1
|
Gambella A, Kalantari S, Cadamuro M, Quaglia M, Delvecchio M, Fabris L, Pinon M. The Landscape of HNF1B Deficiency: A Syndrome Not Yet Fully Explored. Cells 2023; 12:cells12020307. [PMID: 36672242 PMCID: PMC9856658 DOI: 10.3390/cells12020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The hepatocyte nuclear factor 1β (HNF1B) gene is involved in the development of specialized epithelia of several organs during the early and late phases of embryogenesis, performing its function mainly by regulating the cell cycle and apoptosis pathways. The first pathogenic variant of HNF1B (namely, R177X) was reported in 1997 and is associated with the maturity-onset diabetes of the young. Since then, more than 230 different HNF1B variants have been reported, revealing a multifaceted syndrome with complex and heterogenous genetic, pathologic, and clinical profiles, mainly affecting the pediatric population. The pancreas and kidneys are the most frequently affected organs, resulting in diabetes, renal cysts, and a decrease in renal function, leading, in 2001, to the definition of HNF1B deficiency syndrome, including renal cysts and diabetes. However, several other organs and systems have since emerged as being affected by HNF1B defect, while diabetes and renal cysts are not always present. Especially, liver involvement has generally been overlooked but recently emerged as particularly relevant (mostly showing chronically elevated liver enzymes) and with a putative relation with tumor development, thus requiring a more granular analysis. Nowadays, HNF1B-associated disease has been recognized as a clinical entity with a broader and more variable multisystem phenotype, but the reasons for the phenotypic heterogeneity are still poorly understood. In this review, we aimed to describe the multifaceted nature of HNF1B deficiency in the pediatric and adult populations: we analyzed the genetic, phenotypic, and clinical features of this complex and misdiagnosed syndrome, covering the most frequent, unusual, and recently identified traits.
Collapse
Affiliation(s)
- Alessandro Gambella
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Division of Liver and Transplant Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Silvia Kalantari
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Marco Quaglia
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Maurizio Delvecchio
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, 70124 Bari, Italy
- Correspondence:
| | - Luca Fabris
- Department of Molecular Medicine, University of Padova, 35121 Padua, Italy
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Michele Pinon
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
2
|
Comprehensive quantitative analysis of alternative splicing variants reveals the HNF1B mRNA splicing pattern in various tumour and non-tumour tissues. Sci Rep 2022; 12:199. [PMID: 34997048 PMCID: PMC8741901 DOI: 10.1038/s41598-021-03989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte nuclear factor-1-beta (HNF1B) is a transcription factor and putative biomarker of solid tumours. Recently, we have revealed a variety of HNF1B mRNA alternative splicing variants (ASVs) with unknown, but potentially regulatory, functions. The aim of our work was to quantify the most common variants and compare their expression in tumour and non-tumour tissues of the large intestine, prostate, and kidney. The HNF1B mRNA variants 3p, Δ7, Δ7–8, and Δ8 were expressed across all the analysed tissues in 28.2–33.5%, 1.5–2%, 0.8–1.7%, and 2.3–6.9% of overall HNF1B mRNA expression, respectively, and occurred individually or in combination. The quantitative changes of ASVs between tumour and non-tumour tissue were observed for the large intestine (3p, Δ7–8), prostate (3p), and kidney samples (Δ7). Decreased expression of the overall HNF1B mRNA in the large intestine and prostate cancer samples compared with the corresponding non-tumour samples was observed (p = 0.019 and p = 0.047, respectively). The decreased mRNA expression correlated with decreased protein expression in large intestine carcinomas (p < 0.001). The qualitative and quantitative pattern of the ASVs studied by droplet digital PCR was confirmed by next-generation sequencing, which suggests the significance of the NGS approach for further massive evaluation of the splicing patterns in a variety of genes.
Collapse
|
3
|
Affiliation(s)
- Zhimei Ren
- Department of Statistics, University of Chicago, Chicago, IL
| | - Yuting Wei
- Statistics & Data Science Department, University of Pennsylvania, Philadelphia, PA
| | - Emmanuel Candès
- Department of Mathematics, Department of Statistics, Stanford University, Stanford, CA
| |
Collapse
|
4
|
Bai S, Lindberg J, Whalen G, Bathini V, Zou J, Yang MX. Utility of HNF-1B and a panel of lineage-specific biomarkers to optimize the diagnosis of pancreatic ductal adenocarcinoma. Am J Cancer Res 2021; 11:858-865. [PMID: 33791159 PMCID: PMC7994171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the most common cancers with dismal prognosis. Definitive diagnosis of PDAC remains challenging due to the lack of specific biomarkers. A transcription factor essential for pancreatic development named HNF-1B can be a potential biomarker for PDAC. However, HNF-1B was not entirely specific for PDAC and can be expressed in cancers of Müllerian tract, kidney, lung, bladder and prostate. To solve this issue, we investigated the expression of a panel of well-established lineage-specific biomarkers for non-pancreatic origins, including TTF1 and Napsin A for lung, RCC for kidney, ER and PR for breast, NKX3.1 for prostate, PAX8 for Müllerian tract, GATA3 for breast and bladder, and keratin CK7 and CK20 in 149 PDACs, using immunohistochemistry and tissue microarray. A two-tier scoring system for HNF-1B expression in tumor cells was used. Chi-square and Fisher's exact tests were performed using SAS software version 9.4 to test the association between HNF-1B expression and tumor morphology and differentiation. The results showed that PAX8 was focally positive in 6 cases (4.0%). GATA3 was focally positive in 5 cases (3.4%). Napsin A was all negative except for 1 case with focal weak staining. All other lineage-specific markers such as TTF1, RCC, ER, PR and NKX3.1 were completely negative in all PDACs. Consistent with our previous result, the majority of PDACs (88.6%) was positive for HNF-1B, including 78 cases (59.1%) with "strong" and 54 cases (40.9%) with "weak" staining pattern. There was no significant association between HNF-1B expression and cytoplasmic clearing morphology. Addition of keratins may further aid the diagnosis of PDAC since the majority of PDACs (84.6%) was CK7+/CK20-, only a minority of PDACs (11.4%) was CK7+/CK20+, 2.7% were CK-/CK20-, and 1.3% were CK7-/CK20+. In conclusion, HNF-1B can serve as a useful biomarker to aid the diagnosis of PDAC when combined with other lineage-specific biomarkers to exclude the other origins.
Collapse
Affiliation(s)
- Shi Bai
- Department of Pathology, University of Massachusetts Memorial Health CareWorcester, MA, USA
| | - James Lindberg
- Surgical Oncology, University of Massachusetts Memorial Health CareWorcester, MA, USA
| | - Giles Whalen
- Surgical Oncology, University of Massachusetts Memorial Health CareWorcester, MA, USA
| | - Venu Bathini
- Department of Medical Oncology, University of Massachusetts Memorial Health CareWorcester, MA, USA
| | - Jian Zou
- Department of Mathematical Sciences, Worcester Polytechnic InstituteWorcester, MA, USA
| | - Michelle X Yang
- Department of Pathology, University of Massachusetts Memorial Health CareWorcester, MA, USA
| |
Collapse
|
5
|
Hamdy FC, Donovan JL, Lane JA, Mason M, Metcalfe C, Holding P, Wade J, Noble S, Garfield K, Young G, Davis M, Peters TJ, Turner EL, Martin RM, Oxley J, Robinson M, Staffurth J, Walsh E, Blazeby J, Bryant R, Bollina P, Catto J, Doble A, Doherty A, Gillatt D, Gnanapragasam V, Hughes O, Kockelbergh R, Kynaston H, Paul A, Paez E, Powell P, Prescott S, Rosario D, Rowe E, Neal D. Active monitoring, radical prostatectomy and radical radiotherapy in PSA-detected clinically localised prostate cancer: the ProtecT three-arm RCT. Health Technol Assess 2020; 24:1-176. [PMID: 32773013 PMCID: PMC7443739 DOI: 10.3310/hta24370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer is the most common cancer among men in the UK. Prostate-specific antigen testing followed by biopsy leads to overdetection, overtreatment as well as undertreatment of the disease. Evidence of treatment effectiveness has lacked because of the paucity of randomised controlled trials comparing conventional treatments. OBJECTIVES To evaluate the effectiveness of conventional treatments for localised prostate cancer (active monitoring, radical prostatectomy and radical radiotherapy) in men aged 50-69 years. DESIGN A prospective, multicentre prostate-specific antigen testing programme followed by a randomised trial of treatment, with a comprehensive cohort follow-up. SETTING Prostate-specific antigen testing in primary care and treatment in nine urology departments in the UK. PARTICIPANTS Between 2001 and 2009, 228,966 men aged 50-69 years received an invitation to attend an appointment for information about the Prostate testing for cancer and Treatment (ProtecT) study and a prostate-specific antigen test; 82,429 men were tested, 2664 were diagnosed with localised prostate cancer, 1643 agreed to randomisation to active monitoring (n = 545), radical prostatectomy (n = 553) or radical radiotherapy (n = 545) and 997 chose a treatment. INTERVENTIONS The interventions were active monitoring, radical prostatectomy and radical radiotherapy. TRIAL PRIMARY OUTCOME MEASURE Definite or probable disease-specific mortality at the 10-year median follow-up in randomised participants. SECONDARY OUTCOME MEASURES Overall mortality, metastases, disease progression, treatment complications, resource utilisation and patient-reported outcomes. RESULTS There were no statistically significant differences between the groups for 17 prostate cancer-specific (p = 0.48) and 169 all-cause (p = 0.87) deaths. Eight men died of prostate cancer in the active monitoring group (1.5 per 1000 person-years, 95% confidence interval 0.7 to 3.0); five died of prostate cancer in the radical prostatectomy group (0.9 per 1000 person-years, 95% confidence interval 0.4 to 2.2 per 1000 person years) and four died of prostate cancer in the radical radiotherapy group (0.7 per 1000 person-years, 95% confidence interval 0.3 to 2.0 per 1000 person years). More men developed metastases in the active monitoring group than in the radical prostatectomy and radical radiotherapy groups: active monitoring, n = 33 (6.3 per 1000 person-years, 95% confidence interval 4.5 to 8.8); radical prostatectomy, n = 13 (2.4 per 1000 person-years, 95% confidence interval 1.4 to 4.2 per 1000 person years); and radical radiotherapy, n = 16 (3.0 per 1000 person-years, 95% confidence interval 1.9 to 4.9 per 1000 person-years; p = 0.004). There were higher rates of disease progression in the active monitoring group than in the radical prostatectomy and radical radiotherapy groups: active monitoring (n = 112; 22.9 per 1000 person-years, 95% confidence interval 19.0 to 27.5 per 1000 person years); radical prostatectomy (n = 46; 8.9 per 1000 person-years, 95% confidence interval 6.7 to 11.9 per 1000 person-years); and radical radiotherapy (n = 46; 9.0 per 1000 person-years, 95% confidence interval 6.7 to 12.0 per 1000 person years; p < 0.001). Radical prostatectomy had the greatest impact on sexual function/urinary continence and remained worse than radical radiotherapy and active monitoring. Radical radiotherapy's impact on sexual function was greatest at 6 months, but recovered somewhat in the majority of participants. Sexual and urinary function gradually declined in the active monitoring group. Bowel function was worse with radical radiotherapy at 6 months, but it recovered with the exception of bloody stools. Urinary voiding and nocturia worsened in the radical radiotherapy group at 6 months but recovered. Condition-specific quality-of-life effects mirrored functional changes. No differences in anxiety/depression or generic or cancer-related quality of life were found. At the National Institute for Health and Care Excellence threshold of £20,000 per quality-adjusted life-year, the probabilities that each arm was the most cost-effective option were 58% (radical radiotherapy), 32% (active monitoring) and 10% (radical prostatectomy). LIMITATIONS A single prostate-specific antigen test and transrectal ultrasound biopsies were used. There were very few non-white men in the trial. The majority of men had low- and intermediate-risk disease. Longer follow-up is needed. CONCLUSIONS At a median follow-up point of 10 years, prostate cancer-specific mortality was low, irrespective of the assigned treatment. Radical prostatectomy and radical radiotherapy reduced disease progression and metastases, but with side effects. Further work is needed to follow up participants at a median of 15 years. TRIAL REGISTRATION Current Controlled Trials ISRCTN20141297. FUNDING This project was funded by the National Institute for Health Research Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 37. See the National Institute for Health Research Journals Library website for further project information.
Collapse
Affiliation(s)
- Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - J Athene Lane
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Malcolm Mason
- School of Medicine, University of Cardiff, Cardiff, UK
| | - Chris Metcalfe
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Peter Holding
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Julia Wade
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Sian Noble
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Grace Young
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael Davis
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Tim J Peters
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma L Turner
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jon Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Bristol, UK
| | - Mary Robinson
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - John Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Eleanor Walsh
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Jane Blazeby
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Prasad Bollina
- Department of Urology and Surgery, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - James Catto
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | - Andrew Doble
- Department of Urology, Addenbrooke's Hospital, Cambridge, UK
| | - Alan Doherty
- Department of Urology, Queen Elizabeth Hospital, Birmingham, UK
| | - David Gillatt
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol, UK
| | | | - Owen Hughes
- Department of Urology, Cardiff and Vale University Health Board, Cardiff, UK
| | - Roger Kockelbergh
- Department of Urology, University Hospitals of Leicester, Leicester, UK
| | - Howard Kynaston
- Department of Urology, Cardiff and Vale University Health Board, Cardiff, UK
| | - Alan Paul
- Department of Urology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Edgar Paez
- Department of Urology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Philip Powell
- Department of Urology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Stephen Prescott
- Department of Urology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Derek Rosario
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | - Edward Rowe
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol, UK
| | - David Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Academic Urology Group, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Bártů M, Hojný J, Hájková N, Michálková R, Krkavcová E, Simon K, Frýba V, Stružinská I, Němejcová K, Dundr P. Expression, Epigenetic, and Genetic Changes of HNF1B in Colorectal Lesions: an Analysis of 145 Cases. Pathol Oncol Res 2020; 26:2337-2350. [PMID: 32488808 DOI: 10.1007/s12253-020-00830-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Abstract
Hepatocyte nuclear factor 1 beta (HNF1B) is transcription factor which plays a crucial role in the regulation of the development of several organs, but also seems to be implicated in the development of certain tumours, especially the subset of clear cell carcinomas of the ovary and kidney. Depending on the type of the tumour, HNF1B may act as either a tumour suppressor or an oncogene, although the exact mechanism by which HNF1B participates in the process of cancerogenesis is unknown. Using immunohistochemical approach and methylation and mutation analysis, we have investigated the expression, epigenetic, and genetic changes of HNF1B on 40 cases of colorectal adenomas and 105 cases of colorectal carcinomas. The expression of HNF1B was correlated with the benign or malignant behaviour of the lesion, given that carcinomas showed significantly lower levels of expression compared to adenomas. In carcinomas, lower levels of HNF1B expression were associated with recurrence and shortened disease-free survival. The mutation analysis revealed three somatic mutations (two frameshift and one nonsense) in the carcinoma sample set. Promoter methylation was detected in three carcinomas. These results suggest that in colorectal cancer, HNF1B may play a part in the pathogenesis and act in a tumour suppressive fashion.
Collapse
Affiliation(s)
- Michaela Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studnickova 2, 12800, Prague 2, Czech Republic
| | - Jan Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studnickova 2, 12800, Prague 2, Czech Republic
| | - Nikola Hájková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studnickova 2, 12800, Prague 2, Czech Republic
| | - Romana Michálková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studnickova 2, 12800, Prague 2, Czech Republic
| | - Eva Krkavcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studnickova 2, 12800, Prague 2, Czech Republic
| | - Karol Simon
- First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800, Prague, Czech Republic
| | - Vladimír Frýba
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, 12808, Prague, Czech Republic
| | - Ivana Stružinská
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studnickova 2, 12800, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studnickova 2, 12800, Prague 2, Czech Republic
| | - Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studnickova 2, 12800, Prague 2, Czech Republic.
| |
Collapse
|
7
|
Bártů M, Dundr P, Němejcová K, Tichá I, Hojný H, Hájková N. The Role of HNF1B in Tumorigenesis of Solid Tumours: a Review of Current Knowledge. Folia Biol (Praha) 2018; 64:71-83. [PMID: 30394265 DOI: 10.14712/fb2018064030071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hepatocyte nuclear factor 1-β is a transcription factor which plays a crucial role during ontogenesis in the differentiation of visceral endoderm from primitive endoderm, and is especially important for the normal development of the kidney, urogenital tract, gastrointestinal tract, liver, and pancreas. Despite the growing knowledge about the potential involvement of hepatocyte nuclear factor 1-β in the process of carcinogenesis, the exact underlying mechanism that would explain its rather varied effects in different tumours has not been sufficiently investigated. Most of the data regarding the significance of hepatocyte nuclear factor 1-β arise from genome- wide association studies and is concerned with the influence of single-nucleotide polymorphisms of hepatocyte nuclear factor 1-β on either the increased or decreased susceptibility to certain types of cancer. However, the influence of both the germinal and somatic mutations of this gene on the process of carcinogenesis is still poorly understood. According to current data, in some tumours hepatocyte nuclear factor 1-β acts as a protooncogene, while in others as a tumour suppressor gene, although the reasons for this are not clear. The exact incidence of hepatocyte nuclear factor 1-β mutations and the spectrum of tumours in which they may play a role in the process of carcinogenesis remain unknown. From the practical point of view, immunohistochemical expression of hepatocyte nuclear factor 1-β can be used in differential diagnostics of certain tumours, especially clear cell carcinoma. In our article we review the current knowledge regarding the significance of hepatocyte nuclear factor 1-β in carcinogenesis.
Collapse
Affiliation(s)
- M Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - P Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - K Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - I Tichá
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - H Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - N Hájková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
8
|
Ross-Adams H, Ball S, Lawrenson K, Halim S, Russell R, Wells C, Strand SH, Ørntoft TF, Larson M, Armasu S, Massie CE, Asim M, Mortensen MM, Borre M, Woodfine K, Warren AY, Lamb AD, Kay J, Whitaker H, Ramos-Montoya A, Murrell A, Sørensen KD, Fridley BL, Goode EL, Gayther SA, Masters J, Neal DE, Mills IG. HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer. Oncotarget 2016; 7:74734-74746. [PMID: 27732966 PMCID: PMC5342698 DOI: 10.18632/oncotarget.12543] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.
Collapse
Affiliation(s)
- Helen Ross-Adams
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Stephen Ball
- Prostate Cancer Research Centre, University College London, London, UK
| | - Kate Lawrenson
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Silvia Halim
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Roslin Russell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Claire Wells
- Division of Cancer Studies, King's College London, London, UK
| | - Siri H. Strand
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | - Torben F. Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | | | - Charles E. Massie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mohammad Asim
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Kathryn Woodfine
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Anne Y. Warren
- Department of Pathology, Addenbrooke's Hospital, Cambridge, UK
| | - Alastair D. Lamb
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Urology, Addenbrooke's Hospital, Cambridge, UK
| | - Jonathan Kay
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Hayley Whitaker
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | | | - Adele Murrell
- Department of Biology and Biochemistry, University of Bath, Centre for Regenerative Medicine, Claverton Down, Bath, UK
| | | | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Simon A. Gayther
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - John Masters
- Prostate Cancer Research Centre, University College London, London, UK
| | - David E. Neal
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Urology, Addenbrooke's Hospital, Cambridge, UK
| | - Ian G. Mills
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Departments of Cancer Prevention and Urology, Institute of Cancer Research and Department of Urology, Oslo University Hospital, Oslo, Norway
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| |
Collapse
|
9
|
A risk prediction model for colorectal cancer using genome-wide association study-identified polymorphisms and established risk factors among Japanese: results from two independent case–control studies. Eur J Cancer Prev 2016; 25:500-7. [DOI: 10.1097/cej.0000000000000213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Kong B, Wu W, Valkovska N, Jäger C, Hong X, Nitsche U, Friess H, Esposito I, Erkan M, Kleeff J, Michalski CW. A common genetic variation of melanoma inhibitory activity-2 labels a subtype of pancreatic adenocarcinoma with high endoplasmic reticulum stress levels. Sci Rep 2015; 5:8109. [PMID: 25657029 PMCID: PMC4319175 DOI: 10.1038/srep08109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
HNF1 homeobox A (HNF1A)-mediated gene expression constitutes an essential component of the secretory pathway in the exocrine pancreas. Melanoma inhibitory activity 2 (MIA2), a protein facilitating protein secretion, is an HNF1A target. Protein secretion is precisely coordinated by the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) system. Here, we demonstrate that HNFA and MIA2 are expressed in a subset of human PDAC tissues and that HNF1A induced MIA2 in vitro. We identified a common germline variant of MIA2 (c.A617G: p.I141M) associated with a secretory defect of the MIA2 protein in PDAC cells. Patients carrying MIA2I141M survived longer after tumor resection but the survival benefit was restricted to those patients who received adjuvant chemotherapy. The MIA2I141M variant was associated with high expression of ER stress/UPR genes – in particular those of the ERN1/XBP arm – in human PDAC samples. Accordingly, PDAC cell lines expressing the MIA2I141M variant expressed high levels of ERN1 and were more sensitive to gemcitabine. These findings define an interaction between the common MIA2I141M variant and the ER stress/UPR system and specify a subgroup of PDAC patients who are more likely to benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Bo Kong
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Weiwei Wu
- Department of Surgery, Technische Universität München, Munich, Germany
| | | | - Carsten Jäger
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Xin Hong
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Mert Erkan
- Department of Surgery, Koc School of Medicine, Istanbul, Turkey
| | - Jörg Kleeff
- Department of Surgery, Technische Universität München, Munich, Germany
| | | |
Collapse
|
11
|
Zhang YR, Xu Y, Yang K, Liu M, Wei D, Zhang YG, Shi XH, Wang JY, Yang F, Wang X, Liang SY, Zhao CX, Wang F, Chen X, Sun L, Zhu XQ, Zhu L, Yang YG, Tang L, Jiao HY, Huo ZH, Yang Z. Association of six susceptibility Loci with prostate cancer in northern chinese men. Asian Pac J Cancer Prev 2014; 13:6273-6. [PMID: 23464444 DOI: 10.7314/apjcp.2012.13.12.6273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Six prostate cancer (PCa) susceptibility loci were identified in a genome-wide association study (GWAS) in populations of European decent. However, the associations of these 6 single-nucleotide polymorphisms (SNPs) with PCa has remained tobe clarified in men in Northern China. This study aimed to explore the loci associated with PCa risk in a Northern Chinese population. METHODS Blood samples and clinical information of 289 PCa patients and 288 controls from Beijing and Tianjin were collected. All risk SNPs were genotyped using polymerase chain reaction (PCR)-high resolution melting curve technology and gene sequencing. Associations between PCa and clinical covariates (age at diagnosis, prostate-specific antigen [PSA], Gleason score, tumor stage, and level of aggressiveness) and frequencies of alleles and genotypes of these SNPs were analyzed using genetic statistics. RESULTS Among the candidate SNPs, 11p15 (rs7127900, A) was associated with PCa risk (P = 0.02, odds ratio [OR] = 1.64, 95% confidence interval [CI] = 1.09-2.46). Genotypes showed differences between cases and controls on 11p15 (rs7127900, A), 11q13 (rs7931342, T), and HNF1B (rs4430796, A) (P = 0.03, P = 0.01, and P = 0.04, respectively). The genotype TG on 11q13 (rs7931342, T) was positively associated with an increased Gleason score (P = 0.04, OR = 2.15, 95% CI = 1.02-4.55). Patients carrying TG on 17q24 (rs1859962, G) were negatively associated with an increased body mass index (BMI) (P = 0.03, OR = 0.44, 95% CI = 0.21-0.92) while those with AG on HNF1B (rs4430796, A) were more likely to have PSA increase (P = 0.002). CONCLUSION Our study suggests that 11p15 (rs7127900, A) could be a susceptibility locus associated with PCa in Northern Chinese. Genotype TG on 11q13 (rs7931342, T) could be related to an increased Gleason score, AG on HNF1B (rs4430796, A) could be associated with PSA increase, and TG on 17q24 (rs1859962, G) could be negatively associated with an increased BMI in Chinese men with PCa.
Collapse
Affiliation(s)
- Yu-Rong Zhang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yuan RH, Lai HS, Hsu HC, Lai PL, Jeng YM. Expression of bile duct transcription factor HNF1β predicts early tumor recurrence and is a stage-independent prognostic factor in hepatocellular carcinoma. J Gastrointest Surg 2014; 18:1784-94. [PMID: 25052070 DOI: 10.1007/s11605-014-2596-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/11/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) frequently exhibits biliary differentiation, which is typically overlooked. Hepatocyte nuclear factor 1β (HNF1β), a bile duct-specific transcription factor expressed in bile ducts but not in the normal hepatocytes, is also expressed in HCC. MATERIALS AND METHODS The expression of HNF1β and the biliary differentiation marker cytokeratin 19 (CK19) were retrospectively evaluated using immunohistochemistry in 159 surgically resected primary HCCs. RESULTS A significant correlation was observed between HNF1β protein expression and younger age (p = 0.0293), high serum α-fetoprotein levels (p = 6 × 10(-4)), and high tumor grade (p = 0.0255). However, HNF1β expression exhibited no correlation with tumor stage. Patients with HCCs and HNF1β expression were more likely to exhibit early tumor recurrence (ETR; p = 0.0048) and a lower 5-year survival rate (p = 0.0001). A multivariate analysis indicated HNF1β expression as an independent prognostic factor in HCC (p = 0.0048). A combinatorial analysis revealed additive adverse effects of HNF1β when concomitant with CK19 expression and p53 mutation. Furthermore, HNF1β expression can predict poor prognosis in patients with ETR. CONCLUSION Our results indicated that HNF1β expression is a crucial predictor of poor prognosis in HCC and is independent of tumor stage. Moreover, concomitant HNF1β and CK19 expressions exhibited additive adverse effects in HCC, confirming that HCC with biliary differentiation has a poor prognosis.
Collapse
Affiliation(s)
- Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10051, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
13
|
Li J, Zhang Y, Gao Y, Cui Y, Liu H, Li M, Tian Y. Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep 2014; 32:979-88. [PMID: 24968817 DOI: 10.3892/or.2014.3297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/29/2014] [Indexed: 11/05/2022] Open
Abstract
The expression of HNF1 homeobox B (HNF1B) is associated with cancer risk in several tumors, including ovarian cancer, and its decreased expression play roles in cancer development. However, the study of HNF1B and cancer is limited, and its association with drug resistance in cancer has never been reported. On the basis of array data retrieved from Oncomine and Gene Expression Omnibus (GEO) online database, we found that the mRNA expression of HNF1B in 586 ovarian serous cystadenocarcinomas and in platinum-resistant A2780 epithelial ovarian cancer cells was significantly decreased, indicating a potential role of HNF1B in drug resistance in ovarian cancer. Based on this finding, comprehensive bioinformatics analyses, including protein/gene interaction, protein-small molecule/chemical interaction, biological process annotation, gene co-occurrence and pathway enrichment analysis and microRNA-mRNA interaction, were performed to illustrate the association of HNF1B with drug resistance in ovarian cancer. We found that among the proteins/genes, small molecules/chemicals and microRNAs which directly interacted with HNF1B, the majority was associated with drug resistance in cancer, particularly in ovarian cancer. Biological process annotation revealed that HNF1B closely related to 24 biological processes which were all notably associated with ovarian cancer and drug resistance. These results indicated that the downregulation of HNF1B may contribute to drug resistance in ovarian cancer, via its direct interactions with these drug resistance-related proteins/genes, small molecules/chemicals and microRNAs, and via its regulations on the drug resistance-related biological processes. Pathway enrichment analysis of 36 genes which co-occurred with HNF1B, ovarian cancer and drug resistance indicated that the HNF1B may perform its drug resistance-related functions through 4 pathways including ErbB signaling, focal adhesion, apoptosis and p53 signaling. Collectively, in this study, we illustrated for the first time that HNF1B may contribute to drug resistance in ovarian cancer, potentially through the 4 pathways. The present study may pave the way for further investigation of the drug resistance-related functions of HNF1B in ovarian cancer.
Collapse
Affiliation(s)
- Jianchao Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Yonghong Zhang
- Department of Obstetrics and Gynecology, Muping Traditional Chinese Medicine Hospital, Yantai, Shandong, P.R. China
| | - Yutao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Beijing, P.R. China
| | - Yuqian Cui
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P.R. China
| | - Mi Li
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, P.R. China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
14
|
Setiawan VW, Schumacher F, Prescott J, Haessler J, Malinowski J, Wentzensen N, Yang H, Chanock S, Brinton L, Hartge P, Lissowska J, Park SL, Cheng I, Bush WS, Crawford DC, Ursin G, Horn-Ross P, Bernstein L, Lu L, Risch H, Yu H, Sakoda LC, Doherty J, Chen C, Jackson R, Yasmeen S, Cote M, Kocarnik JM, Peters U, Kraft P, De Vivo I, Haiman CA, Kooperberg C, Le Marchand L. Cross-cancer pleiotropic analysis of endometrial cancer: PAGE and E2C2 consortia. Carcinogenesis 2014; 35:2068-73. [PMID: 24832084 DOI: 10.1093/carcin/bgu107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified a large number of cancer-associated single nucleotide polymorphisms (SNPs), several of which have been associated with multiple cancer sites suggesting pleiotropic effects and shared biological mechanisms across some cancers. We hypothesized that SNPs associated with other cancers may be additionally associated with endometrial cancer. We examined 213 SNPs previously associated with 14 other cancers for their associations with endometrial cancer in 3758 endometrial cancer cases and 5966 controls of European ancestry from two consortia: Population Architecture Using Genomics and Epidemiology and the Epidemiology of Endometrial Cancer Consortium. Study-specific logistic regression estimates adjusted for age, body mass index and the most significant principal components of genetic ancestry were combined using fixed-effect meta-analysis to evaluate the association between each SNP and endometrial cancer risk. A Bonferroni-corrected P value of 2.35×10(-4) was used to determine statistical significance of the associations. SNP rs7679673, ~6.3kb upstream of TET2 and previously reported to be associated with prostate cancer risk, was associated with endometrial cancer risk in the direction opposite to that for prostate cancer [meta-analysis odds ratio = 0.87 (per copy of the C allele), 95% confidence interval = 0.81, 0.93; P = 7.37×10(-5)] with no evidence of heterogeneity across studies (P heterogeneity = 0.66). This pleiotropic analysis is the first to suggest TET2 as a susceptibility locus for endometrial cancer.
Collapse
Affiliation(s)
- Veronica Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37235, USA, National Cancer Institute, Bethesda, MD 20892, USA, M.Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland, Cancer Prevention Institute of California, Fremont, CA 94538, USA, Institute of Population Based Cancer Research, Cancer Registry of Norway, N-0304 Oslo, Norway, Division of Cancer Etiology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA, Department of Epidemiology, Yale School of Public Health, New Haven CT 06520, USA, Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA, Division of Research, Kaiser Permanente Northern California, Oakland, CA 94611, USA, Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA, Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, OH 43210, USA, Department of Obstetrics and Gynecology, University of California, Davis, CA 95616, USA, Department of Oncology, Wayne State University School of Medicine and Population Studies and Disparities Research, Karmanos Cancer Institute, Detroit, MI 48202, USA and Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37235, USA, National Cancer Institute, Bethesda, MD 20892, USA, M.Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland, Cancer Prevention Institute of California, Fremont, CA 94538, USA, Institute of Population Based Cancer Research, Cancer Registry of Norway, N-0304 Oslo, Norway, Division of Cancer Etiology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA, Department of Epidemiology, Yale School of Public Health, New Haven CT 06520, USA, Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA, Division of Research, Kaiser Permanente Northern California, Oakland, CA 94611, USA, Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA, Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, OH 43210, USA, Department of Obstetrics and Gynecology, University of California, Davis, CA 95616, USA, Department of Oncology, Wayne State University School of Medicine and Population Studies and Disparities Research, Karmanos Cancer Institute, Detroit, MI 48202, USA and Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Jennifer Prescott
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jennifer Malinowski
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Hannah Yang
- National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | - Jolanta Lissowska
- M.Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - S Lani Park
- Department of Preventive Medicine, Keck School of Medicine, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37235, USA, National Cancer Institute, Bethesda, MD 20892, USA, M.Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland, Cancer Prevention Institute of California, Fremont, CA 94538, USA, Institute of Population Based Cancer Research, Cancer Registry of Norway, N-0304 Oslo, Norway, Division of Cancer Etiology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA, Department of Epidemiology, Yale School of Public Health, New Haven CT 06520, USA, Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA, Division of Research, Kaiser Permanente Northern California, Oakland, CA 94611, USA, Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA, Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, OH 43210, USA, Department of Obstetrics and Gynecology, University of California, Davis, CA 95616, USA, Department of Oncology, Wayne State University School of Medicine and Population Studies and Disparities Research, Karmanos Cancer Institute, Detroit, MI 48202, USA and Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, CA 94538, USA
| | - William S Bush
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana C Crawford
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37235, USA
| | - Giske Ursin
- Institute of Population Based Cancer Research, Cancer Registry of Norway, N-0304 Oslo, Norway
| | - Pamela Horn-Ross
- Cancer Prevention Institute of California, Fremont, CA 94538, USA
| | - Leslie Bernstein
- Division of Cancer Etiology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lingeng Lu
- Department of Epidemiology, Yale School of Public Health, New Haven CT 06520, USA
| | - Harvey Risch
- Department of Epidemiology, Yale School of Public Health, New Haven CT 06520, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Lori C Sakoda
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, Division of Research, Kaiser Permanente Northern California, Oakland, CA 94611, USA
| | - Jennifer Doherty
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rebecca Jackson
- Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, OH 43210, USA
| | - Shagufta Yasmeen
- Department of Obstetrics and Gynecology, University of California, Davis, CA 95616, USA
| | - Michele Cote
- Department of Oncology, Wayne State University School of Medicine and Population Studies and Disparities Research, Karmanos Cancer Institute, Detroit, MI 48202, USA and
| | - Jonathan M Kocarnik
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Kraft
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Immaculata De Vivo
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37235, USA, National Cancer Institute, Bethesda, MD 20892, USA, M.Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland, Cancer Prevention Institute of California, Fremont, CA 94538, USA, Institute of Population Based Cancer Research, Cancer Registry of Norway, N-0304 Oslo, Norway, Division of Cancer Etiology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA, Department of Epidemiology, Yale School of Public Health, New Haven CT 06520, USA, Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA, Division of Research, Kaiser Permanente Northern California, Oakland, CA 94611, USA, Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA, Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, OH 43210, USA, Department of Obstetrics and Gynecology, University of California, Davis, CA 95616, USA, Department of Oncology, Wayne State University School of Medicine and Population Studies and Disparities Research, Karmanos Cancer Institute, Detroit, MI 48202, USA and Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Loic Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
15
|
Edwards TL, Giri A, Motley S, Duong W, Fowke JH. Pleiotropy between genetic markers of obesity and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2013; 22:1538-46. [PMID: 23810916 DOI: 10.1158/1055-9965.epi-13-0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To address inconsistent findings of obesity and prostate cancer risk, we analyzed the association between prostate cancer and genetic markers of obesity and metabolism. METHODS Analyses included 176,520 single-nucleotide polymorphisms (SNP) associated with 23 metabolic traits. We examined the association between SNPs and prostate cancer in 871 cases and 906 controls, including 427 high-grade cases with Gleason ≥ 7. Genetic risk scores (GRS) for body mass index (BMI) and waist-to-hip ratio (WHR) were also created by summing alleles associated with increasing BMI or WHR. RESULTS Prostate cancer was associated with five loci, including cyclin M2, with P values less than 1 × 10(-4). In addition, the WHR GRS was associated with high-grade prostate cancer versus controls [OR, 1.05; 95% confidence interval (CI), 1.00-1.11; P = 0.048] and high-grade prostate cancer versus low-grade prostate cancer (OR, 1.07; 95% CI, 1.01-1.13; P = 0.03). None of these findings exceeds the threshold for significance after correction for multiple testing. CONCLUSIONS Variants in genes known to be associated with metabolism and obesity may be associated with prostate cancer. We show evidence for pleiotropy between WHR GRS and prostate cancer grade. This finding is consistent with the function of several WHR genes and previously described relationships with cancer traits. IMPACT Limitations in standard obesity measures suggest alternative characterizations of obesity may be needed to understand the role of metabolic dysregulation in prostate cancer. The underlying genetics of WHR or other Metabochip SNPs, while not statistically significant beyond multiple testing thresholds within our sample size, support the metabolic hypothesis of prostate carcinogenesis and warrant further investigation in independent samples.
Collapse
Affiliation(s)
- Todd L Edwards
- Division of Epidemiology, Department of Medicine, Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37203, USA
| | | | | | | | | |
Collapse
|
16
|
Pharoah PDP, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, Buckley M, Fridley BL, Tyrer JP, Shen H, Weber R, Karevan R, Larson MC, Song H, Tessier DC, Bacot F, Vincent D, Cunningham JM, Dennis J, Dicks E, Aben KK, Anton-Culver H, Antonenkova N, Armasu SM, Baglietto L, Bandera EV, Beckmann MW, Birrer MJ, Bloom G, Bogdanova N, Brenton JD, Brinton LA, Brooks-Wilson A, Brown R, Butzow R, Campbell I, Carney ME, Carvalho RS, Chang-Claude J, Chen YA, Chen Z, Chow WH, Cicek MS, Coetzee G, Cook LS, Cramer DW, Cybulski C, Dansonka-Mieszkowska A, Despierre E, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles D, Edwards R, Ekici AB, Fasching PA, Fenstermacher D, Flanagan J, Gao YT, Garcia-Closas M, Gentry-Maharaj A, Giles G, Gjyshi A, Gore M, Gronwald J, Guo Q, Halle MK, Harter P, Hein A, Heitz F, Hillemanns P, Hoatlin M, Høgdall E, Høgdall CK, Hosono S, Jakubowska A, Jensen A, Kalli KR, Karlan BY, Kelemen LE, Kiemeney LA, Kjaer SK, Konecny GE, Krakstad C, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee N, Lee J, Leminen A, Lim BK, Lissowska J, Lubiński J, Lundvall L, Lurie G, Massuger LFAG, Matsuo K, McGuire V, McLaughlin JR, Menon U, Modugno F, Moysich KB, Nakanishi T, Narod SA, Ness RB, Nevanlinna H, Nickels S, Noushmehr H, Odunsi K, Olson S, Orlow I, Paul J, Pejovic T, Pelttari LM, Permuth-Wey J, Pike MC, Poole EM, Qu X, Risch HA, Rodriguez-Rodriguez L, Rossing MA, Rudolph A, Runnebaum I, Rzepecka IK, Salvesen HB, Schwaab I, Severi G, Shen H, Shridhar V, Shu XO, Sieh W, Southey MC, Spellman P, Tajima K, Teo SH, Terry KL, Thompson PJ, Timorek A, Tworoger SS, van Altena AM, van den Berg D, Vergote I, Vierkant RA, Vitonis AF, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wik E, Winterhoff B, Woo YL, Wu AH, Yang HP, Zheng W, Ziogas A, Zulkifli F, Goodman MT, Hall P, Easton DF, Pearce CL, Berchuck A, Chenevix-Trench G, Iversen E, Monteiro ANA, Gayther SA, Schildkraut JM, Sellers TA. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 2013; 45:362-70, 370e1-2. [PMID: 23535730 PMCID: PMC3693183 DOI: 10.1038/ng.2564] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/30/2013] [Indexed: 12/16/2022]
Abstract
Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. We performed follow-up genotyping in 18,174 individuals with EOC (cases) and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 that were previously found to have associations close to genome-wide significance and identified three loci newly associated with risk: two loci associated with all EOC subtypes at 8q21 (rs11782652, P = 5.5 × 10(-9)) and 10p12 (rs1243180, P = 1.8 × 10(-8)) and another locus specific to the serous subtype at 17q12 (rs757210, P = 8.1 × 10(-10)). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility and implicated CHMP4C in the pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- Paul D P Pharoah
- The Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Association of single nucleotide polymorphisms in TCF2 with type 2 diabetes susceptibility in a Han Chinese population. PLoS One 2012; 7:e52938. [PMID: 23300827 PMCID: PMC3534126 DOI: 10.1371/journal.pone.0052938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/22/2012] [Indexed: 12/15/2022] Open
Abstract
Hepatocyte nuclear factor 1β (HNF1β), a transcription factor encoded by the transcription factor 2 gene (TCF2), plays a critical role in pancreatic cell formation and glucose homeostasis. It has been suggested that single nucleotide polymorphisms (SNPs) of TCF2 are associated with susceptibility to type 2 diabetes (T2D). However, published results are inconsistent and inclusive. To further investigate the role of these common variants, we examined the association of TCF2 polymorphisms with the risk of T2D in a Han population in northeastern China. We genotyped five SNPs in 624 T2D patients and 630 healthy controls by using a SNaPshot method, and evaluated the T2D risk conferred by individual SNPs and haplotypes. In the single-locus analysis, we found that rs752010, rs4430796 and rs7501939 showed allelic differences between T2D patients and healthy controls, with an OR of 1.26 (95% CI 1.08-1.51, P = 0.003), an OR of 1.23 (95% CI 1.06-1.55, P = 0.001) and an OR of 1.28 (95% CI 1.10-1.61, P = 0.001), respectively. Genotype association analysis of each locus also revealed that the homozygous carriers of the at-risk allele had a significant increased T2D risk compared to homozygous carriers of the other allele (OR 1.78, 95% CI 1.20-2.64 for rs752010; OR 1.82, 95% CI 1.24-2.67 for rs4430796; OR 1.95, 95% CI 1.31-2.90 for rs7501939), even after Bonferroni correction for multiple comparisons. Besides, the haplotype-based analysis demonstrated that AGT in block rs752010-rs4430796-rs7501939 was associated with about 30% increase in T2D risk (OR 1.31, 95% CI 1.09-1.57, P = 0.01). Our findings suggested that TCF2 variants may be involved in T2D risk in a Han population of northeastern China. Larger studies with ethnically diverse populations are warranted to confirm the results reported in this investigation.
Collapse
|
18
|
Abstract
Metabolic disorders such as diabetes, obesity and the metabolic syndrome have been shown to modulate prostate cancer (PCa) risk and aggressiveness in population-based and experimental studies. While associations between these conditions are modest and complex, two consistent findings have emerged. First, there is observational evidence that obesity and associated insulin excess are linked to increased PCa aggressiveness and worse outcomes. Secondly and somewhat paradoxically, long-standing diabetes may be protective against PCa development. This apparent paradox may be due to the fact that long-standing diabetes is associated with insulin depletion and decreased IGF1 signalling. Men with obesity or diabetes have moderate reductions in their androgen levels. The interconnectedness of metabolic and androgen status complicates the dissection of the individual roles of these factors in PCa development and progression. Metabolic factors and androgens may promote prostate carcinogenesis via multiple mechanisms including inflammation, adipokine action, fatty acid metabolism and IGF signalling. Moreover, androgen deprivation, given to men with PCa, has adverse metabolic consequences that need to be taken into account when estimating the risk benefit ratio of this therapy. In this review, we will discuss the current epidemiological and mechanistic evidence regarding the interactions between metabolic conditions, sex steroids and PCa risk and management.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | | |
Collapse
|
19
|
Setiawan VW, Haessler J, Schumacher F, Cote ML, Deelman E, Fesinmeyer MD, Henderson BE, Jackson RD, Vöckler JS, Wilkens LR, Yasmeen S, Haiman CA, Peters U, Le Marchand L, Kooperberg C. HNF1B and endometrial cancer risk: results from the PAGE study. PLoS One 2012; 7:e30390. [PMID: 22299039 PMCID: PMC3267708 DOI: 10.1371/journal.pone.0030390] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
We examined the association between HNF1B variants identified in a recent genome-wide association study and endometrial cancer in two large case-control studies nested in prospective cohorts: the Multiethnic Cohort Study (MEC) and the Women's Health Initiative (WHI) as part of the Population Architecture using Genomics and Epidemiology (PAGE) study. A total of 1,357 incident cases of invasive endometrial cancer and 7,609 controls were included in the analysis (MEC: 426 cases/3,854 controls; WHI: 931 cases/3,755 controls). The majority of women in the WHI were European American, while the MEC included sizable numbers of African Americans, Japanese and Latinos. We estimated the odds ratios (ORs) per allele and 95% confidence intervals (CIs) of each SNP using unconditional logistic regression adjusting for age, body mass index, and four principal components of ancestry informative markers. The combined ORs were estimated using fixed effect models. Rs4430796 and rs7501939 were associated with endometrial cancer risk in MEC and WHI with no heterogeneity observed across racial/ethnic groups (P ≥ 0.21) or between studies (P ≥ 0.70). The OR(per allele) was 0.82 (95% CI: 0.75, 0.89; P = 5.63 × 10(-6)) for rs4430796 (G allele) and 0.79 (95% CI: 0.73, 0.87; P = 3.77 × 10(-7)) for rs7501939 (A allele). The associations with the risk of Type I and Type II tumors were similar (P ≥ 0.19). Adjustment for additional endometrial cancer risk factors such as parity, oral contraceptive use, menopausal hormone use, and smoking status had little effect on the results. In conclusion, HNF1B SNPs are associated with risk of endometrial cancer and that the associated relative risks are similar for Type I and Type II tumors.
Collapse
Affiliation(s)
- Veronica Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Michele L. Cote
- Department of Oncology, Wayne State University School of Medicine and Population Studies and Disparities Research, Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Ewa Deelman
- Information Sciences Institute, University of Southern California, Marina Del Rey, California, United States of America
| | - Megan D. Fesinmeyer
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rebecca D. Jackson
- Center for Clinical and Translational Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Jens-S Vöckler
- Information Sciences Institute, University of Southern California, Marina Del Rey, California, United States of America
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Shagufta Yasmeen
- Department of Obstetrics and Gynecology, University of California Davis, Davis, California, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
20
|
Ali AS, Ali S, Ahmad A, Bao B, Philip PA, Sarkar FH. Expression of microRNAs: potential molecular link between obesity, diabetes and cancer. Obes Rev 2011; 12:1050-62. [PMID: 21767342 DOI: 10.1111/j.1467-789x.2011.00906.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinicians are routinely challenged in their management of cancer patients because of the complexities of obesity and diabetes that are often found as comorbid conditions. Although attention has been given to optimizing treatment planning for these patients, less attention has been given to manage their obesity and diabetes. This suggests that newer, comprehensive approaches must be developed for the treatment of cancer patients as a 'whole' rather than as a single disease. While the specific pathologies of each are unique, years of research have indicated intimate molecular links between these chronic diseases. The contribution of sedentary lifestyles and poor dietary habits is recognized; however, the precise molecular links are still not well-explored. In addition, emerging evidence suggests the important role of microRNAs (miRNAs) in the development and progression of several diseases, yet their roles in linking obesity, diabetes and cancer are only now beginning to be recognized. It is hoped that miRNAs will serve as novel biomarkers and molecular targets for cancer therapy in patients with comorbid conditions. In this review, we discuss the current understanding of the pathobiology of obesity, diabetes and cancer, and document molecular roles of miRNAs linking cancer with obesity and diabetes.
Collapse
Affiliation(s)
- A S Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
21
|
Healey CS, Ahmed S, O’Mara TA, Ferguson K, Lambrechts D, Garcia-Dios DA, Vergote I, Amant F, Howarth K, Gorman M, Hodgson S, Tomlinson I, Yang HP, Lissowska J, Brinton LA, Chanock S, Garcia-Closas M, Hall P, Liu J, Shah M, Pharoah PD, Thompson DJ, Rebbeck TR, Strom BL, Dunning AM, Easton DF, Spurdle AB, Rebbeck TR, Strom BL, Dunning AM, Easton DF, Spurdle AB. Breast cancer susceptibility polymorphisms and endometrial cancer risk: a Collaborative Endometrial Cancer Study. Carcinogenesis 2011; 32:1862-6. [PMID: 21965274 PMCID: PMC3220608 DOI: 10.1093/carcin/bgr214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent large--scale association studies, both of genome-wide and candidate gene design, have revealed several single-nucleotide polymorphisms (SNPs) which are significantly associated with risk of developing breast cancer. As both breast and endometrial cancers are considered to be hormonally driven and share multiple risk factors, we investigated whether breast cancer risk alleles are also associated with endometrial cancer risk. We genotyped nine breast cancer risk SNPs in up to 4188 endometrial cases and 11,928 controls, from between three and seven Caucasian populations. None of the tested SNPs showed significant evidence of association with risk of endometrial cancer.
Collapse
Affiliation(s)
- Catherine S. Healey
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Shahana Ahmed
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - ANECS
- Division of Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, Queensland 4006, Australia
| | - AOCS Management Group
- Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia
| | - Tracy A. O’Mara
- Division of Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, Queensland 4006, Australia,Hormone Dependent Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Kaltin Ferguson
- Division of Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, Queensland 4006, Australia
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Herestraat 49 Box912, B-3000 Leuven, Belgium
| | - Diego A. Garcia-Dios
- Vesalius Research Center, VIB, Herestraat 49 Box912, B-3000 Leuven, Belgium,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Ignace Vergote
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Frederic Amant
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospital Gasthuisberg, Leuven, Belgium
| | - NSECG
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kimberley Howarth
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Maggie Gorman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Shirley Hodgson
- Department of Clinical genetics, St George's Hospital Medical School, London, SW17 0RE, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Hannah P. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20852, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20852, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20852, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20852, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, 17177 Stockholm, Sweden
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Mitul Shah
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Paul D.P. Pharoah
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Deborah J. Thompson
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Timothy R. Rebbeck
- Center for Clinical Epidemiology and Biostatistics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Brian L. Strom
- Center for Clinical Epidemiology and Biostatistics, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alison M. Dunning
- Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Douglas F. Easton
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Amanda B. Spurdle
- Division of Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Liu X, Cheng I, Plummer SJ, Suarez B, Casey G, Catalona WJ, Witte JS. Fine-mapping of prostate cancer aggressiveness loci on chromosome 7q22-35. Prostate 2011; 71:682-9. [PMID: 20945404 PMCID: PMC3027848 DOI: 10.1002/pros.21284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/31/2010] [Indexed: 01/10/2023]
Abstract
BACKGROUND Deciphering the genetic basis of prostate cancer aggressiveness could provide valuable information for the screening and treatment of this common but complex disease. We previously detected linkage between a broad region on chromosome 7q22-35 and Gleason score-a strong predictor of prostate cancer aggressiveness. To further clarify this finding and focus on the potentially causative gene, we undertook a fine-mapping study across the 7q22-35 region. METHODS Our study population encompassed 698 siblings diagnosed with prostate cancer. 3,072 single nucleotide polymorphisms (SNPs) spanning the chromosome 7q22-35 region were genotyped using the Illumina GoldenGate assay. The impact of SNPs on Gleason scores were evaluated using affected sibling pair linkage and family-based association tests. RESULTS We confirmed the previous linkage signal and narrowed the 7q22-35 prostate cancer aggressiveness locus to a 370 kb region. Centered under the linkage peak is the gene KLRG2 (killer cell lectin-like receptor subfamily G, member 2). Association tests indicated that the potentially functional non-synonymous SNP rs17160911 in KLRG2 was significantly associated with Gleason score (P = 0.0007). CONCLUSIONS These findings suggest that genetic variants in the gene KLRG2 may affect Gleason score at diagnosis and hence the aggressiveness of prostate cancer.
Collapse
Affiliation(s)
- Xin Liu
- Mary Ann and J. Milburn Smith Child Health Research Program, Department of Pediatrics, Northwestern University Feinberg School of Medicine and Children's Memorial Hospital and Children's Memorial Research Center, Chicago, IL, USA
| | - Iona Cheng
- Epidemiology Program, Cancer Research Center of Hawai`i, University of Hawai`i, Honolulu, HI 96813, USA
| | - Sarah J Plummer
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Brian Suarez
- Department of Genetics, Washington University, 660 South Euclid, St. Louis, Missouri 63110, USA
| | - Graham Casey
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - William J. Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John S. Witte
- Departments of Epidemiology & Biostatistics and Urology, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158-9001, USA
| |
Collapse
|
23
|
Spurdle AB, Thompson DJ, Ahmed S, Ferguson K, Healey CS, O'Mara T, Walker LC, Montgomery SB, Dermitzakis ET, Fahey P, Montgomery GW, Webb PM, Fasching PA, Beckmann MW, Ekici AB, Hein A, Lambrechts D, Coenegrachts L, Vergote I, Amant F, Salvesen HB, Trovik J, Njolstad TS, Helland H, Scott RJ, Ashton K, Proietto T, Otton G, Tomlinson I, Gorman M, Howarth K, Hodgson S, Garcia-Closas M, Wentzensen N, Yang H, Chanock S, Hall P, Czene K, Liu J, Li J, Shu XO, Zheng W, Long J, Xiang YB, Shah M, Morrison J, Michailidou K, Pharoah PD, Dunning AM, Easton DF. Genome-wide association study identifies a common variant associated with risk of endometrial cancer. Nat Genet 2011; 43:451-4. [PMID: 21499250 PMCID: PMC3770523 DOI: 10.1038/ng.812] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/24/2011] [Indexed: 12/15/2022]
Abstract
Endometrial cancer is the most common malignancy of the female genital tract in developed countries. To identify genetic variants associated with endometrial cancer risk, we performed a genome-wide association study involving 1,265 individuals with endometrial cancer (cases) from Australia and the UK and 5,190 controls from the Wellcome Trust Case Control Consortium. We compared genotype frequencies in cases and controls for 519,655 SNPs. Forty seven SNPs that showed evidence of association with endometrial cancer in stage 1 were genotyped in 3,957 additional cases and 6,886 controls. We identified an endometrial cancer susceptibility locus close to HNF1B at 17q12 (rs4430796, P = 7.1 × 10(-10)) that is also associated with risk of prostate cancer and is inversely associated with risk of type 2 diabetes.
Collapse
Affiliation(s)
- Amanda B Spurdle
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hindorff LA, Gillanders EM, Manolio TA. Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis 2011; 32:945-54. [PMID: 21459759 DOI: 10.1093/carcin/bgr056] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies have broadened our understanding of the genetic architecture of cancer to include common variants, in addition to the rare variants previously identified by linkage analysis. We review current knowledge on the genetic architecture of four cancers--breast, lung, prostate and colorectal--for which the balance of common and rare alleles identified ranges from fewer common alleles (lung cancer) to more common alleles (prostate cancer). Although most variants are cancer specific, pleiotropy has been observed for several variants, for example, variants at the 8q24 locus and breast, ovarian and prostate cancers or variants in KITLG in relation to hair color and testicular cancer. Although few studies have been adequately powered to investigate heterogeneity among ancestry groups, effect sizes associated with common variants have been reported to be fairly homogenous among ethnic groups. Some associations appear to be ancestry specific, such as HNF1B, which is associated with prostate cancer in European Americans and Latinos but not in African-Americans. Studies of cancer and other complex diseases suggest that a simple dichotomy between rare and common allelic architectures may be too simplistic and that future research is needed to characterize a fuller spectrum of allele frequency (common (>5%), uncommon (1-5%) and rare (<<1%) alleles) and effect size. In addition, a broadening of the concept of genetic architecture to encompass both population architecture, which reflects differences in exposures, genetic factors and population level risk among diverse groups of people, and genomic architecture, which includes structural, epigenomic and somatic variation, is envisioned.
Collapse
Affiliation(s)
- Lucia A Hindorff
- Office of Population Genomics, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9307, USA.
| | | | | |
Collapse
|
25
|
Abstract
OBJECTIVES Psychiatric disorders are among the most heritable common disorders, and for more than 20 years researchers have tried to unravel genetic susceptibility genes. This review briefly outlines the pros and cons of genetic approaches, important advances and possible future directions for readers not familiar with genetic studies. METHODS In this article the results of 20 years molecular genetics in psychiatry are shortly and critically summarized on the basis of important reviews and meta-analyses of the last decade, without describing and enumerating the different findings (see special reviews). RESULTS Conventional linkage and candidate association studies revealed numerous, but also inconsistent and sometimes contradictory results. The reasons are assumed to include the complexity of the disorder with interaction of several genes of small effects, lack of a valid phenotype, and invalid statistical and methodological issues. Recent systematic genome-wide association studies (GWAS) have reported association of some common variants for schizophrenia and bipolar disorder. However, the risk conferred by these variants is small and genome-wide significance is rare. Also structural variations might be important, and interesting data are arising from copy-number-variations (CNVs). CONCLUSIONS Although the new data from GWAS are promising, they still do not meet our initial expectations, identifying a "susceptibility gene". However, they opened new aspects concerning aetiology of psychoses, and the incorporation of new approaches, as epigenetics, or gene-environment interaction, is needed in future study designs.
Collapse
Affiliation(s)
- Brigitta Bondy
- Psychiatric Clinic of University Munich, Section Psychiatric Genetics and Neurochemistry, Munich, Germany.
| |
Collapse
|
26
|
Yuan Y, Ferguson LR. Nutrigenetics and Prostate Cancer: 2011 and Beyond. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 4:121-36. [DOI: 10.1159/000327902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|