1
|
Guo YH, Halasan LC, Wang HY, Lin HC. High migratory propensity constitutes a single stock of an exploited cutlassfish species in the Northwest Pacific: A microsatellite approach. PLoS One 2022; 17:e0265548. [PMID: 35298539 PMCID: PMC8929604 DOI: 10.1371/journal.pone.0265548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
Cutlassfishes, also known as hairtails, include multiple predatory fishes of the family Trichiuridae. They constitute a top marine fish commodity globally, yet the knowledge about their composition and intraspecific genetic structures is still limited. Trichiurus japonicus accounts for a major amount in the northwest Pacific fishery. Previous studies based on mitochondrial DNA markers reported incongruences in its population structure, hence prompting the need for high-resolution markers and avoiding possible shortcomings in its management. Here we genotyped ten novel de novo-assembled transcriptome-derived microsatellite markers on a total of 150 samples across five major fishing grounds (encompassing latitudes 22-39°N). These markers presented a high number of alleles and heterozygosity compared to other marine fishes, corresponding to the large effective population size of ~20,000 per location and cohort differentiation. Population structuring analyses suggested T. japonicus to be a homogenous well-mixed population. This configuration is likely attributed to the majority of its effective population migrates across locations, and the absence of oceanographic barriers at the continental shelves. Qingdao with reportedly high ocean productivity could be a genetic pseudosink based on the high heterozygosity and migratory preference. Moreover, the results of sign tests suggest that T. japonicus experienced a recent bottleneck likely concurrent with historical glaciation events. Further, we demonstrated satisfactory cross-amplifications of our markers on several congeners, indicating a great promise to use these markers to study the population genetics of trichiurids. Together, our findings will serve as an essential groundwork for enhancing resource conservation and management of cutlassfishes.
Collapse
Affiliation(s)
- Yu-Hong Guo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Lorenzo C. Halasan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hui-Yu Wang
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Chin Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Zhao Y, Zhu X, Li Z, Xu W, Dong J, Wei H, Li Y, Li X. Genetic diversity and structure of Chinese grass shrimp, Palaemonetes sinensis, inferred from transcriptome-derived microsatellite markers. BMC Genet 2019; 20:75. [PMID: 31604423 PMCID: PMC6787973 DOI: 10.1186/s12863-019-0779-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Chinese grass shrimp, Palaemonetes sinensis, is an economically important freshwater shrimp in China, and the study of genetic diversity and structure can positively contribute to the exploration of germplasm resources and assist in the understanding of P. sinensis aquaculture. Microsatellite markers are widely used in research of genetic backgrounds since it is considered an important molecular marker for the analyses of genetic diversity and structure. Hence, the aim of this study was to evaluate the genetic diversity and structure of wild P. sinensis populations in China using the polymorphic microsatellite makers from the transcriptome. RESULTS Sixteen polymorphic microsatellite markers were developed for P. sinensis from transcriptome, and analyzed for differences in genetic diversity and structure in multiple wild P. sinensis populations in China. Totally of 319 individual shrimps from seven different populations were genotyped to find that allelic polymorphisms varied in two to thirteen alleles seen in the entire loci. Compared to other populations analyzed, the two populations including LD and SJ showed lower genetic diversity. Both the genetic distance (D) and Wrights fixation index (FST) comparing any two populations also indicated that LD and SJ populations differed from the other five populations. An UPGMA tree analysis showed three main clusters containing SJ, LD and other populations which were also confirmed using STRUCTURE analysis. CONCLUSION This is the first study where polymorphic microsatellite markers from the transcriptome were used to analyze genetic diversity and structures of different wild P. sinensis populations. All the polymorphic microsatellite makers are believed useful for evaluating the extent of the genetic diversity and population structure of P. sinensis. Compared to the other five populations, the LD and SJ populations exhibited lower genetic diversity, and the genetic structure was differed from the other five populations. Therefore, they needed to be protected against further declines in genetic diversity. The other five populations, LP, LA, LSL, LSY and LSH, are all belonging to Liaohe River Drainage with a relatively high genetic diversity, and hence can be considered as hot spots for in-situ conservation of P. sinensis as well as sources of desirable alleles for breeding values.
Collapse
Affiliation(s)
- Yingying Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaochen Zhu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhi Li
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, 200090, China
| | - Weibin Xu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hua Wei
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingdong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaodong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China. .,Panjin Guanghe Crab Industry Co.Ltd., Panjin, 124000, China.
| |
Collapse
|
3
|
Zhu WC, Sun JT, Dai J, Huang JR, Chen L, Hong XY. New microsatellites revealed strong gene flow among populations of a new outbreak pest, Athetis lepigone (Möschler). BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:636-644. [PMID: 29173200 DOI: 10.1017/s000748531700116x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Athetis lepigone (Möschler) (Lepidoptera: Noctuidae) is a new outbreak pest in China. Consequently, it is unclear whether the emergence and spread of the outbreak of this pest are triggered by rapid in situ population size increases in each outbreak area, or by immigrants from a potential source area in China. In order to explore the outbreak process of this pest through a population genetics approach, we developed ten novel polymorphic expressed sequence tags (EST)-derived microsatellites. These new microsatellites had moderately high levels of polymorphism in the tested population. The number of alleles per locus ranged from 3 to 19, with an average of 8.6, and the expected heterozygosity ranged from 0.269 to 0.783. A preliminary population genetic analysis using these new microsatellites revealed a lack of population genetic structure in natural populations of A. lepigone. The estimates of recent migration rate revealed strong gene flow among populations. In conclusion, our study developed the first set of EST-microsatellite markers and shed a new light on the population genetic structure of this pest in China.
Collapse
Affiliation(s)
- W-C Zhu
- Department of Entomology,Nanjing Agricultural University,Nanjing, Jiangsu 210095,China
| | - J-T Sun
- Department of Entomology,Nanjing Agricultural University,Nanjing, Jiangsu 210095,China
| | - J Dai
- Department of Entomology,Nanjing Agricultural University,Nanjing, Jiangsu 210095,China
| | - J-R Huang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,Zhengzhou, Henan 450002,China
| | - L Chen
- Department of Entomology,Nanjing Agricultural University,Nanjing, Jiangsu 210095,China
| | - X-Y Hong
- Department of Entomology,Nanjing Agricultural University,Nanjing, Jiangsu 210095,China
| |
Collapse
|
4
|
Development of Microsatellite Markers for the Nipa Palm Hispid Beetle, Octodonta nipae (Maulik). CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:9139306. [PMID: 29977416 PMCID: PMC6011132 DOI: 10.1155/2018/9139306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/18/2018] [Indexed: 11/17/2022]
Abstract
The nipa palm hispid beetle, Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae), is an important invasive pest on palm plants in southern China. Based on existing transcriptome data, polymorphism simple sequence repeat (SSR) loci were identified. In total, 1274 SSR loci were identified from 49919 unigenes. The majority of them contained mononucleotide, dinucleotide, and trinucleotide motifs (43.56%, 26.14%, and 28.18%), in which A/T (41.21%) and AT/TA (15.86%) were the most abundant motifs. 104 pairs of the SSR primers produced amplification bands of expected sizes in O. nipae, 80 pairs of SSR primers were tested randomly for polymorphism, 9 loci of them were validated to be polymorphic markers, and the number of alleles ranged from 2 to 3, with an average of 2.56 per locus. The population of Zhangzhou and Fuzhou was analyzed by the 9 loci (On1-On9). These SSR transcriptome data can provide invaluable resource for SSR development, population genetics research, invasion and expansion mechanism, paternity testing, and other research on O. nipae and its related species.
Collapse
|
5
|
Kang SW, Patnaik BB, Hwang HJ, Park SY, Chung JM, Song DK, Patnaik HH, Lee JB, Kim C, Kim S, Park HS, Han YS, Lee JS, Lee YS. Transcriptome sequencing and de novo characterization of Korean endemic land snail, Koreanohadra kurodana for functional transcripts and SSR markers. Mol Genet Genomics 2016; 291:1999-2014. [PMID: 27507702 DOI: 10.1007/s00438-016-1233-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/25/2016] [Indexed: 02/03/2023]
Abstract
The Korean endemic land snail Koreanohadra kurodana (Gastropoda: Bradybaenidae) found in humid areas of broadleaf forests and shrubs have been considered vulnerable as the number of individuals are declining in recent years. The species is poorly characterized at the genomic level that limits the understanding of functions at the molecular and genetics level. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset of visceral mass tissue of K. kurodana by the Illumina paired-end sequencing technology. Over 234 million quality reads were assembled to a total of 315,924 contigs and 191,071 unigenes, with an average and N50 length of 585.6 and 715 bp and 678 and 927 bp, respectively. Overall, 36.32 % of the unigenes found matches to known protein/nucleotide sequences in the public databases. The direction of the unigenes to functional categories was determined using COG, GO, KEGG, and InterProScan protein domain search. The GO analysis search resulted in 22,967 unigenes (12.02 %) being categorized into 40 functional groups. The KEGG annotation revealed that metabolism pathway genes were enriched. The most prominent protein motifs include the zinc finger, ribonuclease H, reverse transcriptase, and ankyrin repeat domains. The simple sequence repeats (SSRs) identified from >1 kb length of unigenes show a dominancy of dinucleotide repeat motifs followed with tri- and tetranucleotide motifs. A number of unigenes were putatively assessed to belong to adaptation and defense mechanisms including heat shock proteins 70, Toll-like receptor 4, AMP-activated protein kinase, aquaporin-2, etc. Our data provide a rich source for the identification and functional characterization of new genes and candidate polymorphic SSR markers in K. kurodana. The availability of transcriptome information ( http://bioinfo.sch.ac.kr/submission/ ) would promote the utilization of the resources for phylogenetics study and genetic diversity assessment.
Collapse
Affiliation(s)
- Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea.,Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - So Young Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Hongray Howrelia Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Jae Bong Lee
- Korea Zoonosis Research Institute (KOZRI), Chonbuk National University, 820-120 Hana-ro, Iksan, Jeollabuk-do, 54528, Korea
| | - Changmu Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Korea
| | - Soonok Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 243341, Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea.
| |
Collapse
|
6
|
Adamson EAS, Saha A, Maddock ST, Nussbaum RA, Gower DJ, Streicher JW. Microsatellite discovery in an insular amphibian (Grandisonia alternans) with comments on cross-species utility and the accuracy of locus identification from unassembled Illumina data. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0580-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Wang W, Qiao Y, Zheng Y, Yao M. Isolation of microsatellite loci and reliable genotyping using noninvasive samples of a critically endangered primate, Trachypithecus leucocephalus. Integr Zool 2016; 11:250-62. [PMID: 26889667 DOI: 10.1111/1749-4877.12192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Genetic information can be critical in identifying conservation priorities and developing conservation strategies. There is an urgent need for noninvasive genetic tools to study the wild populations of Asian colobine monkeys. The majority of these species are threatened with habitat destruction, population reduction and even extinction, but generally lack information on their genetic diversity and population structure. Genetic sampling and tissue collection have been scarce in these species owing to strict regulations on manipulation of endangered species, and the difficulties and risks associated with capturing these arboreal and fast-moving monkeys in the challenging environments that they inhabit. These difficulties have hindered the development of molecular genetic markers, which are usually derived from tissues or blood. In this study, we present a method for de novo microsatellite isolation and genotyping using DNA from noninvasive origins of a critically endangered Asian colobine, the white-headed langur (Trachypithecus leucocephalus). Genomic DNA isolated from hair was shown to be sufficient for microsatellite enrichment and isolation, with similar isolation efficiencies as from tissue DNA. We identified and characterized 20 polymorphic microsatellite loci, and evaluated their amplification success and genotyping reliability with 86 field-collected fecal samples. These results show that this panel of loci can produce reliable genotypes from fecal samples, and represent a useful tool for noninvasive investigation of genetic structure, individual identification and kinship assessment in this highly endangered species. Our approach can be applied to conservation genetic studies of other wild species that lack sequence information and tissue samples.
Collapse
Affiliation(s)
- Weiran Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Yu Qiao
- School of Life Sciences, Peking University, Beijing, China
| | - Yitao Zheng
- School of Life Sciences, Peking University, Beijing, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Transcriptome Profile of the Asian Giant Hornet (Vespa mandarinia) Using Illumina HiSeq 4000 Sequencing: De Novo Assembly, Functional Annotation, and Discovery of SSR Markers. Int J Genomics 2016; 2016:4169587. [PMID: 26881195 PMCID: PMC4736913 DOI: 10.1155/2016/4169587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/20/2015] [Indexed: 01/04/2023] Open
Abstract
Vespa mandarinia found in the forests of East Asia, including Korea, occupies the highest rank in the arthropod food web within its geographical range. It serves as a source of nutrition in the form of Vespa amino acid mixture and is listed as a threatened species, although no conservation measures have been implemented. Here, we performed de novo assembly of the V. mandarinia transcriptome by Illumina HiSeq 4000 sequencing. Over 60 million raw reads and 59,184,811 clean reads were obtained. After assembly, a total of 66,837 unigenes were clustered, 40,887, 44,455, and 22,390 of which showed homologous matches against the PANM, Unigene, and KOG databases, respectively. A total of 15,675 unigenes were assigned to Gene Ontology terms, and 5,132 unigenes were mapped to 115 KEGG pathways. The zinc finger domain (C2H2-like), serine/threonine/dual specificity protein kinase domain, and RNA recognition motif domain were among the top InterProScan domains predicted for V. mandarinia sequences. Among the unigenes, we identified 534,922 cDNA simple sequence repeats as potential markers. This is the first transcriptomic analysis of the wasp V. mandarinia using Illumina HiSeq 4000. The obtained datasets should promote the search for new genes to understand the physiological attributes of this wasp.
Collapse
|
9
|
Saeed AF, Wang R, Wang S. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol 2016; 6:1462. [PMID: 26779133 PMCID: PMC4700210 DOI: 10.3389/fmicb.2015.01462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022] Open
Abstract
Microsatellites or short sequence repeats are widespread genetic markers which are hypermutable 1-6 bp long short nucleotide motifs. Significantly, their applications in genetics are extensive due to their ceaseless mutational degree, widespread length variations and hypermutability skills. These features make them useful in determining the driving forces of evolution by using powerful molecular techniques. Consequently, revealing important questions, for example, what is the significance of these abundant sequences in DNA, what are their roles in genomic evolution? The answers of these important questions are hidden in the ways these short motifs contributed in altering the microbial genomes since the origin of life. Even though their size ranges from 1 -to- 6 bases, these repeats are becoming one of the most popular genetic probes in determining their associations and phylogenetic relationships in closely related genomes. Currently, they have been widely used in molecular genetics, biotechnology and evolutionary biology. However, due to limited knowledge; there is a significant gap in research and lack of information concerning hypermutational mechanisms. These mechanisms play a key role in microsatellite loci point mutations and phase variations. This review will extend the understandings of impacts and contributions of microsatellite in genomic evolution and their universal applications in microbiology.
Collapse
Affiliation(s)
- Abdullah F. Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | | | | |
Collapse
|
10
|
Patnaik BB, Hwang HJ, Kang SW, Park SY, Wang TH, Park EB, Chung JM, Song DK, Kim C, Kim S, Lee JB, Jeong HC, Park HS, Han YS, Lee YS. Transcriptome Characterization for Non-Model Endangered Lycaenids, Protantigius superans and Spindasis takanosis, Using Illumina HiSeq 2500 Sequencing. Int J Mol Sci 2015; 16:29948-70. [PMID: 26694362 PMCID: PMC4691156 DOI: 10.3390/ijms161226213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/28/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022] Open
Abstract
The Lycaenidae butterflies, Protantigius superans and Spindasis takanosis, are endangered insects in Korea known for their symbiotic association with ants. However, necessary genomic and transcriptomics data are lacking in these species, limiting conservation efforts. In this study, the P. superans and S. takanosis transcriptomes were deciphered using Illumina HiSeq 2500 sequencing. The P. superans and S. takanosis transcriptome data included a total of 254,340,693 and 245,110,582 clean reads assembled into 159,074 and 170,449 contigs and 107,950 and 121,140 unigenes, respectively. BLASTX hits (E-value of 1.0 × 10−5) against the known protein databases annotated a total of 46,754 and 51,908 transcripts for P. superans and S. takanosis. Approximately 41.25% and 38.68% of the unigenes for P. superans and S. takanosis found homologous sequences in Protostome DB (PANM-DB). BLAST2GO analysis confirmed 18,611 unigenes representing Gene Ontology (GO) terms and a total of 5259 unigenes assigned to 116 pathways for P. superans. For S. takanosis, a total of 6697 unigenes were assigned to 119 pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Additionally, 382,164 and 390,516 Simple Sequence Repeats (SSRs) were compiled from the unigenes of P. superans and S. takanosis, respectively. This is the first report to record new genes and their utilization for conservation of lycaenid species population and as a reference information for closely related species.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha 751024, India.
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - So Young Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Tae Hun Wang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Eun Bi Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Changmu Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Korea.
| | - Soonok Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Korea.
| | - Jae Bong Lee
- Korea Zoonosis Research Institute (KOZRI), Chonbuk National University, 820-120 Hana-ro, Iksan, Jeollabuk-do 54528, Korea.
| | - Heon Cheon Jeong
- Hampyeong County Insect Institute, Hampyeong County Agricultural Technology Center, 90, Hakgyohwasan-gil, Hakgyo-myeon, Hampyeong-gun, Jeollanan-do 57158, Korea.
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD. 621-6 Banseok-dong, Yuseong-gu, Daejeon 34069, Korea.
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| |
Collapse
|
11
|
Chen H, Lin L, Xie M, Zhang G, Su W. De novo sequencing and characterization of the Bradysia odoriphaga (Diptera: Sciaridae) larval transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015. [PMID: 26219018 DOI: 10.1016/j.cbd.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The most serious pestilent threat to the Chinese chive, Allium tuberosum Rottle ex Spreng (Liliaceae) is the Bradysia odoriphaga Yang and Zhang. There is limited genetic research focused on B. odoriphaga, partially due to the lack of genomic resources. The advent of high-throughput sequencing technologies has enabled generation of genomic resources in a short time frame and at minimal costs. In this study, we performed, for the first time, de novo transcriptome sequencing of the B. odoriphaga. Here, 16,829 unigenes were assembled from the total reads, 12,024 of these unigenes were annotated in the NCBI NR protein database, and 9784 were annotated in the Swiss-Prot database. Of these annotated unigenes, 7903 and 5060 unigenes have been assigned to gene ontology categories and clusters of orthologous groups, respectively. Furthermore, 8647 unigenes were mapped to 257 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. We found that 408 unigenes were related to insecticide resistance and metabolism. In addition, 23,122 simple sequence repeats (SSRs) were identified in 11,009 unigenes, and 100 PCR primers of SSR loci were used to validate the assembly quality and polymorphisms. These results provide a good platform for further investigations into the insecticide resistance of B. odoriphaga. Finally, the SSRs identified in B. odoriphaga may be a useful genomic resource.
Collapse
Affiliation(s)
- Haoliang Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Lulu Lin
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Minghui Xie
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Guangling Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Weihua Su
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
12
|
De novo sequencing, assembly and characterization of antennal transcriptome of Anomala corpulenta Motschulsky (Coleoptera: Rutelidae). PLoS One 2014; 9:e114238. [PMID: 25461610 PMCID: PMC4252136 DOI: 10.1371/journal.pone.0114238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023] Open
Abstract
Background Anomala corpulenta is an important insect pest and can cause enormous economic losses in agriculture, horticulture and forestry. It is widely distributed in China, and both larvae and adults can cause serious damage. It is difficult to control this pest because the larvae live underground. Any new control strategy should exploit alternatives to heavily and frequently used chemical insecticides. However, little genetic research has been carried out on A. corpulenta due to the lack of genomic resources. Genomic resources could be produced by next generation sequencing technologies with low cost and in a short time. In this study, we performed de novo sequencing, assembly and characterization of the antennal transcriptome of A. corpulenta. Results Illumina sequencing technology was used to sequence the antennal transcriptome of A. corpulenta. Approximately 76.7 million total raw reads and about 68.9 million total clean reads were obtained, and then 35,656 unigenes were assembled. Of these unigenes, 21,463 of them could be annotated in the NCBI nr database, and, among the annotated unigenes, 11,154 and 6,625 unigenes could be assigned to GO and COG, respectively. Additionally, 16,350 unigenes could be annotated in the Swiss-Prot database, and 14,499 unigenes could map onto 258 pathways in the KEGG Pathway database. We also found 24 unigenes related to OBPs, 6 to CSPs, and in total 167 unigenes related to chemodetection. We analyzed 4 OBPs and 3CSPs sequences and their RT-qPCR results agreed well with their FPKM values. Conclusion We produced the first large-scale antennal transcriptome of A. corpulenta, which is a species that has little genomic information in public databases. The identified chemodetection unigenes can promote the molecular mechanistic study of behavior in A. corpulenta. These findings provide a general sequence resource for molecular genetics research on A. corpulenta.
Collapse
|
13
|
Zhao YJ, Zeng Y, Chen L, Dong Y, Wang W. Analysis of transcriptomes of three orb-web spider species reveals gene profiles involved in silk and toxin. INSECT SCIENCE 2014; 21:687-698. [PMID: 24167122 DOI: 10.1111/1744-7917.12068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
As an ancient arthropod with a history of 390 million years, spiders evolved numerous morphological forms resulting from adaptation to different environments. The venom and silk of spiders, which have promising commercial applications in agriculture, medicine and engineering fields, are of special interests to researchers. However, little is known about their genomic components, which hinders not only understanding spider biology but also utilizing their valuable genes. Here we report on deep sequenced and de novo assembled transcriptomes of three orb-web spider species, Gasteracantha arcuata, Nasoonaria sinensis and Gasteracantha hasselti which are distributed in tropical forests of south China. With Illumina paired-end RNA-seq technology, 54 871, 101 855 and 75 455 unigenes for the three spider species were obtained, respectively, among which 9 300, 10 001 and 10 494 unique genes are annotated, respectively. From these annotated unigenes, we comprehensively analyzed silk and toxin gene components and structures for the three spider species. Our study provides valuable transcriptome data for three spider species which previously lacked any genetic/genomic data. The results have laid the first fundamental genomic basis for exploiting gene resources from these spiders.
Collapse
Affiliation(s)
- Ying-Jun Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming
| | | | | | | | | |
Collapse
|
14
|
Chen EH, Wei DD, Shen GM, Yuan GR, Bai PP, Wang JJ. De novo characterization of the Dialeurodes citri transcriptome: mining genes involved in stress resistance and simple sequence repeats (SSRs) discovery. INSECT MOLECULAR BIOLOGY 2014; 23:52-66. [PMID: 24164346 DOI: 10.1111/imb.12060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The citrus whitefly, Dialeurodes citri (Ashmead), is one of the three economically important whitefly species that infest citrus plants around the world; however, limited genetic research has been focused on D. citri, partly because of lack of genomic resources. In this study, we performed de novo assembly of a transcriptome using Illumina paired-end sequencing technology (Illumina Inc., San Diego, CA, USA). In total, 36,766 unigenes with a mean length of 497 bp were identified. Of these unigenes, we identified 17,788 matched known proteins in the National Center for Biotechnology Information database, as determined by Blast search, with 5731, 4850 and 14,441 unigenes assigned to clusters of orthologous groups (COG), gene ontology (GO), and SwissProt, respectively. In total, 7507 unigenes were assigned to 308 known pathways. In-depth analysis of the data showed that 117 unigenes were identified as potentially involved in the detoxification of xenobiotics and 67 heat shock protein (Hsp) genes were associated with environmental stress. In addition, these enzymes were searched against the GO and COG database, and the results showed that the three major detoxification enzymes and Hsps were classified into 18 and 3, 6, and 8 annotations, respectively. In addition, 149 simple sequence repeats were detected. The results facilitate the investigation of molecular resistance mechanisms to insecticides and environmental stress, and contribute to molecular marker development. The findings greatly improve our genetic understanding of D. citri, and lay the foundation for future functional genomics studies on this species.
Collapse
Affiliation(s)
- E-H Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
15
|
Wei DD, Chen EH, Ding TB, Chen SC, Dou W, Wang JJ. De novo assembly, gene annotation, and marker discovery in stored-product pest Liposcelis entomophila (Enderlein) using transcriptome sequences. PLoS One 2013; 8:e80046. [PMID: 24244605 PMCID: PMC3828239 DOI: 10.1371/journal.pone.0080046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/27/2013] [Indexed: 12/18/2022] Open
Abstract
Background As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels. Methodology/Principal Findings We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61%) unigenes were matched to known proteins in the NCBI non-redundant (Nr) protein database. These unigenes were further functionally annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST) genes, 19 putative carboxyl/cholinesterase (CCE) genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp) genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future. Conclusions/Significance We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying insecticide resistance or environmental stress, and will facilitate studies on population genetics for psocids, as well as providing useful information for functional genomic research in the future.
Collapse
Affiliation(s)
- Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Tian-Bo Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Shi-Chun Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P. R. China
- * E-mail:
| |
Collapse
|
16
|
Characterization of the heart transcriptome of the white shark (Carcharodon carcharias). BMC Genomics 2013; 14:697. [PMID: 24112713 PMCID: PMC3832898 DOI: 10.1186/1471-2164-14-697] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white shark (Carcharodon carcharias) is a globally distributed, apex predator possessing physical, physiological, and behavioral traits that have garnered it significant public attention. In addition to interest in the genetic basis of its form and function, as a representative of the oldest extant jawed vertebrate lineage, white sharks are also of conservation concern due to their small population size and threat from overfishing. Despite this, surprisingly little is known about the biology of white sharks, and genomic resources are unavailable. To address this deficit, we combined Roche-454 and Illumina sequencing technologies to characterize the first transciptome of any tissue for this species. RESULTS From white shark heart cDNA we generated 665,399 Roche 454 reads (median length 387-bp) that were assembled into 141,626 contigs (mean length 503-bp). We also generated 78,566,588 Illumina reads, which we aligned to the 454 contigs producing 105,014 454/Illumina consensus sequences. To these, we added 3,432 non-singleton 454 contigs. By comparing these sequences to the UniProtKB/Swiss-Prot database we were able to annotate 21,019 translated open reading frames (ORFs) of ≥ 20 amino acids. Of these, 19,277 were additionally assigned Gene Ontology (GO) functional annotations. While acknowledging the limitations of our single tissue transcriptome, Fisher tests showed the white shark transcriptome to be significantly enriched for numerous metabolic GO terms compared to the zebra fish and human transcriptomes, with white shark showing more similarity to human than to zebra fish (i.e. fewer terms were significantly different). We also compared the transcriptome to other available elasmobranch sequences, for signatures of positive selection and identified several genes of putative adaptive significance on the white shark lineage. The white shark transcriptome also contained 8,404 microsatellites (dinucleotide, trinucleotide, or tetranucleotide motifs ≥ five perfect repeats). Detailed characterization of these microsatellites showed that ORFs with trinucleotide repeats, were significantly enriched for transcription regulatory roles and that trinucleotide frequency within ORFs was lower than for a wide range of taxonomic groups including other vertebrates. CONCLUSION The white shark heart transcriptome represents a valuable resource for future elasmobranch functional and comparative genomic studies, as well as for population and other biological studies vital for effective conservation of this globally vulnerable species.
Collapse
|
17
|
Miller MP, Knaus BJ, Mullins TD, Haig SM. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data. ACTA ACUST UNITED AC 2013; 104:881-5. [PMID: 24052535 DOI: 10.1093/jhered/est056] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25 bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).
Collapse
Affiliation(s)
- Mark P Miller
- the U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331
| | | | | | | |
Collapse
|
18
|
Mikheyev AS, McBride CS, Mueller UG, Parmesan C, Smee MR, Stefanescu C, Wee B, Singer MC. Host-associated genomic differentiation in congeneric butterflies: now you see it, now you do not. Mol Ecol 2013; 22:4753-66. [DOI: 10.1111/mec.12423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 01/20/2023]
Affiliation(s)
| | - Carolyn S. McBride
- Laboratory of Neurogenetics and Behavior; The Rockefeller University; New York NY USA
| | | | - Camille Parmesan
- Integrative Biology; University of Texas; Austin TX 78712 USA
- Marine Institute; Level 3 Marine Bldg.; Plymouth University; Drakes Circus; Plymouth Devon PL4 8AA UK
| | | | - Constanti Stefanescu
- Catalan Butterfly Monitoring Scheme; Museu de Ciències Naturals; Granollers 08402 Spain
- Global Ecology Unit; CREAF; Cerdanyola del Vallès 08193 Spain
| | - Brian Wee
- NEON, Inc. c/o Smithsonian Institution; 1100 Jefferson Drive SW, Suite 3123, MRC 705 Washington DC 20560-0001 USA
| | - Michael C. Singer
- Integrative Biology; University of Texas; Austin TX 78712 USA
- School of Biomedical and Biological Sciences; Plymouth University; Drake Circus; Plymouth PL4 8AA UK
| |
Collapse
|
19
|
Peery MZ, Reid BN, Kirby R, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ. More precisely biased: increasing the number of markers is not a silver bullet in genetic bottleneck testing. Mol Ecol 2013; 22:3451-7. [DOI: 10.1111/mec.12394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M. Zachariah Peery
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; 1630 Linden Drive Madison WI 53706 USA
| | - Brendan N. Reid
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; 1630 Linden Drive Madison WI 53706 USA
| | - Rebecca Kirby
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; 1630 Linden Drive Madison WI 53706 USA
| | - Ricka Stoelting
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; 1630 Linden Drive Madison WI 53706 USA
| | - Elena Doucet-Bëer
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; 1630 Linden Drive Madison WI 53706 USA
| | - Stacie Robinson
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; 1630 Linden Drive Madison WI 53706 USA
| | - Catalina Vásquez-Carrillo
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; 1630 Linden Drive Madison WI 53706 USA
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology; University of Wisconsin-Madison; 1630 Linden Drive Madison WI 53706 USA
| | - Per J. Palsbøll
- Marine Evolution and Conservation; Centre of Evolutionary and Ecological Studies; University of Groningen; PO Box 11103 CC Groningen The Netherlands
| |
Collapse
|
20
|
Smee MR, Pauchet Y, Wilkinson P, Wee B, Singer MC, ffrench-Constant RH, Hodgson DJ, Mikheyev AS. Microsatellites for the marsh fritillary butterfly: de novo transcriptome sequencing, and a comparison with amplified fragment length polymorphism (AFLP) markers. PLoS One 2013; 8:e54721. [PMID: 23349956 PMCID: PMC3549983 DOI: 10.1371/journal.pone.0054721] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Until recently the isolation of microsatellite markers from Lepidoptera has proved troublesome, expensive and time-consuming. Following on from a previous study of Edith's checkerspot butterfly, Euphydryas editha, we developed novel microsatellite markers for the vulnerable marsh fritillary butterfly, E. aurinia. Our goal was to optimize the process in order to reduce both time and cost relative to prevailing techniques. This was accomplished by using a combination of previously developed techniques: in silico mining of a de novo assembled transcriptome sequence, and genotyping the microsatellites found there using an economic method of fluorescently labelling primers. PRINCIPAL FINDINGS In total, we screened nine polymorphic microsatellite markers, two of which were previously published, and seven that were isolated de novo. These markers were able to amplify across geographically isolated populations throughout Continental Europe and the UK. Significant deviations from Hardy-Weinberg equilibrium were evident in some populations, most likely due to the presence of null alleles. However, we used an F(st) outlier approach to show that these markers are likely selectively neutral. Furthermore, using a set of 128 individuals from 11 populations, we demonstrate consistency in population differentiation estimates with previously developed amplified fragment length polymorphism (AFLP) markers (r = 0.68, p<0.001). SIGNIFICANCE Rapid development of microsatellite markers for difficult taxa such as Lepidoptera, and concordant results with other putatively neutral molecular markers, demonstrate the potential of de novo transcriptional sequencing for future studies of population structure and gene flow that are desperately needed for declining species across fragmented landscapes.
Collapse
Affiliation(s)
- Melanie R Smee
- Department of Biology, University of York, York, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Castoe TA, Streicher JW, Meik JM, Ingrasci MJ, Poole AW, de Koning APJ, Campbell JA, Parkinson CL, Smith EN, Pollock DD. Thousands of microsatellite loci from the venomous coralsnake Micrurus fulvius and variability of select loci across populations and related species. Mol Ecol Resour 2012; 12:1105-13. [PMID: 22938699 DOI: 10.1111/1755-0998.12000] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/18/2012] [Accepted: 07/28/2012] [Indexed: 11/29/2022]
Abstract
Studies of population genetics increasingly use next-generation DNA sequencing to identify microsatellite loci in nonmodel organisms. There are, however, relatively few studies that validate the feasibility of transitioning from marker development to experimental application across populations and species. North American coralsnakes of the Micrurus fulvius species complex occur in the United States and Mexico, and little is known about their population structure and phylogenetic relationships. This absence of information and population genetics markers is particularly concerning because they are highly venomous and have important implications on human health. To alleviate this problem in coralsnakes, we investigated the feasibility of using 454 shotgun sequences for microsatellite marker development. First, a genomic shotgun library from a single individual was sequenced (approximately 7.74 megabases; 26,831 reads) to identify potentially amplifiable microsatellite loci (PALs). We then hierarchically sampled 76 individuals from throughout the geographic distribution of the species complex and examined whether PALs were amplifiable and polymorphic. Approximately half of the loci tested were readily amplifiable from all individuals, and 80% of the loci tested for variation were variable and thus informative as population genetic markers. To evaluate the repetitive landscape characteristics across multiple snakes, we also compared microsatellite content between the coralsnake and two other previously sampled snakes, the venomous copperhead (Agkistrodon contortrix) and Burmese python (Python molurus).
Collapse
Affiliation(s)
- Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Setsuko S, Uchiyama K, Sugai K, Yoshimaru H. Rapid development of microsatellite markers for Pandanus boninensis (Pandanaceae) by pyrosequencing technology. AMERICAN JOURNAL OF BOTANY 2012; 99:e33-e37. [PMID: 22210836 DOI: 10.3732/ajb.1100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY To facilitate rapid development of microsatellite or simple sequence repeat (SSR) markers, an expressed sequence tags (EST) database was constructed for Pandanus boninensis, an evergreen tree endemic to the Bonin Islands, using pyrosequencing technology. METHODS AND RESULTS We designed primers for 340 EST-SSRs identified from 109620 pyrosequencing reads, 48 of which were tested for PCR amplification. Thirty-four primers provided clear amplification, and 26 of those 34 displayed clear polymorphic patterns in sampled populations, with mean expected heterozygosity at the amplified loci ranging from 0.022 to 0.742 (average 0.262). CONCLUSIONS The developed markers are promising tools for future genetic studies of P. boninensis and related species.
Collapse
Affiliation(s)
- Suzuki Setsuko
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
23
|
Setsuko S, Uchiyama K, Sugai K, Yoshimaru H. Isolation and characterization of EST-SSR markers in Schima mertensiana (Theaceae) using pyrosequencing technology. AMERICAN JOURNAL OF BOTANY 2012; 99:e38-e42. [PMID: 22210835 DOI: 10.3732/ajb.1100301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Microsatellite or simple sequence repeat (SSR) markers from expressed sequence tags (ESTs) in Schima mertensiana, an evergreen tree that is endemic to the Bonin Islands, were developed to facilitate evaluation of the species's population genetic structure. METHODS AND RESULTS Using 149831 ESTs derived by pyrosequencing S. mertensiana complementary DNA (cDNA), 683 EST-SSRs were developed, 48 of which were tested for amplification. Thirty of the 48 showed clear amplification and detected polymorphism in sampled populations, with mean expected heterozygosity at the amplified loci ranging from 0.045 to 0.874 (average 0.545). CONCLUSIONS The markers developed in this study can be used for future studies of the genetic structure of S. mertensiana and related species.
Collapse
Affiliation(s)
- Suzuki Setsuko
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
24
|
Grover A, Aishwarya V, Sharma PC. Searching microsatellites in DNA sequences: approaches used and tools developed. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2012; 18:11-9. [PMID: 23573036 PMCID: PMC3550526 DOI: 10.1007/s12298-011-0098-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microsatellite instability associated genomic activities and evolutionary changes have led to a renewed focus on microsatellite research. In last decade, a number of microsatellite mining tools have been introduced based on different computational approaches. The choice is generally made between slow but exhaustive dynamic programming based approaches, or fast and incomplete heuristic methods. Tools based on stochastic approaches are more popular due to their simplicity and added ornamental features. We have performed a comparative evaluation of the relative efficiency of some microsatellite search tools with their default settings. The graphical user interface, the statistical analysis of the output and ability to mine imperfect repeats are the most important criteria in selecting a tool for a particular investigation. However, none of the available tools alone provides complete and accurate information about microsatellites, and a lot depends on the discretion of the user.
Collapse
Affiliation(s)
- Atul Grover
- />University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C Dwarka, New Delhi, 110075 India
- />Molecular Biology and Genetic Engineering Laboratory, Defence Institute of Bio Energy Research, Goraparao, Haldwani, 263139 India
| | - Veenu Aishwarya
- />University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C Dwarka, New Delhi, 110075 India
- />Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - P. C. Sharma
- />University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C Dwarka, New Delhi, 110075 India
| |
Collapse
|
25
|
Setsuko S, Uchiyama K, Sugai K, Hanaoka S, Yoshimaru H. Microsatellite markers derived from Calophyllum inophyllum (Clusiaceae) expressed sequence tags. AMERICAN JOURNAL OF BOTANY 2012; 99:e28-e32. [PMID: 22203650 DOI: 10.3732/ajb.1100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Robust markers are required (inter alia) for assessing origins of Calophyllum inophyllum populations on the Bonin Islands, Japan. Therefore, informative expressed sequence tag (EST)-based microsatellite or simple sequence repeat (SSRs) markers in the species were sought. METHODS AND RESULTS Using 135378 ESTs derived from de novo pyrosequencing, primers for 475 EST-SSRs were developed, 48 of which were tested for PCR amplification. Thirty-six of the 48 primers showed clear amplification, with 23 displaying polymorphism in sampled populations. Expected heterozygosity in the samples from the Bonin Islands and Ryukyu Islands populations ranged from 0.041 to 0.697 and from 0.041 to 0.773, respectively. CONCLUSIONS As EST-SSRs are potentially tightly linked with functional genes, and reportedly more transferable to related species than anonymous genomic SSRs, the developed primers have utility for future studies of the origins, genetic structure, and conservation of C. inophyllum and related species.
Collapse
Affiliation(s)
- Suzuki Setsuko
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
26
|
Development of 61 new transcriptome-derived microsatellites for the Atlantic herring (Clupea harengus). CONSERV GENET RESOUR 2011. [DOI: 10.1007/s12686-011-9477-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Jennings TN, Knaus BJ, Mullins TD, Haig SM, Cronn RC. Multiplexed microsatellite recovery using massively parallel sequencing. Mol Ecol Resour 2011; 11:1060-7. [PMID: 21676207 DOI: 10.1111/j.1755-0998.2011.03033.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356,958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5 M (USD).
Collapse
Affiliation(s)
- T N Jennings
- Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|