1
|
Hartsock MJ, Levy CT, Navarro MJ, Saddoris MP, Spencer RL. Circadian Rhythms in Conditioned Threat Extinction Reflect Time-of-Day Differences in Ventromedial Prefrontal Cortex Neural Processing. J Neurosci 2024; 44:e0878242024. [PMID: 39251355 PMCID: PMC11426375 DOI: 10.1523/jneurosci.0878-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Circadian rhythms in conditioned threat extinction emerge from a tissue-level circadian timekeeper, or local clock, in the ventromedial prefrontal cortex (vmPFC). Yet it remains unclear how this local clock contributes to extinction-dependent adaptations. Here we used single-unit and local field potential analyses to interrogate neural activity in the male rat vmPFC during repeated extinction sessions at different times of day. In association with superior recall of a remote extinction memory during the circadian active phase, vmPFC putative principal neurons exhibited phasic firing that was amplified for cue presentations and diminished at transitions in freezing behavior. Coupling of vmPFC gamma amplitude to the phase of low-frequency oscillations was greater during freezing than mobility, and this difference was augmented during the active phase, highlighting a time-of-day dependence in the organization of freezing- versus mobility-associated cell assemblies. Additionally, a greater proportion of vmPFC neurons were phase-locked to low-frequency oscillations during the active phase, consistent with heightened neural excitability at this time of day. Our results suggest that daily fluctuations in vmPFC excitability precipitate enhanced neural recruitment into extinction-based cell assemblies during the active phase, providing a potential mechanism by which the vmPFC local clock modulates circuit and behavioral plasticity during conditioned threat extinction.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Catherine T Levy
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Maria J Navarro
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Michael P Saddoris
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| |
Collapse
|
2
|
Matchynski JI, Cilley TS, Sadik N, Makki KM, Wu M, Manwar R, Woznicki AR, Kallakuri S, Arfken CL, Hope BT, Avanaki K, Conti AC, Perrine SA. Quantification of prefrontal cortical neuronal ensembles following conditioned fear learning in a Fos-LacZ transgenic rat with photoacoustic imaging in Vivo. PHOTOACOUSTICS 2023; 33:100551. [PMID: 38021296 PMCID: PMC10658601 DOI: 10.1016/j.pacs.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/19/2023] [Accepted: 08/26/2023] [Indexed: 12/01/2023]
Abstract
Understanding the neurobiology of complex behaviors requires measurement of activity in the discrete population of active neurons, neuronal ensembles, which control the behavior. Conventional neuroimaging techniques ineffectively measure neuronal ensemble activity in the brain in vivo because they assess the average regional neuronal activity instead of the specific activity of the neuronal ensemble that mediates the behavior. Our functional molecular photoacoustic tomography (FM-PAT) system allows direct imaging of Fos-dependent neuronal ensemble activation in Fos-LacZ transgenic rats in vivo. We tested four experimental conditions and found increased FM-PAT signal in prefrontal cortical areas in rats undergoing conditioned fear or novel context exposure. A parallel immunofluorescence ex vivo study of Fos expression found similar findings. These findings demonstrate the ability of FM-PAT to measure Fos-expressing neuronal ensembles directly in vivo and support a mechanistic role for the prefrontal cortex in higher-order processing of response to specific stimuli or environmental cues.
Collapse
Affiliation(s)
- James I. Matchynski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Wayne State MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Timothy S. Cilley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nareen Sadik
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kassem M. Makki
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Min Wu
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Rayyan Manwar
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, USA
| | | | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cynthia L. Arfken
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruce T. Hope
- The National Institute on Drug Abuse (NIDA), Intramural Research Program, Baltimore, MD, USA
| | - Kamran Avanaki
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, USA
| | - Alana C. Conti
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
3
|
Gromer D, Hildebrandt LK, Stegmann Y. The Role of Expectancy Violation in Extinction Learning: A Two-Day Online Fear Conditioning Study. CLINICAL PSYCHOLOGY IN EUROPE 2023; 5:e9627. [PMID: 37732150 PMCID: PMC10508258 DOI: 10.32872/cpe.9627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/03/2023] [Indexed: 09/22/2023] Open
Abstract
Background Exposure therapy is at the core of the treatment of pathological anxiety. While the inhibitory learning model proposes a framework for the mechanisms underlying exposure therapy, in particular expectancy violation, causal evidence for its assumptions remains elusive. Therefore, the aim of the current study was to provide evidence for the influence of expectancy violation on extinction retention by manipulating the magnitude of expectancy violation during extinction learning. Method In total, 101 individuals completed a web-based fear conditioning protocol, consisting of a fear acquisition and extinction phase, as well as a spontaneous recovery and fear reinstatement test 24h later. To experimentally manipulate expectancy violation, participants were presented only with states of the conditioned stimulus that either weakly or strongly predicted the aversive outcome. Consequently, the absence of any aversive outcomes in the extinction phase resulted in low or high expectancy violation, respectively. Results We found successful fear acquisition and manipulation of expectancy violation, which was associated with reduced threat ratings for the high compared to the low expectancy violation group directly after extinction learning. On Day 2, inhibitory CS-noUS associations could be retrieved for expectancy ratings, whereas there were no substantial group differences for threat ratings. Conclusion These findings indicate that the magnitude of expectancy violation is related to the retrieval of conscious threat expectancies, but it is unclear how these changes translate to affective components (i.e., threat ratings) of the fear response and to symptoms of pathological anxiety.
Collapse
Affiliation(s)
- Daniel Gromer
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | | | - Yannik Stegmann
- Department of Psychology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Binette AN, Liu J, Bayer H, Crayton KL, Melissari L, Sweck SO, Maren S. Parvalbumin-Positive Interneurons in the Medial Prefrontal Cortex Regulate Stress-Induced Fear Extinction Impairments in Male and Female Rats. J Neurosci 2023; 43:4162-4173. [PMID: 37127359 PMCID: PMC10255009 DOI: 10.1523/jneurosci.1442-22.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023] Open
Abstract
Stress has profound effects on fear extinction, a form of learning that is essential to behavioral therapies for trauma-related and stressor-related disorders. Recent work reveals that acute footshock stress reduces medial prefrontal cortex (mPFC) activity that is critical for extinction learning. Reductions in mPFC activity may be mediated by parvalbumin (PV)-containing interneurons via feedforward inhibition imposed by amygdala afferents. To test this hypothesis, footshock stress-induced Fos expression was characterized in PV+ and PV- neurons in the prelimbic (PL) and infralimbic (IL) cortices. Footshock stress increased the proportion of PV+ cells expressing Fos in both male and female rats; this effect was more pronounced in IL compared with PL. To determine whether PV+ interneurons in the mPFC mediate stress-induced extinction impairments, we chemogenetically silenced these neurons before an immediate extinction procedure in PV-Cre rats. Clozapine-N-oxide (CNO) did not affect conditioned freezing during the extinction procedure. However, CNO exacerbated extinction retrieval in both male and female rats with relatively high PL expression of designer receptors exclusively activated by designer drugs (DREADD). In contrast, in rats with relatively high IL DREADD expression, CNO produced a modest facilitation of extinction in the earliest retrieval trials, but in male rats only. Conversely, excitation of IL PV interneurons was sufficient to impair delayed extinction in both male and female rats. Finally, chemogenetic inhibition of IL-projecting amygdala neurons reduced the immediate extinction deficit in male, but not female rats. These results reveal that PV interneurons regulate extinction learning under stress in a sex-dependent manner, and this effect is mediated by amygdaloprefrontal projections.SIGNIFICANCE STATEMENT Stress significantly impairs the memory of fear extinction, a type of learning that is central to behavioral therapies for trauma-based and anxiety-based disorders (e.g., post-traumatic stress disorder). Here we show that acute footshock stress recruits parvalbumin (PV) interneurons in the medial prefrontal cortex (mPFC) of male and female rats. Silencing mPFC PV interneurons or mPFC-projecting amygdala neurons during immediate extinction influenced extinction retrieval in a sex-dependent manner. This work highlights the role for PV-containing mPFC interneurons in stress-induced impairments in extinction learning.
Collapse
Affiliation(s)
- Annalise N Binette
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Jianfeng Liu
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Hugo Bayer
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Kennedi L Crayton
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Laila Melissari
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Samantha O Sweck
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Stephen Maren
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| |
Collapse
|
5
|
Bierwirth P, Antov MI, Stockhorst U. Oscillatory and non-oscillatory brain activity reflects fear expression in an immediate and delayed fear extinction task. Psychophysiology 2023:e14283. [PMID: 36906880 DOI: 10.1111/psyp.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 03/13/2023]
Abstract
Fear extinction is pivotal for inhibiting fear responding to former threat-predictive stimuli. In rodents, short intervals between fear acquisition and extinction impair extinction recall compared to long intervals. This is called Immediate Extinction Deficit (IED). Importantly, human studies of the IED are sparse and its neurophysiological correlates have not been examined in humans. We, therefore, investigated the IED by recording electroencephalography (EEG), skin conductance responses (SCRs), an electrocardiogram (ECG), and subjective ratings of valence and arousal. Forty male participants were randomly assigned to extinction learning either 10 min after fear acquisition (immediate extinction) or 24 h afterward (delayed extinction). Fear and extinction recall were assessed 24 h after extinction learning. We observed evidence for an IED in SCR responses, but not in the ECG, subjective ratings, or in any assessed neurophysiological marker of fear expression. Irrespective of extinction timing (immediate vs. delayed), fear conditioning caused a tilt of the non-oscillatory background spectrum with decreased low-frequency power (<30 Hz) for threat-predictive stimuli. When controlling for this tilt, we observed a suppression of theta and alpha oscillations to threat-predictive stimuli, especially pronounced during fear acquisition. In sum, our data show that delayed extinction might be partially advantageous over immediate extinction in reducing sympathetic arousal (as assessed via SCR) to former threat-predictive stimuli. However, this effect was limited to SCR responses since all other fear measures were not affected by extinction timing. Additionally, we demonstrate that oscillatory and non-oscillatory activity is sensitive to fear conditioning, which has important implications for fear conditioning studies examining neural oscillations.
Collapse
Affiliation(s)
- Philipp Bierwirth
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Martin I Antov
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Ursula Stockhorst
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
6
|
Role of noradrenergic arousal for fear extinction processes in rodents and humans. Neurobiol Learn Mem 2022; 194:107660. [PMID: 35870717 DOI: 10.1016/j.nlm.2022.107660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 01/22/2023]
Abstract
Fear extinction is a learning mechanism that is pivotal for the inhibition of fear responses towards cues or contexts that no longer predict the occurrence of a threat. Failure of fear extinction leads to fear expression under safe conditions and is regarded to be a cardinal characteristic of many anxiety-related disorders and posttraumatic stress disorder. Importantly, the neurotransmitter noradrenaline was shown to be a potent modulator of fear extinction. Rodent studies demonstrated that excessive noradrenaline transmission after acute stress opens a time window of vulnerability, in which fear extinction learning results in attenuated long-term extinction success. In contrast, when excessive noradrenergic transmission subsides, well-coordinated noradrenaline transmission is necessary for the formation of a long-lasting extinction memory. In addition, emerging evidence suggests that the neuropeptide corticotropin releasing hormone (CRF), which strongly regulates noradrenaline transmission under conditions of acute stress, also impedes long-term extinction success. Recent rodent work - using sophisticated methods - provides evidence for a hypothetical mechanistic framework of how noradrenaline and CRF dynamically orchestrate the neural fear and extinction circuitry to attenuate or to improve fear extinction and extinction recall. Accordingly, we review the evidence from rodent studies linking noradrenaline and CRF to fear extinction learning and recall and derive the hypothetical mechanistic framework of how different levels of noradrenaline and CRF may create a time window of vulnerability which impedes successful long-term fear extinction. We also address evidence from human studies linking noradrenaline and fear extinction success. Moreover, we accumulate emerging approaches to non-invasively measure and manipulate the noradrenergic system in healthy humans. Finally, we emphasize the importance of future studies to account for sex (hormone) differences when examining the interaction between fear extinction, noradrenaline, and CRF. To conclude, NA's effects on fear extinction recall strongly depend on the arousal levels at the onset of fear extinction learning. Our review aimed at compiling the available (mainly rodent) data in a neurobiological framework, suited to derive testable hypotheses for future work in humans.
Collapse
|
7
|
Maren S. Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Front Syst Neurosci 2022; 16:888461. [PMID: 35520882 PMCID: PMC9062589 DOI: 10.3389/fnsys.2022.888461] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic interventions for disorders of fear and anxiety rely on behavioral approaches that reduce pathological fear memories. For example, learning that threat-predictive stimuli are no longer associated with aversive outcomes is central to the extinction of conditioned fear responses. Unfortunately, fear memories are durable, long-lasting, and resistant to extinction, particularly under high levels of stress. This is illustrated by the "immediate extinction deficit," which is characterized by a poor long-term reduction of conditioned fear when extinction procedures are attempted within hours of fear conditioning. Here, I will review recent work that has provided new insight into the neural mechanisms underlying resistance to fear extinction. Emerging studies reveal that locus coeruleus norepinephrine modulates amygdala-prefrontal cortical circuits that are critical for extinction learning. These data suggest that stress-induced activation of brain neuromodulatory systems biases fear memory at the expense of extinction learning. Behavioral and pharmacological strategies to reduce stress in patients undergoing exposure therapy might improve therapeutic outcomes.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Mello e Souza T. Unraveling molecular and system processes for fear memory. Neuroscience 2022; 497:14-29. [DOI: 10.1016/j.neuroscience.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
|
9
|
Nett KE, LaLumiere RT. Infralimbic cortex functioning across motivated behaviors: Can the differences be reconciled? Neurosci Biobehav Rev 2021; 131:704-721. [PMID: 34624366 PMCID: PMC8642304 DOI: 10.1016/j.neubiorev.2021.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
The rodent infralimbic cortex (IL) is implicated in higher order executive functions such as reward seeking and flexible decision making. However, the precise nature of its role in these processes is unclear. Early evidence indicated that the IL promotes the extinction and ongoing inhibition of fear conditioning and cocaine seeking. However, evidence spanning other behavioral domains, such as natural reward seeking and habit-based learning, suggests a more nuanced understanding of IL function. As techniques have advanced and more studies have examined IL function, identifying a unifying explanation for its behavioral function has become increasingly difficult. Here, we discuss evidence of IL function across motivated behaviors, including associative learning, drug seeking, natural reward seeking, and goal-directed versus habit-based behaviors, and emphasize how context-specific encoding and heterogeneous IL neuronal populations may underlie seemingly conflicting findings in the literature. Together, the evidence suggests that a major IL function is to facilitate the encoding and updating of contingencies between cues and behaviors to guide subsequent behaviors.
Collapse
Affiliation(s)
- Kelle E Nett
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States.
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
10
|
Vargas LDS, Lima KR, Mello-Carpes PB. Infralimbic and prelimbic prefrontal cortex activation is necessary to the enhancement of aversive memory extinction promoted by reactivation. Brain Res 2021; 1770:147630. [PMID: 34450117 DOI: 10.1016/j.brainres.2021.147630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Memory extinction has been used in behavioral therapy to treat post-traumatic stress disorders. It was demonstrated that memory reactivation before extinction could facilitate this process. However, the mechanisms involved are still unclear. Here, we investigated the participation of two regions of the ventromedial prefrontal cortex (vmPFC), the infralimbic (IL) and prelimbic (PL), in the memory reactivation modulatory effect of fear extinction. We confirmed that the reactivation facilitates the fear extinction in an inhibitory aversive task; however, when the muscimol (a GABAergic agonist) is infused in IL or PL vmPFC after reactivation, extinction's facilitation was not observed. These findings support the idea that the reactivation can modulate the fear extinction process, facilitating it, and that this effect requires the activation of both IL and PL regions of vmPFC.
Collapse
Affiliation(s)
| | - Karine Ramires Lima
- Physiology Research Group, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | |
Collapse
|
11
|
Baldi E, Costa A, Rani B, Passani MB, Blandina P, Romano A, Provensi G. Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders? Int J Mol Sci 2021; 22:10000. [PMID: 34576161 PMCID: PMC8467761 DOI: 10.3390/ijms221810000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Several psychiatric conditions such as phobias, generalized anxiety, and post-traumatic stress disorder (PTSD) are characterized by pathological fear and anxiety. The main therapeutic approach used in the management of these disorders is exposure-based therapy, which is conceptually based upon fear extinction with the formation of a new safe memory association, allowing the reduction in behavioral conditioned fear responses. Nevertheless, this approach is only partially resolutive, since many patients have difficulty following the demanding and long process, and relapses are frequently observed over time. One strategy to improve the efficacy of the cognitive therapy is the combination with pharmacological agents. Therefore, the identification of compounds able to strengthen the formation and persistence of the inhibitory associations is a key goal. Recently, growing interest has been aroused by the neuropeptide oxytocin (OXT), which has been shown to have anxiolytic effects. Furthermore, OXT receptors and binding sites have been found in the critical brain structures involved in fear extinction. In this review, the recent literature addressing the complex effects of OXT on fear extinction at preclinical and clinical levels is discussed. These studies suggest that the OXT roles in fear behavior are due to its local effects in several brain regions, most notably, distinct amygdaloid regions.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Alessia Costa
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Barbara Rani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Maria Beatrice Passani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Patrizio Blandina
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology ‘V. Erspamer’, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gustavo Provensi
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| |
Collapse
|
12
|
Quiñones-Laracuente K, Vega-Medina A, Quirk GJ. Time-Dependent Recruitment of Prelimbic Prefrontal Circuits for Retrieval of Fear Memory. Front Behav Neurosci 2021; 15:665116. [PMID: 34012387 PMCID: PMC8126619 DOI: 10.3389/fnbeh.2021.665116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The long-lasting nature of fear memories is essential for survival, but the neural circuitry for retrieval of these associations changes with the passage of time. We previously reported a time-dependent shift from prefrontal-amygdalar circuits to prefrontal-thalamic circuits for the retrieval of auditory fear conditioning. However, little is known about the time-dependent changes in the originating site, the prefrontal cortex. Here we monitored the responses of prelimbic (PL) prefrontal neurons to conditioned tones at early (2 h) vs. late (4 days) timepoints following training. Using c-Fos, we find that PL neurons projecting to the amygdala are activated early after learning, but not later, whereas PL neurons projecting to the paraventricular thalamus (PVT) show the opposite pattern. Using unit recording, we find that PL neurons in layer V (the origin of projections to amygdala) showed cue-induced excitation at earlier but not later timepoints, whereas PL neurons in Layer VI (the origin of projections to PVT) showed cue-induced inhibition at later, but not earlier, timepoints, along with an increase in spontaneous firing rate. Thus, soon after conditioning, there are conditioned excitatory responses in PL layer V which influence the amygdala. With the passage of time, however, retrieval of fear memories shifts to inhibitory responses in PL layer VI which influence the midline thalamus.
Collapse
Affiliation(s)
| | | | - Gregory J. Quirk
- Laboratory of Gregory J. Quirk, Departments of Psychiatry, Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
13
|
Mount RA, Sridhar S, Hansen KR, Mohammed AI, Abdulkerim M, Kessel R, Nazer B, Gritton HJ, Han X. Distinct neuronal populations contribute to trace conditioning and extinction learning in the hippocampal CA1. eLife 2021; 10:56491. [PMID: 33843589 PMCID: PMC8064758 DOI: 10.7554/elife.56491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Trace conditioning and extinction learning depend on the hippocampus, but it remains unclear how neural activity in the hippocampus is modulated during these two different behavioral processes. To explore this question, we performed calcium imaging from a large number of individual CA1 neurons during both trace eye-blink conditioning and subsequent extinction learning in mice. Our findings reveal that distinct populations of CA1 cells contribute to trace conditioned learning versus extinction learning, as learning emerges. Furthermore, we examined network connectivity by calculating co-activity between CA1 neuron pairs and found that CA1 network connectivity patterns also differ between conditioning and extinction, even though the overall connectivity density remains constant. Together, our results demonstrate that distinct populations of hippocampal CA1 neurons, forming different sub-networks with unique connectivity patterns, encode different aspects of learning.
Collapse
Affiliation(s)
- Rebecca A Mount
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Sudiksha Sridhar
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Kyle R Hansen
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Ali I Mohammed
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Moona Abdulkerim
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Robb Kessel
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Bobak Nazer
- Department of Electrical and Computer Engineering, Boston University, Boston, United States
| | - Howard J Gritton
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, United States
| |
Collapse
|
14
|
Bouton ME, Maren S, McNally GP. BEHAVIORAL AND NEUROBIOLOGICAL MECHANISMS OF PAVLOVIAN AND INSTRUMENTAL EXTINCTION LEARNING. Physiol Rev 2021; 101:611-681. [PMID: 32970967 PMCID: PMC8428921 DOI: 10.1152/physrev.00016.2020] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the behavioral neuroscience of extinction, the phenomenon in which a behavior that has been acquired through Pavlovian or instrumental (operant) learning decreases in strength when the outcome that reinforced it is removed. Behavioral research indicates that neither Pavlovian nor operant extinction depends substantially on erasure of the original learning but instead depends on new inhibitory learning that is primarily expressed in the context in which it is learned, as exemplified by the renewal effect. Although the nature of the inhibition may differ in Pavlovian and operant extinction, in either case the decline in responding may depend on both generalization decrement and the correction of prediction error. At the neural level, Pavlovian extinction requires a tripartite neural circuit involving the amygdala, prefrontal cortex, and hippocampus. Synaptic plasticity in the amygdala is essential for extinction learning, and prefrontal cortical inhibition of amygdala neurons encoding fear memories is involved in extinction retrieval. Hippocampal-prefrontal circuits mediate fear relapse phenomena, including renewal. Instrumental extinction involves distinct ensembles in corticostriatal, striatopallidal, and striatohypothalamic circuits as well as their thalamic returns for inhibitory (extinction) and excitatory (renewal and other relapse phenomena) control over operant responding. The field has made significant progress in recent decades, although a fully integrated biobehavioral understanding still awaits.
Collapse
Affiliation(s)
- Mark E Bouton
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Jacobs DS, Moghaddam B. Medial prefrontal cortex encoding of stress and anxiety. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:29-55. [PMID: 33785149 DOI: 10.1016/bs.irn.2020.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The prefrontal cortex (PFC) is involved in adaptive control of behavior and optimizing action selection. When an organism is experiencing an aversive event, such as a sustained state of anxiety or an overt experience of fear or stress, the mechanisms that govern PFC regulation of action selection may be critical for survival. A large body of literature has shown that acute aversive states influence the activity of PFC neurons and the release of neurotransmitters in this region. These states also result in long-term neurobiological changes in the PFC and expression of PFC-dependent motivated behaviors. The mechanism for how these changes lead to modifying action selection is only recently beginning to emerge. Here, we review animal and human studies into the neural mechanisms which may mediate the adaptive changes in the PFC that emerge during negative affective states. We then highlight recent advances in approaches for understanding how anxiety influences action selection and related cortical processes. We conclude by proposing that PFC neurons selectively influence action encoding during conditions where actions toward obtaining a reward or avoiding harm are executed under a fog of fear and anxiety.
Collapse
Affiliation(s)
- David S Jacobs
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
16
|
Xing X, Fu J, Wang H, Zheng X. Contributions of prelimbic cortex, dorsal and ventral hippocampus, and basolateral amygdala to fear return induced by elevated platform stress in rats. Brain Res 2021; 1761:147398. [PMID: 33662338 DOI: 10.1016/j.brainres.2021.147398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022]
Abstract
Fear relapse is a major challenge in the treatment of stress-related mental disorders. Most investigations have focused on fear return induced by stimuli associated with the initial fear learning, while little attention has been paid to fear return evoked after exposure to an unconditioned stressor. This study explored the neural mechanisms of fear return induced by elevated platform (EP) stressor in Sprague-Dawley rats initially subjected to auditory fear conditioning. The contributions of the prelimbic cortex (PL), dorsal hippocampus (DH), ventral hippocampus (VH), and basolateral amygdala (BLA) were examined by targeted bilateral intracerebral injection of the GABAA agonist muscimol after elevated platform (EP) stressor. Muscimol-induced inactivation of PL or BLA significantly impaired the return of conditioning fear, while inactivation of the DH or VH had no effect. These results suggest that fear return induced by non-associative stressor may depend on the PL and BLA but not on the hippocampus.
Collapse
Affiliation(s)
- Xiaoli Xing
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Education Science, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Juan Fu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, Shandong Province, PR China
| | - Hongbo Wang
- School of Education Science, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Xigeng Zheng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
17
|
Kaminska B, Caballero JP, Moorman DE. Integration of value and action in medial prefrontal neural systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 158:57-82. [PMID: 33785156 DOI: 10.1016/bs.irn.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rodent medial prefrontal cortex (mPFC) plays a key role in regulating cognition, emotion, and behavior. mPFC neurons are activated in diverse experimental paradigms, raising the questions of whether there are specific task elements or dimensions encoded by mPFC neurons, and whether these encoded parameters are selective to neurons in particular mPFC subregions or networks. Here, we consider the role of mPFC neurons in processing appetitive and aversive cues, outcomes, and related behaviors. mPFC neurons are strongly activated in tasks probing value and outcome-associated actions, but these responses vary across experimental paradigms. Can we identify specific categories of responses (e.g., positive or negative value), or do mPFC neurons exhibit response properties that are too heterogeneous/complex to cluster into distinct conceptual groups? Based on a review of relevant studies, we consider what has been done and what needs to be further explored in order to address these questions.
Collapse
Affiliation(s)
- Beata Kaminska
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jessica P Caballero
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States; Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
18
|
Wright EC, Hostinar CE, Trainor BC. Anxious to see you: Neuroendocrine mechanisms of social vigilance and anxiety during adolescence. Eur J Neurosci 2020; 52:2516-2529. [PMID: 31782841 PMCID: PMC7255921 DOI: 10.1111/ejn.14628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Abstract
Social vigilance is a behavioral strategy commonly used in adverse or changing social environments. In animals, a combination of avoidance and vigilance allows an individual to evade potentially dangerous confrontations while monitoring the social environment to identify favorable changes. However, prolonged use of this behavioral strategy in humans is associated with increased risk of anxiety disorders, a major burden for human health. Elucidating the mechanisms of social vigilance in animals could provide important clues for new treatment strategies for social anxiety. Importantly, during adolescence the prevalence of social anxiety increases significantly. We hypothesize that many of the actions typically characterized as anxiety behaviors begin to emerge during this time as strategies for navigating more complex social structures. Here, we consider how the social environment and the pubertal transition shape neural circuits that modulate social vigilance, focusing on the bed nucleus of the stria terminalis and prefrontal cortex. The emergence of gonadal hormone secretion during adolescence has important effects on the function and structure of these circuits, and may play a role in the emergence of a notable sex difference in anxiety rates across adolescence. However, the significance of these changes in the context of anxiety is still uncertain, as not enough studies are sufficiently powered to evaluate sex as a biological variable. We conclude that greater integration between human and animal models will aid the development of more effective strategies for treating social anxiety.
Collapse
Affiliation(s)
- Emily C Wright
- Department of Psychology, University of California, Davis, CA, USA
| | | | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
19
|
Jo YS, Namboodiri VMK, Stuber GD, Zweifel LS. Persistent activation of central amygdala CRF neurons helps drive the immediate fear extinction deficit. Nat Commun 2020; 11:422. [PMID: 31969571 PMCID: PMC6976644 DOI: 10.1038/s41467-020-14393-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Fear extinction is an active learning process whereby previously established conditioned responses to a conditioned stimulus are suppressed. Paradoxically, when extinction training is performed immediately following fear acquisition, the extinction memory is weakened. Here, we demonstrate that corticotrophin-releasing factor (CRF)-expressing neurons in the central amygdala (CeA) antagonize the extinction memory following immediate extinction training. CeA-CRF neurons transition from responding to the unconditioned stimulus to the conditioned stimulus during the acquisition of a fear memory that persists during immediate extinction training, but diminishes during delayed extinction training. Inhibition of CeA-CRF neurons during immediate extinction training is sufficient to promote enhanced extinction memories, and activation of these neurons following delay extinction training is sufficient to reinstate a previously extinguished fear memory. These results demonstrate CeA-CRF neurons are an important substrate for the persistence of fear and have broad implications for the neural basis of persistent negative affective behavioral states.
Collapse
Affiliation(s)
- Yong S. Jo
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA ,0000 0001 0840 2678grid.222754.4Department of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Vijay Mohan K. Namboodiri
- 0000000122986657grid.34477.33Department of Anesthesiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA
| | - Garret D. Stuber
- 0000000122986657grid.34477.33Department of Anesthesiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA
| | - Larry S. Zweifel
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA
| |
Collapse
|
20
|
Locus Coeruleus Norepinephrine Drives Stress-Induced Increases in Basolateral Amygdala Firing and Impairs Extinction Learning. J Neurosci 2019; 40:907-916. [PMID: 31801809 DOI: 10.1523/jneurosci.1092-19.2019] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Stress impairs extinction learning, and these deficits depend, in part, on stress-induced norepinephrine (NE) release in the basolateral amygdala (BLA). For example, systemic or intra-BLA administration of propranolol reduces the immediate extinction deficit (IED), an impairment in extinction learning that occurs when extinction trials are administered soon after fear conditioning. Here, we explored whether locus coeruleus (LC)-NE regulates stress-induced changes in spike firing in the BLA and consequent extinction learning impairments. Rats were implanted with recording arrays in the BLA and, after recovery from surgery, underwent a standard auditory fear conditioning procedure. Fear conditioning produced an immediate and dramatic increase in the spontaneous firing of BLA neurons that persisted (and in some units, increased further) up to an hour after conditioning. This stress-induced increase in BLA firing was prevented by systemic administration of propranolol. Conditioning with a weaker footshock caused smaller increases in BLA firing rate, but this could be augmented by chemogenetic activation of the LC. Conditioned freezing in response to a tone paired with a weak footshock was immune to the IED, but chemogenetic activation of the LC before the weak conditioning protocol increased conditioned freezing behavior and induced an IED; this effect was blocked with intra-BLA infusions of propranolol. These data suggest that stress-induced activation of the LC increases BLA spike firing and causes impairments in extinction learning. Stress-induced increases in BLA activity mediated by LC-NE may be a viable therapeutic target for individuals with stress- and trauma-related disorders.SIGNIFICANCE STATEMENT Patients with post-traumatic stress disorder (PTSD) show heightened amygdala activity; elevated levels of stress hormones, including norepinephrine; and are resistant to the extinction of fear memories. Here, we show that stress increases basolateral amygdala (BLA) spike firing. This could be attenuated by systemic propranolol and mimicked by chemogenetic activation of the locus coeruleus (LC), the source of forebrain norepinephrine (NE). Finally, we show that LC-NE activation is sufficient to produce extinction deficits, and this is blocked by intra-BLA propranolol. Stress-induced increases in BLA activity mediated by LC-NE may be a viable therapeutic target for individuals with PTSD and related disorders.
Collapse
|
21
|
Haaker J, Maren S, Andreatta M, Merz CJ, Richter J, Richter SH, Meir Drexler S, Lange MD, Jüngling K, Nees F, Seidenbecher T, Fullana MA, Wotjak CT, Lonsdorf TB. Making translation work: Harmonizing cross-species methodology in the behavioural neuroscience of Pavlovian fear conditioning. Neurosci Biobehav Rev 2019; 107:329-345. [PMID: 31521698 PMCID: PMC7822629 DOI: 10.1016/j.neubiorev.2019.09.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
Abstract
Translational neuroscience bridges insights from specific mechanisms in rodents to complex functions in humans and is key to advance our general understanding of central nervous function. A prime example of translational research is the study of cross-species mechanisms that underlie responding to learned threats, by employing Pavlovian fear conditioning protocols in rodents and humans. Hitherto, evidence for (and critique of) these cross-species comparisons in fear conditioning research was based on theoretical viewpoints. Here, we provide a perspective to substantiate these theoretical concepts with empirical considerations of cross-species methodology. This meta-research perspective is expected to foster cross-species comparability and reproducibility to ultimately facilitate successful transfer of results from basic science into clinical applications.
Collapse
Affiliation(s)
- Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Marta Andreatta
- Department of Psychology, University of Würzburg, Würzburg, Germany; Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Netherlands
| | - Christian J Merz
- Ruhr University Bochum, Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Germany
| | - Jan Richter
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Shira Meir Drexler
- Ruhr University Bochum, Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Germany
| | - Maren D Lange
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Miquel A Fullana
- Institute of Neurosciences, Hospital Clinic, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Porter JT, Sepulveda-Orengo MT. Learning-induced intrinsic and synaptic plasticity in the rodent medial prefrontal cortex. Neurobiol Learn Mem 2019; 169:107117. [PMID: 31765801 DOI: 10.1016/j.nlm.2019.107117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/12/2023]
Abstract
In rodents, the anterior cingulate (ACC), prelimbic (PL), and infralimbic cortex (IL) comprise the medial prefrontal cortex (mPFC). Through extensive connections with cortical and subcortical structures, the mPFC plays a key modulatory role in the neuronal circuits underlying associative fear and reward learning. In this article, we have compiled the evidence that associative learning induces plasticity in both the intrinsic and synaptic excitability of mPFC neurons to modulate conditioned fear and cocaine seeking behavior. The literature highlights the accumulating evidence that plasticity in the intrinsic excitability of mPFC neurons represents a major cellular mechanism that interacts with synaptic changes to alter the impact of the mPFC on fear and reward circuits.
Collapse
Affiliation(s)
- James T Porter
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00732, United States.
| | - Marian T Sepulveda-Orengo
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00732, United States
| |
Collapse
|
23
|
Responsivity of lateral septum-mPFC connections in alloxan-induced hyperglycemia. Behav Brain Res 2019; 368:111919. [PMID: 31005560 DOI: 10.1016/j.bbr.2019.111919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/18/2019] [Accepted: 04/17/2019] [Indexed: 02/02/2023]
Abstract
The lateral septal nucleus (LSN) is related to the actions of antidepressants, and the prelimbic cortex (PL) and infralimbic cortex (IL) modulate responses to fear. However, unknown is whether experimental diabetes that is induced by alloxan alters the responsivity of these regions. We used a method in which one forebrain region (LSN) was electrically stimulated while single-unit extracellular recordings were performed in another mPFC region (PL and IL). Several experimental groups were tested: (a) animals that were subjected to long-term (42-day) alloxan-hyperglycemia and protected with insulin, (b) healthy animals that received a low dose of insulin that does not produce changes in glycemia, and (c) animals that received long-term treatment with fluoxetine. Additional healthy groups of animals received insulin or fluoxetine and underwent the forced swim test. Biological measurements indicated the induction of diabetes in alloxan-treated rats. In this group, a shift toward an inhibitory response to LSN stimulation was observed in the PL and IL compared with the control group. A low dose of insulin or fluoxetine produced similar changes in LSN-PL and LSN-IL responsivity. Long-term hyperglycemia increased inhibitory responsivity in the LSN-PL and LSN-IL, but this action was less pronounced than the action that was exerted by insulin and fluoxetine, which produced similar actions. Such similar actions were confirmed in the forced swim test, in which the antidepressant-like effects of insulin partially resembled the effects of fluoxetine. The changes that were observed in the alloxan group appeared to be related to neuronal damage, and a low dose of insulin exerted some antidepressant-like actions.
Collapse
|
24
|
Russo AS, Lee J, Parsons RG. Individual variability in the recall of fear extinction is associated with phosphorylation of mitogen-activated protein kinase in the infralimbic cortex. Psychopharmacology (Berl) 2019; 236:2039-2048. [PMID: 30798403 DOI: 10.1007/s00213-019-05195-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/07/2019] [Indexed: 01/31/2023]
Abstract
RATIONALE Although most individuals will be exposed to trauma at some point, only a small portion of individuals develops posttraumatic stress disorder (PTSD), suggesting there are factors which render some individuals particularly susceptible to the development of this disorder. One cardinal feature of PTSD is the failure to extinguish fear responses to cues that once signaled danger. Rodent studies of fear learning and extinction have provided insight into the neural mechanisms underlying extinction; however, most of these studies have focused on mechanisms involved in typical responses and fewer have identified mechanisms that distinguish animals that extinguish well versus those that do not extinguish their fear responses. Investigation of individual differences in fear extinction might help us better understand the susceptibility to and development of PTSD. OBJECTIVES In order to understand the neural mechanisms underlying such variation, we assessed phosphorylated mitogen-activated protein kinase (P-MAPK) levels in infralimbic cortex (IL), basolateral amygdala (BLA), and dorsal hippocampus in subsets of rats which exhibited good or poor recall of extinction. RESULTS We found a relationship between extinction recall and P-MAPK in the IL such that rats which had good extinction recall had higher levels of P-MAPK than those which had poor extinction recall. We also found that rats which had good extinction recall had higher levels of P-MAPK in the dorsal hippocampus than control rats. CONCLUSIONS Our findings suggest that individual differences in the recall of extinction learning can be explained by altered cell signaling in the IL.
Collapse
Affiliation(s)
- Amanda S Russo
- Department of Psychology, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY, 11794, USA
| | - Jessica Lee
- Department of Psychology, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY, 11794, USA
| | - Ryan G Parsons
- Department of Psychology, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY, 11794, USA.
| |
Collapse
|
25
|
Totty MS, Payne MR, Maren S. Event boundaries do not cause the immediate extinction deficit after Pavlovian fear conditioning in rats. Sci Rep 2019; 9:9459. [PMID: 31263140 PMCID: PMC6603014 DOI: 10.1038/s41598-019-46010-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
Recent work reveals that the extinction of conditioned fear depends upon the interval between conditioning and extinction. Extinction training that takes place within minutes to hours after fear conditioning fails to produce a long-term extinction memory, a phenomenon known as the immediate extinction deficit (IED). Neurobiological evidence suggests that the IED results from stress-induced dysregulation of prefrontal cortical circuits involved in extinction learning. However, a recent study in humans suggests that an "event boundary" between fear conditioning and extinction protects the conditioning memory from interference by the extinction memory, resulting in high levels of fear during a retrieval test. Here, we contrast these hypotheses in rats by arranging extinction trials to follow conditioning trials with or without an event boundary; in both cases, extinction trials are delivered in proximity to shock-elicited stress. After fear conditioning, rats either received extinction trials 60-sec after the last conditioning trial (continuous, no event boundary) or 15-minutes after conditioning (segmented, a standard "immediate" extinction procedure associated with an event boundary). Both groups of animals showed decreases in conditional freezing to the auditory conditioned stimulus (CS) during extinction and exhibited an equivalent IED relative to non-extinguished controls when tested 48 hours later. Thus, eliminating the event boundary between conditioning and extinction with the continuous extinction procedure did not prevent the IED. These data suggest that the IED is the result of shock-induced stress, rather than boundary-induced reductions in memory interference.
Collapse
Affiliation(s)
- Michael S Totty
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, 77843, USA
| | - Martin R Payne
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, 77843, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, 77843, USA.
| |
Collapse
|
26
|
Packheiser J, Güntürkün O, Pusch R. Renewal of extinguished behavior in pigeons (Columba livia) does not require memory consolidation of acquisition or extinction in a free-operant appetitive conditioning paradigm. Behav Brain Res 2019; 370:111947. [PMID: 31102600 DOI: 10.1016/j.bbr.2019.111947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/18/2019] [Accepted: 05/14/2019] [Indexed: 11/25/2022]
Abstract
Extinction learning is a fundamental capacity for adaptive and flexible behavior. As extinguished conditioned responding is prone to relapse under certain conditions, the necessity of memory consolidation for recovery phenomena to occur has been highlighted recently. Several studies have demonstrated that both acquisition and extinction training need to be properly consolidated for a relapse of the original acquired memory trace to occur. Does this imply that extinguished responses cannot relapse before memory consolidation? To answer this question, we investigated the renewal effect subsequent to an immediate or a delayed (24 h) extinction in a discriminative operant conditioning paradigm. In three different experiments, we could show (1) that acquisition learning does not need to be long-term consolidated for the occurrence of renewal, (2) that the offset of extinction training is a reliable marker for extinction recall in a free-operant extinction learning paradigm where organisms undergo consecutive acquisition training, extinction training as well as testing of conditioned responding and (3), that immediate and long-term consolidated renewal do not demonstrate any qualitative difference in terms of the behavioral output. Our results indicate on the behavioral level that the inhibitory nature of extinction is already present in free-operant learning paradigms and that it does not seem to be affected by the absence of long-term memory consolidation.
Collapse
Affiliation(s)
- Julian Packheiser
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Germany.
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Germany
| | - Roland Pusch
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
27
|
Marks WN, Zabder NK, Greba Q, Cain SM, Snutch TP, Howland JG. The T‐type calcium channel blocker Z944 reduces conditioned fear in Genetic Absence Epilepsy Rats from Strasbourg and the non‐epileptic control strain. Eur J Neurosci 2019; 50:3046-3059. [DOI: 10.1111/ejn.14406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Wendie N. Marks
- Department of Anatomy, Physiology, and Pharmacology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Nadine K. Zabder
- Department of Anatomy, Physiology, and Pharmacology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Stuart M. Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver British Columbia Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver British Columbia Canada
| | - John G. Howland
- Department of Anatomy, Physiology, and Pharmacology University of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
28
|
Merz CJ, Wolf OT. The immediate extinction deficit occurs in a nonemotional learning paradigm. ACTA ACUST UNITED AC 2019; 26:39-45. [PMID: 30651376 PMCID: PMC6340120 DOI: 10.1101/lm.048223.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/11/2018] [Indexed: 01/16/2023]
Abstract
The immediate extinction deficit describes a higher return of fear when extinction takes place immediately after fear acquisition compared to a delayed extinction design. One explanation for this phenomenon encompasses the remaining emotional arousal evoked by fear acquisition to be still present during immediate, but not delayed extinction. In the present study, the predictive learning task, a learning task not involving arousal or stress, was used testing the hypothesis that no immediate extinction deficit should occur in this neutral task. Twenty-six participants underwent an immediate extinction procedure and were tested in a recall session 24 h later. For the delayed extinction group (n = 26), acquisition, extinction, and recall were realized 24 h apart from each other. Recall performance of a third group (n = 26) was tested 48 h after the immediate extinction procedure. The immediate extinction deficit was indeed observed for a stimulus not subject to a contextual change from acquisition to extinction, but not for other stimuli involving contextual changes or no extinction control stimuli. Even in a neutral learning task and without emotional arousal, the immediate extinction deficit could be detected but was restricted to the specific contextual embedding of stimuli. Thus, contextual processing appears to differentially modulate the emergence of the immediate extinction deficit.
Collapse
Affiliation(s)
- Christian J Merz
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
29
|
Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019; 236:415-437. [PMID: 30255379 PMCID: PMC6373193 DOI: 10.1007/s00213-018-5024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse of conditioned responses associated with trauma or drug use. OBJECTIVES The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the expression of relapse. KEY FINDINGS After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse, hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory control over fear- and drug-associated conditional responding. CONCLUSIONS The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-seeking behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
30
|
Rosas-Vidal LE, Lozada-Miranda V, Cantres-Rosario Y, Vega-Medina A, Melendez L, Quirk GJ. Alteration of BDNF in the medial prefrontal cortex and the ventral hippocampus impairs extinction of avoidance. Neuropsychopharmacology 2018; 43:2636-2644. [PMID: 30127343 PMCID: PMC6224579 DOI: 10.1038/s41386-018-0176-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is critical for establishing activity-related neural plasticity. There is increasing interest in the mechanisms of active avoidance and its extinction, but little is known about the role of BDNF in these processes. Using the platform-mediated avoidance task combined with local infusions of an antibody against BDNF, we show that blocking BDNF in either prelimbic (PL) or infralimbic (IL) medial prefrontal cortex during extinction training impairs subsequent recall of extinction of avoidance, differing from extinction of conditioned freezing. By combining retrograde tracers with BDNF immunohistochemistry, we show that extinction of avoidance increases BDNF expression in ventral hippocampal (vHPC) neurons, but not amygdala neurons, projecting to PL and IL. Using the CRISPR/Cas9 system, we further show that reducing BDNF production in vHPC neurons impairs recall of avoidance extinction. Thus, the vHPC may mediate behavioral flexibility in avoidance by driving extinction-related plasticity via BDNFergic projections to both PL and IL. These findings add to the growing body of knowledge implicating the hippocampal-prefrontal pathway in anxiety-related disorders and extinction-based therapies.
Collapse
Affiliation(s)
- Luis E Rosas-Vidal
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Valeria Lozada-Miranda
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Yisel Cantres-Rosario
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Alexis Vega-Medina
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Loyda Melendez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA.
| |
Collapse
|
31
|
James NM, Gritton HJ, Kopell N, Sen K, Han X. Muscarinic receptors regulate auditory and prefrontal cortical communication during auditory processing. Neuropharmacology 2018; 144:155-171. [PMID: 30352212 DOI: 10.1016/j.neuropharm.2018.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/26/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Much of our understanding about how acetylcholine modulates prefrontal cortical (PFC) networks comes from behavioral experiments that examine cortical dynamics during highly attentive states. However, much less is known about how PFC is recruited during passive sensory processing and how acetylcholine may regulate connectivity between cortical areas outside of task performance. To investigate the involvement of PFC and cholinergic neuromodulation in passive auditory processing, we performed simultaneous recordings in the auditory cortex (AC) and PFC in awake head fixed mice presented with a white noise auditory stimulus in the presence or absence of local cholinergic antagonists in AC. We found that a subset of PFC neurons were strongly driven by auditory stimuli even when the stimulus had no associative meaning, suggesting PFC monitors stimuli under passive conditions. We also found that cholinergic signaling in AC shapes the strength of auditory driven responses in PFC, by modulating the intra-cortical sensory response through muscarinic interactions in AC. Taken together, these findings provide novel evidence that cholinergic mechanisms have a continuous role in cortical gating through muscarinic receptors during passive processing and expand traditional views of prefrontal cortical function and the contributions of cholinergic modulation in cortical communication.
Collapse
Affiliation(s)
- Nicholas M James
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| | - Howard J Gritton
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| | - Nancy Kopell
- Boston University, Department of Mathematics & Statistics, Boston, MA, 02215, USA.
| | - Kamal Sen
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| |
Collapse
|
32
|
Gerlicher AMV, Tüscher O, Kalisch R. Dopamine-dependent prefrontal reactivations explain long-term benefit of fear extinction. Nat Commun 2018; 9:4294. [PMID: 30327462 PMCID: PMC6191435 DOI: 10.1038/s41467-018-06785-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Fear extinction does not prevent post-traumatic stress or have long-term therapeutic benefits in fear-related disorders unless extinction memories are easily retrieved at later encounters with the once-threatening stimulus. Previous research in rodents has pointed towards a role for spontaneous prefrontal activity occurring after extinction learning in stabilizing and consolidating extinction memories. In other memory domains spontaneous post-learning activity has been linked to dopamine. Here, we show that a neural activation pattern - evoked in the ventromedial prefrontal cortex (vmPFC) by the unexpected omission of the feared outcome during extinction learning - spontaneously reappears during postextinction rest. The number of spontaneous vmPFC pattern reactivations predicts extinction memory retrieval and vmPFC activation at test 24 h later. Critically, pharmacologically enhancing dopaminergic activity during extinction consolidation amplifies spontaneous vmPFC reactivations and correspondingly improves extinction memory retrieval at test. Hence, a spontaneous dopamine-dependent memory consolidation-based mechanism may underlie the long-term behavioral effects of fear extinction.
Collapse
Affiliation(s)
- A M V Gerlicher
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany.
- Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131, Mainz, Germany.
- Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018 WS, Amsterdam, The Netherlands.
| | - O Tüscher
- Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - R Kalisch
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
- Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| |
Collapse
|
33
|
Neuronal coding mechanisms mediating fear behavior. Curr Opin Neurobiol 2018; 52:60-64. [DOI: 10.1016/j.conb.2018.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
|
34
|
Fluoxetine and stress inversely modify lateral septal nucleus-mpfc neuronal responsivity. Behav Brain Res 2018; 351:114-120. [PMID: 29885850 DOI: 10.1016/j.bbr.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022]
Abstract
Several clinically effective antidepressants increase the neuronal firing rate in the lateral septal nucleus (LSN), a forebrain structure that is anatomically related to medial prefrontal cortex (mPFC) regions. mPFC function is related to depression and the regulation of fear. However, unknown is whether antidepressant treatment or chronic stress modifies the responsivity of neuronal LSN-mPFC connections. We performed single-unit extracellular recordings in the anterior cingulate cortex (ACC) and prelimbic (PL) and infralimbic (IL) regions of the mPFC during stimulation of the LSN in anesthetized male Wistar rats that received fluoxetine (1 mg/kg, 21 days) or were subjected to chronic mild stress (5 weeks). The results were compared with a control group (saline treatment, devoid of behavioral manipulations). Stimulation of the LSN produced an initial excitatory paucisynaptic response, followed by an afterdischarge, characterized by an increase in the neuronal firing rate. Opposite changes were induced by fluoxetine treatment and chronic stress exposure. Peristimulus histograms and unit-activity ratio analyses indicated that LSN-mPFC responsivity differed between fluoxetine treatment and chronic stress exposure. Fluoxetine reduced neuronal responsivity in the LSN-PL and LSN-IL, and stress increased neuronal responsivity in the same regions. In both cases, the changes were more pronounced in the IL region. The lower responsivity of LSN-PL and LSN-IL connections that was produced by fluoxetine may reflect a higher threshold for fear, and lower responsivity of this connection may be related to states of fear. The LSN and mPFC comprise a portion of a limbic-cortical circuit where neuronal responses depend on specific conditions.
Collapse
|
35
|
Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain Res Bull 2018; 140:355-364. [PMID: 29908895 DOI: 10.1016/j.brainresbull.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 11/23/2022]
Abstract
In the last few decades, there has been exponential increase in studies aiming to trace the molecular mechanism of fear extinction with a hope to minimize the return of fear after exposure therapy required for operational treatment of anxiety disorders. The present study explored how the timing of extinction training after developing a specific fear, affects the consequent return of the extinguished fear and the role of histone acetylation in controlling the circuitry, thereof. It was found that rats undergone extinction training 10 min. after fear memory acquisition (Immediate Extinction) had deficits in retention of extinction memory as compared to one which underwent extinction 24 h after fear acquisition (Delayed Extinction). When the differences were sorted at the circuitry level the relative activity of the infralimbic prefrontal cortex (IL) to prelimbic cortex (PL) was found to be lower in the immediate extinction group as compared to the delayed extinction group as evidenced by the c-fos expression in the mPFC of these groups. Further investigation showed that acetylation of histone H3/H4 along with the levels of CREB binding protein (CBP) which is a histone acetyltransferase (HAT), was associated with neuronal activation and was significantly lower in the IL of the immediate extinction group than the delayed extinction group. In conclusion, the observed deficits in the immediate extinction group may be the result of compromised activation of IL, which in turn may be associated with changes in histone acetylation.
Collapse
|
36
|
Diehl MM, Bravo-Rivera C, Rodriguez-Romaguera J, Pagan-Rivera PA, Burgos-Robles A, Roman-Ortiz C, Quirk GJ. Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. eLife 2018; 7:34657. [PMID: 29851381 PMCID: PMC5980229 DOI: 10.7554/elife.34657] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/06/2018] [Indexed: 12/27/2022] Open
Abstract
Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Christian Bravo-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Pablo A Pagan-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Anthony Burgos-Robles
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ciorana Roman-Ortiz
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J Quirk
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
37
|
Neural Activity in Ventral Medial Prefrontal Cortex Is Modulated More Before Approach Than Avoidance During Reinforced and Extinction Trial Blocks. J Neurosci 2018; 38:4584-4597. [PMID: 29661965 DOI: 10.1523/jneurosci.2579-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/21/2022] Open
Abstract
Ventromedial prefrontal cortex (vmPFC) is thought to provide regulatory control over Pavlovian fear responses and has recently been implicated in appetitive approach behavior, but much less is known about its role in contexts in which appetitive and aversive outcomes can be obtained and avoided, respectively. To address this issue, we recorded from single neurons in vmPFC while male rats performed our combined approach and avoidance task under reinforced and non-reinforced (extinction) conditions. Surprisingly, we found that cues predicting reward modulated cell firing in vmPFC more often and more robustly than cues preceding avoidable shock; in addition, firing of vmPFC neurons was both response (press or no-press) and outcome (reinforced or extinction) selective. These results suggest a complex role for vmPFC in regulating behavior and support its role in appetitive contexts during both reinforced and non-reinforced conditions.SIGNIFICANCE STATEMENT Selecting context-appropriate behaviors to gain reward or avoid punishment is critical for survival. Although the role of ventromedial prefrontal cortex (vmPFC) in mediating fear responses is well established, vmPFC has also been implicated in the regulation of reward-guided approach and extinction. Many studies have used indirect methods and simple behavioral procedures to study vmPFC, which leaves the literature incomplete. We recorded vmFPC neural activity during a complex cue-driven combined approach and avoidance task and during extinction. Surprisingly, we found very little vmPFC modulation to cues predicting avoidable shock, whereas cues predicting reward approach robustly modulated vmPFC firing in a response- and outcome-selective manner. This suggests a more complex role for vmPFC than current theories suggest, specifically regarding context-specific behavioral optimization.
Collapse
|
38
|
Kim EJ, Kong MS, Park SG, Mizumori SJY, Cho J, Kim JJ. Dynamic coding of predatory information between the prelimbic cortex and lateral amygdala in foraging rats. SCIENCE ADVANCES 2018; 4:eaar7328. [PMID: 29675471 PMCID: PMC5906073 DOI: 10.1126/sciadv.aar7328] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Predation is considered a major selective pressure in the evolution of fear, but the neurophysiology of predator-induced fear is unknown. We simultaneously recorded lateral amygdala (LA) and prelimbic (PL) area neuronal activities as rats exited a safe nest to search for food in an open space before, during, and after encountering a "predator" robot programmed to surge from afar. Distinct populations of LA neurons transiently increased spiking as rats either advanced or fled the robot, whereas PL neurons showed longer-lasting spike trains that preceded and persisted beyond LA activity. Moreover, discrete LA-PL cell pairs displayed correlated firings only when the animals either approached or fled the robot. These results suggest a general fear function of the LA-PL circuit where the PL participates in the initial detection of potential threats, the LA signals the occurrence of real threats, and the dynamic LA-PL interaction optimizes defensive readiness for action.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA 98195–1525, USA
| | - Mi-Seon Kong
- Department of Psychology, University of Washington, Seattle, WA 98195–1525, USA
| | - Sang Geon Park
- Neuroscience Program, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sheri J. Y. Mizumori
- Department of Psychology, University of Washington, Seattle, WA 98195–1525, USA
- Program in Neuroscience, University of Washington, Seattle, WA 98195–1525, USA
| | - Jeiwon Cho
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Republic of Korea
- Biomedical Research Institute, International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
- Institute for Bio-Medical Convergence, Incheon St. Mary’s Hospital, Catholic University of Korea, Incheon 22711, Republic of Korea
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, WA 98195–1525, USA
- Program in Neuroscience, University of Washington, Seattle, WA 98195–1525, USA
| |
Collapse
|
39
|
Giustino TF, Maren S. Noradrenergic Modulation of Fear Conditioning and Extinction. Front Behav Neurosci 2018; 12:43. [PMID: 29593511 PMCID: PMC5859179 DOI: 10.3389/fnbeh.2018.00043] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning) the locus coeruleus (LC) promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC) might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC) which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP). Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
40
|
Çalışkan G, Stork O. Hippocampal network oscillations as mediators of behavioural metaplasticity: Insights from emotional learning. Neurobiol Learn Mem 2018; 154:37-53. [PMID: 29476822 DOI: 10.1016/j.nlm.2018.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 01/15/2023]
Abstract
Behavioural metaplasticity is evident in experience-dependent changes of network activity patterns in neuronal circuits that connect the hippocampus, amygdala and medial prefrontal cortex. These limbic regions are key structures of a brain-wide neural network that translates emotionally salient events into persistent and vivid memories. Communication in this network by-and-large depends on behavioural state-dependent rhythmic network activity patterns that are typically generated and/or relayed via the hippocampus. In fact, specific hippocampal network oscillations have been implicated to the acquisition, consolidation and retrieval, as well as the reconsolidation and extinction of emotional memories. The hippocampal circuits that contribute to these network activities, at the same time, are subject to both Hebbian and non-Hebbian forms of plasticity during memory formation. Further, it has become evident that adaptive changes in the hippocampus-dependent network activity patterns provide an important means of adjusting synaptic plasticity. We here summarise our current knowledge on how these processes in the hippocampus in interaction with amygdala and medial prefrontal cortex mediate the formation and persistence of emotional memories.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
41
|
Rozeske RR, Jercog D, Karalis N, Chaudun F, Khoder S, Girard D, Winke N, Herry C. Prefrontal-Periaqueductal Gray-Projecting Neurons Mediate Context Fear Discrimination. Neuron 2018; 97:898-910.e6. [DOI: 10.1016/j.neuron.2017.12.044] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 01/22/2023]
|
42
|
Carlisi CO, Robinson OJ. The role of prefrontal-subcortical circuitry in negative bias in anxiety: Translational, developmental and treatment perspectives. Brain Neurosci Adv 2018; 2:2398212818774223. [PMID: 30167466 PMCID: PMC6097108 DOI: 10.1177/2398212818774223] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Anxiety disorders are the most common cause of mental ill health in the developed world, but our understanding of symptoms and treatments is not presently grounded in knowledge of the underlying neurobiological mechanisms. In this review, we discuss accumulating work that points to a role for prefrontal-subcortical brain circuitry in driving a core psychological symptom of anxiety disorders - negative affective bias. Specifically, we point to converging work across humans and animal models, suggesting a reciprocal relationship between dorsal and ventral prefrontal-amygdala circuits in promoting and inhibiting negative bias, respectively. We discuss how the developmental trajectory of these circuits may lead to the onset of anxiety during adolescence and, moreover, how effective pharmacological and psychological treatments may serve to shift the balance of activity within this circuitry to ameliorate negative bias symptoms. Together, these findings may bring us closer to a mechanistic, neurobiological understanding of anxiety disorders and their treatment.
Collapse
Affiliation(s)
- Christina O. Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Oliver J. Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
43
|
Knox D, Stanfield BR, Staib JM, David NP, DePietro T, Chamness M, Schneider EK, Keller SM, Lawless C. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress. Behav Brain Res 2017; 341:189-197. [PMID: 29292158 DOI: 10.1016/j.bbr.2017.12.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/08/2017] [Accepted: 12/28/2017] [Indexed: 01/15/2023]
Abstract
Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - Briana R Stanfield
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, United States
| | - Jennifer M Staib
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Nina P David
- School of Public Policy and Administration, University of Delaware, Newark, DE 19716, United States
| | - Thomas DePietro
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Marisa Chamness
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Elizabeth K Schneider
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Caroline Lawless
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
44
|
β-Adrenoceptor Blockade in the Basolateral Amygdala, But Not the Medial Prefrontal Cortex, Rescues the Immediate Extinction Deficit. Neuropsychopharmacology 2017; 42:2537-2544. [PMID: 28462941 PMCID: PMC5686500 DOI: 10.1038/npp.2017.89] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023]
Abstract
Early psychological interventions, such as exposure therapy, rely on extinction learning to reduce the development of stress- and trauma-related disorders. However, recent research suggests that extinction often fails to reduce fear when administered soon after trauma. This immediate extinction deficit (IED) may be due to stress-induced dysregulation of neural circuits involved in extinction learning. We have shown that systemic β-adrenoceptor blockade with propranolol rescues the IED, but impairs delayed extinction. Here we sought to determine the neural locus of these effects. Rats underwent auditory fear conditioning and then received either immediate (30 min) or delayed (24 h) extinction training. We used bilateral intracranial infusions of propranolol into either the infralimbic division of the medial prefrontal cortex (mPFC) or the basolateral amygdala (BLA) to examine the effects of β-adrenoceptor blockade on immediate and delayed extinction learning. Interestingly, intra-BLA, but not intra-mPFC, propranolol rescued the IED; animals receiving intra-BLA propranolol prior to immediate extinction showed less spontaneous recovery of fear during extinction retrieval. Importantly, this was not due to impaired consolidation of the conditioning memory. In contrast, neither intra-BLA nor intra-mPFC propranolol affected delayed extinction learning. Overall, these data contribute to a growing literature suggesting dissociable roles for key nodes in the fear extinction circuit depending on the timing of extinction relative to conditioning. These data also suggest that heightened noradrenergic activity in the BLA underlies stress-induced extinction deficits. Propranolol may be a useful adjunct to behavioral therapeutic interventions in recently traumatized individuals who are at risk for developing trauma-related disorders.
Collapse
|
45
|
Van't Wout M, Longo SM, Reddy MK, Philip NS, Bowker MT, Greenberg BD. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav 2017; 7:e00681. [PMID: 28523223 PMCID: PMC5434186 DOI: 10.1002/brb3.681] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Abnormalities in fear extinction and recall are core components of posttraumatic stress disorder (PTSD). Data from animal and human studies point to a role of the ventromedial prefrontal cortex (vmPFC) in extinction learning and subsequent retention of extinction memories. Given the increasing interest in developing noninvasive brain stimulation protocols for psychopathology treatment, we piloted whether transcranial direct current stimulation (tDCS) during extinction learning, vs. during consolidation of extinction learning, might improve extinction recall in veterans with warzone-related PTSD. METHODS Twenty-eight veterans with PTSD completed a 2-day Pavlovian fear conditioning, extinction, and recall paradigm. Participants received one 10-min session of 2 mA anodal tDCS over AF3, intended to target the vmPFC. Fourteen received tDCS that started simultaneously with extinction learning onset, and the remaining 14 participants received tDCS during extinction consolidation. Normalized skin conductance reactivity (SCR) was the primary outcome measure. Linear mixed effects models were used to test for effects of tDCS on late extinction and early extinction recall 24 hr later. RESULTS During early recall, veterans who received tDCS during extinction consolidation showed slightly lower SCR in response to previously extinguished stimuli as compared to veterans who received tDCS simultaneous with extinction learning (p = .08), generating a medium effect size (Cohen's d = .38). There was no significant effect of tDCS on SCR during late extinction. CONCLUSIONS These preliminary findings suggest that testing the effects of tDCS during consolidation of fear extinction may have promise as a way of enhancing extinction recall.
Collapse
Affiliation(s)
- Mascha Van't Wout
- Department of Psychiatry and Human Behavior Alpert Brown Medical School Brown University Providence RI USA.,Center for Neurorestoration and Neurotechnology Providence VA Medical Center Providence RI USA
| | - Sharon M Longo
- Center for Neurorestoration and Neurotechnology Providence VA Medical Center Providence RI USA
| | - Madhavi K Reddy
- Department of Psychiatry and Human Behavior Alpert Brown Medical School Brown University Providence RI USA.,Center for Neurorestoration and Neurotechnology Providence VA Medical Center Providence RI USA.,Department of Psychiatry and Behavioral Sciences McGovern Medical School at The University of Texas Health Science Center at Houston Houston TX USA
| | - Noah S Philip
- Department of Psychiatry and Human Behavior Alpert Brown Medical School Brown University Providence RI USA.,Center for Neurorestoration and Neurotechnology Providence VA Medical Center Providence RI USA
| | - Marguerite T Bowker
- Center for Neurorestoration and Neurotechnology Providence VA Medical Center Providence RI USA
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior Alpert Brown Medical School Brown University Providence RI USA.,Center for Neurorestoration and Neurotechnology Providence VA Medical Center Providence RI USA
| |
Collapse
|
46
|
Giustino TF, Fitzgerald PJ, Maren S. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats. PLoS One 2016; 11:e0165256. [PMID: 27776157 PMCID: PMC5077087 DOI: 10.1371/journal.pone.0165256] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/07/2016] [Indexed: 11/29/2022] Open
Abstract
The medial prefrontal cortex (mPFC) plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL) and infralimbic (IL) subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS) preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context) where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition). This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both associative and nonassociative stimuli that regulate conditioned fear.
Collapse
Affiliation(s)
- Thomas F. Giustino
- Department of Psychology and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Paul J. Fitzgerald
- Department of Psychology and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Stephen Maren
- Department of Psychology and Institute for Neuroscience, Texas A&M University, College Station, Texas
- * E-mail:
| |
Collapse
|
47
|
Locklear MN, Michaelos M, Collins WF, Kritzer MF. Gonadectomy but not biological sex affects burst-firing in dopamine neurons of the ventral tegmental area and in prefrontal cortical neurons projecting to the ventral tegmentum in adult rats. Eur J Neurosci 2016; 45:106-120. [PMID: 27564091 DOI: 10.1111/ejn.13380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/03/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
The mesocortical and mesolimbic dopamine systems regulate cognitive and motivational processes and are strongly implicated in neuropsychiatric disorders in which these processes are disturbed. Sex differences and sex hormone modulation are also known for these dopamine-sensitive behaviours in health and disease. One relevant mechanism of hormone impact appears to be regulation of cortical and subcortical dopamine levels. This study asked whether this regulation of dopamine tone is a consequence of sex or sex hormone impact on the firing modes of ventral midbrain dopamine neurons. To address this, single unit extracellular recordings made in the ventral tegmental area and substantia nigra were compared among urethane-anaesthetized adult male, female, gonadectomized male rats. These comparisons showed that gonadectomy had no effect on nigral cells and no effects on pacemaker, bursty, single-spiking or random modes of dopamine activity in the ventral tegmental area. However, it did significantly and selectively increase burst firing in these cells in a testosterone-sensitive, estradiol-insensitive manner. Given the roles of prefrontal cortex (PFC) in modulating midbrain dopamine cell firing, we next asked whether gonadectomy's effects on dopamine cell bursting had correlated effects on the activity of ventral tegmentally projecting prefrontal cortical neurons. We found that gonadectomy indeed significantly and selectively increased burst firing in ventral tegmentally projecting but not neighbouring prefrontal cells. These effects were also androgen-sensitive. Together, these findings suggest a working model wherein androgen influence over the activity of PFC neurons regulates its top-down modulation of mesocortical and mesolimbic dopamine systems and related dopamine-sensitive behaviours.
Collapse
Affiliation(s)
- Mallory N Locklear
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Michalis Michaelos
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - William F Collins
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| |
Collapse
|
48
|
Ebenezer PJ, Wilson CB, Wilson LD, Nair AR, J F. The Anti-Inflammatory Effects of Blueberries in an Animal Model of Post-Traumatic Stress Disorder (PTSD). PLoS One 2016; 11:e0160923. [PMID: 27603014 PMCID: PMC5014311 DOI: 10.1371/journal.pone.0160923] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a trauma and stressor-related disorder that results in a prolonged stress response. It is associated with increased oxidative stress and inflammation in the prefrontal cortex (PFC) and hippocampus (HC). The only approved therapy for PTSD is selective serotonin re-uptake inhibitors (SSRIs), but their efficacy is marginal. Recently, we demonstrated that over-production of norepinephrine (NE) as the possible reason for the lack of efficacy of SSRIs. Hence, there is a need for novel therapeutic approaches for the treatment of PTSD. In this study, we investigated the anti-inflammatory role of blueberries in modulating inflammatory markers and neurotransmitter levels in PTSD. Rats were fed either a blueberry enriched (2%) or a control diet. Rats were exposed to cats for one hour on days 1 and 11 of a 31-day schedule to simulate traumatic conditions. The rats were also subjected to psychosocial stress via daily cage cohort changes. At the end of the study, the rats were euthanized and the PFC and HC were isolated. Monoamines were measured by high-performance liquid chromatography. Reactive oxygen species (ROS), gene and protein expression levels of inflammatory cytokines were also measured. In our PTSD model, NE levels were increased and 5-HT levels were decreased when compared to control. In contrast, a blueberry enriched diet increased 5-HT without affecting NE levels. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also studied and they confirmed our findings. The enhanced levels free radicals, gene and protein expression of inflammatory cytokines seen in the PTSD group were normalized with a blueberry enriched diet. Decreased anxiety in this group was shown by improved performance on the elevated plus-maze. These findings indicate blueberries can attenuate oxidative stress and inflammation and restore neurotransmitter imbalances in a rat model of PTSD.
Collapse
Affiliation(s)
- Philip J. Ebenezer
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Louisiana, United States of America
| | - C. Brad Wilson
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Louisiana, United States of America
| | - Leslie D. Wilson
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Louisiana, United States of America
| | - Anand R. Nair
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Louisiana, United States of America
| | - Francis J
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
49
|
Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TCM, Herry C. Prefrontal neuronal assemblies temporally control fear behaviour. Nature 2016; 535:420-4. [DOI: 10.1038/nature18630] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/08/2016] [Indexed: 01/21/2023]
|
50
|
Immediate extinction promotes the return of fear. Neurobiol Learn Mem 2016; 131:109-16. [DOI: 10.1016/j.nlm.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 11/23/2022]
|