1
|
Moraes D, Silva-Bailão MG, Bailão AM. Molecular aspects of copper homeostasis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:189-229. [PMID: 39389706 DOI: 10.1016/bs.aambs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.
Collapse
Affiliation(s)
- Dayane Moraes
- Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | | |
Collapse
|
2
|
Ping FLY, Vahsen T, Brault A, Néré R, Labbé S. The flavohemoglobin Yhb1 is a new interacting partner of the heme transporter Str3. Mol Microbiol 2024; 122:29-49. [PMID: 38778742 DOI: 10.1111/mmi.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Nitric oxide (˙NO) is a free radical that induces nitrosative stress, which can jeopardize cell viability. Yeasts have evolved diverse detoxification mechanisms to effectively counteract ˙NO-mediated cytotoxicity. One mechanism relies on the flavohemoglobin Yhb1, whereas a second one requires the S-nitrosoglutathione reductase Fmd2. To investigate heme-dependent activation of Yhb1 in response to ˙NO, we use hem1Δ-derivative Schizosaccharomyces pombe strains lacking the initial enzyme in heme biosynthesis, forcing cells to assimilate heme from external sources. Under these conditions, yhb1+ mRNA levels are repressed in the presence of iron through a mechanism involving the GATA-type transcriptional repressor Fep1. In contrast, when iron levels are low, the transcription of yhb1+ is derepressed and further induced in the presence of the ˙NO donor DETANONOate. Cells lacking Yhb1 or expressing inactive forms of Yhb1 fail to grow in a hemin-dependent manner when exposed to DETANONOate. Similarly, the loss of function of the heme transporter Str3 phenocopies the effects of Yhb1 disruption by causing hypersensitivity to DETANONOate under hemin-dependent culture conditions. Coimmunoprecipitation and bimolecular fluorescence complementation assays demonstrate the interaction between Yhb1 and the heme transporter Str3. Collectively, our findings unveil a novel pathway for activating Yhb1, fortifying yeast cells against nitrosative stress.
Collapse
Affiliation(s)
- Florie Lo Ying Ping
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Raphaël Néré
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| |
Collapse
|
3
|
Vahsen T, Brault A, Mourer T, Labbé S. A novel role of the fission yeast sulfiredoxin Srx1 in heme acquisition. Mol Microbiol 2023; 120:608-628. [PMID: 37644673 DOI: 10.1111/mmi.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The transporter Str3 promotes heme import in Schizosaccharomyces pombe cells that lack the heme receptor Shu1 and are deficient in heme biosynthesis. Under microaerobic conditions, the peroxiredoxin Tpx1 acts as a heme scavenger within the Str3-dependent pathway. Here, we show that Srx1, a sulfiredoxin known to interact with Tpx1, is essential for optimal growth in the presence of hemin. The expression of Srx1 is induced in response to low iron and repressed under iron repletion. Coimmunoprecipitation and bimolecular fluorescence complementation experiments show that Srx1 interacts with Str3. Although the interaction between Srx1 and Str3 is weakened, it is still observed in tpx1Δ mutant cells or when Str3 is coexpressed with a mutant form of Srx1 (mutD) that cannot bind Tpx1. Further analysis by absorbance spectroscopy and hemin-agarose pull-down assays confirms the binding of Srx1 to hemin, with an equilibrium constant value of 2.56 μM. To validate the Srx1-hemin association, we utilize a Srx1 mutant (mutH) that fails to interact with hemin. Notably, when Srx1 binds to hemin, it partially shields hemin from degradation caused by hydrogen peroxide. Collectively, these findings elucidate an additional function of the sulfiredoxin Srx1, beyond its conventional role in oxidative stress defense.
Collapse
Affiliation(s)
- Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Thierry Mourer
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
4
|
Normant V, Brault A, Avino M, Mourer T, Vahsen T, Beaudoin J, Labbé S. Hemeprotein Tpx1 interacts with cell-surface heme transporter Str3 in Schizosaccharomyces pombe. Mol Microbiol 2020; 115:699-722. [PMID: 33140466 DOI: 10.1111/mmi.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/30/2022]
Abstract
Str3 is a transmembrane protein that mediates low-affinity heme uptake in Schizosaccharomyces pombe. Under iron-limiting conditions, Str3 remains at the cell surface in the presence of increasing hemin concentrations. Using a proximity-dependent biotinylation approach coupled to mass spectrometry and coimmunoprecipitation assays, we report that the peroxiredoxin Tpx1 is a binding partner of Str3. Under microaerobic conditions, cells deficient in heme biosynthesis and lacking the heme receptor Shu1 exhibit poor hemin-dependent growth in the absence of Tpx1. Analysis of membrane protein preparations from iron-starved hem1Δ shu1Δ str3Δ tpx1Δ cells coexpressing Str3-GFP and TAP-Tpx1 showed that TAP-Tpx1 is enriched in membrane protein fractions in response to hemin. Bimolecular fluorescence complementation assays brought additional evidence that an interaction between Tpx1 and Str3 occurs at the plasma membrane. Results showed that Tpx1 exhibits an equilibrium constant value of 0.26 μM for hemin. The association of Tpx1 with hemin protects hemin from degradation by H2 O2 . The peroxidase activity of hemin is lowered when it is bound to Tpx1. Taken together, these results revealed that Tpx1 is a novel interacting partner of Str3. Our data are the first example of an interaction between a cytoplasmic heme-binding protein and a cell-surface heme transporter.
Collapse
Affiliation(s)
- Vincent Normant
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mariano Avino
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Thierry Mourer
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jude Beaudoin
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Mandal T, Kar S, Maji S, Sen S, Gupta A. Structural and Functional Diversity Among the Members of CTR, the Membrane Copper Transporter Family. J Membr Biol 2020; 253:459-468. [PMID: 32975619 DOI: 10.1007/s00232-020-00139-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022]
Abstract
Copper is crucial for carrying out normal physiological functions in all higher life forms. Copper Transporter 1 (CTR1) is the high-affinity copper importer found in all eukaryotic organisms. The copper transporter family primarily comprises ~ six members (CTR1-6) and the related members share high sequence homology with CTR. However, with the exception of CTR1, not all six CTRs are present in every organism. Despite having a simple trimeric channel structure, CTR1 and other members exhibit some unique regulatory properties. In the present review, we attempt to understand the diversity and similarity of regulation and functioning of the members of this copper transporter family.
Collapse
Affiliation(s)
- Taniya Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sumanta Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Samarpita Sen
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
6
|
Brault A, Labbé S. Iron deficiency leads to repression of a non-canonical methionine salvage pathway in Schizosaccharomyces pombe. Mol Microbiol 2020; 114:46-65. [PMID: 32090388 DOI: 10.1111/mmi.14495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
The methionine salvage pathway (MSP) regenerates methionine from 5'-methylthioadenosine (MTA). Aerobic MSP consists of six enzymatic steps. The mug14+ and adi1+ genes that are involved in the third and fifth steps of the pathway are repressed when Schizosaccharomyces pombe undergoes a transition from high- to low-iron conditions. Results consistently show that methionine auxotrophic cells (met6Δ) require iron for growth in the presence of MTA as the sole source of methionine. Inactivation of the iron-using protein Adi1 leads to defects in the utilization of MTA. In the case of the third step of the pathway, co-expression of two distinct proteins, Mta3 and Mde1, is required. These proteins are interdependent to rescue MTA-dependent growth deficit of met6Δ cells. Coimmunoprecipitation experiments showed that Mta3 is a binding partner of Mde1. Meiotic met6Δ cells co-expressing mta3+ and mde1+ or mta3+ and mug14+ produce comparable levels of spores in the presence of MTA, revealing that Mde1 and Mug14 share a common function when co-expressed with Mta3 in sporulating cells. In sum, our findings unveil several novel features of MSP, especially with respect to its regulation by iron and the discovery of a non-canonical third enzymatic step in the fission yeast.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Saito K, Watanabe K, Yanaoka R, Kageyama L, Miura T. Potential role of serotonin as a biological reductant associated with copper transportation. J Inorg Biochem 2019; 199:110770. [PMID: 31336257 DOI: 10.1016/j.jinorgbio.2019.110770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
Serotonin (5-HT) is a neurotransmitter that is derived from tryptophan. Owing to a hydroxyl group attached to the indole nucleus, 5-HT exhibits a considerably higher redox activity than tryptophan. To gain insight into the biological relevance of the redox activity of 5-HT, the effect of Cu(I)-binding ligands on the 5-HT-mediated copper reduction was investigated. The d-d transition band of Cu(II) complexed with glycine [Cu(II)-Gly2] was not affected by addition of 5-HT alone but was diminished when a thioether-containing compound coexists with 5-HT. Concomitant with disappearance of the d-d transition band of Cu(II)-Gly2, the π-π* transition band of 5-hydroxyindole of 5-HT exhibits a red-shift which is consistently explained by oxidation of 5-HT and subsequent formation of a dimeric species. The redox reactions between 5-HT and copper are also accelerated by a peptide composed of a methionine (Met)-rich region in the extracellular domain of an integral membrane protein, copper transporter 1 (Ctr1). Since Ctr1 transports copper across the plasma membrane with specificity for Cu(I), reduction of extracellular Cu(II) to Cu(I) is required for copper uptake by Ctr1. Metalloreductases that can donate Cu(I) for Ctr1 have been identified in yeast but not yet been found in mammals. The results of this study indicate that the Met-rich region in the N-terminal extracellular domain of Ctr1 promotes the 5-HT-mediated Cu(II) reduction in order to acquire Cu(I) via a non-enzymatic process.
Collapse
Affiliation(s)
- Kaede Saito
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Kasumi Watanabe
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Risa Yanaoka
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Lisa Kageyama
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Takashi Miura
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan.
| |
Collapse
|
8
|
Plante S, Normant V, Ramos-Torres KM, Labbé S. Cell-surface copper transporters and superoxide dismutase 1 are essential for outgrowth during fungal spore germination. J Biol Chem 2017; 292:11896-11914. [PMID: 28572514 PMCID: PMC5512082 DOI: 10.1074/jbc.m117.794677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Indexed: 11/06/2022] Open
Abstract
During fungal spore germination, a resting spore returns to a conventional mode of cell division and resumes vegetative growth, but the requirements for spore germination are incompletely understood. Here, we show that copper is essential for spore germination in Schizosaccharomyces pombe Germinating spores develop a single germ tube that emerges from the outer spore wall in a process called outgrowth. Under low-copper conditions, the copper transporters Ctr4 and Ctr5 are maximally expressed at the onset of outgrowth. In the case of Ctr6, its expression is broader, taking place before and during outgrowth. Spores lacking Ctr4, Ctr5, and the copper sensor Cuf1 exhibit complete germination arrest at outgrowth. In contrast, ctr6 deletion only partially interferes with formation of outgrowing spores. At outgrowth, Ctr4-GFP and Ctr5-Cherry first co-localize at the spore contour, followed by re-location to a middle peripheral spore region. Subsequently, they move away from the spore body to occupy the periphery of the nascent cell. After breaking of spore dormancy, Ctr6 localizes to the vacuole membranes that are enriched in the spore body relative to the germ tube. Using a copper-binding tracker, results showed that labile copper is preferentially localized to the spore body. Further analysis showed that Ctr4 and Ctr6 are required for copper-dependent activation of the superoxide dismutase 1 (SOD1) during spore germination. This activation is critical because the loss of SOD1 activity blocked spore germination at outgrowth. Taken together, these results indicate that cell-surface copper transporters and SOD1 are required for completion of the spore germination program.
Collapse
MESH Headings
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Copper/metabolism
- Enzyme Activation
- Gene Deletion
- Gene Expression Regulation, Fungal
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Interference
- Microscopy, Phase-Contrast
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Transport
- RNA, Fungal/metabolism
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- SLC31 Proteins
- Schizosaccharomyces/cytology
- Schizosaccharomyces/growth & development
- Schizosaccharomyces/metabolism
- Schizosaccharomyces/physiology
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Spores, Fungal/cytology
- Spores, Fungal/growth & development
- Spores, Fungal/metabolism
- Spores, Fungal/physiology
- Superoxide Dismutase-1/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Samuel Plante
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Vincent Normant
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Karla M Ramos-Torres
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada.
| |
Collapse
|
9
|
Okada M, Miura T, Nakabayashi T. Comparison of extracellular Cys/Trp motif between Schizosaccharomyces pombe Ctr4 and Ctr5. J Inorg Biochem 2017; 169:97-105. [PMID: 28167404 DOI: 10.1016/j.jinorgbio.2017.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/07/2017] [Accepted: 01/20/2017] [Indexed: 11/19/2022]
Abstract
The reduction and binding of copper ions to the Cys/Trp motif, which is characterized by two cysteines and two tryptophans, in the extracellular N-terminal domain of the copper transporter (Ctr) protein of fungi are investigated using the model peptides of Ctr4 and Ctr5 from Schizosaccharomyces pombe. The Cys/Trp motif of Ctr5 can reduce Cu(II) and ligate Cu(I), which is the same as that of Ctr4 previously reported. Titration of Cu(II) and Cu(I) ions indicates that both the Cys/Trp motifs of Ctr4 and Ctr5 reduce two Cu(II) and bind two Cu(I) per one peptide. However, the coordination structure of the Cu(I)-peptide complex differs between Ctr4 and Ctr5. Cu(I) is bound to the Cys/Trp motif of Ctr5 via cysteine thiolate-Cu(I) bonds and cation-π interaction with tryptophan, as reported for Ctr4, and a histidine residue in the Cys/Trp motif of Ctr5 is suggested to interact with Cu(I) via its Nτ atom. Ctr4 and Ctr5 exhibit a heterotrimeric form within cell membranes and the copper transport mechanism of the Ctr4/Ctr5 heterotrimer is discussed along with quantitative evaluation of the Cu(I)-binding constant of the Cys/Trp motif.
Collapse
Affiliation(s)
- Mariko Okada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takashi Miura
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
10
|
Sideri T, Yashiroda Y, Ellis DA, Rodríguez-López M, Yoshida M, Tuite MF, Bähler J. The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe. MICROBIAL CELL 2017; 4:16-28. [PMID: 28191457 PMCID: PMC5302157 DOI: 10.15698/mic2017.01.552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prions are protein-based infectious entities associated with fatal brain diseases
in animals, but also modify a range of host-cell phenotypes in the budding
yeast, Saccharomyces cerevisiae. Many questions remain about
the evolution and biology of prions. Although several functionally distinct
prion-forming proteins exist in S. cerevisiae, [HET-s] of
Podospora anserina is the only other known fungal prion.
Here we investigated prion-like, protein-based epigenetic transmission in the
fission yeast Schizosaccharomyces pombe. We show that
S. pombe cells can support the formation and maintenance of
the prion form of the S. cerevisiae Sup35 translation factor
[PSI+], and that the formation and propagation
of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating
commonalities in prion propagation machineries in these evolutionary diverged
yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as
a putative prion with a predicted prion-like domain. Overexpression of
the ctr4 gene resulted in large Ctr4 protein aggregates
that were both detergent and proteinase-K resistant. Cells carrying such
[CTR+] aggregates showed increased sensitivity
to oxidative stress, and this phenotype could be transmitted to aggregate-free
[ctr-] cells by transformation with
[CTR+] cell extracts. Moreover, this
[CTR+] phenotype was inherited in a
non-Mendelian manner following mating with naïve
[ctr-] cells, but intriguingly the
[CTR+] phenotype was not eliminated by
guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features
diagnostic of other fungal prions and is the first example of a prion in fission
yeast. These findings suggest that transmissible protein-based determinants of
traits may be more widespread among fungi.
Collapse
Affiliation(s)
- Theodora Sideri
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - Yoko Yashiroda
- Chemical Genetics Laboratory, RIKEN and Chemical Genomics Research Group, RIKEN CSRS, Saitama, Japan
| | - David A Ellis
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - María Rodríguez-López
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN and Chemical Genomics Research Group, RIKEN CSRS, Saitama, Japan
| | - Mick F Tuite
- Kent Fungal Group, University of Kent, School of Biosciences, Canterbury, Kent, U.K
| | - Jürg Bähler
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| |
Collapse
|
11
|
Zhang P, Zhang D, Zhao X, Wei D, Wang Y, Zhu X. Effects of CTR4 deletion on virulence and stress response in Cryptococcus neoformans. Antonie van Leeuwenhoek 2016; 109:1081-90. [DOI: 10.1007/s10482-016-0709-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/29/2016] [Indexed: 01/05/2023]
|
12
|
Cuf2 Is a Transcriptional Co-Regulator that Interacts with Mei4 for Timely Expression of Middle-Phase Meiotic Genes. PLoS One 2016; 11:e0151914. [PMID: 26986212 PMCID: PMC4795683 DOI: 10.1371/journal.pone.0151914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
The Schizosaccharomyces pombe cuf2+ gene encodes a nuclear regulator that is required for timely activation and repression of several middle-phase genes during meiotic differentiation. In this study, we sought to gain insight into the mechanism by which Cuf2 regulates meiotic gene expression. Using a chromatin immunoprecipitation approach, we demonstrate that Cuf2 is specifically associated with promoters of both activated and repressed target genes, in a time-dependent manner. In case of the fzr1+ gene whose transcription is positively affected by Cuf2, promoter occupancy by Cuf2 results in a concomitant increased association of RNA polymerase II along its coding region. In marked contrast, association of RNA polymerase II with chromatin decreases when Cuf2 negatively regulates target gene expression such as wtf13+. Although Cuf2 operates through a transcriptional mechanism, it is unable to perform its function in the absence of the Mei4 transcription factor, which is a member of the conserved forkhead protein family. Using coimmunoprecipitation experiments, results showed that Cuf2 is a binding partner of Mei4. Bimolecular fluorescence complementation experiments brought further evidence that an association between Cuf2 and Mei4 occurs in the nucleus. Analysis of fzr1+ promoter regions revealed that two FLEX-like elements, which are bound by the transcription factor Mei4, are required for chromatin occupancy by Cuf2. Together, results reported here revealed that Cuf2 and Mei4 co-regulate the timely expression of middle-phase genes during meiosis.
Collapse
|
13
|
Okada M, Miura T. Copper(I) stabilization by cysteine/tryptophan motif in the extracellular domain of Ctr4. J Inorg Biochem 2016; 159:45-9. [PMID: 26908286 DOI: 10.1016/j.jinorgbio.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/15/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022]
Abstract
Copper transporter Ctr4 of fission yeast has a quasi-palindromic sequence rich in cysteine and aromatic amino acid residues, CX4YWNWYX4C (where X represents any amino acid), in the N-terminal extracellular domain. A 24-mer peptide comprising this sequence is bound to Cu(I) through the cysteine thiolate coordination. Luminescence, UV absorption and resonance Raman spectra of the Cu(I)-peptide complex show that at least one of the two tryptophan side chains is located in close proximity to the thiolate-Cu(I) center and interacts with the Cu(I) ion via π-electrons of the indole ring. Although the thiolates and Cu(I) are oxidized to disulfide and Cu(II), respectively, only very slowly in air-saturated solutions, replacements of the tryptophan residues to phenylalanine significantly accelerate the oxidation reactions. The results obtained indicate that the interaction between Cu(I) and tryptophan via π-electrons plays a significant role in protecting the thiolate-Cu(I) center against the oxidation. The cysteine- and tryptophan-rich quasi-palindromic sequence may be a metal binding motif that stabilizes Cu(I) in the oxidizing extracellular environment.
Collapse
Affiliation(s)
- Mariko Okada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Takashi Miura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan.
| |
Collapse
|
14
|
Accumulation of Ag and Cu in Amanita strobiliformis and characterization of its Cu and Ag uptake transporter genes AsCTR2 and AsCTR3. Biometals 2016; 29:249-64. [DOI: 10.1007/s10534-016-9912-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
15
|
ALL2, a Homologue of ALL1, Has a Distinct Role in Regulating pH Homeostasis in the Pathogen Cryptococcus neoformans. Infect Immun 2015; 84:439-51. [PMID: 26597983 DOI: 10.1128/iai.01046-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/13/2015] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus neoformans is a facultative intracellular fungal pathogen that has a polysaccharide capsule and causes life-threatening meningoencephalitis. Its capsule, as well as its ability to survive in the acidic environment of the phagolysosome, contributes to the pathogen's resilience in the host environment. Previously, we reported that downregulation of allergen 1 (ALL1) results in the secretion of a shorter, more viscous exopolysaccharide with less branching and structural complexity, as well as altered iron homeostasis. Now, we report on a homologous coregulated gene, allergen 2 (ALL2). ALL2's function was characterized by generating null mutants in C. neoformans. In contrast to ALL1, loss of ALL2 attenuated virulence in the pulmonary infection model. The all2Δ mutant shed a less viscous exopolysaccharide and exhibited higher sensitivity to hydrogen peroxide than the wild type, and as a result, the all2Δ mutant was more resistant to macrophage-mediated killing. Transcriptome analysis further supported the distinct function of these two genes. Unlike ALL1's involvement in iron homeostasis, we now present data on ALL2's unique function in maintaining intracellular pH in low-pH conditions. Thus, our data highlight that C. neoformans, a human-pathogenic basidiomycete, has evolved a unique set of virulence-associated genes that contributes to its resilience in the human niche.
Collapse
|
16
|
Abstract
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.
Collapse
|
17
|
Jacques JF, Mercier A, Brault A, Mourer T, Labbé S. Fra2 is a co-regulator of Fep1 inhibition in response to iron starvation. PLoS One 2014; 9:e98959. [PMID: 24897379 PMCID: PMC4045890 DOI: 10.1371/journal.pone.0098959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/08/2014] [Indexed: 01/12/2023] Open
Abstract
Iron is required for several metabolic functions involved in cellular growth. Although several players involved in iron transport have been identified, the mechanisms by which iron-responsive transcription factors are controlled are still poorly understood. In Schizosaccharomyces pombe, the Fep1 transcription factor represses genes involved in iron acquisition in response to high levels of iron. In contrast, when iron levels are low, Fep1 becomes inactive and loses its ability to associate with chromatin. Although the molecular basis by which Fep1 is inactivated under iron starvation remains unknown, this process requires the monothiol glutaredoxin Grx4. Here, we demonstrate that Fra2 plays a role in the negative regulation of Fep1 activity. Disruption of fra2+ (fra2Δ) led to a constitutive repression of the fio1+ gene transcription. Fep1 was consistently active and constitutively bound to its target gene promoters in cells lacking fra2+. A constitutive activation of Fep1 was also observed in a php4Δ fra2Δ double mutant strain in which the behavior of Fep1 is freed of its transcriptional regulation by Php4. Microscopic analyses of cells expressing a functional Fra2-Myc13 protein revealed that Fra2 localized throughout the cells with a significant proportion of Fra2 being observed within the nuclei. Further analysis by coimmunoprecipitation showed that Fra2, Fep1 and Grx4 are associated in a heteroprotein complex. Bimolecular fluorescence complementation experiments brought further evidence that an interaction between Fep1 and Fra2 occurs in the nucleus. Taken together, results reported here revealed that Fra2 plays a role in the Grx4-mediated pathway that inactivates Fep1 in response to iron deficiency.
Collapse
Affiliation(s)
- Jean-François Jacques
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alexandre Mercier
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ariane Brault
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Thierry Mourer
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
18
|
Plante S, Ioannoni R, Beaudoin J, Labbé S. Characterization of Schizosaccharomyces pombe copper transporter proteins in meiotic and sporulating cells. J Biol Chem 2014; 289:10168-81. [PMID: 24569997 DOI: 10.1074/jbc.m113.543678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meiosis requires copper to undertake its program in which haploid gametes are produced from diploid precursor cells. In Schizosaccharomyces pombe, copper is transported by three members of the copper transporter (Ctr) family, namely Ctr4, Ctr5, and Ctr6. Although central for sexual differentiation, very little is known about the expression profile, cellular localization, and physiological contribution of the Ctr proteins during meiosis. Analysis of gene expression of ctr4(+) and ctr5(+) revealed that they are primarily expressed in early meiosis under low copper conditions. In the case of ctr6(+), its expression is broader, being detected throughout the entire meiotic process with an increase during middle- and late-phase meiosis. Whereas the expression of ctr4(+) and ctr5(+) is exclusively dependent on the presence of Cuf1, ctr6(+) gene expression relies on two distinct regulators, Cuf1 and Mei4. Ctr4 and Ctr5 proteins co-localize at the plasma membrane shortly after meiotic induction, whereas Ctr6 is located on the membrane of vacuoles. After meiotic divisions, Ctr4 and Ctr5 disappear from the cell surface, whereas Ctr6 undergoes an intracellular re-location to co-localize with the forespore membrane. Under copper-limiting conditions, disruption of ctr4(+) and ctr6(+) results in altered SOD1 activity, whereas these mutant cells exhibit substantially decreased levels of CAO activity mostly in early- and middle-phase meiosis. Collectively, these results emphasize the notion that Ctr proteins exhibit differential expression, localization, and contribution in delivering copper to SOD1 and Cao1 proteins during meiosis.
Collapse
Affiliation(s)
- Samuel Plante
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | | | | | | |
Collapse
|
19
|
Transcriptional regulation of the copper transporter mfc1 in meiotic cells. EUKARYOTIC CELL 2013; 12:575-90. [PMID: 23397571 DOI: 10.1128/ec.00019-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mfc1 is a meiosis-specific protein that mediates copper transport during the meiotic program in Schizosaccharomyces pombe. Although the mfc1(+) gene is induced at the transcriptional level in response to copper deprivation, the molecular determinants that are required for its copper starvation-dependent induction are unknown. Promoter deletion and site-directed mutagenesis have allowed identification of a new cis-regulatory element in the promoter region of the mfc1(+) gene. This cis-acting regulatory sequence containing the sequence TCGGCG is responsible for transcriptional activation of mfc1(+) under low-copper conditions. The TCGGCG sequence contains a CGG triplet known to serve as a binding site for members of the Zn(2)Cys(6) binuclear cluster transcriptional regulator family. In agreement with this fact, one member of this group of regulators, denoted Mca1, was found to be required for maximum induction of mfc1(+) gene expression. Analysis of Mca1 cellular distribution during meiosis revealed that it colocalizes with both chromosomes and sister chromatids during early, middle, and late phases of the meiotic program. Cells lacking Mca1 exhibited a meiotic arrest at metaphase I under low-copper conditions. Binding studies revealed that the N-terminal 150-residue segment of Mca1 expressed as a fusion protein in Escherichia coli specifically interacts with the TCGGCG sequence of the mfc1(+) promoter. Taken together, these results identify the cis-regulatory TCGGCG sequence and the transcription factor Mca1 as critical components for activation of the meiotic copper transport mfc1(+) gene in response to copper starvation.
Collapse
|
20
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
21
|
Abstract
While research has identified an important contribution for metals, such as iron, in microbial pathogenesis, the roles of other transition metals, such as copper, remain mostly unknown. Recent evidence points to a requirement for copper homeostasis in the virulence of Cryptococcus neoformans based on a role for a CUF1 copper regulatory factor in mouse models and in a human patient cohort. C. neoformans is an important fungal pathogen that results in an estimated 600,000 AIDS-related deaths yearly. In the present studies, we found that a C. neoformans mutant lacking the CUF1-dependent copper transporter, CTR4, grows normally in rich medium at 37°C but has reduced survival in macrophages and attenuated virulence in a mouse model. This reduced survival and virulence were traced to a growth defect under nutrient-restricted conditions. Expression studies using a full-length CTR4-fluorescent fusion reporter construct demonstrated robust expression in macrophages, brain, and lung, the latter shown by ex vivo fluorescent imaging. Inductively coupled mass spectroscopy (ICP-MS) was used to probe the copper quota of fungal cells grown in defined medium and recovered from brain, which suggested a role for a copper-protective function of CTR4 in combination with cell metallothioneins under copper-replete conditions. In summary, these data suggest a role for CTR4 in copper-related homeostasis and subsequently in fungal virulence. Crytococcus neoformans is a significant global fungal pathogen, and copper homeostasis is a relatively unexplored aspect of microbial pathogenesis that could lead to novel therapeutics. Previous studies correlated expression levels of a Ctr4 copper transporter to development of meningoencephalitis in a patient cohort of solid-organ transplants, but a direct role for Ctr4 in mammalian pathogenesis has not been demonstrated. The present studies utilize a Δctr4 mutant strain which revealed an important role for CTR4 in C. neoformans infections in mice and relate the gene product to homeostatic control of copper and growth under nutrient-restricted conditions. Robust expression levels of CTR4 during fungal infection were exploited to demonstrate expression and lung cryptococcal disease using ex vivo fluorescence imaging. In summary, these studies are the first to directly demonstrate a role for a copper transporter in fungal disease and provide an ex vivo imaging tool for further study of cryptococcal gene expression and pathogenesis.
Collapse
|
22
|
Cuf2 is a novel meiosis-specific regulatory factor of meiosis maturation. PLoS One 2012; 7:e36338. [PMID: 22558440 PMCID: PMC3338643 DOI: 10.1371/journal.pone.0036338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/30/2012] [Indexed: 12/03/2022] Open
Abstract
Background Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors. Principal Findings In this report a novel copper-fist-type regulator, Cuf2, is shown to be expressed exclusively during meiosis. The expression profile of the cuf2+ mRNA revealed that it was induced during middle-phase meiosis. Both cuf2+ mRNA and protein levels are unregulated by copper addition or starvation. The transcription of cuf2+ required the presence of a functional mei4+ gene encoding a key transcription factor that activates the expression of numerous middle meiotic genes. Microscopic analyses of cells expressing a functional Cuf2-GFP protein revealed that Cuf2 co-localized with both homologous chromosomes and sister chromatids during the meiotic divisions. Cells lacking Cuf2 showed an elevated and sustained expression of several of the middle meiotic genes that persisted even during late meiosis. Moreover, cells carrying disrupted cuf2Δ/cuf2Δ alleles displayed an abnormal morphology of the forespore membranes and a dramatic reduction of spore viability. Significance Collectively, the results revealed that Cuf2 functions in the timely repression of the middle-phase genes during meiotic differentiation.
Collapse
|
23
|
Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1580-93. [PMID: 22387373 DOI: 10.1016/j.bbamcr.2012.02.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/08/2012] [Accepted: 02/16/2012] [Indexed: 12/13/2022]
Abstract
Throughout evolution, all organisms have harnessed the redox properties of copper (Cu) and iron (Fe) as a cofactor or structural determinant of proteins that perform critical functions in biology. At its most sobering stance to Earth's biome, Cu biochemistry allows photosynthetic organisms to harness solar energy and convert it into the organic energy that sustains the existence of all nonphotosynthetic life forms. The conversion of organic energy, in the form of nutrients that include carbohydrates, amino acids and fatty acids, is subsequently released during cellular respiration, itself a Cu-dependent process, and stored as ATP that is used to drive a myriad of critical biological processes such as enzyme-catalyzed biosynthetic processes, transport of cargo around cells and across membranes, and protein degradation. The life-supporting properties of Cu incur a significant challenge to cells that must not only exquisitely balance intracellular Cu concentrations, but also chaperone this redox-active metal from its point of cellular entry to its ultimate destination so as to avert the potential for inappropriate biochemical interactions or generation of damaging reactive oxidative species (ROS). In this review we chart the travels of Cu from the extracellular milieu of fungal and mammalian cells, its path within the cytosol as inferred by the proteins and ligands that escort and deliver Cu to intracellular organelles and protein targets, and its journey throughout the body of mammals. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Tracy Nevitt
- Department of Pharmacology, Duke University Medical School, Durham, NC 27710, USA
| | | | | |
Collapse
|
24
|
Beaudoin J, Ioannoni R, López-Maury L, Bähler J, Ait-Mohand S, Guérin B, Dodani SC, Chang CJ, Labbé S. Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells. J Biol Chem 2011; 286:34356-72. [PMID: 21828039 DOI: 10.1074/jbc.m111.280396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight in the molecular basis of copper homeostasis during meiosis, we have used DNA microarrays to analyze meiotic gene expression in the model yeast Schizosaccharomyces pombe. Profiling data identified a novel meiosis-specific gene, termed mfc1(+), that encodes a putative major facilitator superfamily-type transporter. Although Mfc1 does not exhibit any significant sequence homology with the copper permease Ctr4, it contains four putative copper-binding motifs that are typically found in members of the copper transporter family of copper transporters. Similarly to the ctr4(+) gene, the transcription of mfc1(+) was induced by low concentrations of copper. However, its temporal expression profile during meiosis was distinct to ctr4(+). Whereas Ctr4 was observed at the plasma membrane shortly after induction of meiosis, Mfc1 appeared later in precursor vesicles and, subsequently, at the forespore membrane of ascospores. Using the fluorescent copper-binding tracker Coppersensor-1 (CS1), labile cellular copper was primarily detected in the forespores in an mfc1(+)/mfc1(+) strain, whereas an mfc1Δ/mfc1Δ mutant exhibited an intracellular dispersed punctate distribution of labile copper ions. In addition, the copper amine oxidase Cao1, which localized primarily in the forespores of asci, was fully active in mfc1(+)/mfc1(+) cells, but its activity was drastically reduced in an mfc1Δ/mfc1Δ strain. Furthermore, our data showed that meiotic cells that express the mfc1(+) gene have a distinct developmental advantage over mfc1Δ/mfc1Δ mutant cells when copper is limiting. Taken together, the data reveal that Mfc1 serves to transport copper for accurate and timely meiotic differentiation under copper-limiting conditions.
Collapse
Affiliation(s)
- Jude Beaudoin
- Départements de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yuan M, Li X, Xiao J, Wang S. Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC PLANT BIOLOGY 2011; 11:69. [PMID: 21510855 PMCID: PMC3103425 DOI: 10.1186/1471-2229-11-69] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/21/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND The copper (Cu) transporter (COPT/Ctr) gene family has an important role in the maintenance of Cu homeostasis in different species. The rice COPT-type gene family consists of seven members (COPT1 to COPT7). However, only two, COPT1 and COPT5, have been characterized for their functions in Cu transport. RESULTS Here we report the molecular and functional characterization of the other five members of the rice COPT gene family (COPT2, COPT3, COPT4, COPT6, and COPT7). All members of the rice COPT family have the conserved features of known COPT/Ctr-type Cu transporter genes. Among the proteins encoded by rice COPTs, COPT2, COPT3, and COPT4 physically interacted with COPT6, respectively, except for the known interaction between COPT1 and COPT5. COPT2, COPT3, or COPT4 cooperating with COPT6 mediated a high-affinity Cu uptake in the yeast Saccharomyces cerevisiae mutant that lacked the functions of ScCtr1 and ScCtr3 for Cu uptake. COPT7 alone could mediate a high-affinity Cu uptake in the yeast mutant. None of the seven COPTs alone or in cooperation could complement the phenotypes of S. cerevisiae mutants that lacked the transporter genes either for iron uptake or for zinc uptake. However, these COPT genes, which showed different tissue-specific expression patterns and Cu level-regulated expression patterns, were also transcriptionally influenced by deficiency of iron, manganese, or zinc. CONCLUSION These results suggest that COPT2, COPT3, and COPT4 may cooperate with COPT6, respectively, and COPT7 acts alone for Cu transport in different rice tissues. The endogenous concentrations of iron, manganese, or zinc may influence Cu homeostasis by influencing the expression of COPTs in rice.
Collapse
Affiliation(s)
- Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
26
|
Beaudoin J, Thiele DJ, Labbé S, Puig S. Dissection of the relative contribution of the Schizosaccharomyces pombe Ctr4 and Ctr5 proteins to the copper transport and cell surface delivery functions. MICROBIOLOGY (READING, ENGLAND) 2011; 157:1021-1031. [PMID: 21273250 DOI: 10.1099/mic.0.046854-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Ctr1 family of proteins mediates high-affinity copper (Cu) acquisition in eukaryotic organisms. In the fission yeast Schizosaccharomyces pombe, Cu uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Unlike human and Saccharomyces cerevisiae Ctr1 proteins, Ctr4 and Ctr5 are unable to function independently in Cu acquisition. Instead, both proteins physically interact with each other to form a Ctr4-Ctr5 heteromeric complex, and are interdependent for secretion to the plasma membrane and Cu transport activity. In this study, we used S. cerevisiae mutants that are defective in high-affinity Cu uptake to dissect the relative contribution of Ctr4 and Ctr5 to the Cu transport function. Functional complementation and localization assays show that the conserved Met-X(3)-Met motif in transmembrane domain 2 of the Ctr5 protein is dispensable for the functionality of the Ctr4-Ctr5 complex, whereas the Met-X(3)-Met motif in the Ctr4 protein is essential for function and for localization of the hetero-complex to the plasma membrane. Moreover, Ctr4/Ctr5 chimeric proteins reveal unique properties found either in Ctr4 or in Ctr5, and are sufficient for Cu uptake on the cell surface of Sch. pombe cells. Functional chimeras contain the Ctr4 central and Ctr5 carboxyl-terminal domains (CTDs). We propose that the Ctr4 central domain mediates Cu transport in this hetero-complex, whereas the Ctr5 CTD functions in the regulation of trafficking of the Cu transport complex to the cell surface.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Research Drive-LSRC-C134, Durham, NC 27710, USA
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), PO Box 73, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|