1
|
Buenaventura RGM, Merlino G, Yu Y. Ez-Metastasizing: The Crucial Roles of Ezrin in Metastasis. Cells 2023; 12:1620. [PMID: 37371090 DOI: 10.3390/cells12121620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ezrin is the cytoskeletal organizer and functions in the modulation of membrane-cytoskeleton interaction, maintenance of cell shape and structure, and regulation of cell-cell adhesion and movement, as well as cell survival. Ezrin plays a critical role in regulating tumor metastasis through interaction with other binding proteins. Notably, Ezrin has been reported to interact with immune cells, allowing tumor cells to escape immune attack in metastasis. Here, we review the main functions of Ezrin, the mechanisms through which it acts, its role in tumor metastasis, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rand Gabriel M Buenaventura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
PTEN phosphatase inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6. iScience 2023; 26:106070. [PMID: 36824269 PMCID: PMC9942123 DOI: 10.1016/j.isci.2023.106070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
PTEN encodes a tumor suppressor with lipid and protein phosphatase activities whose dysfunction has been implicated in melanomagenesis; less is known about how its phosphatases regulate melanoma metastasis. We demonstrate that PTEN expression negatively correlates with metastatic progression in human melanoma samples and a PTEN-deficient mouse melanoma model. Wildtype PTEN expression inhibited melanoma cell invasiveness and metastasis in a dose-dependent manner, behaviors that specifically required PTEN protein phosphatase activity. PTEN phosphatase activity regulated metastasis through Entpd5. Entpd5 knockdown reduced metastasis and IGF1R levels while promoting ER stress. In contrast, Entpd5 overexpression promoted metastasis and enhanced IGF1R levels while reducing ER stress. Moreover, Entpd5 expression was regulated by the ER stress sensor ATF6. Altogether, our data indicate that PTEN phosphatase activity inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6, thereby identifying novel candidate therapeutic targets for the treatment of PTEN mutant melanoma.
Collapse
|
3
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
4
|
Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M, Gowher H. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer 2021; 3:zcab045. [PMID: 34870206 PMCID: PMC8634572 DOI: 10.1093/narcan/zcab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns. Consequently, the acquired gene expression may increase the proliferative potential of cells, often concomitant with loss of cell identity as found in cancer. Aberrant DNA methylation, including hypermethylation and hypomethylation at various genomic regions, therefore, is a hallmark of most cancers. Additionally, somatic mutations in DNMTs that affect catalytic activity were mapped in Acute Myeloid Leukemia cancer cells. Despite being very effective in some cancers, the clinically approved DNMT inhibitors lack specificity, which could result in a wide range of deleterious effects. Elucidating distinct molecular mechanisms of DNMTs will facilitate the discovery of alternative cancer therapeutic targets. This review is focused on: (i) the structure and characteristics of DNMTs, (ii) the prevalence of mutations and abnormal expression of DNMTs in cancer, (iii) factors that mediate their abnormal expression and (iv) the effect of anomalous DNMT-complexes in cancer.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Meister S, Hahn L, Beyer S, Kuhn C, Jegen M, von Schönfeldt V, Corradini S, Schulz C, Kolben TM, Hester A, Appelt T, Mahner S, Jeschke U, Kolben T. Epigenetic modification via H3K4me3 and H3K9ac in human placenta is reduced in preeclampsia. J Reprod Immunol 2021; 145:103287. [PMID: 33662848 DOI: 10.1016/j.jri.2021.103287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Abstract
BACKROUND Alterations of DNA accessibility and chromatin structure are associated with diseases. We aimed to investigate epigenetic modifications in preeclampsia (PE), a pregnancy-associated hypertonic disease. Specifically, we addressed histone modification proteins H3K9ac (acetylated lysine 9 of the histone H3) and H3K4me3 (trimethylated lysine 4 of the histone H3) in PE. METHODS We analyzed expression of histone proteins H3K4me3 and H3K9ac in 32 PE and 32 control placentas by immunohistochemistry. Further, we carried out confirmatory western blot analysis of respective proteins in 6 representative placentas. We then applied regression models with additional adjustment for potential confounders. RESULTS Expression of H3K4me3 and H3K9ac is reduced in PE placentas as demonstrated by immunohistochemical stainings and western blot. There are no differences between female and male fetuses in the presence of these histone modifications. H3K4me3 positively correlated with maternal age (r = 0.444, p = 0.034). CONCLUSION Expression of the placental histone proteins H3K4me3 and H3K9ac is reduced in PE, and independent of fetal gender. Our study underlines the involvement of epigenetic changes in the placenta of women suffering from PE.
Collapse
Affiliation(s)
- Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Laura Hahn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Magdalena Jegen
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU, Munich, Marchioninistr. 15, 81377, Germany.
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Theresa Maria Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Tamara Appelt
- Department of General and Visceral Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Department of Gynecology and Obstetrics, University Hospital Augsburg, 86156, Augsburg, Germany.
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
6
|
Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, Baghaban Eslaminejad M. Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res Ther 2020; 11:456. [PMID: 33115508 PMCID: PMC7594482 DOI: 10.1186/s13287-020-01966-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient osteogenic differentiation of mesenchymal stem cells (MSCs) is a critical step in the treatment of bone defects and skeletal disorders, which present challenges for cell-based therapy and regenerative medicine. Thus, it is necessary to understand the regulatory agents involved in osteogenesis. Epigenetic mechanisms are considered to be the primary mediators that regulate gene expression during MSC differentiation. In recent years, epigenetic enzyme inhibitors have been used as epidrugs in cancer therapy. A number of studies mentioned the role of epigenetic inhibitors in the regulation of gene expression patterns related to osteogenic differentiation. This review attempts to provide an overview of the key regulatory agents of osteogenesis: transcription factors, signaling pathways, and, especially, epigenetic mechanisms. In addition, we propose to introduce epigenetic enzyme inhibitors (epidrugs) and their applications as future therapeutic approaches for bone defect regeneration.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maliheh Khademi-Shirvan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Connell DR, Rodriguez CO, Sternberg RA, Singh K, Barger A, Garrett LD. Biological behaviour and ezrin expression in canine rhabdomyosarcomas: 25 cases (1990-2012). Vet Comp Oncol 2020; 18:675-682. [PMID: 32246519 DOI: 10.1111/vco.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/01/2022]
Abstract
There are few published reports of canine rhabdomyosarcomas. In human paediatrics, rhabdomyosarcomas account for 5%-10% of all tumours and >50% of soft tissue sarcomas. They have an aggressive biologic behaviour; most patients develop diffuse metastatic disease. Ezrin, a cytoskeleton linker protein, has been correlated with metastasis in a number of tumours, including rhabdomyosarcomas. The goal of this study was to describe dogs with non-urinary rhabdomyosarcomas including clinical findings, ezrin expression and outcome. Twenty-five dogs with rhabdomyosarcomas were identified from two institutions' databases. Signalment, primary tumour location, cytologic and histologic findings, metastatic sites, treatments, survival time and necropsy results were recorded. Immunohistochemical staining for ezrin expression was performed on archived samples; cellular localization of ezrin was characterized. The mean and median age of all patients was 4.3 and 2 years, respectively. Subcutaneous and retrobulbar/orbital were the most common primary tumour locations. Sixteen dogs had metastatic disease at diagnosis. Three dogs presented with diffuse disease where a primary tumour could not be identified. A round cell tumour was the initial diagnosis in 32% of cases, and 76% of cases required immunohistochemistry to establish the diagnosis. The median survival was 10 days. Twenty-one cases had archived samples available for ezrin staining; all but one was positive and exhibited both membranous and cytoplasmic localization. Rhabdomyosarcomas occur in young dogs, may have a round cell appearance, and exhibit aggressive biologic behaviour. Given ezrin's defined role in metastasis, its observed expression in the tumours in this study suggest its possible role in canine rhabdomyosarcoma's aggressive biologic behaviour.
Collapse
Affiliation(s)
- Dana R Connell
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Carlos O Rodriguez
- Veterinary Medical Teaching Hospital, University of California, Davis, California, USA
| | - Rachel A Sternberg
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Kuldeep Singh
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Anne Barger
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Laura D Garrett
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
8
|
Cancer Stem Cells and Osteosarcoma: Opportunities and Limitations. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
9
|
Zhang XD, Huang GW, Xie YH, He JZ, Guo JC, Xu XE, Liao LD, Xie YM, Song YM, Li EM, Xu LY. The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res 2019; 46:1793-1809. [PMID: 29253179 PMCID: PMC5829580 DOI: 10.1093/nar/gkx1259] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/05/2017] [Indexed: 01/11/2023] Open
Abstract
EZR, a member of the ezrin-radixin-moesin (ERM) family, is involved in multiple aspects of cell migration and cancer. SMYD3, a histone H3–lysine 4 (H3–K4)-specific methyltransferase, regulates EZR gene transcription, but the molecular mechanisms of epigenetic regulation remain ill-defined. Here, we show that antisense lncRNA EZR-AS1 was positively correlated with EZR expression in both human esophageal squamous cell carcinoma (ESCC) tissues and cell lines. Both in vivo and in vitro studies revealed that EZR-AS1 promoted cell migration through up-regulation of EZR expression. Mechanistically, antisense lncRNA EZR-AS1 formed a complex with RNA polymerase II to activate the transcription of EZR. Moreover, EZR-AS1 could recruit SMYD3 to a binding site, present in a GC-rich region downstream of the EZR promoter, causing the binding of SMYD3 and local enrichment of H3K4me3. Finally, the interaction of EZR-AS1 with SMYD3 further enhanced EZR transcription and expression. Our findings suggest that antisense lncRNA EZR-AS1, as a member of an RNA polymerase complex and through enhanced SMYD3-dependent H3K4 methylation, plays an important role in enhancing transcription of the EZR gene to promote the mobility and invasiveness of human cancer cells.
Collapse
Affiliation(s)
- Xiao-Dan Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Guo-Wei Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Ying-Hua Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Jian-Zhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Jin-Cheng Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Yang-Min Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yong-Mei Song
- The Affiliated Nanshan People's Hospital of Shenzhen University, Shenzhen Municipal Sixth People's Hospital, Shenzhen 518060, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| |
Collapse
|
10
|
Lin S, Zhou M, Li Y, Chen Y, Xu W, Xia W, Wang S, Yin R, Zhang Q, Xu L, Fan H. H3K27 trimethylation and H3K9 dimethylation as poor prognostic markers for patients with esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2657-2664. [PMID: 31934095 PMCID: PMC6949571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Esophageal cancer (EC) is the fourth most commonly diagnosed cancer in males and the fifth in females in China. Dysregulation methylation of histone is now considered a biomarker for cancer prognosis. METHODS In this study, we focused on exploring the expression patterns of two repressor histone methylation marks, H3K9 dimethylation (H3K9me2) and H3K27 trimethylation (H3K27me3), to provide potential biomarkers for diagnosis and therapies in esophageal squamous cell carcinoma (ESCC). RESULTS After analyzing the relationship between the expression pattern of H3K27me3 and the clinic-pathological features of ESCC tissues, we found that upregulated H3K27me3 correlated with advanced T stage and N stage. A multivariate Cox regression analysis showed H3K27me3 expression, T stage and N stage were all independent factors for the poor prognosis of ESCC. Therefore, H3K27me3 can be considered an independent factor for predicting the prognosis of ESCC. CONCLUSIONS Chromatin remodeling, especially the methylation of H3, plays a vital role in ESCC development and is a potential therapeutic target.
Collapse
Affiliation(s)
- Shaofeng Lin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjing 210009, China
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital and Fujian Provincial Key Laboratory of Tumor BiotherapyFuzhou 350014, China
| | - Menghan Zhou
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast UniversityNanjing 210009, China
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjing 210018, China
| | - Yiping Li
- Department of Pathology, Medical School, Southeast UniversityNanjing 210009, China
| | - Yanping Chen
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer HospitalFuzhou 350014, China
| | - Weizhang Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjing 210009, China
| | - Wenjia Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjing 210009, China
| | - Siwei Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjing 210009, China
| | - Rong Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjing 210009, China
| | - Qin Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjing 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjing 210009, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast UniversityNanjing 210009, China
| |
Collapse
|
11
|
Kearney M, Cooper PR, Smith AJ, Duncan HF. Epigenetic Approaches to the Treatment of Dental Pulp Inflammation and Repair: Opportunities and Obstacles. Front Genet 2018; 9:311. [PMID: 30131827 PMCID: PMC6090030 DOI: 10.3389/fgene.2018.00311] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Concerns over the cost and destructive nature of dental treatment have led to the call for novel minimally invasive, biologically based restorative solutions. For patients with toothache, this has resulted in a shift from invasive root-canal-treatment (RCT) toward more conservative vital-pulp-treatment (VPT) procedures, aimed to protect the pulp and harness its natural regenerative capacity. If the dental pulp is exposed, as long as the infection and inflammation can be controlled, conservative therapies can promote the formation of new tertiary dentine in a stem cell-led reparative process. Crucially, the volume and quality of new dentine is dependent on the material applied; however, currently available dental-materials are limited by non-specific action, cytotoxicity and poor clinical handling. Looking to the future, an improved understanding of the cellular regulators of pulpal inflammation and associated repair mechanisms is critical to predict pulpal responses and devise novel treatment strategies. Epigenetic modifications of DNA-associated proteins and the influences of non-coding RNAs have been demonstrated to control the self-renewal of stem cell populations as well as regulate mineralised tissue development and repair. Notably, the stability of microRNAs and their relative ease of sampling from pulpal blood highlight their potential for application as diagnostic inflammatory biomarkers, while increased understanding of their actions will not only enhance our knowledge of pulpal disease and repair, but also identify novel molecular targets. The potential therapeutic application of epigenetic modifying agents, DNA-methyltransferase-inhibitors (DNMTi) and histone-deacetylase-inhibitors (HDACi), have been shown to promote mineralisation and repair processes in dental-pulp-cell (DPC) populations as well as induce the release of bioactive dentine-matrix-components. Consequently, HDACis and DNMTis have the potential to enhance tertiary dentinogenesis by influencing the cellular and tissue processes at low concentrations with minimal side effects, providing an opportunity to develop a topically placed, inexpensive bio-inductive restorative material. The aim of this review is to highlight the potential role of epigenetic approaches in the treatment of the damaged dental pulp, considering the opportunities and obstacles, such as off-target effects, delivery mechanisms, for the therapeutic use of miRNA as an inflammatory biomarker or molecular target, before discussing the application of HDACi and DNMTi to the damaged pulp to stimulate repair.
Collapse
Affiliation(s)
- Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paul R. Cooper
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anthony J. Smith
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Kiełbus M, Czapiński J, Odrzywolski A, Stasiak G, Szymańska K, Kałafut J, Kos M, Giannopoulos K, Stepulak A, Rivero-Müller A. Optogenetics in cancer drug discovery. Expert Opin Drug Discov 2018; 13:459-472. [DOI: 10.1080/17460441.2018.1437138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Grażyna Stasiak
- Department of Experimental Haematooncology, Medical University of Lublin, Lublin, Poland
| | - Kamila Szymańska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Michał Kos
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Haematooncology, Medical University of Lublin, Lublin, Poland
- Department of Hematology, St. John’s Cancer Center, Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
13
|
Yu Y, Dai M, Lu A, Yu E, Merlino G. PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation. Oncogene 2018; 37:2225-2236. [PMID: 29391600 DOI: 10.1038/s41388-017-0061-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/19/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
Abstract
PI3K/AKT pathway activation is thought to be a driving force in metastatic melanomas. Members of the pleckstrin homology (PH) domain leucine-rich repeat protein Ser/Thr specific phosphatase family (PHLPP1 and PHLPP2) can regulate AKT activation. By dephosphorylating specific serine residues in the hydrophobic motif, PHLPP1 and PHLPP2 restrain AKT signalings, thereby regulating cell proliferation and survival. We here show that PHLPP1 expression was significantly downregulated or lost and correlated with metastatic potential in melanoma. Forcing expression of either PHLPP1 or PHLPP2 in melanoma cells inhibited cell proliferation, migration, and colony formation in soft agar; but PHLPP1 had the most profound inhibitory effect on metastasis. Moreover, expression of PH mutant forms of PHLPP1 continued to inhibit metastasis, whereas a phosphatase-dead C-terminal mutant did not. The introduction of activated PHLPP1-specific targets AKT2 or AKT3 also promoted melanoma metastasis, while the non-PHLPP1 target AKT1 did not. AKT2 and AKT3 could even rescue the PHLPP1-mediated inhibition of metastasis. An AKT inhibitor blocked the activity of AKT2 and inhibited AKT2-mediated tumor growth and metastasis in a preclinical mouse model. Our data demonstrate that PHLPP1 functions as a metastasis suppressor through its phosphatase activity, and suggest that PHLPP1 represents a novel diagnostic and therapeutic marker for metastatic melanoma.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Meng Dai
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Andrew Lu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ellen Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Wang Y, Jiang S, Cao Z, Xie C, Li W, Ma Y, Zhang J, Lin L. Detecting the location and significance of Ezrin protein expression in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:248-254. [PMID: 31938107 PMCID: PMC6957936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/07/2017] [Indexed: 06/10/2023]
Abstract
To explore the characteristics of localization and prognostic implication of Ezrin expression in HCC, 92 cases of HCC meeting strict follow-up criteria were selected for immunohistochemical staining of Ezrin protein. Correlations between Ezrin expression and clinicopathological features of HCC were evaluated using Chi-square tests, survival rates were calculated using the Kaplan-Meier method, and the relationship between prognostic factors and patient overallsurvival was analyzed using Cox proportional hazard analysis. In results, Ezrin protein was mainly expressed in the inner side of the cell membrane of the adjacent non tumor tissues, and diffusely expressed in cytoplasm of HCC tissues. There was an obviously difference between the benign and malignant tissues about the location of Ezrin expression. Ezrin strong-expression rates were significantly higher in HCC samples compared with the adjacent non tumor tissues (P<0.05). The Ezrin strong-expression rate was closely related with the differentiation (P<0.01), AJCC stage and metastasis of HCC (P<0.05, respectively). Therefore, the sub-cellular localization of Ezrin protein in the liver cells will be changed in the process of the transformation from the benign to malignant, and Ezrin plays an important role in the progression of HCC.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning UniversityDandong 118003, China
| | - Shaochen Jiang
- Liaoning Coloproctological Hospital, The Third Affiliated Hospital of Liaoning University of Traditional MedicineShenyang 110000, China
| | - Zhongliang Cao
- Department of General Surgery, Dandong Center HospitalDandong 118002, China
| | - Chunxiao Xie
- Department of Emergency, Dandong First HospitalDandong 118001, China
| | - Weidong Li
- Department of Anesthesiology, Dandong First HospitalDandong 118001, China
| | - Yibing Ma
- Department of Pathology, Dandong Center HospitalDandong 118002, China
| | - Jinhui Zhang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning UniversityDandong 118003, China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College of Eastern Liaoning UniversityDandong 118003, China
| |
Collapse
|
15
|
Huang L, Qin Y, Zuo Q, Bhatnagar K, Xiong J, Merlino G, Yu Y. Ezrin mediates both HGF/Met autocrine and non-autocrine signaling-induced metastasis in melanoma. Int J Cancer 2017; 142:1652-1663. [PMID: 29210059 DOI: 10.1002/ijc.31196] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/23/2017] [Accepted: 11/23/2017] [Indexed: 12/23/2022]
Abstract
Aberrant HGF/Met signaling promotes tumor migration, invasion, and metastasis through both autocrine and non-autocrine mechanisms; however, the molecular downstream signaling mechanisms by which HGF/Met induces metastasis are incompletely understood. We here report that Ezrin expression is stimulated by HGF and correlates with activated HGF/Met, indicating that HGF/Met signaling regulates the expression of Ezrin. We show that HGF/Met signaling activates the transcription factor Sp1 through the MAPK pathway, and activated Sp1 can in turn directly bind to the promoter of Ezrin gene and regulate its transcription. Notably, knockdown of Ezrin expression by shRNAs inhibits the metastasis induced by either HGF/Met autocrine or non-autocrine signaling in syngeneic wildtype and HGF transgenic mouse hosts. We also used small molecule drugs in preclinical mouse models to confirm that Ezrin is one of the downstream molecules mediating HGF/Met signaling-induced metastasis in melanoma. We conclude that Ezrin is a key downstream factor involved in the regulation of HGF/Met signaling-induced metastasis and demonstrate a link between Ezrin and HGF/Met/MAPK/Sp1 activation in the metastatic process. Our data indicate that Ezrin represents a promising therapeutic target for patients bearing tumors with activated HGF/Met signaling.
Collapse
Affiliation(s)
- Liping Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yifei Qin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Qiang Zuo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Kavita Bhatnagar
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Jingbo Xiong
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| |
Collapse
|
16
|
Kamarulzaman NS, Dewadas HD, Leow CY, Yaacob NS, Mokhtar NF. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell Int 2017; 17:74. [PMID: 28785170 PMCID: PMC5540501 DOI: 10.1186/s12935-017-0442-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased expression of voltage-gated sodium channels (VGSCs) have been implicated with strong metastatic potential of human breast cancer in vitro and in vivo where the main culprits are cardiac isoform Nav1.5 and its 'neonatal' splice variant, nNav1.5. Several factors have been associated with Nav1.5 and nNav1.5 gain of expression in breast cancer mainly hormones, and growth factors. AIM This study aimed to investigate the role of epigenetics via transcription repressor, repressor element silencing transcription factor (REST) and histone deacetylases (HDACs) in enhancing Nav1.5 and nNav1.5 expression in human breast cancer by assessing the effect of HDAC inhibitor, trichostatin A (TSA). METHODS The less aggressive human breast cancer cell line, MCF-7 cells which lack Nav1.5 and nNav1.5 expression was treated with TSA at a concentration range 10-10,000 ng/ml for 24 h whilst the aggressive MDA-MB-231 cells was used as control. The effect of TSA on Nav1.5, nNav1.5, REST, HDAC1, HDAC2, HDAC3, MMP2 and N-cadherin gene expression level was analysed by real-time PCR. Cell growth (MTT assay) and metastatic behaviors (lateral motility and migration assays) were also measured. RESULTS mRNA expression level of Nav1.5 and nNav1.5 were initially very low in MCF-7 compared to MDA-MB-231 cells. Inversely, mRNA expression level of REST, HDAC1, HDAC2, and HDAC3 were all greater in MCF-7 compared to MDA-MB-231 cells. Treatment with TSA significantly increased the mRNA expression level of Nav1.5 and nNav1.5 in MCF-7 cells. On the contrary, TSA significantly reduced the mRNA expression level of REST and HDAC2 in this cell line. Remarkably, despite cell growth inhibition by TSA, motility and migration of MCF-7 cells were enhanced after TSA treatment, confirmed with the up-regulation of metastatic markers, MMP2 and N-cadherin. CONCLUSIONS This study identified epigenetics as another factor that regulate the expression level of Nav1.5 and nNav1.5 in breast cancer where REST and HDAC2 play important role as epigenetic regulators that when lacking enhances the expression of Nav1.5 and nNav1.5 thus promotes motility and migration of breast cancer. Elucidation of the regulatory mechanisms for gain of Nav1.5 and nNav1.5 expression may be helpful for seeking effective strategies for the management of metastatic diseases.
Collapse
Affiliation(s)
- Nur Sabrina Kamarulzaman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Hemaniswarri Dewi Dewadas
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
17
|
Histone H3 Acetyl K9 and Histone H3 Tri Methyl K4 as Prognostic Markers for Patients with Cervical Cancer. Int J Mol Sci 2017; 18:ijms18030477. [PMID: 28241481 PMCID: PMC5372493 DOI: 10.3390/ijms18030477] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 11/26/2022] Open
Abstract
Chromatin remodeling alters gene expression in carcinoma tissue. Although cervical cancer is the fourth most common cancer in women worldwide, a systematic study about the prognostic value of specific changes in the chromatin structure, such as histone acetylation or histone methylation, is missing. In this study, the expression of histone H3 acetyl K9, which is known to denote active regions at enhancers and promoters, and histone H3 tri methyl K4, which preferentially identifies active gene promoters, were examined as both show high metastatic potential. A panel of patients with cervical cancer was selected and the importance of the histone modifications concerning survival-time (overall survival and relapse-free survival) was analyzed in 250 cases. Histone H3 acetyl K9 staining was correlated with low grading, low FIGO (TNM classification and the International Federation of Gynecology and Obstetrics) status, negative N-status and low T-status in cervical cancer, showing a higher expression in adenocarcinoma than in squamous cell carcinoma. Cytoplasmic expression of histone H3 tri methyl K4 in a cervical cancer specimen was correlated with advanced T-status and poor prognosis. While cytoplasmic H3K4me3 expression seemed to be a marker of relapse-free survival, nuclear expression showed a correlation to poor prognosis in overall survival. Within this study, we analyzed the chemical modification of two histone proteins that are connected to active gene expression. Histone H3 acetyl K9 was found to be an independent marker of overall survival. Histone H3 tri methyl K4 was correlated with poor prognosis and it was found to be an independent marker of relapse-free survival. Therefore, we could show that chromatin remodeling plays an important role in cervical cancer biology.
Collapse
|
18
|
Hago AM, Gamallat Y, Mahmoud SA, Huang Y, Zhang J, Mahmoud YK, Wang J, Wei Y, Wang L, Zhou S, Awsh MA, Yabasin IB, Tang J. Ezrin expression is altered in mice lymphatic metastatic hepatocellular carcinoma and subcellular fractions upon Annexin 7 modulation in-vitro. Biomed Pharmacother 2017; 85:209-217. [DOI: 10.1016/j.biopha.2016.10.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/03/2023] Open
|
19
|
Zhu Y, Zhu MX, Zhang XD, Xu XE, Wu ZY, Liao LD, Li LY, Xie YM, Wu JY, Zou HY, Xie JJ, Li EM, Xu LY. SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma. Hum Pathol 2016; 52:153-63. [PMID: 26980013 DOI: 10.1016/j.humpath.2016.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 02/05/2023]
Abstract
Epigenetic alterations, including DNA methylation and histone modifications, are involved in the regulation of cancer initiation and progression. SET and MYND domain-containing protein 3 (SMYD3), a methyltransferase, plays an important role in transcriptional regulation during human cancer progression. However, SMYD3 expression and its function in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, SMYD3 expression was studied by immunohistochemistry in a tumor tissue microarray from 131 cases of ESCC patients. Statistical analysis showed that overall survival of patients with high SMYD3 expressing in primary tumors was significantly lower than that of patients with low SMYD3-expressing tumors (P = .008, log-rank test). Increased expression of SMYD3 was found to be associated with lymph node metastasis in ESCC (P = .036) and was an independent prognostic factor for poor overall survival (P = .025). RNAi-mediated knockdown of SMYD3 suppressed ESCC cell proliferation, migration, and invasion in vitro and inhibited local tumor invasion in vivo. SMYD3 regulated transcription of EZR and LOXL2 by directly binding to the sequences of the promoter regions of these target genes, as demonstrated by a chromatin immunoprecipitation assay. Immunohistochemical staining of ESCC tissues also confirmed that protein levels of EZR and LOXL2 positively correlated with SMYD3 expression, and the Spearman correlation coefficients (rs) were 0.78 (n = 81; P < .01) and 0.637 (n = 103; P < .01), respectively. These results indicate that SMYD3 enhances tumorigenicity in ESCC through enhancing transcription of genes involved in proliferation, migration, and invasion.
Collapse
MESH Headings
- Amino Acid Oxidoreductases/genetics
- Amino Acid Oxidoreductases/metabolism
- Animals
- Binding Sites
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/secondary
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Esophageal Neoplasms/enzymology
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/mortality
- Esophageal Neoplasms/pathology
- Esophageal Squamous Cell Carcinoma
- Female
- Gene Expression Regulation, Neoplastic
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Humans
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Promoter Regions, Genetic
- Proportional Hazards Models
- RNA Interference
- Retrospective Studies
- Signal Transduction
- Time Factors
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Ying Zhu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Meng-Xiao Zhu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Xiao-Dan Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Zhi-Yong Wu
- Departments of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yang-Min Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Experimental Animal Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jian-Yi Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Hai-Ying Zou
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
20
|
Casciello F, Windloch K, Gannon F, Lee JS. Functional Role of G9a Histone Methyltransferase in Cancer. Front Immunol 2015; 6:487. [PMID: 26441991 PMCID: PMC4585248 DOI: 10.3389/fimmu.2015.00487] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications of DNA and histones are epigenetic mechanisms, which affect the chromatin structure, ultimately leading to gene expression changes. A number of different epigenetic enzymes are actively involved in the addition or the removal of various covalent modifications, which include acetylation, methylation, phosphorylation, ubiquitination, and sumoylation. Deregulation of these processes is a hallmark of cancer. For instance, G9a, a histone methyltransferase responsible for histone H3 lysine 9 (H3K9) mono- and dimethylation, has been observed to be upregulated in different types of cancer and its overexpression has been associated with poor prognosis. Key roles played by these enzymes in various diseases have led to the hypothesis that these molecules represent valuable targets for future therapies. Several small molecule inhibitors have been developed to specifically block the epigenetic activity of these enzymes, representing promising therapeutic tools in the treatment of human malignancies, such as cancer. In this review, the role of one of these epigenetic enzymes, G9a, is discussed, focusing on its functional role in regulating gene expression as well as its implications in cancer initiation and progression. We also discuss important findings from recent studies using epigenetic inhibitors in cell systems in vitro as well as experimental tumor growth and metastasis assays in vivo.
Collapse
Affiliation(s)
- Francesco Casciello
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; School of Natural Sciences, Griffith University , Nathan, QLD , Australia
| | - Karolina Windloch
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Frank Gannon
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Jason S Lee
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Kelvin Grove, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
21
|
Kashi VP, Hatley ME, Galindo RL. Probing for a deeper understanding of rhabdomyosarcoma: insights from complementary model systems. Nat Rev Cancer 2015; 15:426-39. [PMID: 26105539 PMCID: PMC4599785 DOI: 10.1038/nrc3961] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rhabdomyosarcoma (RMS) is a mesenchymal malignancy composed of neoplastic primitive precursor cells that exhibit histological features of myogenic differentiation. Despite intensive conventional multimodal therapy, patients with high-risk RMS typically suffer from aggressive disease. The lack of directed therapies against RMS emphasizes the need to further uncover the molecular underpinnings of the disease. In this Review, we discuss the notable advances in the model systems now available to probe for new RMS-targetable pathogenetic mechanisms, and the possibilities for enhanced RMS therapeutics and improved clinical outcomes.
Collapse
Affiliation(s)
- Venkatesh P Kashi
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9072, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Rene L Galindo
- 1] Department of Pathology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9072, USA. [2] Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9148, USA. [3] Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9063, USA
| |
Collapse
|
22
|
Cheishvili D, Boureau L, Szyf M. DNA demethylation and invasive cancer: implications for therapeutics. Br J Pharmacol 2015; 172:2705-15. [PMID: 25134627 DOI: 10.1111/bph.12885] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cancer is aberrant DNA methylation, which is associated with abnormal gene expression. Both hypermethylation and silencing of tumour suppressor genes as well as hypomethylation and activation of prometastatic genes are characteristic of cancer cells. As DNA methylation is reversible, DNA methylation inhibitors were tested as anticancer drugs with the idea that such agents would demethylate and reactivate tumour suppressor genes. Two cytosine analogues, 5-azacytidine (Vidaza) and 5-aza-2'-deoxycytidine, were approved by the Food and Drug Administration as antitumour agents in 2004 and 2006 respectively. However, these agents might cause activation of a panel of prometastatic genes in addition to activating tumour suppressor genes, which might lead to increased metastasis. This poses the challenge of how to target tumour suppressor genes and block cancer growth with DNA-demethylating drugs while avoiding the activation of prometastatic genes and precluding the morbidity of cancer metastasis. This paper reviews current progress in using DNA methylation inhibitors in cancer therapy and the potential promise and challenges ahead.
Collapse
Affiliation(s)
- David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University Medical School, Montreal, QC, Canada
| | - Lisa Boureau
- Department of Pharmacology and Therapeutics, McGill University Medical School, Montreal, QC, Canada.,Department of Physiology Medical Sciences, University of Toronto 1 King's College Circle Toronto, ON, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Medical School, Montreal, QC, Canada.,Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Medical School, Montreal, QC, Canada.,Canadian Institute for Advanced Research, Faculty of Medicine, University of Toronto 1 King's College Circle Toronto, ON, Canada
| |
Collapse
|
23
|
Zhang XD, Xie JJ, Liao LD, Long L, Xie YM, Li EM, Xu LY. 12-O-Tetradecanoylphorbol-13-Acetate Induces Up-Regulated Transcription of Variant 1 but Not Variant 2 of VIL2 in Esophageal Squamous Cell Carcinoma Cells via ERK1/2/AP-1/Sp1 Signaling. PLoS One 2015; 10:e0124680. [PMID: 25915860 PMCID: PMC4411055 DOI: 10.1371/journal.pone.0124680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/17/2015] [Indexed: 12/25/2022] Open
Abstract
The membrane-cytoskeleton link organizer ezrin may be the most "dramatic" tumor marker, being strongly over-expressed in nearly one-third of human malignancies. However, the molecular mechanisms of aberrant ezrin expression still need to be clarified. Ezrin, encoded by the VIL2 gene, has two transcript variants that differ in the transcriptional start site (TSS): V1 and V2. Both V1 and V2 encode the same protein. Here, we found that 12-O-tetradecanoylphorbol-13-acetate (TPA) induced over-expression of human VIL2 in esophageal squamous cell carcinoma (ESCC) cells. Furthermore, VIL2 V1 but not V2 was up-regulated after TPA stimulation in a time-dependent manner. AP-1 and Sp1 binding sites within the promoter region of VIL2 V1 acted not only as basal transcriptional elements but also as a composite TPA-responsive element (TRE) for the transcription of VIL2 V1. TPA stimulation enhanced c-Jun and Sp1 binding to the TRE via activation of the ERK1/2 pathway and increased protein levels of c-Jun, c-Fos, and Sp1, resulting in over-expression of VIL2 V1, whereas the MEK1/2 inhibitor U0126 blocked these events. Finally, we showed that TPA promoted the migration of ESCC cells whereas MEK1/2 inhibitor or ezrin silencing could partially inverse this alteration. Taken together, these results suggest that TPA is able to induce VIL2 V1 over-expression in ESCC cells by activating MEK/ERK1/2 signaling and increasing binding of Sp1 and c-Jun to the TRE of the VIL2 V1 promoter, and that VIL2 is an important TPA-induced effector.
Collapse
Affiliation(s)
- Xiao-Dan Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China; Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China; Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China
| | - Lin Long
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China
| | - Yang-Min Xie
- Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, P. R. China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China; Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 514041, Guangdong, P.R. China
| |
Collapse
|
24
|
Falahi F, Sgro A, Blancafort P. Epigenome engineering in cancer: fairytale or a realistic path to the clinic? Front Oncol 2015; 5:22. [PMID: 25705610 PMCID: PMC4319383 DOI: 10.3389/fonc.2015.00022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/19/2015] [Indexed: 01/15/2023] Open
Abstract
Epigenetic modifications such as histone post-transcriptional modifications, DNA methylation, and non-protein-coding RNAs organize the DNA in the nucleus of eukaryotic cells and are critical for the spatio-temporal regulation of gene expression. These epigenetic modifications are reversible and precisely regulated by epigenetic enzymes. In addition to genetic mutations, epigenetic modifications are highly disrupted in cancer relative to normal tissues. Many epigenetic alterations (epi-mutations) are associated with aberrations in the expression and/or activity of epigenetic enzymes. Thus, epigenetic regulators have emerged as prime targets for cancer therapy. Currently, several inhibitors of epigenetic enzymes (epi-drugs) have been approved for use in the clinic to treat cancer patients with hematological malignancies. However, one potential disadvantage of epi-drugs is their lack of locus-selective specificity, which may result in the over-expression of undesirable parts of the genome. The emerging and rapidly growing field of epigenome engineering has opened new grounds for improving epigenetic therapy in view of reducing the genome-wide “off-target” effects of the treatment. In the current review, we will first describe the language of epigenetic modifications and their involvement in cancer. Next, we will overview the current strategies for engineering of artificial DNA-binding domains in order to manipulate and ultimately normalize the aberrant landscape of the cancer epigenome (epigenome engineering). Lastly, the potential clinical applications of these emerging genome-engineering approaches will be discussed.
Collapse
Affiliation(s)
- Fahimeh Falahi
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, School of Anatomy, Physiology and Human Biology, The University of Western Australia , Perth, WA , Australia
| | - Agustin Sgro
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, School of Anatomy, Physiology and Human Biology, The University of Western Australia , Perth, WA , Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, School of Anatomy, Physiology and Human Biology, The University of Western Australia , Perth, WA , Australia
| |
Collapse
|
25
|
Herman D, Leakey TI, Behrens A, Yao-Borengasser A, Cooney CA, Jousheghany F, Phanavanh B, Siegel ER, Safar AM, Korourian S, Kieber-Emmons T, Monzavi-Karbassi B. CHST11 gene expression and DNA methylation in breast cancer. Int J Oncol 2015; 46:1243-51. [PMID: 25586191 PMCID: PMC4324579 DOI: 10.3892/ijo.2015.2828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/03/2014] [Indexed: 01/09/2023] Open
Abstract
Our previously published data link P-selectin-reactive chondroitin sulfate structures on the surface of breast cancer cells to metastatic behavior of cells. We have shown that a particular sulfation pattern mediated by the expression of carbohydrate (chondroitin 4) sulfotransferase-11 (CHST11) correlates with P-selectin binding and aggressiveness of human breast cancer cell lines. The present study was performed to evaluate the prognostic value of CHST11 expression and determine whether aberrant DNA methylation controls CHST11 expression in breast cancer. Publicly available datasets were used to examine the association of CHST11 expression to aggressiveness and progression of breast cancer. Methylation status was analyzed using bisulfite genomic sequencing. 5-aza-2′-deoxycytidine (5AzadC) was used for DNA demethylation. Reduced representation bisulfite sequencing was performed in the CpG island of CHST11 with a minimum coverage of 10. Quantitative real-time RT-PCR was employed to confirm the expression profile of CHST11 in breast cancer cell lines. Flow cytometry was also used to confirm the expression of the CHST11 product, chondroitin sulfate A (CS-A). The expression of CHST11 was significantly higher in basal-like and Her2-amplified cell lines compared to luminal cell lines. CHST11 was also highly expressed in cancer tissues compared to normal tissues and the expression levels were significantly associated with tumor progression. We observed very low levels of DNA methylation in a CpG island of CHST11 in basal-like cells but very high levels in the same region in luminal cells. Treatment of MCF7 cells, a luminal cell line with very low expression of CHST11, with 5AzadC increased the expression of CHST11 and its immediate product, CS-A, in a dose-dependent manner. These results suggest that CHST11 may play a direct role in progression of breast cancer and that its expression is controlled by DNA methylation. Therefore, in addition to CHST11 mRNA levels, the methylation status of this gene also has potential as a prognostic biomarker.
Collapse
Affiliation(s)
- Damir Herman
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tatiana I Leakey
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alice Behrens
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aiwei Yao-Borengasser
- Department of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Craig A Cooney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fariba Jousheghany
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Bounleut Phanavanh
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A Mazin Safar
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Soheila Korourian
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas Kieber-Emmons
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
26
|
Falahi F, van Kruchten M, Martinet N, Hospers GAP, Rots MG. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer. Breast Cancer Res 2014; 16:412. [PMID: 25410383 PMCID: PMC4303227 DOI: 10.1186/s13058-014-0412-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/11/2014] [Indexed: 01/02/2023] Open
Abstract
DNA methylation and histone modifications are important epigenetic modifications associated with gene (dys)regulation. The epigenetic modifications are balanced by epigenetic enzymes, so-called writers and erasers, such as DNA (de)methylases and histone (de)acetylases. Aberrant epigenetic alterations have been associated with various diseases, including breast cancer. Since aberrant epigenetic modifications are potentially reversible, they might represent targets for breast cancer therapy. Indeed, several drugs have been designed to inhibit epigenetic enzymes (epi-drugs), thereby reversing epigenetic modifications. US Food and Drug Administration approval has been obtained for some epi-drugs for hematological malignancies. However, these drugs have had very modest anti-tumor efficacy in phase I and II clinical trials in breast cancer patients as monotherapy. Therefore, current clinical trials focus on the combination of epi-drugs with other therapies to enhance or restore the sensitivity to such therapies. This approach has yielded some promising results in early phase II trials. The disadvantage of epi-drugs, however, is genome-wide effects, which may cause unwanted upregulation of, for example, pro-metastatic genes. Development of gene-targeted epigenetic modifications (epigenetic editing) in breast cancer can provide a novel approach to prevent such unwanted events. In this context, identification of crucial epigenetic modifications regulating key genes in breast cancer is of critical importance. In this review, we first describe aberrant DNA methylation and histone modifications as two important classes of epigenetic mutations in breast cancer. Then we focus on the preclinical and clinical epigenetic-based therapies currently being explored for breast cancer. Finally, we describe epigenetic editing as a promising new approach for possible applications towards more targeted breast cancer treatment.
Collapse
|
27
|
Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GAP, Rots MG. Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res 2013; 11:1029-39. [PMID: 23814024 DOI: 10.1158/1541-7786.mcr-12-0567] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED The human epidermal growth factor receptor-2 (HER2/neu/ERBB2) is overexpressed in several cancer types. Although therapies targeting the HER2/neu protein result in inhibition of cell proliferation, the anticancer effect might be further optimized by limiting HER2/neu expression at the DNA level. Towards this aim, epigenetic editing was performed to suppress HER2/neu expression by inducing epigenetic silencing marks on the HER2/neu promoter.HER2/neu expression and HER2/neu promoter epigenetic modification status were determined in a panel of ovarian and breast cancer cell lines. HER2/neu-overexpressing cancer cells were transduced to express a zinc finger protein (ZFP), targeting the HER2/neugene, fused to histone methyltransferases (G9a, SUV39-H1)/super KRAB domain (SKD). Epigenetic assessment of the HER2/neu promoter showed that HER2/neu-ZFP fused to G9a efficiently induced the intended silencing histone methylation mark (H3K9me2). Importantly, H3K9me2 induction was associated with a dramatic downregulation of HER2/neu expression in HER2/neu- overexpressing cells. Downregulation by SKD, traditionally considered transient in nature, was associated with removal of the histone acetylation mark (H3ac). The downregulation of HER2/neu by induced H3K9 methylation and/or reduced H3 acetylation was sufficient to effectively inhibit cellular metabolic activity and clonogenicity. Furthermore, genome-wide analysis indicated preferential binding of the ZFP to its target sequence. These results not only show that H3K9 methylation can be induced but also that this epigenetic mark was instructive in promoting downregulation of HER2/neu expression. IMPLICATIONS Epigenetic editing provides a novel (synergistic) approach to modulate expression of oncogenes.
Collapse
Affiliation(s)
- Fahimeh Falahi
- University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chik F, Machnes Z, Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donorS-adenosyl methionine and the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis 2013; 35:138-44. [DOI: 10.1093/carcin/bgt284] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
29
|
de Groote ML, Kazemier HG, Huisman C, van der Gun BT, Faas MM, Rots MG. Upregulation of endogenous ICAM-1 reduces ovarian cancer cell growth in the absence of immune cells. Int J Cancer 2013; 134:280-90. [DOI: 10.1002/ijc.28375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/25/2013] [Accepted: 06/12/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Marloes L. de Groote
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Hinke G. Kazemier
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Christian Huisman
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Bernardina T.F. van der Gun
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Marijke M. Faas
- Immunoendocrinology; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| | - Marianne G. Rots
- Epigenetic Editing; Department of Pathology and Medical Biology; University Medical Center Groningen, University of Groningen; Groningen The Netherlands
| |
Collapse
|
30
|
Huisman C, Wisman GBA, Kazemier HG, van Vugt MATM, van der Zee AGJ, Schuuring E, Rots MG. Functional validation of putative tumor suppressor gene C13ORF18 in cervical cancer by Artificial Transcription Factors. Mol Oncol 2013; 7:669-79. [PMID: 23522960 DOI: 10.1016/j.molonc.2013.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/03/2013] [Accepted: 02/21/2013] [Indexed: 01/04/2023] Open
Abstract
C13ORF18 is frequently hypermethylated in cervical cancer but not in normal cervix and might serve as a biomarker for the early detection of cervical cancer in scrapings. As hypermethylation is often observed for silenced tumor suppressor genes (TSGs), hypermethylated biomarker genes might exhibit tumor suppressive activities upon re-expression. Epigenetic drugs are successfully exploited to reverse TSG silencing, but act genome-wide. Artificial Transcription Factors (ATFs) provide a gene-specific approach for re-expression of silenced genes. Here, we investigated the potential tumor suppressive role of C13ORF18 in cervical cancer by ATF-induced re-expression. Five zinc finger proteins were engineered to bind the C13ORF18 promoter and fused to a strong transcriptional activator. C13ORF18 expression could be induced in cervical cell lines: ranging from >40-fold in positive (C13ORF18-unmethylated) cells to >110-fold in negative (C13ORF18-methylated) cells. Re-activation of C13ORF18 resulted in significant cell growth inhibition and/or induction of apoptosis. Co-treatment of cell lines with ATFs and epigenetic drugs further enhanced the ATF-induced effects. Interestingly, re-activation of C13ORF18 led to partial demethylation of the C13ORF18 promoter and decreased repressive histone methylation. These data demonstrate the potency of ATFs to re-express and potentially demethylate hypermethylated silenced genes. Concluding, we show that C13ORF18 has a TSG function in cervical cancer and may serve as a therapeutic anti-cancer target. As the amount of epimutations in cancer exceeds the number of gene mutations, ATFs provide promising tools to validate hypermethylated marker genes as therapeutic targets.
Collapse
Affiliation(s)
- Christian Huisman
- Dept. of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Epigenetic deregulation of microRNAs in rhabdomyosarcoma and neuroblastoma and translational perspectives. Int J Mol Sci 2012; 13:16554-79. [PMID: 23443118 PMCID: PMC3546707 DOI: 10.3390/ijms131216554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.
Collapse
|
32
|
de Groote ML, Verschure PJ, Rots MG. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 2012; 40:10596-613. [PMID: 23002135 PMCID: PMC3510492 DOI: 10.1093/nar/gks863] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE), instructive epigenetic marks need to be identified and their writers/erasers should then be fused to gene-specific DNA binding domains. The appropriate epigenetic mark(s) to change in order to efficiently modulate gene expression might have to be validated for any given chromatin context and should be (mitotically) stable. Various insights in such issues have been obtained by sequence-specific targeting of epigenetic enzymes, as is presented in this review. Features of such studies provide critical aspects for further improving EGE. An example of this is the direct effect of the edited mark versus the indirect effect of recruited secondary proteins by targeting epigenetic enzymes (or their domains). Proof-of-concept of expression modulation of an endogenous target gene is emerging from the few EGE studies reported. Apart from its promise in correcting disease-associated epi-mutations, EGE represents a powerful tool to address fundamental epigenetic questions.
Collapse
Affiliation(s)
- Marloes L de Groote
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713 GZ, Groningen, The Netherlands
| | | | | |
Collapse
|
33
|
Smith KT, Sardiu ME, Martin-Brown SA, Seidel C, Mushegian A, Egidy R, Florens L, Washburn MP, Workman JL. Human family with sequence similarity 60 member A (FAM60A) protein: a new subunit of the Sin3 deacetylase complex. Mol Cell Proteomics 2012; 11:1815-28. [PMID: 22984288 DOI: 10.1074/mcp.m112.020255] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here we describe the function of a previously uncharacterized protein, named family with sequence similarity 60 member A (FAM60A) that maps to chromosome 12p11 in humans. We use quantitative proteomics to determine that the main biochemical partners of FAM60A are subunits of the Sin3 deacetylase complex and show that FAM60A resides in active HDAC complexes. In addition, we conduct gene expression pathway analysis and find that FAM60A regulates expression of genes that encode components of the TGF-beta signaling pathway. Moreover, our studies reveal that loss of FAM60A or another component of the Sin3 complex, SDS3, leads to a change in cell morphology and an increase in cell migration. These studies reveal the function of a previously uncharacterized protein and implicate the Sin3 complex in suppressing cell migration.
Collapse
Affiliation(s)
- Karen T Smith
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bennani-Baiti IM. Epigenetic and epigenomic mechanisms shape sarcoma and other mesenchymal tumor pathogenesis. Epigenomics 2012; 3:715-32. [PMID: 22126291 DOI: 10.2217/epi.11.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sarcomas comprise a large number of rare, histogenetically heterogeneous, mesenchymal tumors. Cancers such as Ewing's sarcoma, liposarcoma, rhabdomyosarcoma and synovial sarcoma can be generated by the transduction of mesenchymal stem cell progenitors with sarcoma-pathognomonic oncogenic fusions, a neoplastic transformation process accompanied by profound locus-specific and pangenomic epigenetic alterations. The epigenetic activities of histone-modifying and chromatin-remodeling enzymes such as SUV39H1/KMT1A, EZH2/KMT6A and BMI1 are central to epigenetic-regulated transformation, a property we coin oncoepigenic. Sarcoma-specific oncoepigenic aberrations modulate critical signaling pathways that control cell growth and differentiation including several miRNAs, Wnt, PI3K/AKT, Sav-RASSF1-Hpo and regulators of the G1 and G2/M checkpoints of the cell cycle. Herein an overview of the current knowledge of this rapidly evolving field that will undoubtedly uncover additional oncoepigenic mechanisms and yield druggable targets in the near future is discussed.
Collapse
|
35
|
Role of epigenetics in cancer initiation and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 720:91-104. [PMID: 21901621 DOI: 10.1007/978-1-4614-0254-1_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The epigenome which comprises DNA methylation, histone modifications, chromatin structures and non-coding RNAs controls gene expression patterns. In cancer cells, there are aberrant changes in the epigenome. The question in cancer epigenetics is that whether these changes are the cause of cell transformation, or rather the consequence of it. We will discuss the epigenetic phenomenon in cancer, as well as the recent interests in the epigenetic reprogramming events, and their implications in the cancer stem cell theory. We will also look at the progression of cancers as they become more aggressive, with focus on the role of epigenetics in tumor metastases exemplified with the urokinase plasminogen activator (uPA) system. Last but not least, with therapeutics intervention in mind, we will highlight the importance of balance in the design of epigenetic based anti-cancer therapeutic strategies.
Collapse
|
36
|
DesRochers TM, Shamis Y, Alt-Holland A, Kudo Y, Takata T, Wang G, Jackson-Grusby L, Garlick JA. The 3D tissue microenvironment modulates DNA methylation and E-cadherin expression in squamous cell carcinoma. Epigenetics 2012; 7:34-46. [PMID: 22207358 DOI: 10.4161/epi.7.1.18546] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The microenvironment plays a significant role in human cancer progression. However, the role of the tumor microenvironment in the epigenetic control of genes critical to cancer progression remains unclear. As transient E-cadherin expression is central to many stages of neoplasia and is sensitive to regulation by the microenvironment, we have studied if microenvironmental control of E-cadherin expression is linked to transient epigenetic regulation of its promoter, contributing to the unstable and reversible expression of E-cadherin seen during tumor progression. We used 3D, bioengineered human tissue constructs that mimic the complexity of their in vivo counterparts, to show that the tumor microenvironment can direct the re-expression of E-cadherin through the reversal of methylation-mediated silencing of its promoter. This loss of DNA methylation results from the induction of homotypic cell-cell interactions as cells undergo tissue organization. E-cadherin re-expression is associated with multiple epigenetic changes including altered methylation of a small number of CpGs, specific histone modifications, and control of miR-148a expression. These epigenetic changes may drive the plasticity of E-cadherin-mediated adhesion in different tissue microenvironments during tumor cell invasion and metastasis. Thus, we suggest that epigenetic regulation is a mechanism through which tumor cell colonization of metastatic sites occurs as E-cadherin-expressing cells arise from E-cadherin-deficient cells.
Collapse
Affiliation(s)
- Teresa M DesRochers
- Department of Anatomy, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rota R, Ciarapica R, Giordano A, Miele L, Locatelli F. MicroRNAs in rhabdomyosarcoma: pathogenetic implications and translational potentiality. Mol Cancer 2011; 10:120. [PMID: 21943149 PMCID: PMC3212852 DOI: 10.1186/1476-4598-10-120] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence that interconnections among molecular pathways governing tissue differentiation are nodal points for malignant transformation. In this scenario, microRNAs appear as crucial players. This class of non-coding small regulatory RNA molecules controls developmental programs by modulating gene expression through post-transcriptional silencing of target mRNAs. During myogenesis, muscle-specific and ubiquitously-expressed microRNAs tightly control muscle tissue differentiation. In recent years, microRNAs have emerged as prominent players in cancer as well. Rhabdomyosarcoma is a pediatric skeletal muscle-derived soft-tissue sarcoma that originates from myogenic precursors arrested at different stages of differentiation and that continue to proliferate indefinitely. MicroRNAs involved in muscle cell fate determination appear down-regulated in rhabdomyosarcoma primary tumors and cell lines compared to their normal counterparts. More importantly, they behave as tumor suppressors in this malignancy, as their re-expression is sufficient to restore the differentiation capability of tumor cells and to prevent tumor growth in vivo. In addition, up-regulation of pro-oncogenic microRNAs has also been recently detected in rhabdomyosarcoma. In this review, we provide an overview of current knowledge on microRNAs de-regulation in rhabdomyosarcoma. Additionally, we examine the potential of microRNAs as prognostic and diagnostic markers in this soft-tissue sarcoma, and discuss possible therapeutic applications and challenges of a "microRNA therapy".
Collapse
Affiliation(s)
- Rossella Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy.
| | | | | | | | | |
Collapse
|
38
|
Ciarapica R, Miele L, Giordano A, Locatelli F, Rota R. Enhancer of zeste homolog 2 (EZH2) in pediatric soft tissue sarcomas: first implications. BMC Med 2011; 9:63. [PMID: 21609503 PMCID: PMC3126730 DOI: 10.1186/1741-7015-9-63] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/25/2011] [Indexed: 01/02/2023] Open
Abstract
Soft tissue sarcomas of childhood are a group of heterogeneous tumors thought to be derived from mesenchymal stem cells. Surgical resection is effective only in about 50% of cases and resistance to conventional chemotherapy is often responsible for treatment failure. Therefore, investigations on novel therapeutic targets are of fundamental importance. Deregulation of epigenetic mechanisms underlying chromatin modifications during stem cell differentiation has been suggested to contribute to soft tissue sarcoma pathogenesis. One of the main elements in this scenario is enhancer of zeste homolog 2 (EZH2), a methyltransferase belonging to the Polycomb group proteins. EZH2 catalyzes histone H3 methylation on gene promoters, thus repressing genes that induce stem cell differentiation to maintain an embryonic stem cell signature. EZH2 deregulated expression/function in soft tissue sarcomas has been recently reported. In this review, an overview of the recently reported functions of EZH2 in soft tissue sarcomas is given and the hypothesis that its expression might be involved in soft tissue sarcomagenesis is discussed. Finally, the therapeutic potential of epigenetic therapies modulating EZH2-mediated gene repression is considered.
Collapse
Affiliation(s)
- Roberta Ciarapica
- Department of Oncohematology, IRCCS, Ospedale Pediatrico Bambino Gesù, Roma, Italy.
| | | | | | | | | |
Collapse
|
39
|
Thaler F, Minucci S. Next generation histone deacetylase inhibitors: the answer to the search for optimized epigenetic therapies? Expert Opin Drug Discov 2011; 6:393-404. [PMID: 22646017 DOI: 10.1517/17460441.2011.557660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION HDAC inhibitors have demonstrated potent anticancer activities in preclinical and clinical studies. Currently, two drugs (SAHA and romidepsin) have gained the FDA approval for the treatment of cutaneous T-cell lymphoma. Clinical efficacy of HDAC inhibitors has been observed in advanced hematological malignancies, while response in other cancers has been in most cases unpredictable and often rather limited. The search for new molecules with the potential to overcome the limitations of the first HDAC inhibitors has become a primary goal in the field of epigenetic drug discovery as well as drugs acting on other chromatin modifying enzymes. AREAS COVERED The article shortlists seven new HDAC inhibitors that have recently entered clinical studies as representative examples of next generation drugs. The most recently published preclinical profile is reviewed, together with the first clinical data for these compounds. The article then focuses on challenges faced during the progress of first generation HDAC inhibitors and analyzes whether these new compounds are likely to provide a solution to the existing issues and needs. EXPERT OPINION Next generation HDAC inhibitors have the 'best-in-class' potential, particularly regarding potency and in vivo exposure. However, several issues remain unresolved. For example, none of the presented compounds appears to have a significantly different selectivity profile towards various HDAC isoforms and, thus, none of them may provide a further elucidation between the toxicity seen in more advanced HDAC inhibitors and isoform selectivity. Additionally, a need for a continuous effort on target validation is seen as a necessary requirement for further progress in the field.
Collapse
Affiliation(s)
- Florian Thaler
- European Institute of Oncology, Drug Discovery Unit, Department of Experimental Oncology, Via Celoria 26, 20133 Milan, Italy
| | | |
Collapse
|
40
|
|