1
|
Yui K, Kanawaku Y, Morita A, Hirakawa K, Cui F. Time-frequency analysis reveals an association between the specific nuclear magnetic resonance (NMR) signal properties of serum samples and arteriosclerotic lesion progression in a diabetes mouse model. PLoS One 2024; 19:e0299641. [PMID: 38457384 PMCID: PMC10923453 DOI: 10.1371/journal.pone.0299641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/10/2024] [Indexed: 03/10/2024] Open
Abstract
Diabetes causes arteriosclerosis, primarily due to persistent hyperglycemia, subsequently leading to various cardiovascular events. No method has been established for directly detecting and evaluating arteriosclerotic lesions from blood samples of diabetic patients, as the mechanism of arteriosclerotic lesion formation, which involves complex molecular biological processes, has not been elucidated. "NMR modal analysis" is a technology that enables visualization of specific nuclear magnetic resonance (NMR) signal properties of blood samples. We hypothesized that this technique could be used to identify changes in blood status associated with the progression of arteriosclerotic lesions in the context of diabetes. The study aimed to assess the possibility of early detection and evaluation of arteriosclerotic lesions by NMR modal analysis of serum samples from diabetes model mice. Diabetes model mice (BKS.Cg db/db) were bred in a clean room and fed a normal diet. Blood samples were collected and centrifuged. Carotid arteries were collected for histological examination by hematoxylin and eosin staining on weeks 10, 14, 18, 22, and 26. The serum was separated and subjected to NMR modal analysis and biochemical examination. Mice typically show hyperglycemia at an early stage (8 weeks old), and pathological findings of a previous study showed that more than half of mice had atheromatous plaques at 18 weeks old, and severe arteriosclerotic lesions were observed in almost all mice after 22 weeks. Partial least squares regression analysis was performed, which showed that the mice were clearly classified into two groups with positive and negative score values within 18 weeks of age. The findings of this study revealed that NMR modal properties of serum are associated with arteriosclerotic lesions. Thus, it may be worth exploring the possibility that the risk of cardiovascular events in diabetic patients could be assessed using serum samples.
Collapse
Affiliation(s)
- Kanako Yui
- Division of Neurosurgery, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Yoshimasa Kanawaku
- Department of Legal Medicine, Graduate School of Medicine, Nippon Medical School, Inzai, Chiba, Japan
| | - Akio Morita
- Geriatric Healthcare Center, Department of Neurosurgery, Teraoka Memorial Hospital, Fukuyama, Hiroshima, Japan
| | - Keiko Hirakawa
- Research Laboratory of Magnetic Resonance, Collaborative Research Center, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Fanlai Cui
- Department of Legal Medicine, Graduate School of Medicine, Nippon Medical School, Inzai, Chiba, Japan
| |
Collapse
|
2
|
Hegarty JP, Gu M, Spielman DM, Cleveland SC, Hallmayer JF, Lazzeroni LC, Raman MM, Frazier TW, Phillips JM, Reiss AL, Hardan AY. A proton MR spectroscopy study of the thalamus in twins with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:153-160. [PMID: 28941767 PMCID: PMC5731458 DOI: 10.1016/j.pnpbp.2017.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/17/2017] [Accepted: 09/18/2017] [Indexed: 01/16/2023]
Abstract
Multiple lines of research have reported thalamic abnormalities in individuals with autism spectrum disorder (ASD) that are associated with social communication impairments (SCI), restricted and repetitive behaviors (RRB), or sensory processing abnormalities (SPA). Thus, the thalamus may represent a common neurobiological structure that is shared across symptom domains in ASD. Same-sex monozygotic (MZ) and dizygotic (DZ) twin pairs with and without ASD underwent cognitive/behavioral evaluation and magnetic resonance imaging to assess the thalamus. Neurometabolites were measured with 1H magnetic resonance spectroscopy (MRS) utilizing a multi-voxel PRESS sequence and were referenced to creatine+phosphocreatine (tCr). N-acetyl aspartate (NAA), a marker of neuronal integrity, was reduced in twins with ASD (n=47) compared to typically-developing (TD) controls (n=33), and this finding was confirmed in a sub-sample of co-twins discordant for ASD (n=11). NAA in the thalamus was correlated to a similar extent with SCI, RRB, and SPA, such that reduced neuronal integrity was associated with greater symptom severity. Glutamate+glutamine (Glx) was also reduced in affected versus unaffected co-twins. Additionally, NAA and Glx appeared to be primarily genetically-mediated, based on comparisons between MZ and DZ twin pairs. Thus, thalamic abnormalities may be influenced by genetic susceptibility for ASD but are likely not domain-specific.
Collapse
Affiliation(s)
- John P Hegarty
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA.
| | - Meng Gu
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | - Sue C Cleveland
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Laura C Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Mira M Raman
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Thomas W Frazier
- Autism Speaks, 29600 Fairmount Blvd, Pepper Pike, OH 44124, USA; Cleveland Clinic Children's, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jennifer M Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33:1582-1614. [PMID: 26281720 PMCID: PMC4748402 DOI: 10.1016/j.biotechadv.2015.08.001] [Citation(s) in RCA: 1409] [Impact Index Per Article: 140.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
Abstract
Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a "screening hit" through a "drug lead" to a "marketed drug" is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future.
Collapse
Affiliation(s)
- Atanas G. Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria
| | - Thomas Linder
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Christoph Wawrosch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Pavel Uhrin
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Limei Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Elke H. Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M. Breuss
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Nakata K, Sato N, Hirakawa K, Asakura T, Suzuki T, Zhu R, Asano T, Koike K, Ohno Y, Yokota H. Pattern recognition analysis of proton nuclear magnetic resonance spectra of extracts of intestinal epithelial cells under oxidative stress. J NIPPON MED SCH 2015; 81:236-47. [PMID: 25186577 DOI: 10.1272/jnms.81.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mesenteric ischemia-reperfusion induces gut mucosal damage. Intestinal mucosal wounds are repaired by epithelial restitution. Although many different molecular mechanisms have been shown to affect cell metabolism under oxidative conditions, these molecular mechanisms and metabolic phenotypes are not well understood. Nuclear magnetic resonance (NMR) spectroscopic data can be used to study metabolic phenotypes in biological systems. Pattern recognition with multivariate analysis is one chemometric technique. The purpose of this study was to visualize, using a chemometric technique to interpret NMR data, different degrees of oxidant injury in rat small intestine (IEC-6) cells exposed to H2O2. METHODS Oxidant stress was induced by H2O2 in IEC-6 cells. Cell restitution and viability were assessed at different H2O2 concentrations and time points. Cells were harvested for pattern recognition analysis of (1)H-NMR data. RESULTS Cell viability and restitution were significantly suppressed by H2O2 in a dose-dependent manner compared with control. Each class was clearly separated into clusters by partial least squares discriminant analysis, and class variance was greater than 90% from 2 factors. CONCLUSION Pattern recognition of NMR spectral data using a chemometric technique clearly visualized the differences of oxidant injury in IEC-6 cells under oxidant stress.
Collapse
Affiliation(s)
- Keiji Nakata
- Department of Emergency and Critical Care Medicine, Nippon Medical School
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Goto G, Hori Y, Ishikawa M, Tanaka S, Sakamoto A. Changes in the gene expression levels of microRNAs in the rat hippocampus by sevoflurane and propofol anesthesia. Mol Med Rep 2014; 9:1715-22. [PMID: 24626427 DOI: 10.3892/mmr.2014.2038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/13/2014] [Indexed: 11/05/2022] Open
Abstract
General anesthesia is commonly used in the surgical arena, but little is known regarding its influence at the genomic and molecular levels. MicroRNAs (miRNAs) belong to a new class of non-coding RNA molecules which influence cell biology. In the present study, it was hypothesized that miRNAs alter gene expression levels under general anesthesia. The aim was to compare the miRNA expression profiles in the rat hippocampus in response to anesthesia with representative volatile (sevoflurane) and intravenous (propofol) anesthetics. Wistar Rats were randomly assigned to either a 2.4% sevoflurane, 600 µg/kg/min propofol or control (without anesthetics) group. Total RNA from hippocampal samples which contained miRNA was subjected to quantitative reverse transcription-polymerase chain reaction and Taqman Low-Density Arrays (TLDA). A total of 373 miRNAs are associated with rats and the TLDA analysis revealed that 279 expressed miRNAs (74.8%) were expressed in all three groups. Significant differences in the levels of 33 of the 279 expressed miRNAs (11.8%) were observed among the three groups in response to the anesthetic agents, and when compared with the control group, significant differences were found in 26 of the 279 expressed miRNAs (9.3%). Following sevoflurane anesthesia, the levels of four miRNAs were significantly increased and those of 12 were significantly reduced. By contrast, following propofol anesthesia, the levels of 11 miRNAs were significantly reduced but no miRNAs exhibited significantly elevated levels. One miRNA was common between the two anesthesia groups, whereas 14 miRNAs were significantly differentially expressed. In conclusion, sevoflurane and propofol exerted different effects on miRNA expression in the rat hippocampus.
Collapse
Affiliation(s)
- Gentaro Goto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yoko Hori
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masashi Ishikawa
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Shunsuke Tanaka
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
6
|
Blaise BJ, Gouel-Chéron A, Floccard B, Monneret G, Plaisant F, Chassard D, Javouhey E, Claris O, Allaouchiche B. [Nuclear magnetic resonance based metabolic phenotyping for patient evaluations in operating rooms and intensive care units]. ACTA ACUST UNITED AC 2014; 33:167-75. [PMID: 24456616 DOI: 10.1016/j.annfar.2013.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/02/2013] [Indexed: 12/27/2022]
Abstract
Metabolic phenotyping consists in the identification of subtle and coordinated metabolic variations associated with various pathophysiological stimuli. Different analytical methods, such as nuclear magnetic resonance, allow the simultaneous quantification of a large number of metabolites. Statistical analyses of these spectra thus lead to the discrimination between samples and the identification of a metabolic phenotype corresponding to the effect under study. This approach allows the extraction of candidate biomarkers and the recovery of perturbed metabolic networks, driving to the generation of biochemical hypotheses (pathophysiological mechanisms, diagnostic tests, therapeutic targets…). Metabolic phenotyping could be useful in anaesthesiology and intensive care medicine for the evaluation, monitoring or diagnosis of life-threatening situations, to optimise patient managements. This review introduces the physical and statistical fundamentals of NMR-based metabolic phenotyping, describes the work already achieved by this approach in anaesthesiology and intensive care medicine. Finally, potential areas of interest are discussed for the perioperative and intensive management of patients, from newborns to adults.
Collapse
Affiliation(s)
- B J Blaise
- Service de réanimation, hôpital Édouard-Herriot, hospices civils de Lyon, 5, place d'Arsonval, 69437 Lyon cedex 03, France; Service de néonatalogie, hôpital Femme-Mère-Enfant, hospices civils de Lyon, 59, boulevard Pinel, 69500 Bron, France.
| | - A Gouel-Chéron
- Service de réanimation, hôpital Édouard-Herriot, hospices civils de Lyon, 5, place d'Arsonval, 69437 Lyon cedex 03, France
| | - B Floccard
- Service de réanimation, hôpital Édouard-Herriot, hospices civils de Lyon, 5, place d'Arsonval, 69437 Lyon cedex 03, France
| | - G Monneret
- Laboratoire d'immunologie cellulaire, hôpital Édouard-Herriot, hospices civils de Lyon, 5, place d'Arsonval, 69437 Lyon cedex 03, France
| | - F Plaisant
- Service de néonatalogie, hôpital Femme-Mère-Enfant, hospices civils de Lyon, 59, boulevard Pinel, 69500 Bron, France
| | - D Chassard
- Service d'anesthésie et de réanimation, hôpital Femme-Mère-Enfant, hospices civils de Lyon, 59, boulevard Pinel, 69500 Bron, France
| | - E Javouhey
- Service de réanimation pédiatrique, hôpital Femme-Mère-Enfant, hospices civils de Lyon, 59, boulevard Pinel, 69500 Bron, France
| | - O Claris
- Service de néonatalogie, hôpital Femme-Mère-Enfant, hospices civils de Lyon, 59, boulevard Pinel, 69500 Bron, France
| | - B Allaouchiche
- Service de réanimation, hôpital Édouard-Herriot, hospices civils de Lyon, 5, place d'Arsonval, 69437 Lyon cedex 03, France
| |
Collapse
|
7
|
Tawfike AF, Viegelmann C, Edrada-Ebel R. Metabolomics and dereplication strategies in natural products. Methods Mol Biol 2013; 1055:227-44. [PMID: 23963915 DOI: 10.1007/978-1-62703-577-4_17] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Metabolomic methods can be utilized to screen diverse biological sources of potentially novel and sustainable sources of antibiotics and pharmacologically-active drugs. Dereplication studies by high resolution Fourier transform mass spectrometry coupled to liquid chromatography (LC-HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy can establish the chemical profile of endophytic and/or endozoic microbial extracts and their plant or animal sources. Identifying the compounds of interest at an early stage will aid in the isolation of the bioactive components. Therefore metabolite profiling is important for functional genomics and in the search for new pharmacologically active compounds. Using the tools of metabolomics through the employment of LC-HRFTMS as well as high resolution NMR will be a very efficient approach. Metabolomic profiling has found its application in screening extracts of macroorganisms as well as in the isolation and cultivation of suspected microbial producers of bioactive natural products.Metabolomics is being applied to identify and biotechnologically optimize the production of pharmacologically active secondary metabolites. The links between metabolome evolution during optimization and processing factors can be identified through metabolomics. Information obtained from a metabolomics dataset can efficiently establish cultivation and production processes at a small scale which will be finally scaled up to a fermenter system, while maintaining or enhancing synthesis of the desired compounds. MZmine (BMC Bioinformatics 11:395-399, 2010; http://mzmine.sourceforge.net/download.shtml ) and SIEVE ( http://www.vastscientific.com/resources/index.html ; Rapid Commun Mass Spectrom 22:1912-1918, 2008) softwares are utilized to perform differential analysis of sample populations to find significant expressed features of complex biomarkers between parameter variables. Metabolomes are identified with the aid of existing high resolution MS and NMR records from online or in-house databases like AntiMarin, a merger database of Antibase (Laatsch H. Antibase Version 4.0 - The Natural Compound Identifier. Wiley-VCH Verlag GmbH & Co. KGaA, 2012) for microbial secondary metabolites as well as higher fungi and MarinLit for marine natural products (Blunt J. MarinLit. University of Canterbury, New Zealand, 2012). This is further validated through available reference standards and NMR experiments. Metabolomics has become a powerful tool in systems biology which allows us to gain insights into the potential of natural isolates for synthesis of significant quantities of promising new agents and allows us to manipulate the environment within fermentation systems in a rational manner to select a desired metabolome.
Collapse
Affiliation(s)
- Ahmed Fares Tawfike
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
8
|
Tajima T, Hirakawa K, Kawaguchi H, Sakamoto A. Proton nuclear magnetic resonance and pattern recognition analysis of liver extracts from rats under different anesthetics. BMC Med Imaging 2012; 12:28. [PMID: 22898647 PMCID: PMC3443671 DOI: 10.1186/1471-2342-12-28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/13/2012] [Indexed: 01/01/2023] Open
Abstract
Background Although general anesthesia is widely used in the surgical arena, the mechanisms by which general anesthetics act remain unclear. We previously described alterations in gene expression ratios in hepatic tissue taken from rats treated with anesthetics. Consequently, it is considered that anesthetics influence liver metabolism. Thus, the goal of this study was to use pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize changes in liver metabolic phenotypes in response to widely used intravenous anesthetics (propofol and dexmedetomidine) and inhalational anesthetics (sevoflurane and isoflurane). Methods Rats were randomized into 13 groups (n = 6 in each group), and each group received one of following agents: propofol, dexmedetomidine, sevoflurane, isoflurane, or no anesthetic (control group). The liver was directly removed from rats immediately after or 24 h or 48 h after a 6-h period of anesthesia. Hydrophilic compounds were extracted from the liver and were analyzed with proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of metabolite profiles. Results Data were visualized by plotting principal component (PC) scores. In the plots, each point represents an individual sample. Each group was clustered separately on the plots, and the PC scores of the propofol group were clearly distinct from those of the control group and other anesthetic groups. The difference in PC scores was more pronounced immediately after completion of anesthesia when compared with 24 or 48 h after completion of anesthesia. Although the effect of intravenous anesthetics on the liver dissipated over time, the effect of inhalational anesthetics persisted. Conclusions Propofol, dexmedetomidine, sevoflurane and isoflurane exert different effects on liver metabolism. In particular, liver metabolism was markedly altered after exposure to propofol. The effect of anesthesia on the liver under propofol or dexmedetomidine resolved rapidly when compared with the effect under sevoflurane or isoflurane.
Collapse
Affiliation(s)
- Tomoyuki Tajima
- Department of Anesthesiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
9
|
Shi J, Wang Y, Luo G. UPLC-TOF MS-Based Metabonomic Study on Coadministration of Huperzine A and Ligustrazine Phosphate for Treatment of Alzheimer’s Disease. Chromatographia 2011. [DOI: 10.1007/s10337-011-2145-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Makaryus R, Lee H, Yu M, Zhang S, Smith SD, Rebecchi M, Glass PS, Benveniste H. The metabolomic profile during isoflurane anesthesia differs from propofol anesthesia in the live rodent brain. J Cereb Blood Flow Metab 2011; 31:1432-42. [PMID: 21266982 PMCID: PMC3130322 DOI: 10.1038/jcbfm.2011.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Development of noninvasive techniques to discover new biomarkers in the live brain is important to further understand the underlying metabolic pathways of significance for processes such as anesthesia-induced apoptosis and cognitive dysfunction observed in the undeveloped brain. We used in vivo proton magnetic resonance spectroscopy and two different signal processing approaches to test the hypothesis that volatile (isoflurane) and intravenous (propofol) anesthetics at equipotent doses produce distinct metabolomic profiles in the hippocampus and parietal cortex of the live rodent. For both brain regions, prolonged isoflurane anesthesia was characterized by higher levels of lactate (Lac) and glutamate compared with long-lasting propofol. In contrast, propofol anesthesia was characterized by very low concentrations of Lac ([lac]) as well as glucose. Quantitative analysis revealed that the [lac] was fivefold higher with isoflurane compared with propofol anesthesia and independent of [lac] in blood. The metabolomic profiling further demonstrated that for both brain regions, Lac was the most important metabolite for the observed differences, suggesting activation of distinct metabolic pathways that may impact mechanisms of action, background cellular functions, and possible agent-specific neurotoxicity.
Collapse
Affiliation(s)
- Rany Makaryus
- Department of Anesthesiology, Health Sciences Center, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|