1
|
de Freitas BS, Fernandes GH, Pereira ACEDS, Peixoto HM. Artesunate-mefloquine therapy for uncomplicated Plasmodium falciparum malaria: an updated systematic review and meta-analysis of efficacy and safety. Trans R Soc Trop Med Hyg 2024; 118:84-94. [PMID: 37772768 DOI: 10.1093/trstmh/trad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 09/30/2023] Open
Abstract
To provide a continuous update on the safety and efficacy of artesunate-mefloquine (ASMQ) compared with other artemisinin combination therapy (ACT) schemes used in the treatment of uncomplicated malaria caused by Plasmodium falciparum, this study updated and expanded the results of the systematic literature review published in 2016. Only randomised controlled clinical trials published from 1 January 2001 to 12 June 2023 from five databases were included in this study. The results related to efficacy, expressed through RR, were summarized in meta-analyses, performed according to the compared ACTs and with the intention-to-treat and per-protocol analyses. The results related to safety were synthesized in a descriptive manner. Thirty-two studies were included, of which 24 had been analysed in the 2016 review and eight new ones were added. Although the methodological quality of most studies was considered moderate, the body of evidence gathered indicates that ASMQ continues to be safe and effective for the treatment of uncomplicated infections caused by P. falciparum compared with other ACTs. However, the inclusion of two new studies, which identified failure rates exceeding 10%, suggests a possible reduction in the efficacy of ASMQ in the analysed locations. The incidence of serious adverse effects, such as seizure, encephalopathy and cardiac arrhythmia, was infrequent in both the ASMQ group and the comparison groups. After including new evidence, ASMQ is still recommended as a first-line treatment of uncomplicated malaria caused by P. falciparum, although local aspects need to be considered.
Collapse
Affiliation(s)
- Beatriz Sales de Freitas
- Faculty of Medicine, University of Brasilia (UnB), Brasilia, University Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910-900, Brazil
| | - Gabriel Haiek Fernandes
- Faculty of Medicine, University of Brasilia (UnB), Brasilia, University Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910-900, Brazil
| | | | - Henry Maia Peixoto
- Faculty of Medicine, University of Brasilia (UnB), Brasilia, University Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910-900, Brazil
- Centre for Tropical Medicine, University of Brasília (UnB), University Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70904970 Brazil
- National Institute for Science and Technology for Health Technology Assessment (IATS/CNPq), Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| |
Collapse
|
2
|
Gachie B, Thiong'o K, Muriithi B, Chepngetich J, Onchieku N, Gathirwa J, Mwitari P, Magoma G, Kiboi D, Kimani F. Prevalence of mutations in the cysteine desulfurase IscS (Pfnfs1) gene in recurrent Plasmodium falciparum infections following artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) treatment in Matayos, Western Kenya. Malar J 2023; 22:158. [PMID: 37202779 DOI: 10.1186/s12936-023-04587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Malaria remains a public health concern globally. Resistance to anti-malarial drugs has consistently threatened the gains in controlling the malaria parasites. Currently, artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the treatment regimens against Plasmodium falciparum infections in many African countries, including Kenya. Recurrent infections have been reported in patients treated with AL or DP, suggesting the possibility of reinfection or parasite recrudescence associated with the development of resistance against the two therapies. The Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) K65 selection marker has previously been associated with decreased lumefantrine susceptibility. This study evaluated the frequency of the Pfnfs1 K65 resistance marker and associated K65Q resistant allele in recurrent infections collected from P. falciparum-infected individuals living in Matayos, Busia County, in western Kenya. METHODS Archived dried blood spots (DBS) of patients with recurrent malaria infection on clinical follow-up days after treatment with either AL or DP were used in the study. After extraction of genomic DNA, PCR amplification and sequencing analysis were employed to determine the frequencies of the Pfnfs1 K65 resistance marker and K65Q mutant allele in the recurrent infections. Plasmodium falciparum msp1 and P. falciparum msp2 genetic markers were used to distinguish recrudescent infections from new infections. RESULTS The K65 wild-type allele was detected at a frequency of 41% while the K65Q mutant allele was detected at a frequency of 22% in the recurrent samples. 58% of the samples containing the K65 wild-type allele were AL treated samples and while 42% were DP treated samples. 79% of the samples with the K65Q mutation were AL treated samples and 21% were DP treated samples. The K65 wild-type allele was detected in three recrudescent infections (100%) identified from the AL treated samples. The K65 wild-type allele was detected in two recrudescent DP treated samples (67%) while the K65Q mutant allele was identified in one DP treated (33%) recrudescent sample. CONCLUSIONS The data demonstrate a higher frequency of the K65 resistance marker in patients with recurrent infection during the study period. The study underscores the need for consistent monitoring of molecular markers of resistance in regions of high malaria transmission.
Collapse
Affiliation(s)
- Beatrice Gachie
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya.
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya.
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya.
| | - Kelvin Thiong'o
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Brenda Muriithi
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Jean Chepngetich
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Noah Onchieku
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Jeremiah Gathirwa
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Peter Mwitari
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Gabriel Magoma
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000 -00200, Nairobi, Kenya
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000 -00200, Nairobi, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
3
|
Arena L, Zanamwe M, Halleux CM, Carrara V, Angus BJ, Ariana P, Humphreys GS, Richmond C, Stepniewska K, Guérin PJ, Olliaro PL. Malaria patient spectrum representation in therapeutic clinical trials of uncomplicated malaria: a scoping review of the literature. Malar J 2023; 22:50. [PMID: 36765317 PMCID: PMC9913008 DOI: 10.1186/s12936-023-04441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND For the results of clinical trials to have external validity, the patients included in the study must be representative of the population presenting in the general clinical settings. A scoping literature review was performed to evaluate how the eligibility criteria used in anti-malarial efficacy and safety trials translate into patient selection. METHODS A search of the WorldWide Antimalarial Resistance Network (WWARN) Clinical Trials Publication Library, MEDLINE, The Cochrane Library, and clinicaltrials.gov was conducted to identify trials investigating anti-malarial efficacy and safety, published between 14th April 2001 and 31st December 2017. An updated search using the WWARN Clinical Trial Publication Library was undertaken to identify eligible publications from 1st January 2018 to 31st July 2021. The review included studies in patients of any age with uncomplicated malaria and any pharmaceutical therapeutic intervention administered. The proportion of trials with malaria-positive patients excluded was calculated and linked to the reported reason for exclusion. A subgroup analysis on eligibility criteria and trial baseline demographics was conducted to assess whether criteria are complied with when recruiting patients. RESULTS Out of 847 studies, 176 (21%) trials were included in the final synthesis, screening a total of 157,516 malaria-positive patients, of whom 56,293 (36%) were enrolled and treated. Across the 176 studies included, 84 different inclusion and exclusion criteria were identified. The reason for exclusion of patients who tested positive for malaria was reported in 144 (82%) studies. Three criteria account for about 70% of malaria-positive patients excluded: mixed-species malaria infections or other specific Plasmodium species, parasite counts outside the set study ranges, and refusal of consent. CONCLUSIONS Nearly two-thirds of the malaria-positive subjects who present to health facilities are systematically excluded from anti-malarial treatment trials. Reasons for exclusions are largely under-reported. Anti-malarial treatment in the general population is informed by studies on a narrow selection of patients who do not fully represent the totality of those seeking antimalarial treatment in routine practice. While entry criteria ensure consistency across trials, pragmatic trials are also necessary to supplement the information currently available and improve the external validity of the findings of malaria clinical trials.
Collapse
Affiliation(s)
- Lorenzo Arena
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
| | - Mazvita Zanamwe
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christine M Halleux
- Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization (WHO), Geneva, Switzerland
| | - Verena Carrara
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brian J Angus
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Proochista Ariana
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Georgina S Humphreys
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
| | - Caitlin Richmond
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
| | - Kasia Stepniewska
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
| | - Philippe J Guérin
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.
- Infectious Diseases Data Observatory (IDDO), Oxford, UK.
| | - Piero L Olliaro
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- ISARIC Global Support Centre, International Severe Acute Respiratory and Emerging Infection Consortium, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Morais CMG, Brito RMDM, Weselucha-Birczyńska A, Pereira VSDS, Pereira-Silva JW, Menezes A, Pessoa FAC, Kucharska M, Birczyńska-Zych M, Ríos-Velásquez CM, de Andrade-Neto VF. Blood-stage antiplasmodial activity and oocyst formation-blockage of metallo copper-cinchonine complex. Front Cell Infect Microbiol 2022; 12:1047269. [PMID: 36530433 PMCID: PMC9751060 DOI: 10.3389/fcimb.2022.1047269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
In the fight against malaria, the key is early treatment with antimalarial chemotherapy, such as artemisinin-based combination treatments (ACTs). However, Plasmodium has acquired multidrug resistance, including the emergence of P. falciparum strains with resistance to ACT. The development of novel antimalarial molecules, that are capable of interfering in the asexual and sexual blood stages, is important to slow down the transmission in endemic areas. In this work, we studied the ability of the mettalo copper-cinchonine complex to interfere in the sexual and asexual stages of Plasmodium. The tested compound in the in vitro assay was a cinchonine derivative, named CinCu (Bis[Cinchoninium Tetrachlorocuprate(II)]trihydrate). Its biological functions were assessed by antiplasmodial activity in vitro against chloroquine-resistant P. falciparum W2 strain. The mice model of P. berghei ANKA infection was used to analyze the antimalarial activity of CinCu and chloroquine and their acute toxicity. The oocyst formation-blocking assay was performed by experimental infection of Anopheles aquasalis with P. vivax infected blood, which was treated with different concentrations of CinCu, cinchonine, and primaquine. We found that CinCu was able to suppress as high as 81.58% of parasitemia in vitro, being considered a molecule with high antiplasmodial activity and low toxicity. The in vivo analysis showed that CinCu suppressed parasitemia at 34% up to 87.19%, being a partially active molecule against the blood-stage forms of P. berghei ANKA, without inducing severe clinical signs in the treated groups. The transmission-blocking assay revealed that both cinchonine and primaquine were able to reduce the infection intensity of P. vivax in A. aquasalis, leading to a decrease in the number of oocysts recovered from the mosquitoes' midgut. Regarding the effect of CinCu, the copper-complex was not able to induce inhibition of P. vivax infection; however, it was able to induce an important reduction in the intensity of oocyst formation by about 2.4 times. It is plausible that the metallo-compound also be able to interfere with the differentiation of parasite stages and/or ookinete-secreted chitinase into the peritrophic matrix of mosquitoes, promoting a reduction in the number of oocysts formed. Taken together, the results suggest that this compound is promising as a prototype for the development of new antimalarial drugs. Furthermore, our study can draw a new pathway for repositioning already-known antimalarial drugs by editing their chemical structure to improve the antimalarial activity against the asexual and sexual stages of the parasite.
Collapse
Affiliation(s)
- Camila Martins Gomes Morais
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Post-Graduate Program in Parasitic Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ramayana Morais de Medeiros Brito
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Valeska Santana de Sena Pereira
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Post-Graduate Program in Biochemistry and Molecular Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jordam William Pereira-Silva
- Laboratory of Infectious Disease Ecology in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil,Post-Graduate Program in Living Conditions and Health Situations in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil
| | - Alexandre Menezes
- Post-Graduate Program in Biology of Host-Pathogen interaction, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil
| | - Felipe Arley Costa Pessoa
- Laboratory of Infectious Disease Ecology in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil
| | - Martyna Kucharska
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Malwina Birczyńska-Zych
- Department of Infectious and Tropical Diseases, Medical College, Jagiellonian University, Kraków, Poland,Department of Infectious Diseases, The University Hospital in Kraków, Kraków, Poland
| | - Claudia María Ríos-Velásquez
- Laboratory of Infectious Disease Ecology in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil,*Correspondence: Valter Ferreira de Andrade-Neto, ; ; Claudia María Ríos-Velásquez, ;
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil,*Correspondence: Valter Ferreira de Andrade-Neto, ; ; Claudia María Ríos-Velásquez, ;
| |
Collapse
|
5
|
Kalkman LC, Hanscheid T, Krishna S, Kremsner PG, Grobusch MP. Antimalarial treatment in infants. Expert Opin Pharmacother 2022; 23:1711-1726. [PMID: 36174125 DOI: 10.1080/14656566.2022.2130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Malaria in infants is common in high-transmission settings, especially in infants >6 months. Infants undergo physiological changes impacting pharmacokinetics and pharmacodynamics of anti-malarial drugs and, consequently, the safety and efficacy of malaria treatment. Yet, treatment guidelines and evidence on pharmacological interventions for malaria often fail to address this vulnerable age-group. This review aims to summarise the available data on anti-malarial treatment in infants. AREAS COVERED The standard recommended treatments for severe and uncomplicated malaria are generally safe and effective in infants. However, infants have an increased risk of drug-related vomiting and have distinct pharmacokinetic parameters of antimalarials compared with older patients. These include larger volumes of distribution, higher clearance rates and immature enzyme systems. Consequently, infants with malaria may be at increased risk of treatment failure and drug toxicity. EXPERT OPINION Knowledge expansion to optimize treatment can be achieved by including more infants in antimalarial drug trials and by reporting separately on treatment outcomes in infants. Additional evidence on the efficacy, safety, tolerability, acceptability and effectiveness of ACTs in infants is needed, as well as population pharmacokinetics studies on antimalarials in the infant population.
Collapse
Affiliation(s)
- Laura C Kalkman
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sanjeev Krishna
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Clinical Academic Group, Institute for Infection and Immunity, and St. George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
| | - Peter G Kremsner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands.,Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
| |
Collapse
|
6
|
Hughes E, Wallender E, Kajubi R, Jagannathan P, Ochieng T, Kakuru A, Kamya MR, Clark TD, Rosenthal PJ, Dorsey G, Aweeka F, Savic RM. Piperaquine-Induced QTc Prolongation Decreases With Repeated Monthly Dihydroartemisinin-Piperaquine Dosing in Pregnant Ugandan Women. Clin Infect Dis 2022; 75:406-415. [PMID: 34864925 PMCID: PMC9427153 DOI: 10.1093/cid/ciab965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Intermittent preventive treatment with monthly dihydroartemisinin-piperaquine (DHA-PQ) is highly effective at preventing both malaria during pregnancy and placental malaria. Piperaquine prolongs the corrected QT interval (QTc), and it is possible that repeated monthly dosing could lead to progressive QTc prolongation. Intensive characterization of the relationship between piperaquine concentration and QTc interval throughout pregnancy can inform effective, safe prevention guidelines. METHODS Data were collected from a randomized controlled trial, where pregnant Ugandan women received malaria chemoprevention with monthly DHA-PQ (120/960 mg DHA/PQ; n = 373) or sulfadoxine-pyrimethamine (SP; 1500/75 mg; n = 375) during the second and third trimesters of pregnancy. Monthly trough piperaquine samples were collected throughout pregnancy, and pre- and postdose electrocardiograms were recorded at 20, 28, and 36 weeks' gestation in each woman. The pharmacokinetics-QTc relationship for piperaquine and QTc for SP were assessed using nonlinear mixed-effects modeling. RESULTS A positive linear relationship between piperaquine concentration and Fridericia corrected QTc interval was identified. This relationship progressively decreased from a 4.42 to 3.28 to 2.13 millisecond increase per 100 ng/mL increase in piperaquine concentration at 20, 28, and 36 weeks' gestation, respectively. Furthermore, 61% (n = 183) of women had a smaller change in QTc at week 36 than week 20. Nine women given DHA-PQ had grade 3-4 cardiac adverse events. SP was not associated with any change in QTc. CONCLUSIONS Repeated DHA-PQ dosing did not result in increased risk of QTc prolongation and the postdose QTc intervals progressively decreased. Monthly dosing of DHA-PQ in pregnant women carries minimal risk of QTc prolongation. CLINICAL TRIALS REGISTRATION NCT02793622.
Collapse
Affiliation(s)
- Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | | | - Teddy Ochieng
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Abel Kakuru
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Tamara D Clark
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Temporal distribution of Plasmodium falciparum recrudescence following artemisinin-based combination therapy: an individual participant data meta-analysis. Malar J 2022; 21:106. [PMID: 35331243 PMCID: PMC8943927 DOI: 10.1186/s12936-021-03980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/12/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The duration of trial follow-up affects the ability to detect recrudescent infections following anti-malarial treatment. The aim of this study was to explore the proportions of recrudescent parasitaemia as ascribed by genotyping captured at various follow-up time-points in treatment efficacy trials for uncomplicated Plasmodium falciparum malaria. METHODS Individual patient data from 83 anti-malarial efficacy studies collated in the WorldWide Antimalarial Resistance Network (WWARN) repository with at least 28 days follow-up were available. The temporal and cumulative distributions of recrudescence were characterized using a Cox regression model with shared frailty on study-sites. Fractional polynomials were used to capture non-linear instantaneous hazard. The area under the density curve (AUC) of the constructed distribution was used to estimate the optimal follow-up period for capturing a P. falciparum malaria recrudescence. Simulation studies were conducted based on the constructed distributions to quantify the absolute overestimation in efficacy due to sub-optimal follow-up. RESULTS Overall, 3703 recurrent infections were detected in 60 studies conducted in Africa (15,512 children aged < 5 years) and 23 studies conducted in Asia and South America (5272 patients of all ages). Using molecular genotyping, 519 (14.0%) recurrences were ascribed as recrudescent infections. A 28 day artemether-lumefantrine (AL) efficacy trial would not have detected 58% [95% confidence interval (CI) 47-74%] of recrudescences in African children and 32% [95% CI 15-45%] in patients of all ages in Asia/South America. The corresponding estimate following a 42 day dihydroartemisinin-piperaquine (DP) efficacy trial in Africa was 47% [95% CI 19-90%] in children under 5 years old treated with > 48 mg/kg total piperaquine (PIP) dose and 9% [95% CI 0-22%] in those treated with ≤ 48 mg/kg PIP dose. In absolute terms, the simulation study found that trials limited to 28 days follow-up following AL underestimated the risk of recrudescence by a median of 2.8 percentage points compared to day 63 estimates and those limited to 42 days following DP underestimated the risk of recrudescence by a median of 2.0 percentage points compared to day 42 estimates. The analysis was limited by few clinical trials following patients for longer than 42 days (9 out of 83 trials) and the imprecision of PCR genotyping which overcalls recrudescence in areas of higher transmission biasing the later distribution. CONCLUSIONS Restricting follow-up of clinical efficacy trials to day 28 for AL and day 42 for DP will miss a proportion of late recrudescent treatment failures but will have a modest impact in derived efficacy. The results highlight that as genotyping methods improve consideration should be given for trials with longer duration of follow-up to detect early indications of emerging drug resistance.
Collapse
|
8
|
Mansoor R, Commons RJ, Douglas NM, Abuaku B, Achan J, Adam I, Adjei GO, Adjuik M, Alemayehu BH, Allan R, Allen EN, Anvikar AR, Arinaitwe E, Ashley EA, Ashurst H, Asih PBS, Bakyaita N, Barennes H, Barnes KI, Basco L, Bassat Q, Baudin E, Bell DJ, Bethell D, Bjorkman A, Boulton C, Bousema T, Brasseur P, Bukirwa H, Burrow R, Carrara VI, Cot M, D’Alessandro U, Das D, Das S, Davis TME, Desai M, Djimde AA, Dondorp AM, Dorsey G, Drakeley CJ, Duparc S, Espié E, Etard JF, Falade C, Faucher JF, Filler S, Fogg C, Fukuda M, Gaye O, Genton B, Ghulam Rahim A, Gilayeneh J, Gonzalez R, Grais RF, Grandesso F, Greenwood B, Grivoyannis A, Hatz C, Hodel EM, Humphreys GS, Hwang J, Ishengoma D, Juma E, Kachur SP, Kager PA, Kamugisha E, Kamya MR, Karema C, Kayentao K, Kazienga A, Kiechel JR, Kofoed PE, Koram K, Kremsner PG, Lalloo DG, Laman M, Lee SJ, Lell B, Maiga AW, Mårtensson A, Mayxay M, Mbacham W, McGready R, Menan H, Ménard D, Mockenhaupt F, Moore BR, Müller O, Nahum A, Ndiaye JL, Newton PN, Ngasala BE, Nikiema F, Nji AM, Noedl H, Nosten F, Ogutu BR, Ojurongbe O, Osorio L, Ouédraogo JB, Owusu-Agyei S, Pareek A, Penali LK, Piola P, Plucinski M, Premji Z, Ramharter M, Richmond CL, Rombo L, Roper C, Rosenthal PJ, Salman S, Same-Ekobo A, Sibley C, Sirima SB, Smithuis FM, Somé FA, Staedke SG, Starzengruber P, Strub-Wourgaft N, Sutanto I, Swarthout TD, Syafruddin D, Talisuna AO, Taylor WR, Temu EA, Thwing JI, Tinto H, Tjitra E, Touré OA, Tran TH, Ursing J, Valea I, Valentini G, van Vugt M, von Seidlein L, Ward SA, Were V, White NJ, Woodrow CJ, Yavo W, Yeka A, Zongo I, Simpson JA, Guerin PJ, Stepniewska K, Price RN. Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data. BMC Med 2022; 20:85. [PMID: 35249546 PMCID: PMC8900374 DOI: 10.1186/s12916-022-02265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/18/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia. METHODS Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall ≥ 25% at day 3 and day 7. RESULTS A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0-19.7 g/dL) in Africa, 11.6 g/dL (range 5.0-20.0 g/dL) in Asia and 12.3 g/dL (range 6.9-17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to ≥ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39-3.05], p < 0.001). CONCLUSIONS In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery.
Collapse
|
9
|
Vignier N, Bouchaud O, Angheben A, Bottieau E, Calleri G, Salas-Coronas J, Martin C, Ramos JM, Mechain M, Rapp C, Nothdurft HD, Velasco M, Bardají A, Rojo-Marcos G, Visser LG, Hatz C, Bisoffi Z, Jelinek T, Duparc S, Bourhis Y, Tommasini S, Iannucelli M, Bacchieri A, Mattera GG, Merlo Pich E, Behrens RH. Longitudinal study based on a safety registry for malaria patients treated with artenimol-piperaquine in six European countries. Malar J 2021; 20:214. [PMID: 33964945 PMCID: PMC8105939 DOI: 10.1186/s12936-021-03750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background European travellers to endemic countries are at risk of malaria and may be affected by a different range of co-morbidities than natives of endemic regions. The safety profile, especially cardiac issues, of artenimol (previously dihydroartemisinin)–piperaquine (APQ) Eurartesim® during treatment of uncomplicated imported falciparum malaria is not adequately described due to the lack of longitudinal studies in this population. The present study was conducted to partially fill this gap. Methods Participants were recruited through Health Care Provider’s safety registry in 15 centres across 6 European countries in the period 2013–2016. Adverse events (AE) were collected, with a special focus on cardiovascular safety by including electrocardiogram QT intervals evaluated after correction with either Bazett’s (QTcB) or Fridericia’s (QTcF) methods, at baseline and after treatment. QTcB and/or QTcF prolongation were defined by a value > 450 ms for males and children and > 470 ms for females. Results Among 294 participants, 30.3% were women, 13.7% of Caucasian origin, 13.5% were current smoker, 13.6% current alcohol consumer and 42.2% declared at least one illness history. The mean (SD) age and body mass index were 39.8 years old (13.2) and 25.9 kg/m2 (4.7). Among them, 75 reported a total of 129 AE (27 serious), 46 being suspected to be related to APQ (11 serious) and mostly labelled as due to haematological, gastrointestinal, or infection. Women and Non-African participants had significantly (p < 0.05) more AEs. Among AEs, 21 were due to cardiotoxicity (7.1%), mostly QT prolongation, while 6 were due to neurotoxicity (2.0%), mostly dizziness. Using QTcF correction, QT prolongation was observed in 17/143 participants (11.9%), only 2 of them reporting QTcF > 500 ms (milliseconds) but no clinical symptoms. Using QTcB correction increases of > 60 ms were present in 9 participants (6.3%). A trend towards increased prolongation was observed in those over 65 years of age but only a few subjects were in this group. No new safety signal was reported. The overall efficacy rate was 255/257 (99.2%). Conclusions APQ appears as an effective and well-tolerated drug for treatment of malaria in patients recruited in European countries. AEs and QT prolongation were in the range of those obtained in larger cohorts from endemic countries. Trial registration This study has been registered in EU Post-Authorization Studies Register as EUPAS6942 Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03750-x.
Collapse
Affiliation(s)
- Nicolas Vignier
- Department of Infectious and Tropical Diseases, and Laboratoire Éducations et Pratiques de Santé (LEPS EA 3412), Sorbonne Paris Nord University, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France. .,Centre D'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, France. .,INSERM, Sorbonne Université, Institut Pierre Louis D'Épidémiologie et de Santé Publique IPLESP, Paris, France.
| | - Olivier Bouchaud
- Department of Infectious and Tropical Diseases, and Laboratoire Éducations et Pratiques de Santé (LEPS EA 3412), Sorbonne Paris Nord University, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France.,TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy
| | - Andrea Angheben
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Emmanuel Bottieau
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Calleri
- Azienda Sanitaria Locale "Cità Di Torino", Torino, Italy
| | - Joaquín Salas-Coronas
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Tropical Medicine Unit, Hospital de Poniente, El Ejido, Almería, Spain
| | | | - José Manuel Ramos
- Consulta de Enfermedades Importadas Y Parasitología Clínica, Unidad de Enfermedades Infecciosas, Hospital General Universitario Alicante, Alicante, Spain
| | | | | | | | - Maria Velasco
- Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Azucena Bardají
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Gerardo Rojo-Marcos
- Hospital Universitario Príncipe de Asturias, Alcalà de Henares, Madrid, Spain
| | - Leo G Visser
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Christoph Hatz
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Zeno Bisoffi
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Tomas Jelinek
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Berliner Centrum Fürr Reise- Und Tropenmedizin, Berlin, Germany
| | | | | | | | | | | | | | | | - Ronald H Behrens
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Clinical Research Dept, Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
10
|
Tielli A, Jullien V, Pull L, Bouchaud O, Siriez JY. Unintentional artenimol/piperaquine overdose in two children occurring without evidence of subsequent cardiotoxicity. Int J Antimicrob Agents 2021; 57:106347. [PMID: 33892107 DOI: 10.1016/j.ijantimicag.2021.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/20/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
At the emergency department of the Robert-Debré children's hospital in Paris, France, artenimol/piperaquine (AP) has been the first-line antimalarial treatment since September 2012. Most children receive the first dose at the hospital and return home if, after 1 hour's observation, there have been no episodes of vomiting. Here we report the case of two children, aged 11 years and 5 years, respectively, in whom the entire cumulative 3 days' treatment course combined was accidentally administered instead of just the first-day treatment dose. Serum piperaquine levels were measured between Hour 40 (H40) and Day 29 (D29) post-ingestion for the first patient, and between H17 and D7 for the second patient. Corrected QT (QTc) values were measured between H12 and D20 for the first patient and between H17 and H64 for the second patient. Despite reports of adverse electrophysiological events, AP overdose occurred without consequence on the QTc interval or clinical cardiac state in these two children.
Collapse
Affiliation(s)
- Alexandra Tielli
- Hôpital Robert-Debré, Service d'Accueil des Urgences pédiatriques, Assistance Publique-Hôpitaux de Paris, 48 boulevard Sérurier, 75019 Paris, France.
| | - Vincent Jullien
- Groupe hospitalier Paris Seine Saint-Denis, UF de Pharmacologie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lauren Pull
- Hôpital Robert-Debré, Service d'Accueil des Urgences pédiatriques, Assistance Publique-Hôpitaux de Paris, 48 boulevard Sérurier, 75019 Paris, France
| | - Olivier Bouchaud
- Hôpital Avicenne, Service des Maladies Infectieuses et Tropicales, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
| | - Jean-Yves Siriez
- Hôpital Robert-Debré, Service d'Accueil des Urgences pédiatriques, Assistance Publique-Hôpitaux de Paris, 48 boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
11
|
Wang Q, Zou Y, Pan Z, Zhang H, Deng C, Yuan Y, Guo J, Tang Y, Julie N, Wu W, Li G, Li M, Tan R, Huang X, Guo W, Li C, Xu Q, Song J. Efficacy and Safety of Artemisinin-Piperaquine for the Treatment of Uncomplicated Malaria: A Systematic Review. Front Pharmacol 2020; 11:562363. [PMID: 33013398 PMCID: PMC7516161 DOI: 10.3389/fphar.2020.562363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/24/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE The World Health Organization recommends artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria to improve the therapeutic efficacy and limit the choice of drug-resistant parasites. This systematic review and meta-analysis aimed to evaluate the comparative efficacy and safety of artemisinin-piperaquine (AP) in the treatment of uncomplicated malaria relative to other commonly used ACTs. METHODS As per the PRISMA guidelines, the EMBASE, MEDLINE, the Google Scholar Library, and Cochrane library databases were systematically searched from inception until July 2020 with the following terms: "artemisinin-piperaquine" or "AP." Only randomized controlled trials (RCTs) were included. The competing interventions included dihydroartemisinin-piperaquine (DHA-PPQ), artemether-lumefantrine (AL, Coartem), artesunate-melfloquine (ASAM) and artesunate-amodiaquine (ASAQ, Artekin). Single-arm clinical trial on AP was also assessed. The reported outcomes, including the overall response, cure rate, fever and parasite clearance time, hematology, biochemistry, electrocardiogram (ECG), adverse events, recurrence rate, and sensitivity analyses, were systematically investigated. All data were analyzed using the Review Manager 5.3. RESULTS A total of seven studies were reviewed, including five RCTs and two single-arm studies. A pooled analysis of 5 RCTs (n = 772) revealed a comparable efficacy on polymerase chain reaction (PCR)-confirmed cure rate between AP and competing interventions in treating uncomplicated malaria. As for the fever and parasite clearance time, due to the lack of complete data in some studies, only 3 studies' data could be used. The patients showed good tolerance to all drugs, and some side-effects (such as headache, anoxia, vomiting, nausea, and dizziness) were reported for every group, but they were self-limited and showed no significant difference. CONCLUSIONS AP appeared to show similar efficacy and safety, with a simpler mode of administration and easier compliance when compared with other ACTs used in the treatment of uncomplicated malaria. Considering that the potential evolution of drug resistance is of a great concern, additional RCTs with high-quality and more rigorous design are warranted to substantiate the efficacy and safety in different populations and epidemiological regions.
Collapse
Affiliation(s)
- Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Zou
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyi Pan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiawen Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yexiao Tang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nadia Julie
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanting Wu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoming Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingqiang Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruixiang Tan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changqing Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Wattanakul T, Ogutu B, Kabanywanyi AM, Asante KP, Oduro A, Adjei A, Sie A, Sevene E, Macete E, Compaore G, Valea I, Osei I, Winterberg M, Gyapong M, Adjuik M, Abdulla S, Owusu-Agyei S, White NJ, Day NPJ, Tinto H, Baiden R, Binka F, Tarning J. Pooled Multicenter Analysis of Cardiovascular Safety and Population Pharmacokinetic Properties of Piperaquine in African Patients with Uncomplicated Falciparum Malaria. Antimicrob Agents Chemother 2020; 64:e01848-19. [PMID: 32312783 PMCID: PMC7318010 DOI: 10.1128/aac.01848-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/08/2020] [Indexed: 01/08/2023] Open
Abstract
Dihydroartemisinin-piperaquine has shown excellent efficacy and tolerability in malaria treatment. However, concerns have been raised of potentially harmful cardiotoxic effects associated with piperaquine. The population pharmacokinetics and cardiac effects of piperaquine were evaluated in 1,000 patients, mostly children enrolled in a multicenter trial from 10 sites in Africa. A linear relationship described the QTc-prolonging effect of piperaquine, estimating a 5.90-ms mean QTc prolongation per 100-ng/ml increase in piperaquine concentration. The effect of piperaquine on absolute QTc interval estimated a mean maximum QTc interval of 456 ms (50% effective concentration of 209 ng/ml). Simulations from the pharmacokinetic-pharmacodynamic models predicted 1.98 to 2.46% risk of having QTc prolongation of >60 ms in all treatment settings. Although piperaquine administration resulted in QTc prolongation, no cardiovascular adverse events were found in these patients. Thus, the use of dihydroartemisinin-piperaquine should not be limited by this concern. (This study has been registered at ClinicalTrials.gov under identifier NCT02199951.).
Collapse
Affiliation(s)
- Thanaporn Wattanakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bernhards Ogutu
- INDEPTH Network, Accra, Ghana
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | | | - Alex Adjei
- Dodowa Health Research Centre, Dodowa, Ghana
| | - Ali Sie
- Nouna Health Research Centre, Nouna, Burkina Faso
| | - Esperanca Sevene
- Centro de Investigaçãoem Saúde de Manhiça, CISM, Manhiça, Mozambique
| | - Eusebio Macete
- Centro de Investigaçãoem Saúde de Manhiça, CISM, Manhiça, Mozambique
| | | | - Innocent Valea
- Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Isaac Osei
- Navrongo Health Research Centre, Navrongo, Ghana
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Margaret Gyapong
- Dodowa Health Research Centre, Dodowa, Ghana
- University for Health and Allied Sciences, Ho, Ghana
| | | | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Kintampo, Ghana
- University for Health and Allied Sciences, Ho, Ghana
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Halidou Tinto
- Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | | | - Fred Binka
- INDEPTH Network, Accra, Ghana
- University for Health and Allied Sciences, Ho, Ghana
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| |
Collapse
|
13
|
Chan XHS, Win YN, Haeusler IL, Tan JY, Loganathan S, Saralamba S, Chan SKS, Ashley EA, Barnes KI, Baiden R, Bassi PU, Djimde A, Dorsey G, Duparc S, Hanboonkunupakarn B, ter Kuile FO, Lacerda MVG, Nasa A, Nosten FH, Onyeji CO, Pukrittayakamee S, Siqueira AM, Tarning J, Taylor WRJ, Valentini G, van Vugt M, Wesche D, Day NPJ, Huang CLH, Brugada J, Price RN, White NJ. Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data. PLoS Med 2020; 17:e1003040. [PMID: 32134952 PMCID: PMC7058280 DOI: 10.1371/journal.pmed.1003040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria. METHODS AND FINDINGS We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (-61.77 milliseconds; 95% credible interval [CI]: -80.71 to -42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (-110.89 milliseconds; 95% CI: -140.38 to -81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: -3.17 to -2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials. CONCLUSIONS Adjustment for malaria and fever-recovery-related QT lengthening is necessary to avoid misattributing malaria-disease-related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval-prolonging medications are important therapeutic options.
Collapse
Affiliation(s)
- Xin Hui S. Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yan Naung Win
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Health and Diseases Control Unit, Naypyidaw, Myanmar
| | - Ilsa L. Haeusler
- WorldWide Antimalarial Research Network, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jireh Y. Tan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shanghavie Loganathan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Christ Church College, University of Oxford, Oxford, United Kingdom
| | - Sompob Saralamba
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shu Kiat S. Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Singapore Armed Forces Medical Corps, Singapore
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR
| | - Karen I. Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- WorldWide Antimalarial Resistance Network, Cape Town, South Africa
| | | | - Peter U. Bassi
- Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria
| | - Abdoulaye Djimde
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | | | - Borimas Hanboonkunupakarn
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Feiko O. ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marcus V. G. Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Fundação Oswaldo Cruz, Manaus, Brazil
| | - Amit Nasa
- Sun Pharmaceutical Industries Ltd, Gurgaon, Haryana, India
| | - François H. Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Sasithon Pukrittayakamee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - André M. Siqueira
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Research Network, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Walter R. J. Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Michèle van Vugt
- Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - David Wesche
- Certara, Princeton, New Jersey, United States of America
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Josep Brugada
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Pull L, Lupoglazoff JM, Beardmore M, Michel JF, Buffet P, Bouchaud O, Siriez JY. Artenimol-piperaquine in children with uncomplicated imported falciparum malaria: experience from a prospective cohort. Malar J 2019; 18:419. [PMID: 31843017 PMCID: PMC6915931 DOI: 10.1186/s12936-019-3047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/30/2019] [Indexed: 11/25/2022] Open
Abstract
Background Although malaria remains one of the major public health threats in inter-tropical areas, there is limited understanding of imported malaria in children by paediatricians and emergency practitioners in non-endemic countries, often resulting in misdiagnosis and inadequate treatment. Moreover, classical treatments (atovaquone-proguanil, quinine, mefloquine) are limited either by lengthy treatment courses or by side effects. Since 2010, the World Health Organization (WHO) has recommended the use of oral artemisinin-based combination therapy for the treatment of uncomplicated Plasmodium falciparum malaria worldwide. The benefits of artenimol–piperaquine in children have been validated in endemic countries but experience remains limited in cases of imported malaria. Methods This prospective observational study in routine paediatric care took place at the Emergency Department, Robert-Debré Hospital (Paris, France) from September 2012 to December 2014. Tolerance and efficacy of artenimol–piperaquine in children presenting with the following inclusion criteria were assessed: P. falciparum positive on thin or thick blood smear; and the absence of WHO-defined features of severity. Results Among 83 children included in this study, treatment with artenimol–piperaquine was successful in 82 children (98.8%). None of the adverse events were severe and all were considered mild with no significant clinical impact. This also applied to cardiological adverse events despite a significant increase of the mean post-treatment QTc interval. Conclusion Artenimol–piperaquine displays a satisfying efficacy and tolerance profile as a first-line treatment for children with imported uncomplicated falciparum malaria and only necessitates three once-daily oral intakes of the medication. Comparative studies versus artemether-lumefantrine or atovaquone-proguanil would be useful to confirm the results of this study.
Collapse
Affiliation(s)
- Lauren Pull
- Service D'Accueil Des Urgences Pédiatriques, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 48 Boulevard Sérurier, 75019, Paris, France
| | - Jean-Marc Lupoglazoff
- Service D'Accueil Des Urgences Pédiatriques, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 48 Boulevard Sérurier, 75019, Paris, France
| | | | - Jean-François Michel
- Service D'Accueil Des Urgences Pédiatriques, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 48 Boulevard Sérurier, 75019, Paris, France
| | - Pierre Buffet
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France
| | - Olivier Bouchaud
- Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Université Paris 13, 93000, Bobigny, France
| | - Jean-Yves Siriez
- Service D'Accueil Des Urgences Pédiatriques, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 48 Boulevard Sérurier, 75019, Paris, France.
| |
Collapse
|
15
|
Perisse A, Velut G, Javelle E, Loarer G, Michel R, Simon F. Treatment for Uncomplicated Plasmodium falciparum Malaria in French Soldiers Deployed in Sub-Saharan Africa: Gaps Between Policy and Field Practice. Mil Med 2019; 183:e638-e643. [PMID: 29425320 DOI: 10.1093/milmed/usx117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/27/2017] [Accepted: 11/14/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Malaria prevention and treatment are big challenges for the French forces deployed in sub-Saharan Africa. Since December 2013, 1,800 French soldiers have been deployed at any one time in the Central African Republic in the framework of "Operation Sangaris" and European Union Force (EUFOR). Over the 2014-2015 period, about 500 cases of malaria were notified in these troops during the operation or after their return (annual incidence: 13.4 p.100 person-year). The recommendation to use dihydroartemisinin-piperaquine (DHA-PQ) as the first-line treatment for French soldiers suffering from uncomplicated Plasmodium falciparum malaria in endemic areas is not always followed in practice in the field by French military general practitioners (GPs). METHODS We conduced a retrospective Knowledge-Attitude-Practice study by self-administered questionnaire, to all military French doctors who were in mission in Central African Republic from January 2014 to July 2015 to try to understand what were the reasons for the GP not to prescribe DHA-PQ on the field. FINDINGS Thirty-six GPs (53%) answered to the questionnaire. Eighty-three percent of them knew about the recommendation to use DHA-PQ for un uncomplicated Pf malaria. Fifty-eight percent had a favorable attitude toward DHA-PQ. The factors associated with the prescription of another drug (Atovaquone-proguanil) were: the habit (odds ratio [OR] 0.1, confidence interval (CI) 0-0.6], the fact that Atovaquone-proguanil is more practical to use [OR 0.01, CI 0-0.1]. In practice, only 37.5% prescribed DHA-PQ the most of the time during their mission. Factors associated with a non-favorable attitude toward DHA-PQ were: the necessity to calculate a QTc interval during the treatment [OR 0.2, confidence interval 0-0.9], and the fact that DHA-PQ must be taken on an empty stomach [OR 0.3, CI 0.1-0.8]. GP who received a formation before their mission about malaria and treatment had a favorable attitude toward DHA-PQ. DISCUSSION There is very satisfactory knowledge by the military GPs stationed in the Central African Republic on both the recommendations and prescription of antimalarial drugs. The present study highlights some difficulties in implementing the recommendations in an operational context, notably factors limiting the prescription of DHA-PQ during military deployment (need for ECG monitoring, empty stomach, and lack of habit). Proposals can be made to improve the efficacy, tolerance, and practicability of malaria treatment in the field. The main focus should be a more flexible application of the French DHA-PQ risk management plan in the field, specific training and communication about DHA-PQ use, the generalization of ECG printing equipment in the field, and the switch from DHA-PQ to an alternative artemisinin-based combination therapy during deployments in malaria-endemic areas.
Collapse
Affiliation(s)
- Anne Perisse
- Antenne Médicale de Vincennes, Fort neuf de Vincennes, cours des Maréchaux, Paris Cedex, France
| | - Guillaume Velut
- Military Centre for Epidemiology and Public Health, Caserne Ste Marthe, 111 avenue de la Corse, BP, Marseille Cedex 02, France
| | - Emilie Javelle
- Infectious Diseases and Tropical Medicine Department, Laveran Military Teaching Hospital, 34 Bd Laveran, CS, Marseille Cedex 13, France
| | - Gwion Loarer
- French Military Medical Service, Surgeon General's Headquarters, Fort neuf de Vincennes, cours des Maréchaux, Paris Cedex 12, France
| | - Remy Michel
- Military Centre for Epidemiology and Public Health, Caserne Ste Marthe, 111 avenue de la Corse, BP, Marseille Cedex 02, France.,French Military Health Service Academy - Ecole du Val de Grâce, 74 Bd Port Royal, Paris, France
| | - F Simon
- Infectious Diseases and Tropical Medicine Department, Laveran Military Teaching Hospital, 34 Bd Laveran, CS, Marseille Cedex 13, France.,French Military Health Service Academy - Ecole du Val de Grâce, 74 Bd Port Royal, Paris, France
| |
Collapse
|
16
|
Funck-Brentano C, Bacchieri A, Valentini G, Pace S, Tommasini S, Voiriot P, Ubben D, Duparc S, Evene E, Felices M, Corsi M. Effects of Dihydroartemisinin-Piperaquine Phosphate and Artemether-Lumefantrine on QTc Interval Prolongation. Sci Rep 2019; 9:777. [PMID: 30692558 PMCID: PMC6349839 DOI: 10.1038/s41598-018-37112-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
QT/QTc interval prolongation reflects delayed cardiac repolarization which can lead to Torsade de Pointes and sudden death. Many antimalarial drugs prolong QT/QTc interval. However, due to confounding factors in patients with malaria, the precise extent of this effect has been found to be highly variable among studies. We compared the effects of dihydroartemisinin-piperaquine phosphate (DHA-PQP) and artemether-lumefantrine (A-L) on QT interval duration in healthy volunteers. In this randomized, parallel groups, active moxifloxacin- and placebo-controlled study, prolongation of the QT/QTc interval following treatment with DHA-PQP in fasted and fed condition and A-L in fed state was investigated in healthy subjects (n = 287; Clinicaltrials.gov: NCT01103830). DHA-PQP resulted in significant mean (95% confidence interval (CI)) maximum increases in QTc Fridericia (QTcF) of 21.0 ms (15.7, 26.4) for DHA-PQP fasted, 35.9 ms (31.1, 40.6) for DHA-PQP high-fat/low-caloric and 46.0 ms (39.6, 52.3) for DHA-PQP high-fat/high-caloric breakfast. For A-L, the largest difference from baseline relative to placebo was 9.9 ms (95% CI: 6.8, 12.9). Increases in QTcF related to maximum plasma concentrations of piperaquine. Moxifloxacin demonstrated assay sensitivity. Increases in QTcF following DHA-PQP and A-L were clinically relevant. Food increased piperaquine exposure and QTcF interval prolongation emphasizing the need to administer DHA-PQP in the fasting state.
Collapse
Affiliation(s)
- Christian Funck-Brentano
- INSERM, CIC-1421 and UMR ICAN 1166, Sorbonne Université, Faculty of Medicine, AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology and Clinical Investigation Center, Institute of Cardiometabolism and Nutrition (ICAN), F-75013, Paris, France.
| | | | - Giovanni Valentini
- Sigma-tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, (Rome), Italy
| | - Silvia Pace
- Sigma-tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, (Rome), Italy
| | - Silva Tommasini
- Sigma-tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, (Rome), Italy
| | | | - David Ubben
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | - Marco Corsi
- Sigma-tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, (Rome), Italy
| |
Collapse
|
17
|
Haeusler IL, Chan XHS, Guérin PJ, White NJ. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Med 2018; 16:200. [PMID: 30400791 PMCID: PMC6220451 DOI: 10.1186/s12916-018-1188-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Several quinoline and structurally related antimalarial drugs are associated with cardiovascular side effects, particularly hypotension and electrocardiographic QT interval prolongation. A prolonged QT interval is a sensitive but not specific risk marker for the development of Torsade de Pointes-a potentially lethal polymorphic ventricular tachyarrhythmia. The increasing use of quinoline and structurally related antimalarials in mass treatments to eliminate malaria rapidly highlights the need to review their cardiovascular safety profiles. METHODS The primary objective of this systematic review was to describe the documented clinical and electrocardiographic cardiovascular side effects of quinine, mefloquine, lumefantrine, piperaquine, halofantrine, chloroquine, sulfadoxine-pyrimethamine, amodiaquine, and primaquine. Trials in healthy subjects or patients with Plasmodium falciparum or P. vivax infection were included if at least two ECGs were conducted during the trial. All trial designs were included except case reports and pooled analyses. Secondary outcomes were the methods adopted by trials for measuring and reporting the QT interval. RESULTS Data from trials published between 1982 and July 2016 were included. A total of 177 trials met the inclusion criteria. 35,448 participants received quinoline antimalarials in these trials, of which 18,436 participants underwent ECG evaluation. Subjects with co-medication use or comorbidities including cardiovascular disease were excluded from the majority of trials. Dihydroartemisinin-piperaquine was the drug most studied (5083 participants). Despite enormous use over the past 60 years, only 1076, 452, and 150 patients had ECG recordings reported in studies of chloroquine, amodiaquine, and primaquine respectively. Transiently high concentrations of quinine, quinidine, and chloroquine following parenteral administration have all been associated with hypotension, but there were no documented reports of death or syncope attributable to a cardiovascular cause, nor of electrocardiographic recordings of ventricular arrhythmia in these trials. The large volume of missing outcome information and the heterogeneity of ECG interval reporting and measurement methodology did not allow pooled quantitative analysis of QT interval changes. CONCLUSIONS No serious cardiac adverse effects were recorded in malaria clinical trials of 35,548 participants who received quinoline and structurally related antimalarials with close follow-up including 18,436 individuals who underwent ECG evaluation. While these findings provide further evidence of the rarity of serious cardiovascular events after treatment with these drugs, they also underscore the need for continued strengthening of pharmacovigilance systems for robust detection of rare drug adverse events in real-world populations. A standardised approach to measurement and reporting of ECG data in malaria trials is also needed. TRIAL REGISTRATION PROSPERO CRD42016036678.
Collapse
Affiliation(s)
- Ilsa L Haeusler
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Hui S Chan
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
18
|
Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet 2018; 391:1378-1390. [PMID: 29606364 PMCID: PMC5889791 DOI: 10.1016/s0140-6736(18)30291-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/21/2017] [Accepted: 02/09/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemether-lumefantrine and artesunate-amodiaquine are used as first-line artemisinin-based combination therapies (ACTs) in west Africa. Pyronaridine-artesunate and dihydroartemisinin-piperaquine are potentially useful for diversification of ACTs in this region, but further safety and efficacy data are required on malaria retreatment. METHODS We did a randomised, multicentre, open-label, longitudinal, controlled phase 3b/4 clinical trial at seven tertiary centres in Burkina Faso, Guinea, and Mali. Eligible participants for first malaria episode and all retreatment episodes were adults and children aged 6 months and older with microscopically confirmed Plasmodium spp malaria (>0 to <200 000 parasites per μL of blood) and fever or history of fever in the previous 24 h. Individuals with severe or complicated malaria, an alanine aminotransferase concentration of more than twice the upper limit of normal, or a QTc greater than 450 ms were excluded. Using a randomisation list for each site, masked using sealed envelopes, participants were assigned to either pyronaridine-artesunate or dihydroartemisinin-piperaquine versus either artesunate-amodiaquine or artemether-lumefantrine. Block sizes were two or four if two treatments were allocated, and three or six if three treatments were allocated. Microscopists doing the parasitological assessments were masked to treatment allocation. All treatments were once-daily or twice-daily tablets or granules given orally and dosed by bodyweight over 3 days at the study centre. Patients were followed up as outpatients up to day 42, receiving clinical assessments on days 0, 1, 2, 3, 7, 14, 21, 28, 35, and 42. Two primary outcomes were compared for non-inferiority: the 2-year incidence rate of all microscopically confirmed, complicated and uncomplicated malaria episodes in patients in the intention-to-treat population (ITT; non-inferiority margin 20%); and adequate clinical and parasitological response (ACPR) in uncomplicated malaria across all episodes (unadjusted and PCR-adjusted for Plasmodium falciparum and unadjusted for other Plasmodium spp) in the per-protocol population on days 28 and 42 (non-inferiority margin 5%). Safety was assessed in all participants who received one dose of study drug. This study is registered at the Pan African Clinical Trials Registry (PACTR201105000286876). FINDINGS Between Oct 24, 2011, and Feb 1, 2016, we assigned 4710 eligible participants to the different treatment strategies: 1342 to pyronaridine-artesunate, 967 to artemether-lumefantrine, 1061 to artesunate-amodiaquine, and 1340 to dihydroartemisinin-piperaquine. The 2-year malaria incidence rate in the ITT population was non-inferior for pyronaridine-artesunate versus artemether-lumefantrine (1·77, 95% CI 1·63-1·93 vs 1·87, 1·72-2·03; rate ratio [RR] 1·05, 95% CI 0·94-1·17); and versus artesunate-amodiaquine (1·39, 95% CI 1·22-1·59 vs 1·35, 1·18-1·54; RR 0·97, 0·87-1·07). Similarly, this endpoint was non-inferior for dihydroartemisinin-piperaquine versus artemether-lumefantrine (1·16, 95% CI 1·01-1·34 vs 1·42 1·25-1·62; RR 1·22, 95% CI 1·06-1·41) and versus artesunate-amodiaquine (1·35, 1·21-1·51 vs 1·68, 1·51-1·88; RR 1·25, 1·02-1·50). For uncomplicated P falciparum malaria, PCR-adjusted ACPR was greater than 99·5% at day 28 and greater than 98·6% at day 42 for all ACTs; unadjusted ACPR was higher for pyronaridine-artesunate versus comparators at day 28 (96·9% vs 82·3% for artemether-lumefantrine and 95·6% vs 89·0% for artesunate-amodiaquine) and for dihydroartemisinin-piperaquine versus comparators (99·5% vs 81·6% for artemether-lumefantrine and 99·0% vs 89·0% for artesunate-amodiaquine). For non-falciparum species, unadjusted ACPR was greater than 98% for all study drugs at day 28 and at day 42 was greater than 83% except for artemether-lumefantrine against Plasmodium ovale (in ten [62·5%] of 16 patients) and against Plasmodium malariae (in nine [75·0%] of 12 patients). Nine deaths occurred during the study, none of which were related to the study treatment. Mostly mild transient elevations in transaminases occurred with pyronaridine-artesunate versus comparators, and mild QTcF prolongation with dihydroartemisinin-piperaquine versus comparators. INTERPRETATION Pyronaridine-artesunate and dihydroartemisinin-piperaquine treatment and retreatment of malaria were well tolerated with efficacy that was non-inferior to first-line ACTs. Greater access to these efficacious treatments in west Africa is justified. FUNDING The European and Developing Countries Clinical Trial Partnership, Medicines for Malaria Venture (Geneva, Switzerland), the UK Medical Research Council, the Swedish International Development Cooperation Agency, German Ministry for Education and Research, University Claude Bernard (Lyon, France), University of Science, Techniques and Technologies of Bamako (Bamako, Mali), the Centre National de Recherche et de Formation sur le Paludisme (Burkina Faso), Institut de Recherche en Sciences de la Santé (Bobo-Dioulasso, Burkina Faso), and Centre National de Formation et de Recherche en Santé Rurale (Republic of Guinea).
Collapse
|
19
|
Efficacy and Tolerability Outcomes of a Phase II, Randomized, Open-Label, Multicenter Study of a New Water-Dispersible Pediatric Formulation of Dihydroartemisinin-Piperaquine for the Treatment of Uncomplicated Plasmodium falciparum Malaria in African Infants. Antimicrob Agents Chemother 2017; 62:AAC.00596-17. [PMID: 29061746 PMCID: PMC5740378 DOI: 10.1128/aac.00596-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/12/2017] [Indexed: 01/29/2023] Open
Abstract
Artemisinin combination therapies are considered the mainstay of malaria treatment, but pediatric-friendly formulations for the treatment of infants are scarce. We sought to evaluate the efficacy and safety of a new dispersible-tablet formulation of dihydroartemisinin/piperaquine phosphate (DHA/PQP) in comparison to the marketed tablet (Eurartesim) in the treatment of infants with uncomplicated Plasmodium falciparum malaria. Reported here are the results of a large phase II, randomized, open-label, multicenter trial conducted in African infants (6 to 12 months of age) from Mozambique, Burkina Faso, The Gambia, the Democratic Republic of the Congo, and Tanzania. Primary efficacy endpoint was the PCR-corrected adequate clinical and parasitological response (ACPR) at day 28. Analysis was performed for the intention-to-treat (ITT) and per-protocol (PP) populations. A total of 201 patients received the dispersible-tablet formulation, and 99 received the conventional one administered as crushed tablets. At day 28, the PCR-corrected ACPRs were 86.9% (ITT) and 98.3% (PP) in the dispersible-tablet group and 84.9% (ITT) and 100% (PP) in the crushed-tablet group. At day 42, these values were 85.9% (ITT) and 96.5% (PP) in the dispersible-tablet group and 82.8% (ITT) and 96.4% (PP) in the crushed-tablet group. The comparison between survival curves for time to new infections showed no statistically significant differences (P = 0.409). The safety and tolerability profile for the two groups was similar in terms of type and frequency of adverse events and was consistent with that expected in African infants with malaria. A standard 3-day treatment with the new dispersible DHA/PQP formulation is as efficacious as the currently used tablet in African infants and has a comparable safety profile. (This trial was registered at ClinicalTrials.gov under registration no. NCT01992900.).
Collapse
|
20
|
Chirawurah JD, Ansah F, Nyarko PB, Duodu S, Aniweh Y, Awandare GA. Antimalarial activity of Malaria Box Compounds against Plasmodium falciparum clinical isolates. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:399-406. [PMID: 29128848 PMCID: PMC5683671 DOI: 10.1016/j.ijpddr.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022]
Abstract
Malaria remains a major cause of childhood deaths in resource-limited settings. In the absence of an effective vaccine, drugs and other interventions have played very significant roles in combating the scourge of malaria. The recent reports of resistance to artemisinin necessitate the need for new antimalarial drugs with novel mechanisms of action. Towards the development of new, affordable and easily accessible antimalarial drugs for endemic regions, the Medicines for Malaria Venture (MMV) assembled a total of 400 active antimalarial compounds called the Malaria Box. The potency and the efficacy of the Malaria Box Compounds have been determined mainly using laboratory strains of P. falciparum. This study investigated the potency of twenty compounds from the Malaria Box against four clinical isolates from Ghana, using optimized in vitro growth inhibitory assays. Seven out of the 20 compounds screened had 50% inhibitory concentration (IC50) below 500 nM. The most active among the selected compounds was MMV006087 (average IC50 of 30.79 nM). Variations in the potency of the Malaria Box Compounds were observed between P. falciparum clinical isolates and Dd2 strain. We also investigated the sensitivity of the clinical isolates to chloroquine and artesunate. The N093 clinical isolate was found to be resistant to chloroquine but showed high sensitivity to artesunate. The results underscore the importance of including clinical isolates with different drug-resistant backgrounds, in addition to laboratory strains, in validating potential compounds during antimalarial compound screening programs.
Collapse
Affiliation(s)
- Jersley D Chirawurah
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana
| | - Felix Ansah
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana
| | - Prince B Nyarko
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana
| | - Samuel Duodu
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana.
| | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana.
| |
Collapse
|
21
|
Osarfo J, Tagbor H, Cairns M, Alifrangis M, Magnussen P. Dihydroartemisinin-piperaquine versus artesunate-amodiaquine for treatment of malaria infection in pregnancy in Ghana: an open-label, randomised, non-inferiority trial. Trop Med Int Health 2017; 22:1043-1052. [PMID: 28556586 DOI: 10.1111/tmi.12905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine whether dihydroartemisinin-piperaquine (DHA-PPQ) is non-inferior to artesunate-amodiaquine (ASAQ) for treating uncomplicated malaria infection in pregnancy. METHODS A total of 417 second/ third trimester pregnant women with confirmed asymptomatic Plasmodium falciparum parasitaemia were randomised to receive DHA-PPQ or ASAQ over 3 days. Women were followed up on days 1, 2, 3, 7, 14, 28 and 42 after treatment start and at delivery for parasitological, haematological, birth outcomes and at 6-week post-partum to ascertain the health status of the babies. Parasitological efficacy (PE) by days 28 and 42 were co-primary outcomes. Analysis was per-protocol (PP) and modified intention-to-treat (ITT). Non-inferiority was declared if the two-sided 95% confidence interval for PE at the endpoints excluded 5% lower efficacy for DHA-PPQ. Secondary outcomes were assessed for superiority. RESULTS In PP analysis, PE was 91.6% for DHA-PPQ and 89.3% for ASAQ by day 28 and 89.0% and 86.5%, respectively, by day 42. DHA-PPQ was non-inferior to ASAQ with respect to uncorrected PE [adjusted difference by day 28 (DHA-PPQ-ASAQ); 3.5% (95%CI: -1.5, 8.5); and day 42: 3.9% (95%CI: -2.7, 10.4)]. ITT analysis gave similar results. PCR to distinguish recrudescence and reinfection was unsuccessful. DHA-PPQ recipients had fewer adverse events of vomiting, dizziness, and general weakness compared to ASAQ. Both drugs were well-tolerated, and there was no excess of adverse birth outcomes. CONCLUSION DHA-PPQ was non-inferior to ASAQ for treatment of malaria infection during pregnancy. No safety concerns were identified. Our findings contribute to growing evidence that DHA-PPQ is useful for control of malaria in pregnancy.
Collapse
Affiliation(s)
- Joseph Osarfo
- Ghana Health Service, Effiduase District Hospital, Effiduase, Ashanti Region, Ghana
| | - Harry Tagbor
- School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,School of Medicine, University of Health and Allied Sciences, Ho, Ghana
| | - Matthew Cairns
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Pascal Magnussen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Efficacy and safety of artesunate-mefloquine therapy for treating uncomplicated Plasmodium falciparummalaria: systematic review and meta-analysis. Trans R Soc Trop Med Hyg 2016; 110:626-636. [DOI: 10.1093/trstmh/trw077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 11/14/2022] Open
|
23
|
Kabanywanyi AM, Baiden R, Ali AM, Mahende MK, Ogutu BR, Oduro A, Tinto H, Gyapong M, Sie A, Sevene E, Macete E, Owusu-Agyei S, Adjei A, Compaoré G, Valea I, Osei I, Yawson A, Adjuik M, Akparibo R, Kakolwa MA, Abdulla S, Binka F. Multi-Country Evaluation of Safety of Dihydroartemisinin/Piperaquine Post-Licensure in African Public Hospitals with Electrocardiograms. PLoS One 2016; 11:e0164851. [PMID: 27764178 PMCID: PMC5072600 DOI: 10.1371/journal.pone.0164851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/28/2016] [Indexed: 01/06/2023] Open
Abstract
The antimalarial drug piperaquine is associated with delayed ventricular depolarization, causing prolonged QT interval (time taken for ventricular de-polarisation and re-polarisation). There is a lack of safety data regarding dihydroartemisinin/piperaquine (DHA/PPQ) for the treatment of uncomplicated malaria, which has limited its use. We created a platform where electrocardiograms (ECG) were performed in public hospitals for the safety assessment of DHA/PPQ, at baseline before the use of dihydroartemisinin/piperaquine (Eurartesim®), and on day 3 (before and after administration of the final dose) and day 7 post-administration. Laboratory analyses included haematology and clinical chemistry. The main objective of the ECG assessment in this study was to evaluate the effect of administration of DHA/PPQ on QTc intervals and the association of QTc intervals with changes in blood biochemistry, full and differential blood count over time after the DHA/PPQ administration. A total of 1315 patients gave consent and were enrolled of which 1147 (87%) had complete information for analyses. Of the enrolled patients 488 (42%), 323 (28%), 213 (19%) and 123 (11%) were from Ghana, Burkina Faso, Tanzania and Mozambique, respectively. Median (lower—upper quartile) age was 8 (5–14) years and a quarter of the patients were children under five years of age (n = 287). Changes in blood biochemistry, full and differential blood count were temporal which remained within clinical thresholds and did not require any intervention. The mean QTcF values were significantly higher than on day 1 when measured on day 3 before and after administration of the treatment as well as on day 7, four days after completion of treatment (12, 22 and 4 higher, p < 0.001). In all age groups the values of QT, QTcF and QTcB were highest on day 3 after drug intake. The mean extreme QTcF prolongation from baseline was lowest on day 3 before drug intake (33 ms, SD = 19) and highest on day 3 after the last dose (60 ms, SD = 31). There were 79 (7%) events of extreme mean QTcF prolongation which were not clinically significant. Nearly a half of them (n = 37) were grade 3 and mainly among males (33/37). Patients in Burkina Faso, Mozambique and Tanzania had significantly lower mean QTcF than patients in Ghana by an average of 3, 4 and 11 ms, respectively. We found no evidence that Eurartesim® administered in therapeutic doses in patients with uncomplicated malaria and no predisposing cardiac conditions in Africa was associated with adverse clinically significant QTc prolongation.
Collapse
Affiliation(s)
| | | | - Ali M. Ali
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | | | | | | | | | - Ali Sie
- Nouna Health Research Centre, Nouna, Burkina Faso
| | - Esperanca Sevene
- Centro de Investigaçãoem Saúde de Manhiça(CISM), Manhiça, Mozambique
| | - Eusebio Macete
- Centro de Investigaçãoem Saúde de Manhiça(CISM), Manhiça, Mozambique
| | | | - Alex Adjei
- Dodowa Health Research Centre, Dodowa, Ghana
| | | | | | - Isaac Osei
- Navrongo Health Research Centre, Navrongo, Ghana
| | - Abena Yawson
- Kintampo Health Research Centre, Kintampo, Ghana
| | | | | | | | | | - Fred Binka
- University for Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
24
|
Wiśniowska B, Tylutki Z, Wyszogrodzka G, Polak S. Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials. BMC Pharmacol Toxicol 2016; 17:12. [PMID: 26960809 PMCID: PMC4785617 DOI: 10.1186/s40360-016-0053-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/15/2016] [Indexed: 01/10/2023] Open
Abstract
Background Proarrhythmia assessment is one of the major concerns for regulatory bodies and pharmaceutical industry. ICH guidelines recommending preclinical tests have been established in attempt to eliminate the risk of drug-induced arrhythmias. However, in the clinic, arrhythmia occurrence is determined not only by the inherent property of a drug to block ion currents and disturb electrophysiological activity of cardiac myocytes, but also by many other factors modifying individual risk of QT prolongation and subsequent proarrhythmia propensity. One of those is drug-drug interactions. Since polypharmacy is a common practice in clinical settings, it can be anticipated that there is a relatively high risk that the patient will receive at least two drugs mutually modifying their proarrhythmic potential and resulting either in triggering the occurrence or mitigating the clinical symptoms. The mechanism can be observed either directly at the pharmacodynamic level by competing for the molecular targets, or indirectly by modifying the physiological parameters, or at the pharmacokinetic level by alteration of the active concentration of the victim drug. Methods This publication provides an overview of published clinical studies on pharmacokinetic and/or pharmacodynamic drug-drug interactions in humans and their electrophysiological consequences (QT interval modification). Databases of PubMed and Scopus were searched and combinations of the following keywords were used for Title, Abstract and Keywords fields: interaction, coadministration, combination, DDI and electrocardiographic, QTc interval, ECG. Only human studies were included. Over 4500 publications were retrieved and underwent preliminary assessment to identify papers accordant with the topic of this review. 76 papers reporting results for 96 drug combinations were found and analyzed. Results The results show the tremendous variability of drug-drug interaction effects, which makes one aware of complexity of the problem, and suggests the need for assessment of an additional risk factors and careful ECG monitoring before administration of drugs with anticipated QT prolongation. Conclusions DDIs can play significant roles in drugs’ cardiac safety, as evidenced by the provided examples. Assessment of the pharmacodynamic effects of the drug interactions is more challenging as compared to the pharmacokinetic due to the significant diversity in the endpoints which should be analyzed specifically for various clinical effects. Nevertheless, PD components of DDIs should be accounted for as PK changes alone do not allow to fully explain the electrophysiological effects in clinic situations. Electronic supplementary material The online version of this article (doi:10.1186/s40360-016-0053-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Krakow, Poland.
| | - Zofia Tylutki
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Krakow, Poland
| | - Gabriela Wyszogrodzka
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, 30-688, Kraków, Poland
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Krakow, Poland. .,Simcyp Ltd. (part of Certara), Blades Enterprise Centre, S2 4SU, Sheffield, UK.
| |
Collapse
|
25
|
Toure OA, Valecha N, Tshefu AK, Thompson R, Krudsood S, Gaye O, Rao BHK, Sagara I, Bose TK, Mohanty S, Rao BS, Anvikar AR, Mwapasa V, Noedl H, Arora S, Roy A, Iyer SS, Sharma P, Saha N, Jalali RK, Tiacoh L, Enosse S, Tangpukdee N, Kokolomami J, Ndiaye JL, Rao D, Yumva NN, Sidibe B, Mohanty R, Jha AC, Nyirenda M, Starzengruber P, Swoboda P. A Phase 3, Double-Blind, Randomized Study of Arterolane Maleate-Piperaquine Phosphate vs Artemether-Lumefantrine for Falciparum Malaria in Adolescent and Adult Patients in Asia and Africa. Clin Infect Dis 2016; 62:964-971. [PMID: 26908796 DOI: 10.1093/cid/ciw029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Artemisinins, which are derived from plants, are subject to risk of supply interruption due to climatic changes. Consequently, an effort to identify a new synthetic antimalarial was initiated. A fixed-dose combination of arterolane maleate (AM), a new synthetic trioxolane, with piperaquine phosphate (PQP), a long half-life bisquinoline, was evaluated in patients with uncomplicatedPlasmodium falciparummalaria. METHODS In this multicenter, randomized, double-blind, comparative, parallel-group trial, 1072 patients aged 12-65 years withP. falciparummonoinfection received either AM-PQP (714 patients) once daily or artemether-lumefantrine (A-L; 358 patients) twice daily for 3 days. All patients were followed up until day 42. RESULTS Of the 714 patients in the AM-PQP group, 638 (89.4%) completed the study; of the 358 patients in the A-L group, 301(84.1%) completed the study. In both groups, the polymerase chain reaction corrected adequate clinical and parasitological response (PCR-corrected ACPR) on day 28 in intent-to-treat (ITT) and per-protocol (PP) populations was 92.86% and 92.46% and 99.25% and 99.07%, respectively. The corresponding figures on day 42 in the ITT and PP populations were 90.48% and 91.34%, respectively. After adjusting for survival ITT, the PCR-corrected ACPR on day 42 was >98% in both groups. The overall incidence of adverse events was comparable. CONCLUSIONS AM-PQP showed comparable efficacy and safety to A-L in the treatment of uncomplicatedP. falciparummalaria in adolescent and adult patients. AM-PQP demonstrated high clinical and parasitological response rates as well as rapid parasite clearance. CLINICAL TRIALS REGISTRATION India. CTRI/2009/091/000101.
Collapse
Affiliation(s)
| | - Neena Valecha
- Epidemiology and Clinical Research Division, National Institute of Malaria Research, New Delhi, India
| | - Antoinette K Tshefu
- Centre de recherches cliniques et epidemiologiques de Mont Amba, Centre hospitalier de Mont Amba, Ecole de Sante Publique, Universite de Kinshasa, Democratic Republic of Congo
| | | | - Srivicha Krudsood
- Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Oumar Gaye
- Department of Parasitology Guediawaye District Hospital, University Cheikh Anta Diop, Dakar Fann, Senegal
| | | | - Issaka Sagara
- Malaria Research and Training Center, University of Science, Techniques and Technologies Bamako, Mali
| | | | | | | | - Anupkumar R Anvikar
- Epidemiology and Clinical Research Division, National Institute of Malaria Research, New Delhi, India
| | | | - Harald Noedl
- Malaria Research Initiative Bandarban, Sadar District Hospital, Bangladesh.,Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Austria
| | | | - Arjun Roy
- CDM & Biostatistics, Medical Affairs & Clinical Research
| | | | | | | | - Rajinder K Jalali
- Medical Affairs & Clinical Research, Sun Pharmaceutical Industries Limited (erstwhile Ranbaxy Laboratories Ltd), Gurgaon, Haryana, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fernández-Álvaro E, Hong WD, Nixon GL, O’Neill PM, Calderón F. Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action. J Med Chem 2016; 59:5587-603. [DOI: 10.1021/acs.jmedchem.5b01485] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Fernández-Álvaro
- Diseases of the Developing World, Tres
Cantos Medicines Development Campus, GlaxoSmithKline, c/Severo Ochoa, 2, 28760, Tres Cantos, Madrid, Spain
| | - W. David Hong
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Gemma L. Nixon
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Paul M. O’Neill
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Félix Calderón
- Diseases of the Developing World, Tres
Cantos Medicines Development Campus, GlaxoSmithKline, c/Severo Ochoa, 2, 28760, Tres Cantos, Madrid, Spain
| |
Collapse
|
27
|
Pelfrene E, Pinheiro MH, Cavaleri M. Artemisinin-based combination therapy in the treatment of uncomplicated malaria: review of recent regulatory experience at the European Medicines Agency. Int Health 2015; 7:239-46. [PMID: 25855638 PMCID: PMC4492341 DOI: 10.1093/inthealth/ihv017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/03/2014] [Accepted: 12/12/2014] [Indexed: 11/13/2022] Open
Abstract
Malaria remains a major public health challenge with almost half of the world's population exposed to the risk of contracting the illness. Prompt, effective and well tolerated treatment remains one of the cornerstones in the disease management, with artemisinin-based combination therapy the recommended option for non-severe malaria in endemic areas with predominant Plasmodium falciparum infections.Recent experience has been obtained at the European Medicines Agency with regulatory approval of two such antimalarial fixed combination products. For these cases, two different regulatory pathways were applied. As such, the present contribution describes this experience, emphasising main differences and applicability offered by these regulatory choices.
Collapse
Affiliation(s)
- Eric Pelfrene
- Office of Anti-infectives and Vaccines, Human Medicines Evaluation Division
| | - Marie-Hélène Pinheiro
- Office of Regulatory Affairs, Human Medicines Research and Development Support Division; European Medicines Agency, 30 Churchill Place, Canary Wharf, London, E14 5EU, UK
| | - Marco Cavaleri
- Office of Anti-infectives and Vaccines, Human Medicines Evaluation Division
| |
Collapse
|
28
|
Baiden R, Oduro A, Halidou T, Gyapong M, Sie A, Macete E, Abdulla S, Owusu-Agyei S, Mulokozi A, Adjei A, Sevene E, Compaoré G, Valea I, Osei I, Yawson A, Adjuik M, Akparibo R, Ogutu B, Upunda GL, Smith P, Binka F. Prospective observational study to evaluate the clinical safety of the fixed-dose artemisinin-based combination Eurartesim® (dihydroartemisinin/piperaquine), in public health facilities in Burkina Faso, Mozambique, Ghana, and Tanzania. Malar J 2015; 14:160. [PMID: 25885858 PMCID: PMC4405867 DOI: 10.1186/s12936-015-0664-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/24/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The World Health Organization recommends artemisinin-based combination (ACT) for the treatment of uncomplicated malaria. Post-licensure safety data on newly registered ACT is critical for evaluating their risk/benefit profile in malaria endemic countries. The clinical safety of the newly registered combination, Eurartesim®, following its introduction into the public health system in four African countries was assessed. METHODS This was a prospective, observational, open-label, non-comparative, longitudinal, multi-centre study using cohort event monitoring. Patients with confirmed malaria had their first dose observed and instructed on how to take the second and the third doses at home. Patients were contacted on day 5 ± 2 to assess adherence and adverse events (AEs). Spontaneous reporting of AEs was continued till day 28. A nested cohort who completed full treatment course had repeated electrocardiogram (ECG) measurements to assess effect on QTc interval. RESULTS A total of 10,925 uncomplicated malaria patients were treated with Eurartesim®. Most patients,95% (10,359/10,925), did not report any adverse event following at least one dose of Eurartesim®. A total of 797 adverse events were reported. The most frequently reported, by system organ classification, were infections and infestations (3. 24%) and gastrointestinal disorders (1. 37%). In the nested cohort, no patient had QTcF > 500 ms prior to day 3 pre-dose 3. Three patients had QTcF > 500 ms (509 ms, 501 ms, 538 ms) three to four hours after intake of the last dose. All the QTcF values in the three patients had returned to <500 ms at the next scheduled ECG on day 7 (470 ms, 442 ms, 411 ms). On day 3 pre- and post-dose 3, 70 and 89 patients, respectively, had a QTcF increase of ≥ 60 ms compared to their baseline, but returned to nearly baseline values on day 7. CONCLUSION Eurartesim® single course treatment for uncomplicated falciparum malaria is well-tolerated. QT interval prolongation above 500 ms may occur at a rate of three per 1,002 patients after the third dose with no association of any clinical symptoms. QT interval prolongation above 60 ms was detected in less than 10% of the patients without any clinical abnormalities.
Collapse
Affiliation(s)
| | | | - Tinto Halidou
- Nanoro Health Research Centre, Nanoro, Burkina Faso.
| | | | - Ali Sie
- Nouna Health Research Centre, Nouna, Burkina Faso.
| | - Eusebio Macete
- Centro de InvestigaçãoemSaúde de Manhiça, CISM, Manhiça, Mozambique.
| | | | | | | | - Alex Adjei
- Dodowa Health Research Centre, Dodowa, Ghana.
| | - Esperanca Sevene
- Centro de InvestigaçãoemSaúde de Manhiça, CISM, Manhiça, Mozambique.
| | | | | | - Isaac Osei
- Navrongo Health Research Centre, Navrongo, Ghana.
| | - Abena Yawson
- Kintampo Health Research Centre, Kintampo, Ghana.
| | | | | | | | | | - Peter Smith
- London School of Hygiene & Tropical Medicine, London, UK.
| | - Fred Binka
- INDEPTH Network, Accra, Ghana. .,University for Health and Allied Sciences, Ho, Ghana.
| |
Collapse
|
29
|
Abstract
INTRODUCTION Chemotherapy of malaria has become a rapidly changing field. Less than two decades ago, treatment regimens were increasingly bound to fail due to emerging drug resistance against 4-aminoquinolines and sulfa compounds. By now, artemisinin-based combination therapies (ACTs) constitute the standard of care for uncomplicated falciparum malaria and are increasingly also taken into consideration for the treatment of non-falciparum malaria. AREAS COVERED This narrative review provides an overview of the state-of-art antimalarial drug therapy, highlights the global portfolio of current Phase III/IV clinical trials and summarizes current developments. EXPERT OPINION Malaria chemotherapy remains a dynamic field, with novel drugs and drug combinations continuing to emerge in order to outpace the development of large-scale drug resistance against the currently most important drug class, the artemisinin derivatives. More randomized controlled studies are urgently needed especially for the treatment of malaria in first trimester pregnant women. ACTs should be used for the treatment of imported malaria more consequently. Gaining sufficient efficacy and safety information on ACT use for non-falciparum species including Plasmodium ovale and malariae should be a research priority. Continuous investment into malaria drug development is a vital factor to combat artemisinin resistance and successfully improve malaria control toward the ultimate goal of elimination.
Collapse
Affiliation(s)
- Benjamin J Visser
- University of Amsterdam, Academic Medical Centre, Center of Tropical Medicine and Travel Medicine, Division of Infectious Diseases , Amsterdam , The Netherlands
| | | | | |
Collapse
|
30
|
Randomized, double-blind, placebo-controlled clinical trial of a two-day regimen of dihydroartemisinin-piperaquine for malaria prevention halted for concern over prolonged corrected QT interval. Antimicrob Agents Chemother 2014; 58:6056-67. [PMID: 25092702 DOI: 10.1128/aac.02667-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dihydroartemisinin-piperaquine, the current first-line drug for uncomplicated malaria caused by Plasmodium falciparum and Plasmodium vivax in Cambodia, was previously shown to be of benefit as malaria chemoprophylaxis when administered as a monthly 3-day regimen. We sought to evaluate the protective efficacy of a compressed monthly 2-day treatment course in the Royal Cambodian Armed Forces. The safety and efficacy of a monthly 2-day dosing regimen of dihydroartemisinin-piperaquine were evaluated in a two-arm, randomized, double-blind, placebo-controlled cohort study with 2:1 treatment allocation. Healthy military volunteers in areas along the Thai-Cambodian border where there is a high risk of malaria were administered two consecutive daily doses of 180 mg dihydroartemisinin and 1,440 mg piperaquine within 30 min to 3 h of a meal once per month for a planned 4-month period with periodic electrocardiographic and pharmacokinetic assessment. The study was halted after only 6 weeks (69 of 231 projected volunteers enrolled) when four volunteers met a prespecified cardiac safety endpoint of QTcF (Fridericia's formula for correct QT interval) prolongation of >500 ms. The pharmacodynamic effect on the surface electrocardiogram (ECG) peaked approximately 4 h after piperaquine dosing and lasted 4 to 8 h. Unblinded review by the data safety monitoring board revealed mean QTcF prolongation of 46 ms over placebo at the maximum concentration of drug in serum (Cmax) on day 2. Given that dihydroartemisinin-piperaquine is one of the few remaining effective antimalarial agents in Cambodia, compressed 2-day treatment courses of dihydroartemisinin-piperaquine are best avoided until the clinical significance of these findings are more thoroughly evaluated. Because ECG monitoring is often unavailable in areas where malaria is endemic, repolarization risk could be mitigated by using conventional 3-day regimens, fasting, and avoidance of repeated dosing or coadministration with other QT-prolonging medications. (This study has been registered at ClinicalTrials.gov under registration no. NCT01624337.).
Collapse
|
31
|
Effect of coadministered fat on the tolerability, safety, and pharmacokinetic properties of dihydroartemisinin-piperaquine in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother 2014; 58:5784-94. [PMID: 25049242 DOI: 10.1128/aac.03314-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Coadministration of dihydroartemisinin-piperaquine (DHA-PQ) with fat may improve bioavailability and antimalarial efficacy, but it might also increase toxicity. There have been no studies of these potential effects in the pediatric age group. The tolerability, safety, efficacy, and pharmacokinetics of DHA-PQ administered with or without 8.5 g fat were investigated in 30 Papua New Guinean children aged 5 to 10 years diagnosed with uncomplicated falciparum malaria. Three daily 2.5:11.5-mg-base/kg doses were given with water (n = 14, group A) or milk (n = 16, group B), with regular clinical/laboratory assessment and blood sampling over 42 days. Plasma PQ was assayed by high-performance liquid chromatography with UV detection, and DHA was assayed using liquid chromatography-mass spectrometry. Compartmental pharmacokinetic models for PQ and DHA were developed using a population-based approach. DHA-PQ was generally well tolerated, and initial fever and parasite clearance were prompt. There were no differences in the areas under the concentration-time curve (AUC0-∞) for PQ (median, 41,906 versus 36,752 μg · h/liter in groups A and B, respectively; P = 0.24) or DHA (4,047 versus 4,190 μg · h/liter; P = 0.67). There were also no significant between-group differences in prolongation of the corrected electrocardiographic QT interval (QTc) initially during follow-up, but the QTc tended to be higher in group B children at 24 h (mean ± standard deviation [SD], 15 ± 10 versus 6 ± 15 ms(0.5) in group A, P = 0.067) and 168 h (10 ± 18 versus 1 ± 23 ms(0.5), P = 0.24) when plasma PQ concentrations were relatively low. A small amount of fat does not change the bioavailability of DHA-PQ in children, but a delayed persistent effect on ventricular repolarization cannot be excluded.
Collapse
|
32
|
Hodel EM, Kay K, Hayes DJ, Terlouw DJ, Hastings IM. Optimizing the programmatic deployment of the anti-malarials artemether-lumefantrine and dihydroartemisinin-piperaquine using pharmacological modelling. Malar J 2014; 13:138. [PMID: 24708571 PMCID: PMC4036747 DOI: 10.1186/1475-2875-13-138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/27/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Successful programmatic use of anti-malarials faces challenges that are not covered by standard drug development processes. The development of appropriate pragmatic dosing regimens for low-resource settings or community-based use is not formally regulated, even though these may alter factors which can substantially affect individual patient and population level outcome, such as drug exposure, patient adherence and the spread of drug resistance and can affect a drug's reputation and its eventual therapeutic lifespan. METHODS An in silico pharmacological model of anti-malarial drug treatment with the pharmacokinetic/pharmacodynamic profiles of artemether-lumefantrine (AM-LF, Coartem®) and dihydroartemisinin-piperaquine (DHA-PPQ, Eurartesim®) was constructed to assess the potential impact of programmatic factors, including regionally optimized, age-based dosing regimens, poor patient adherence, food effects and drug resistance on treatment outcome at population level, and compared both drugs' susceptibility to these factors. RESULTS Compared with DHA-PPQ, therapeutic effectiveness of AM-LF seems more robust to factors affecting drug exposure, such as age- instead of weight-based dosing or poor adherence. The model highlights the sub-optimally low ratio of DHA:PPQ which, in combination with the narrow therapeutic dose range of PPQ compared to DHA that drives the weight or age cut-offs, leaves DHA at a high risk of under-dosing. CONCLUSION Pharmacological modelling of real-life scenarios can provide valuable supportive data and highlight modifiable determinants of therapeutic effectiveness that can help optimize the deployment of anti-malarials in control programmes.
Collapse
Affiliation(s)
- Eva Maria Hodel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | | | |
Collapse
|
33
|
Anvikar AR, Arora U, Sonal G, Mishra N, Shahi B, Savargaonkar D, Kumar N, Shah NK, Valecha N. Antimalarial drug policy in India: past, present & future. Indian J Med Res 2014; 139:205-15. [PMID: 24718394 PMCID: PMC4001331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The use of antimalarial drugs in India has evolved since the introduction of quinine in the 17 th century. Since the formal establishment of a malaria control programme in 1953, shortly after independence, treatments provided by the public sector ranged from chloroquine, the mainstay drug for many decades, to the newer, recently introduced artemisinin based combination therapy. The complexity of considerations in antimalarial treatment led to the formulation of a National Antimalarial Drug Policy to guide procurement as well as communicate best practices to both public and private healthcare providers. Challenges addressed in the policy include the use of presumptive treatment, the introduction of alternate treatments for drug-resistant malaria, the duration of primaquine therapy to prevent relapses of vivax malaria, the treatment of malaria in pregnancy, and the choice of drugs for chemoprophylaxis. While data on antimalarial drug resistance and both public and private sector treatment practices have been recently reviewed, the policy process of setting national standards has not. In this perspective on antimalarial drug policy, this review highlights its relevant history, analyzes the current policy, and examines future directions.
Collapse
Affiliation(s)
- Anupkumar R. Anvikar
- National Institute of Malaria Research (ICMR), New Delhi, India,Reprint requests: Dr Anupkumar R. Anvikar, Scientist D, National Institute of Malaria Research (ICMR) Sector 8, Dwarka, New Delhi 110 077, India e-mail:
| | - Usha Arora
- National Vector Borne Disease Control Programme, Delhi, India
| | - G.S. Sonal
- National Vector Borne Disease Control Programme, Delhi, India
| | - Neelima Mishra
- National Institute of Malaria Research (ICMR), New Delhi, India
| | | | | | - Navin Kumar
- National Institute of Malaria Research (ICMR), New Delhi, India
| | - Naman K. Shah
- National Institute of Malaria Research (ICMR), New Delhi, India
| | - Neena Valecha
- National Institute of Malaria Research (ICMR), New Delhi, India
| |
Collapse
|
34
|
Zani B, Gathu M, Donegan S, Olliaro PL, Sinclair D. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst Rev 2014; 2014:CD010927. [PMID: 24443033 PMCID: PMC4470355 DOI: 10.1002/14651858.cd010927] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The World Health Organization (WHO) recommends Artemisinin-based Combination Therapy (ACT) for treating uncomplicated Plasmodium falciparum malaria. This review aims to assist the decision-making of malaria control programmes by providing an overview of the relative effects of dihydroartemisinin-piperaquine (DHA-P) versus other recommended ACTs. OBJECTIVES To evaluate the effectiveness and safety of DHA-P compared to other ACTs for treating uncomplicated P. falciparum malaria in adults and children. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; LILACS, and the metaRegister of Controlled Trials (mRCT) up to July 2013. SELECTION CRITERIA Randomized controlled trials comparing a three-day course of DHA-P to a three-day course of an alternative WHO recommended ACT in uncomplicated P. falciparum malaria. DATA COLLECTION AND ANALYSIS Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy' and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach. MAIN RESULTS We included 27 trials, enrolling 16,382 adults and children, and conducted between 2002 and 2010. Most trials excluded infants aged less than six months and pregnant women. DHA-P versus artemether-lumefantrineIn Africa, over 28 days follow-up, DHA-P is superior to artemether-lumefantrine at preventing further parasitaemia (PCR-unadjusted treatment failure: RR 0.34, 95% CI 0.30 to 0.39, nine trials, 6200 participants, high quality evidence), and although PCR-adjusted treatment failure was below 5% for both ACTs, it was consistently lower with DHA-P (PCR-adjusted treatment failure: RR 0.42, 95% CI 0.29 to 0.62, nine trials, 5417 participants, high quality evidence). DHA-P has a longer prophylactic effect on new infections which may last for up to 63 days (PCR-unadjusted treatment failure: RR 0.71, 95% CI 0.65 to 0.78, two trials, 3200 participants, high quality evidence).In Asia and Oceania, no differences have been shown at day 28 (four trials, 1143 participants, moderate quality evidence), or day 63 (one trial, 323 participants, low quality evidence).Compared to artemether-lumefantrine, no difference was seen in prolonged QTc (low quality evidence), and no cardiac arrhythmias were reported. The frequency of other adverse events is probably similar with both combinations (moderate quality evidence). DHA-P versus artesunate plus mefloquineIn Asia, over 28 days follow-up, DHA-P is as effective as artesunate plus mefloquine at preventing further parasitaemia (PCR-unadjusted treatment failure: eight trials, 3487 participants, high quality evidence). Once adjusted by PCR to exclude new infections, treatment failure at day 28 was below 5% for both ACTs in all eight trials, but lower with DHA-P in two trials (PCR-adjusted treatment failure: RR 0.41 95% CI 0.21 to 0.80, eight trials, 3482 participants, high quality evidence). Both combinations contain partner drugs with very long half-lives and no consistent benefit in preventing new infections has been seen over 63 days follow-up (PCR-unadjusted treatment failure: five trials, 2715 participants, moderate quality evidence).In the only trial from South America, there were fewer recurrent parastaemias over 63 days with artesunate plus mefloquine (PCR-unadjusted treatment failure: RR 6.19, 95% CI 1.40 to 27.35, one trial, 445 participants, low quality evidence), but no differences were seen once adjusted for new infections (PCR-adjusted treatment failure: one trial, 435 participants, low quality evidence).DHA-P is associated with less nausea, vomiting, dizziness, sleeplessness, and palpitations compared to artesunate plus mefloquine (moderate quality evidence). DHA-P was associated with more frequent prolongation of the QTc interval (low quality evidence), but no cardiac arrhythmias were reported. AUTHORS' CONCLUSIONS In Africa, dihydroartemisinin-piperaquine reduces overall treatment failure compared to artemether-lumefantrine, although both drugs have PCR-adjusted failure rates of less than 5%. In Asia, dihydroartemisinin-piperaquine is as effective as artesunate plus mefloquine, and is better tolerated.
Collapse
Affiliation(s)
- Babalwa Zani
- South African Medical Research CouncilSouth African Cochrane CentreP. O. Box 19070TygerbergCape TownWestern CapeSouth Africa7505
| | - Michael Gathu
- KEMRI‐Wellcome Trust Research ProgrammeHealth Services Research GroupKenyatta National Hospital Grounds, P.O. Box 43640 ‐ 00100NairobiKenya
| | - Sarah Donegan
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | - Piero L Olliaro
- World Health OrganizationUNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR)1211 Geneva 27GenevaSwitzerland
| | - David Sinclair
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | | |
Collapse
|
35
|
Bottieau E, Vekemans M, Van Gompel A. Therapy of vector-borne protozoan infections in nonendemic settings. Expert Rev Anti Infect Ther 2014; 9:583-608. [DOI: 10.1586/eri.11.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med 2013; 10:e1001564; discussion e1001564. [PMID: 24311989 PMCID: PMC3848996 DOI: 10.1371/journal.pmed.1001564] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/17/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DP) is increasingly recommended for antimalarial treatment in many endemic countries; however, concerns have been raised over its potential under dosing in young children. We investigated the influence of different dosing schedules on DP's clinical efficacy. METHODS AND FINDINGS A systematic search of the literature was conducted to identify all studies published between 1960 and February 2013, in which patients were enrolled and treated with DP. Principal investigators were approached and invited to share individual patient data with the WorldWide Antimalarial Resistance Network (WWARN). Data were pooled using a standardised methodology. Univariable and multivariable risk factors for parasite recrudescence were identified using a Cox's regression model with shared frailty across the study sites. Twenty-four published and two unpublished studies (n = 7,072 patients) were included in the analysis. After correcting for reinfection by parasite genotyping, Kaplan-Meier survival estimates were 97.7% (95% CI 97.3%-98.1%) at day 42 and 97.2% (95% CI 96.7%-97.7%) at day 63. Overall 28.6% (979/3,429) of children aged 1 to 5 years received a total dose of piperaquine below 48 mg/kg (the lower limit recommended by WHO); this risk was 2.3-2.9-fold greater compared to that in the other age groups and was associated with reduced efficacy at day 63 (94.4% [95% CI 92.6%-96.2%], p<0.001). After adjusting for confounding factors, the mg/kg dose of piperaquine was found to be a significant predictor for recrudescence, the risk increasing by 13% (95% CI 5.0%-21%) for every 5 mg/kg decrease in dose; p = 0.002. In a multivariable model increasing the target minimum total dose of piperaquine in children aged 1 to 5 years old from 48 mg/kg to 59 mg/kg would halve the risk of treatment failure and cure at least 95% of patients; such an increment was not associated with gastrointestinal toxicity in the ten studies in which this could be assessed. CONCLUSIONS DP demonstrates excellent efficacy in a wide range of transmission settings; however, treatment failure is associated with a lower dose of piperaquine, particularly in young children, suggesting potential for further dose optimisation.
Collapse
|
37
|
Navacchia ML, Capobianco ML, D’Angelantonio M, Marconi G. Monoelectronic reduction of dihydroartemsisinin (DHA): pH dependence and product analysis. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Ex vivo susceptibility of Plasmodium falciparum to antimalarial drugs in western, northern, and eastern Cambodia, 2011-2012: association with molecular markers. Antimicrob Agents Chemother 2013; 57:5277-83. [PMID: 23939897 DOI: 10.1128/aac.00687-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2008, dihydroartemisinin (DHA)-piperaquine (PPQ) became the first-line treatment for uncomplicated Plasmodium falciparum malaria in western Cambodia. Recent reports of increased treatment failure rates after DHA-PPQ therapy in this region suggest that parasite resistance to DHA, PPQ, or both is now adversely affecting treatment. While artemisinin (ART) resistance is established in western Cambodia, there is no evidence of PPQ resistance. To monitor for resistance to PPQ and other antimalarials, we measured drug susceptibilities for parasites collected in 2011 and 2012 from Pursat, Preah Vihear, and Ratanakiri, in western, northern, and eastern Cambodia, respectively. Using a SYBR green I fluorescence assay, we calculated the ex vivo 50% inhibitory concentrations (IC50s) of 310 parasites to six antimalarials: chloroquine (CQ), mefloquine (MQ), quinine (QN), PPQ, artesunate (ATS), and DHA. Geometric mean IC50s (GMIC50s) for all drugs (except PPQ) were significantly higher in Pursat and Preah Vihear than in Ratanakiri (P ≤ 0.001). An increased copy number of P. falciparum mdr1 (pfmdr1), an MQ resistance marker, was more prevalent in Pursat and Preah Vihear than in Ratanakiri and was associated with higher GMIC50s for MQ, QN, ATS, and DHA. An increased copy number of a chromosome 5 region (X5r), a candidate PPQ resistance marker, was detected in Pursat but was not associated with reduced susceptibility to PPQ. The ex vivo IC50 and pfmdr1 copy number are important tools in the surveillance of multidrug-resistant (MDR) parasites in Cambodia. While MDR P. falciparum is prevalent in western and northern Cambodia, there is no evidence for PPQ resistance, suggesting that DHA-PPQ treatment failures result mainly from ART resistance.
Collapse
|
39
|
Ubben D, Poll EM. MMV in partnership: the Eurartesim® experience. Malar J 2013; 12:211. [PMID: 23782869 PMCID: PMC3691732 DOI: 10.1186/1475-2875-12-211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022] Open
Abstract
Background This case study describes how a public-private partnership between Medicines for Malaria Venture (MMV) and Sigma-Tau Industrie Farmaceutiche Riunite SpA achieved international regulatory approval for use of the fixed-dose artemisinin-based combination therapy dihydroartemisinin-piperaquine (Eurartesim®) for the treatment of malaria, enabling more widespread access to the medicine in malaria-endemic countries. Case description The combination of dihydroartemisinin and piperaquine demonstrated success in clinical trials for the treatment of malaria in Asia and Africa in the 2000s. However, as it had not been developed to international regulatory standards it was out of the reach of the majority of patients in disease-endemic countries, particularly those reliant on public healthcare systems supported by international donor funding. To overcome this, as of 2004 MMV worked in partnership with Sigma-Tau, Holleykin, Oxford University, the Institute of Tropical Medicine Antwerp, and the National Institute of Malaria Research India to develop the dihydroartemisinin-piperaquine combination to international standards. In 2011, the European Commission granted full marketing authorization to Sigma-Tau for Eurartesim. Discussion and evaluation The partnership between MMV, Sigma-Tau, and numerous other academic and industrial partners across the world, led to the successful development to EMA regulatory standards of a high-quality and highly efficacious anti-malarial treatment that otherwise would not have been possible. The dossier has also been submitted to the WHO for prequalification, and a safety statement to guide correct use of Eurartesim has been produced. In July 2012, the first delivery to a disease-endemic country was made to Cambodia, where the medicine is being used to treat patients and help counter the emergence of artemisinin resistance in the area. A paediatric dispersible formulation of Eurartesim is being developed, with the objective to submit the dossier to the EMA by the end of 2014. Conclusions The development of Eurartesim to international regulatory standards exemplifies the strengths of the product development partnership model in utilising the individual skills and expertise of partners with differing objectives to achieve a common goal. Successful uptake of Eurartesim by public health systems in malaria-endemic countries poses new challenges, which may require additional partnerships as we move forward.
Collapse
Affiliation(s)
- David Ubben
- Medicines for Malaria Venture, 20 Rte de Pré-Bois, PO Box 1826, Geneva 1215, Switzerland
| | | |
Collapse
|
40
|
Burrows JN, van Huijsduijnen RH, Möhrle JJ, Oeuvray C, Wells TNC. Designing the next generation of medicines for malaria control and eradication. Malar J 2013; 12:187. [PMID: 23742293 PMCID: PMC3685552 DOI: 10.1186/1475-2875-12-187] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/29/2013] [Indexed: 11/10/2022] Open
Abstract
In the fight against malaria new medicines are an essential weapon. For the parts of the world where the current gold standard artemisinin combination therapies are active, significant improvements can still be made: for example combination medicines which allow for single dose regimens, cheaper, safer and more effective medicines, or improved stability under field conditions. For those parts of the world where the existing combinations show less than optimal activity, the priority is to have activity against emerging resistant strains, and other criteria take a secondary role. For new medicines to be optimal in malaria control they must also be able to reduce transmission and prevent relapse of dormant forms: additional constraints on a combination medicine. In the absence of a highly effective vaccine, new medicines are also needed to protect patient populations. In this paper, an outline definition of the ideal and minimally acceptable characteristics of the types of clinical candidate molecule which are needed (target candidate profiles) is suggested. In addition, the optimal and minimally acceptable characteristics of combination medicines are outlined (target product profiles). MMV presents now a suggested framework for combining the new candidates to produce the new medicines. Sustained investment over the next decade in discovery and development of new molecules is essential to enable the long-term delivery of the medicines needed to combat malaria.
Collapse
Affiliation(s)
- Jeremy N Burrows
- Medicines for Malaria Venture-MMV, PO Box 1826, Route de Pré-Bois 20, Geneva 151215, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Jelinek T. Artemisinin based combination therapy in travel medicine. Travel Med Infect Dis 2013; 11:23-8. [PMID: 23465532 DOI: 10.1016/j.tmaid.2013.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/13/2022]
Abstract
A steadily increasing number of Western travellers are exposed to malaria. Also, numbers of migrants from malarious areas are increasing. Fast and effective treatment options are needed to ensure effective malaria treatment in these groups in the future. Artemisinin combinations are well tolerated and have shown high efficacy in malaria endemic areas. Since 2001, 42 malaria endemic countries, 23 of them in Africa, have adopted artemisinin based combination therapies recommended by WHO. An additional 14 countries are in the process of changing their malaria treatment policy. Studies in non-immune travellers confirm a rapid parasite clearance time and very low rate of side effects. Outpatient clinics and hospitals in non-endemic countries should have standard operating procedures for diagnosing and managing patients with malaria. In this setting, artemisinin combinations should be available for treatment of uncomplicated malaria as they are clearly superior to any other oral antimalarial in their fast reduction of parasite biomass and in decreasing clinical symptoms. Also, they are the drugs of choice for travellers who are advised to carry stand-by emergency treatment during their journey.
Collapse
Affiliation(s)
- Tomas Jelinek
- Berlin Center for Travel & Tropical Medicine, Berlin, Germany.
| |
Collapse
|
42
|
Islam N, Bonovas S, Nikolopoulos GK. An epidemiological overview of malaria in Bangladesh. Travel Med Infect Dis 2013; 11:29-36. [PMID: 23434288 DOI: 10.1016/j.tmaid.2013.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/17/2012] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Bangladesh is one of the four major malaria-endemic countries in South-East Asia having approximately 34% of its population at risk of malaria. This paper aims at providing an overview of the malaria situation in this country. Relevant information was retrieved from published articles and reports in PubMed and Google Scholar. Malaria in Bangladesh is concentrated in 13 districts with a prevalence ranging between 3.1% and 36%, and is mostly caused by Plasmodium falciparum. Geographical conditions pose a potential risk for Plasmodium knowlesi malaria. Resistance to a number of drugs previously recommended for treatment has been reported. Low socio-economic status, poor schooling and close proximity to water bodies and forest areas comprise important risk factors. Despite the significant steps in Long Lasting Insecticide Net (LLIN)/Insecticide Treated Net (ITN) coverage in Bangladesh, there are still many challenges including the extension of malaria support to the remote areas of Bangladesh, where malaria prevalence is higher, and further improvements in the field of referral system and treatment.
Collapse
Affiliation(s)
- Nazrul Islam
- Cyprus International Institute for Environmental and Public Health, Limassol, Cyprus
| | | | | |
Collapse
|
43
|
Wells S, Diap G, Kiechel JR. The story of artesunate-mefloquine (ASMQ), innovative partnerships in drug development: case study. Malar J 2013; 12:68. [PMID: 23433060 PMCID: PMC3640935 DOI: 10.1186/1475-2875-12-68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/17/2013] [Indexed: 11/21/2022] Open
Abstract
Background The Drugs for Neglected Diseases initiative (DNDi) is a not-for profit organization committed to providing affordable medicines and access to treatments in resource-poor settings. Traditionally drug development has happened “in house” within pharmaceutical companies, with research and development costs ultimately recuperated through drug sales. The development of drugs for the treatment of neglected tropical diseases requires a completely different model that goes beyond the scope of market-driven research and development. Artesunate and mefloquine are well-established drugs for the treatment of uncomplicated malaria, with a strong safety record based on many years of field-based studies and use. The administration of such artemisinin-based combination therapy in a fixed-dose combination is expected to improve patient compliance and to reduce the risk of emerging drug resistance. Case description DNDi developed an innovative approach to drug development, reliant on strong collaborations with a wide range of partners from the commercial world, academia, government institutions and NGOs, each of which had a specific role to play in the development of a fixed dose combination of artesunate and mefloquine. Discussion and evaluation DNDi undertook the development of a fixed-dose combination of artesunate with mefloquine. Partnerships were formed across five continents, addressing formulation, control and production through to clinical trials and product registration, resulting in a safe and efficacious fixed dose combination treatment which is now available to treat patients in resource-poor settings. The south-south technology transfer of production from Farmanguinhos/Fiocruz in Brazil to Cipla Ltd in India was the first of its kind. Of additional benefit was the increased capacity within the knowledge base and infrastructure in developing countries. Conclusions This collaborative approach to drug development involving international partnerships and independent funding mechanisms is a powerful new way to develop drugs for tropical diseases.
Collapse
Affiliation(s)
- Susan Wells
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | | | | |
Collapse
|
44
|
Keating GM. Eurartesim®: a guide to its use in the treatment of uncomplicated Plasmodium falciparum malaria. DRUGS & THERAPY PERSPECTIVES 2012. [DOI: 10.1007/bf03262125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Dechy-Cabaret O, Benoit-Vical F. Effects of Antimalarial Molecules on the Gametocyte Stage of Plasmodium falciparum: The Debate. J Med Chem 2012; 55:10328-44. [DOI: 10.1021/jm3005898] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Odile Dechy-Cabaret
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- Service de Parasitologie-Mycologie
and Faculté de Médecine de Rangueil, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
46
|
Sagara I, Fofana B, Gaudart J, Sidibe B, Togo A, Toure S, Sanogo K, Dembele D, Dicko A, Giorgi R, Doumbo OK, Djimde AA. Repeated artemisinin-based combination therapies in a malaria hyperendemic area of Mali: efficacy, safety, and public health impact. Am J Trop Med Hyg 2012; 87:50-56. [PMID: 22764291 PMCID: PMC3391057 DOI: 10.4269/ajtmh.2012.11-0649] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Artemisinin-based combination therapies (ACTs) are the first-line treatment of uncomplicated malaria. The public health benefit and safety of repeated administration of a given ACT are poorly studied. We conducted a randomized trial comparing artemether-lumefantrine, artesunate plus amodiaquine (AS+AQ) and artesunate plus sulfadoxine-pyrimethamine (AS+SP) in patients 6 months of age and older with uncomplicated malaria in Mali from July 2005 to July 2007. The patient received the same initial treatment of each subsequent uncomplicated malaria episode except for treatment failures where quinine was used. Overall, 780 patients were included. Patients in the AS+AQ and AS+SP arms had significantly less risk of having malaria episodes; risk ratio (RR) = 0.84 (P = 0.002) and RR = 0.80 (P = 0.001), respectively. The treatment efficacy was similar and above 95% in all arms. Although all drugs were highly efficacious and well tolerated, AS+AQ and AS+SP were associated with less episodes of malaria.
Collapse
Affiliation(s)
- Issaka Sagara
- *Address correspondence to Issaka Sagara, Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805 Point G, Bamako, Mali. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Anthony MP, Burrows JN, Duparc S, JMoehrle J, Wells TNC. The global pipeline of new medicines for the control and elimination of malaria. Malar J 2012; 11:316. [PMID: 22958514 PMCID: PMC3472257 DOI: 10.1186/1475-2875-11-316] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/21/2012] [Indexed: 12/03/2022] Open
Abstract
Over the past decade, there has been a transformation in the portfolio of medicines to combat malaria. New fixed-dose artemisinin combination therapy is available, with four different types having received approval from Stringent Regulatory Authorities or the World Health Organization (WHO). However, there is still scope for improvement. The Malaria Eradication Research agenda identified several gaps in the current portfolio. Simpler regimens, such as a single-dose cure are needed, compared with the current three-day treatment. In addition, new medicines that prevent transmission and also relapse are needed, but with better safety profiles than current medicines. There is also a big opportunity for new medicines to prevent reinfection and to provide chemoprotection. This study reviews the global portfolio of new medicines in development against malaria, as of the summer of 2012. Cell-based phenotypic screening, and 'fast followers' of clinically validated classes, mean that there are now many new classes of molecules starting in clinical development, especially for the blood stages of malaria. There remain significant gaps for medicines blocking transmission, preventing relapse, and long-duration molecules for chemoprotection. The nascent pipeline of new medicines is significantly stronger than five years ago. However, there are still risks ahead in clinical development and sustainable funding of clinical studies is vital if this early promise is going to be delivered.
Collapse
Affiliation(s)
- Melinda P Anthony
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| | - Stephan Duparc
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| | - Joerg JMoehrle
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| | - Timothy NC Wells
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| |
Collapse
|
48
|
Gargano N, Ubben D, Tommasini S, Bacchieri A, Corsi M, Bhattacharyya PC, Rao BHK, Dubashi N, Dev V, Ghosh SK, Kumar A, Srivastava B, Valecha N. Therapeutic efficacy and safety of dihydroartemisinin-piperaquine versus artesunate-mefloquine in uncomplicated Plasmodium falciparum malaria in India. Malar J 2012; 11:233. [PMID: 22818552 PMCID: PMC3424202 DOI: 10.1186/1475-2875-11-233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/05/2012] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Resistance in Plasmodium falciparum to commonly used anti-malarial drugs, especially chloroquine, is being increasingly documented in India. By 2007, the first-line treatment for uncomplicated malaria has been revised to recommend artemisinin-based combination therapy (ACT) for all confirmed P. falciparum cases. OBJECTIVE The objective of this study was to compare the efficacy, safety and tolerability between dihydroartemisinin-piperaquine (DP) and artesunate plus mefloquine (A + M) drug combinations in the treatment of uncomplicated P. falciparum malaria in India. METHODS Between 2006 and 2007, 150 patients with acute uncomplicated P. falciparum malaria were enrolled, randomized to DP (101) or A + M (49) and followed up for 63 days as part of an open-label, non-inferiority, randomized, phase III multicenter trial in Asia. RESULTS The heterogeneity analysis showed no statistically significant difference between India and the other countries involved in the phase III study, for both the PCR-corrected and uncorrected cure rates. As shown at the whole study level, both forms of ACT were highly efficacious in India. In fact, in the per protocol population, the 63-day cure rates were 100% for A + M and 98.8% for DP. The DP combination exerted a significant post-treatment prophylactic effect, and compared with A + M a significant reduction in the incidence of new infections for DP was observed (respectively 17.1% versus 7.5% of patients experienced new infection within follow up). Parasite and fever clearance was rapid in both treatment arms (median time to parasite clearance of one day for both groups). Both DP and A + M were well tolerated, with the majority of adverse events of mild or moderate severity. The frequencies of individual adverse events were generally similar between treatments, although the incidence of post treatment adverse events was slightly higher in patients who received A + M with respect to those treated with DP. CONCLUSION DP is a new ACT displaying high efficacy and safety in the treatment of uncomplicated P. falciparum malaria and could potentially be considered for the first-line treatment of uncomplicated falciparum malaria in India. TRIAL REGISTRATION Current Controlled Trials ISRCTN 81306618.
Collapse
Affiliation(s)
- Nicola Gargano
- Sigma-Tau Industrie Farmaceutiche Riunite, Pomezia, Italy
| | - David Ubben
- Medicines for Malaria Venture (MMV), Geneva, Switzerland
| | | | | | - Marco Corsi
- Sigma-Tau Industrie Farmaceutiche Riunite, Pomezia, Italy
| | | | - Bappanad HK Rao
- Wenlock District Government Hospital, Mangalore Karnataka, India
| | | | - Vas Dev
- National Institute of Malaria Research, Field Station, Guwahati, Assam, India
| | - Susanta K Ghosh
- National Institute of Malaria Research, Field Station, Bangalore Karnataka, India
| | - Ashwani Kumar
- National Institute of Malaria Research, Field Station, Goa, India
| | - Bina Srivastava
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi, 110 077, India
| | - Neena Valecha
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi, 110 077, India
| |
Collapse
|
49
|
Thanh NX, Trung TN, Phong NC, Quang HH, Dai B, Shanks GD, Chavchich M, Edstein MD. The efficacy and tolerability of artemisinin-piperaquine (Artequick®) versus artesunate-amodiaquine (Coarsucam™) for the treatment of uncomplicated Plasmodium falciparum malaria in south-central Vietnam. Malar J 2012; 11:217. [PMID: 22741618 PMCID: PMC3411481 DOI: 10.1186/1475-2875-11-217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/28/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In Vietnam, the artemisinin-based combination therapy (ACT) of dihydroartemisinin-piperaquine is currently used for first-line treatment of uncomplicated Plasmodium falciparum malaria. However, limited efficacy and tolerability data are available on alternative forms of ACT in Vietnam in case there is a reduction in the susceptibility of dihydroartemisinin-piperaquine. A study was conducted to compare the efficacy and tolerability of two fixed-dose formulations of ACT, artemisinin-piperaquine (Artequick®, ARPQ) and artesunate-amodiaquine (Coarsucam™, ASAQ) for the treatment of P. falciparum malaria in south-central Vietnam. METHODS A randomized, open-label trial was conducted comparing the efficacy of a two-day regimen of ARPQ (~2.8 mg/kg artemisinin plus ~17.1 mg/kg of piperaquine per day) and a three-day regimen of ASAQ (~4.7 mg/kg of artesunate plus ~12.6 mg/kg of amodiaquine per day) for the treatment of children and adults with uncomplicated falciparum malaria. Primary efficacy endpoint was day 42, PCR-corrected, parasitological cure rate. Secondary endpoints were parasite and fever clearance times and tolerability. RESULTS Of 128 patients enrolled, 63 were administered ARPQ and 65 ASAQ. Of the patients who completed the 42 days follow-up period or had a recurrence of malaria, 55 were on ARPQ (30 children, 25 adults) and 59 were on ASAQ (31 children, 28 adults). Recrudescent parasitaemia was PCR-confirmed for one patient in each treatment group, with cure rates at day 42 of 98% (95% CI: 88-100) for both forms of ACT. The median parasite clearance time was significantly slower in the ARPQ group compared with the ASAQ group (48 h vs. 36 h, P<0.001) and fever clearance times were shorter in the ASAQ group (12 h vs. 24 h, P=0.07). The two forms of ACT were well tolerated with no serious adverse events. CONCLUSION Both forms of ACT were highly efficacious in the treatment of uncomplicated P. falciparum malaria. Although the two-day course of ARPQ was equally as effective as the three-day course of ASAQ, parasite and fever clearance times were shorter with ASAQ. Further studies are warranted in different regions of Vietnam to determine the nationwide efficacy of ASAQ. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry Number, ACTRN12609000816257.
Collapse
|
50
|
Mayxay M, Khanthavong M, Chanthongthip O, Imwong M, Pongvongsa T, Hongvanthong B, Phompida S, Vanisaveth V, White NJ, Newton PN. Efficacy of artemether-lumefantrine, the nationally-recommended artemisinin combination for the treatment of uncomplicated falciparum malaria, in southern Laos. Malar J 2012; 11:184. [PMID: 22681769 PMCID: PMC3523969 DOI: 10.1186/1475-2875-11-184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
Background The Lao Government changed the national policy for uncomplicated Plasmodium falciparum malaria from chloroquine to artemether-lumefantrine (AL) in 2005. Since then, no information on AL efficacy has been reported. With evidence of resistance to artemisinin derivatives in adjacent Cambodia, there has been a concern as to AL efficacy. Monitoring of AL efficacy would help the Lao Government to make decisions on appropriate malaria treatment. Methods The efficacy of a three-day, twice daily oral artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Xepon District, Savannakhet Province, southern Laos was studied over 42 days follow-up. This was part of a trial of thiamin supplementation in falciparum malaria. Results Of 630 patients with P. falciparum enrolled in the trial of thiamin treatment, 549 (87%, 357 children ≤15 years and 192 adults) were included in this study. The per protocol 42-day cure rates were 97% (524/541) [96% (337/352) for children and 99% (187/189) for adults, p = 0.042]. By conventional intention-to-treat analysis, the 42-day cure rates adjusted for re-infection, were 97% (532/549) [96% (342/357) in children and 99% (190/192) in adults, p = 0.042]. The proportion of patients who remained parasitaemic at day 1 after treatment was significantly higher in children [33% (116/356)] compared to adults [15% (28/192)] (p < 0.001) and only one adult patient had detectable parasitaemia on day 2. There were no serious adverse events. Potential side effects after treatment were reported more commonly in adults (32%) compared to children (15%) (p < 0.001). Patients with recrudescent infections were significantly younger, had longer mean time to fever clearance, and had longer median time to parasite clearance compared to those who were cured. Conclusions The current nationally-recommended anti-malarial treatment (artemether-lumefantrine) remains highly efficacious for the treatment of uncomplicated falciparum malaria five years after introduction in Laos. Regular monitoring is required in case artemisinin-resistant P. falciparum parasites should appear. Trial registration ISRCTN85411059.
Collapse
Affiliation(s)
- Mayfong Mayxay
- Wellcome Trust-Mahosot Hospital-Oxford University Tropical Medicine Research Collaboration, Mahosot Hospital, Vientiane, Lao PDR.
| | | | | | | | | | | | | | | | | | | |
Collapse
|