental evidence has replaced the perception that these receptors serve merely as cargo transporters. Instead it is now clear that the transport of macromolecules is inseparably intertwined with the molecular machinery by which cells communicate with each other. Lipoprotein receptors are essentially sensors of the extracellular environment that participate in a wide range of physiological processes by physically interacting and coevolving with primary signal transducers as co-regulators. Furthermore, lipoprotein receptors modulate cellular trafficking and localization of the amyloid precursor protein (APP) and the β-amyloid peptide (Aβ), suggesting a role in the pathogenesis of Alzheimer's disease. Moreover, compelling evidence shows that LDL receptor family members are involved in tumor development and progression.
Collapse
Affiliation(s)
- Marco Dieckmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9046, USA
| | | | | |
Collapse
|
49
|
Kiefer SM, Robbins L, Stumpff KM, Lin C, Ma L, Rauchman M. Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development. Development 2010; 137:3099-106. [PMID: 20702564 DOI: 10.1242/dev.037812] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Development of the metanephric kidney depends on precise control of branching of the ureteric bud. Branching events represent terminal bifurcations that are thought to depend on unique patterns of gene expression in the tip compared with the stalk and are influenced by mesenchymal signals. The metanephric mesenchyme-derived signals that control gene expression at the ureteric bud tip are not well understood. In mouse Sall1 mutants, the ureteric bud grows out and invades the metanephric mesenchyme, but it fails to initiate branching despite tip-specific expression of Ret and Wnt11. The stalk-specific marker Wnt9b and the beta-catenin downstream target Axin2 are ectopically expressed in the mutant ureteric bud tips, suggesting that upregulated canonical Wnt signaling disrupts ureter branching in this mutant. In support of this hypothesis, ureter arrest is rescued by lowering beta-catenin levels in the Sall1 mutant and is phenocopied by ectopic expression of a stabilized beta-catenin in the ureteric bud. Furthermore, transgenic overexpression of Wnt9b in the ureteric bud causes reduced branching in multiple founder lines. These studies indicate that Sall1-dependent signals from the metanephric mesenchyme are required to modulate ureteric bud tip Wnt patterning in order to initiate branching.
Collapse
Affiliation(s)
- Susan M Kiefer
- John Cochran Veterans Affairs Medical Center, St Louis, MO 63106, USA
| | | | | | | | | | | |
Collapse
|