1
|
Zhang J, Li Q, Cruz Cosme RS, Gerzanich V, Tang Q, Simard JM, Zhao RY. Genome-wide characterization of SARS-CoV-2 cytopathogenic proteins in the search of antiviral targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.23.469747. [PMID: 34845452 PMCID: PMC8629195 DOI: 10.1101/2021.11.23.469747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Therapeutic inhibition of critical viral functions is important for curtailing coronavirus disease-2019 (COVID-19). We sought to identify antiviral targets through genome-wide characterization of SARS-CoV-2 proteins that are crucial for viral pathogenesis and that cause harmful cytopathic effects. All twenty-nine viral proteins were tested in a fission yeast cell-based system using inducible gene expression. Twelve proteins including eight non-structural proteins (NSP1, NSP3, NSP4, NSP5, NSP6, NSP13, NSP14 and NSP15) and four accessory proteins (ORF3a, ORF6, ORF7a and ORF7b) were identified that altered cellular proliferation and integrity, and induced cell death. Cell death correlated with the activation of cellular oxidative stress. Of the twelve proteins, ORF3a was chosen for further study in mammalian cells. In human pulmonary and kidney epithelial cells, ORF3a induced cellular oxidative stress associated with apoptosis and necrosis, and caused activation of pro-inflammatory response with production of the cytokines TNF-α, IL-6, and IFN-β1, possibly through the activation of NF-κB. To further characterize the mechanism, we tested a natural ORF3a Beta variant, Q57H, and a mutant with deletion of the highly conserved residue, ΔG188. Compared to wild type ORF3a, the ΔG188 variant yielded more robust activation of cellular oxidative stress, cell death, and innate immune response. Since cellular oxidative stress and inflammation contribute to cell death and tissue damage linked to the severity of COVID-19, our findings suggest that ORF3a is a promising, novel therapeutic target against COVID-19.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qi Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ruth S. Cruz Cosme
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qiyi Tang
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
2
|
Zhang J, Li Q, Cruz Cosme RS, Gerzanich V, Tang Q, Simard JM, Zhao RY. Genome-Wide Characterization of SARS-CoV-2 Cytopathogenic Proteins in the Search of Antiviral Targets. mBio 2021; 13:e0016922. [PMID: 35164548 PMCID: PMC8844912 DOI: 10.1128/mbio.00169-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Therapeutic inhibition of critical viral functions is important for curtailing coronavirus disease 2019 (COVID-19). We sought to identify antiviral targets through the genome-wide characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins that are crucial for viral pathogenesis and that cause harmful cytopathogenic effects. All 29 viral proteins were tested in a fission yeast cell-based system using inducible gene expression. Twelve proteins, including eight nonstructural proteins (NSP1, NSP3, NSP4, NSP5, NSP6, NSP13, NSP14, and NSP15) and four accessory proteins (ORF3a, ORF6, ORF7a, and ORF7b), were identified that altered cellular proliferation and integrity and induced cell death. Cell death correlated with the activation of cellular oxidative stress. Of the 12 proteins, ORF3a was chosen for further study in mammalian cells because it plays an important role in viral pathogenesis and its activities are linked to lung tissue damage and a cytokine storm. In human pulmonary and kidney epithelial cells, ORF3a induced cellular oxidative stress associated with apoptosis and necrosis and caused activation of proinflammatory response with production of the cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IFN-β1, possibly through the activation of nuclear factor kappa B (NF-κB). To further characterize the mechanism, we tested a natural ORF3a Beta variant, Q57H, and a mutant with deletion of the highly conserved residue, ΔG188. Compared with wild-type ORF3a, the ΔG188 variant yielded more robust activation of cellular oxidative stress, cell death, and innate immune response. Since cellular oxidative stress and inflammation contribute to cell death and tissue damage linked to the severity of COVID-19, our findings suggest that ORF3a is a promising, novel therapeutic target against COVID-19. IMPORTANCE The ongoing COVID-19 pandemic caused by SARS-CoV-2 has claimed over 5.5 million lives with more than 300 million people infected worldwide. While vaccines are effective, the emergence of new viral variants could jeopardize vaccine protection. Treatment of COVID-19 by antiviral drugs provides an alternative to battle against the disease. The goal of this study was to identify viral therapeutic targets that can be used in antiviral drug discovery. Utilizing a genome-wide functional analysis in a fission yeast cell-based system, we identified 12 viral candidates, including ORF3a, which cause cellular oxidative stress, inflammation, apoptosis, and necrosis that contribute to cytopathogenicity and COVID-19. Our findings indicate that antiviral agents targeting ORF3a could have a great impact on COVID-19.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Qi Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth S. Cruz Cosme
- Surgical Care Clinical Center, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Surgical Care Clinical Center, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| |
Collapse
|
3
|
HIV-1 Vpr-Induced Proinflammatory Response and Apoptosis Are Mediated through the Sur1-Trpm4 Channel in Astrocytes. mBio 2020; 11:mBio.02939-20. [PMID: 33293383 PMCID: PMC8534293 DOI: 10.1128/mbio.02939-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Successful treatment of HIV-infected patients with combinational antiretroviral therapies (cART) can now prolong patients' lives to nearly normal life spans. However, the new challenge faced by many of those HIV-infected patients is chronic neuroinflammation and neurotoxicity that often leads to HIV-associated neurocognitive disorders (HAND). However, the mechanism of neuropathogenesis underlying HAND, especially in those who are under cART, is not well understood. HAND is typically characterized by HIV-mediated glial neuroinflammation and neurotoxicity. However, the severity of HAND does not always correlate with HIV-1 viral load but, rather, with the extent of glial activation, suggesting that other HIV-associated factors might contribute to HAND. HIV-1 viral protein R (Vpr) could be one of those viral factors because of its association with neuroinflammation and neurotoxicity. The objective of this study was to delineate the specific roles of HIV-1 infection and Vpr in the activation of neuroinflammation and neurotoxicity, and the possible relationships with the Sur1-Trpm4 channel that contributes to neuroinflammation and neuronal death. Here, we show that HIV-1 expression correlates with activation of proinflammatory markers (TLR4, TNF-α, and NF-κB) and the Sur1-Trpm4 channel in astrocytes of HIV-infected postmortem human and transgenic Tg26 mouse brain tissues. We further show that Vpr alone activates the same set of proinflammatory markers and Sur1 in a glioblastoma SNB19 cell line that is accompanied by apoptosis. The Sur1 inhibitor glibenclamide significantly reduced Vpr-induced apoptosis. Together, our data suggest that HIV-1 Vpr-induced proinflammatory response and apoptosis are mediated at least in part through the Sur1-Trpm4 channel in astrocytes.IMPORTANCE Effective antiretroviral therapies can now prolong patients' lives to nearly normal life span. The current challenge faced by many HIV-infected patients is chronic neuroinflammation and neurotoxicity that contributes to HIV-associated neurocognitive disorders (HAND). We show here that the expression of HIV-1 infection and Vpr correlates with the activation of proinflammatory markers (Toll-like receptor 4 [TLR4], tumor necrosis factor alpha [TNF-α], and NF-κB) and the sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel in astrocytes of brain tissues. We further show that an FDA-approved Sur1 inhibitory drug called glibenclamide significantly ameliorates apoptotic astrocytic cell death caused by HIV-1 Vpr, which could potentially open the possibility of repurposing glibenclamide for treating HAND.
Collapse
|
4
|
Kumar MD, Dravid A, Kumar A, Sen D. Gene therapy as a potential tool for treating neuroblastoma-a focused review. Cancer Gene Ther 2016; 23:115-24. [PMID: 27080224 DOI: 10.1038/cgt.2016.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/12/2022]
Abstract
Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.
Collapse
Affiliation(s)
- M D Kumar
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - A Dravid
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - A Kumar
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - D Sen
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India.,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J, He J, Rockenstein E, Masliah E. Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res 2015; 13:43-54. [PMID: 25760044 PMCID: PMC4455959 DOI: 10.2174/1570162x13666150311164201] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/13/2014] [Accepted: 01/29/2015] [Indexed: 12/16/2022]
Abstract
The advent of more effective antiretroviral therapies has reduced the frequency of HIV dementia, however the prevalence of milder HIV associated neurocognitive disorders [HAND] is actually rising. Neurodegenerative mechanisms in HAND might include toxicity by secreted HIV-1 proteins such as Tat, gp120 and Nef that could activate neuro-inflammatory pathways, block autophagy, promote excitotoxicity, oxidative stress, mitochondrial dysfunction and dysregulation of signaling pathways. Recent studies have shown that Tat could interfere with several signal transduction mechanisms involved in cytoskeletal regulation, cell survival and cell cycle re-entry. Among them, Tat has been shown to hyper-activate cyclin-dependent kinase [CDK] 5, a member of the Ser/Thr CDKs involved in cell migration, angiogenesis, neurogenesis and synaptic plasticity. CDK5 is activated by binding to its regulatory subunit, p35 or p39. For this manuscript we review evidence showing that Tat, via calcium dysregulation, promotes calpain-1 cleavage of p35 to p25, which in turn hyper-activates CDK5 resulting in abnormal phosphorylation of downstream targets such as Tau, collapsin response mediator protein-2 [CRMP2], doublecortin [DCX] and MEF2. We also present new data showing that Tat interferes with the trafficking of CDK5 between the nucleus and cytoplasm. This results in prolonged presence of CDK5 in the cytoplasm leading to accumulation of aberrantly phosphorylated cytoplasmic targets [e.g.: Tau, CRMP2, DCX] that impair neuronal function and eventually lead to cell death. Novel therapeutic approaches with compounds that block Tat mediated hyper-activation of CDK5 might be of value in the management of HAND.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Dr., MTF 348, La Jolla, CA 92093-0624, USA.
| |
Collapse
|
6
|
Greiner VJ, Shvadchak V, Fritz J, Arntz Y, Didier P, Frisch B, Boudier C, Mély Y, de Rocquigny H. Characterization of the mechanisms of HIV-1 Vpr(52–96) internalization in cells. Biochimie 2011; 93:1647-58. [DOI: 10.1016/j.biochi.2011.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/31/2011] [Indexed: 02/08/2023]
|
7
|
Guergnon J, Godet AN, Galioot A, Falanga PB, Colle JH, Cayla X, Garcia A. PP2A targeting by viral proteins: a widespread biological strategy from DNA/RNA tumor viruses to HIV-1. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1498-507. [PMID: 21856415 DOI: 10.1016/j.bbadis.2011.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/22/2011] [Accepted: 07/05/2011] [Indexed: 12/27/2022]
Abstract
Protein phosphatase 2A (PP2A) is a large family of holoenzymes that comprises 1% of total cellular proteins and accounts for the majority of Ser/Thr phosphatase activity in eukaryotic cells. Although initially viewed as constitutive housekeeping enzymes, it is now well established that PP2A proteins represent a family of highly and sophistically regulated phosphatases. The past decade, multiple complementary studies have improved our knowledge about structural and functional regulation of PP2A holoenzymes. In this regard, after summarizing major cellular regulation, this review will mainly focus on discussing a particulate biological strategy, used by various viruses, which is based on the targeting of PP2A enzymes by viral proteins in order to specifically deregulate, for their own benefit, cellular pathways of their hosts. The impact of such PP2A targeting for research in human diseases, and in further therapeutic developments, is also discussed.
Collapse
Affiliation(s)
- Julien Guergnon
- Laboratoire E3 Phosphatases-Unité Signalisation Moléculaire et Activation Cellulaire, Institut Pasteur 25, rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|