1
|
Nguidi M, Gomes V, Vullo C, Rodrigues P, Rotondo M, Longaray M, Catelli L, Martínez B, Campos A, Carvalho E, Orovboni VO, Keshinro SO, Simão F, Gusmão L. Impact of patrilocality on contrasting patterns of paternal and maternal heritage in Central-West Africa. Sci Rep 2024; 14:15653. [PMID: 38977763 PMCID: PMC11231350 DOI: 10.1038/s41598-024-65428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Despite their ancient past and high diversity, African populations are the least represented in human population genetic studies. In this study, uniparental markers (mtDNA and Y chromosome) were used to investigate the impact of sociocultural factors on the genetic diversity and inter-ethnolinguistic gene flow in the three major Nigerian groups: Hausa (n = 89), Yoruba (n = 135) and Igbo (n = 134). The results show a distinct history from the maternal and paternal perspectives. The three Nigerian groups present a similar substrate for mtDNA, but not for the Y chromosome. The two Niger-Congo groups, Yoruba and Igbo, are paternally genetically correlated with populations from the same ethnolinguistic affiliation. Meanwhile, the Hausa is paternally closer to other Afro-Asiatic populations and presented a high diversity of lineages from across Africa. When expanding the analyses to other African populations, it is observed that language did not act as a major barrier to female-mediated gene flow and that the differentiation of paternal lineages is better correlated with linguistic than geographic distances. The results obtained demonstrate the impact of patrilocality, a common and well-established practice in populations from Central-West Africa, in the preservation of the patrilineage gene pool and in the affirmation of identity between groups.
Collapse
Affiliation(s)
- Masinda Nguidi
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Carlos Vullo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Pedro Rodrigues
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Martina Rotondo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Micaela Longaray
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Laura Catelli
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Beatriz Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Afonso Campos
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Elizeu Carvalho
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Victoria O Orovboni
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | - Filipa Simão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Aizpurua-Iraola J, Abdeli A, Benhassine T, Calafell F, Comas D. Whole mitogenomes reveal that NW Africa has acted both as a source and a destination for multiple human movements. Sci Rep 2023; 13:10395. [PMID: 37369751 DOI: 10.1038/s41598-023-37549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
Despite being enclosed between the Mediterranean Sea and the Sahara Desert, North Africa has been the scenario of multiple human migrations that have shaped the genetic structure of its present-day populations. Despite its richness, North Africa remains underrepresented in genomic studies. To overcome this, we have sequenced and analyzed 264 mitogenomes from the Algerian Chaoui-speaking Imazighen (a.k.a. Berbers) living in the Aurès region. The maternal genetic composition of the Aurès is similar to Arab populations in the region, dominated by West Eurasian lineages with a moderate presence of M1/U6 North African and L sub-Saharan lineages. When focusing on the time and geographic origin of the North African specific clades within the non-autochthonous haplogroups, different geographical neighboring regions contributed to the North African maternal gene pool during time periods that could be attributed to previously suggested admixture events in the region, since Paleolithic times to recent historical movements such as the Arabization. We have also observed the role of North Africa as a source of geneflow mainly in Southern European regions since Neolithic times. Finally, the present work constitutes an effort to increase the representation of North African populations in genetic databases, which is key to understand their history.
Collapse
Affiliation(s)
- Julen Aizpurua-Iraola
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Amine Abdeli
- Laboratorie de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Traki Benhassine
- Laboratorie de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
3
|
Caro-Consuegra R, Lucas-Sánchez M, Comas D, Bosch E. Identifying signatures of positive selection in human populations from North Africa. Sci Rep 2023; 13:8166. [PMID: 37210386 DOI: 10.1038/s41598-023-35312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Because of its location, North Africa (NA) has witnessed continuous demographic movements with an impact on the genomes of present-day human populations. Genomic data describe a complex scenario with varying proportions of at least four main ancestry components: Maghrebi, Middle Eastern-, European-, and West-and-East-African-like. However, the footprint of positive selection in NA has not been studied. Here, we compile genome-wide genotyping data from 190 North Africans and individuals from surrounding populations, investigate for signatures of positive selection using allele frequencies and linkage disequilibrium-based methods and infer ancestry proportions to discern adaptive admixture from post-admixture selection events. Our results show private candidate genes for selection in NA involved in insulin processing (KIF5A), immune function (KIF5A, IL1RN, TLR3), and haemoglobin phenotypes (BCL11A). We also detect signatures of positive selection related to skin pigmentation (SLC24A5, KITLG), and immunity function (IL1R1, CD44, JAK1) shared with European populations and candidate genes associated with haemoglobin phenotypes (HPSE2, HBE1, HBG2), other immune-related (DOCK2) traits, and insulin processing (GLIS3) traits shared with West and East African populations. Finally, the SLC8A1 gene, which codifies for a sodium-calcium exchanger, was the only candidate identified under post-admixture selection in Western NA.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Marcel Lucas-Sánchez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - David Comas
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Cardinali I, Bodner M, Capodiferro MR, Amory C, Rambaldi Migliore N, Gomez EJ, Myagmar E, Dashzeveg T, Carano F, Woodward SR, Parson W, Perego UA, Lancioni H, Achilli A. Mitochondrial DNA Footprints from Western Eurasia in Modern Mongolia. Front Genet 2022; 12:819337. [PMID: 35069708 PMCID: PMC8773455 DOI: 10.3389/fgene.2021.819337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Mongolia is located in a strategic position at the eastern edge of the Eurasian Steppe. Nomadic populations moved across this wide area for millennia before developing more sedentary communities, extended empires, and complex trading networks, which connected western Eurasia and eastern Asia until the late Medieval period. We provided a fine-grained portrait of the mitochondrial DNA (mtDNA) variation observed in present-day Mongolians and capable of revealing gene flows and other demographic processes that took place in Inner Asia, as well as in western Eurasia. The analyses of a novel dataset (N = 2,420) of mtDNAs highlighted a clear matrilineal differentiation within the country due to a mixture of haplotypes with eastern Asian (EAs) and western Eurasian (WEu) origins, which were differentially lost and preserved. In a wider genetic context, the prevalent EAs contribution, larger in eastern and central Mongolian regions, revealed continuous connections with neighboring Asian populations until recent times, as attested by the geographically restricted haplotype-sharing likely facilitated by the Genghis Khan’s so-called Pax Mongolica. The genetic history beyond the WEu haplogroups, notably detectable on both sides of Mongolia, was more difficult to explain. For this reason, we moved to the analysis of entire mitogenomes (N = 147). Although it was not completely possible to identify specific lineages that evolved in situ, two major changes in the effective (female) population size were reconstructed. The more recent one, which began during the late Pleistocene glacial period and became steeper in the early Holocene, was probably the outcome of demographic events connected to western Eurasia. The Neolithic growth could be easily explained by the diffusion of dairy pastoralism, as already proposed, while the late glacial increase indicates, for the first time, a genetic connection with western Eurasian refuges, as supported by the unusual high frequency and internal sub-structure in Mongolia of haplogroup H1, a well-known post-glacial marker in Europe. Bronze Age events, without a significant demographic impact, might explain the age of some mtDNA haplogroups. Finally, a diachronic comparison with available ancient mtDNAs made it possible to link six mitochondrial lineages of present-day Mongolians to the timeframe and geographic path of the Silk Route.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Edgar J Gomez
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,FamilySearch Int., Salt Lake City, UT, United States
| | - Erdene Myagmar
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tumen Dashzeveg
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Francesco Carano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Scott R Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, State College, PA, United States
| | - Ugo A Perego
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,Department of Math and Science, Southeastern Community College, Burlington, IA, United States
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Silva M, Oteo-García G, Martiniano R, Guimarães J, von Tersch M, Madour A, Shoeib T, Fichera A, Justeau P, Foody MGB, McGrath K, Barrachina A, Palomar V, Dulias K, Yau B, Gandini F, Clarke DJ, Rosa A, Brehm A, Flaquer A, Rito T, Olivieri A, Achilli A, Torroni A, Gómez-Carballa A, Salas A, Bryk J, Ditchfield PW, Alexander M, Pala M, Soares PA, Edwards CJ, Richards MB. Biomolecular insights into North African-related ancestry, mobility and diet in eleventh-century Al-Andalus. Sci Rep 2021; 11:18121. [PMID: 34518562 PMCID: PMC8438022 DOI: 10.1038/s41598-021-95996-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/27/2021] [Indexed: 01/26/2023] Open
Abstract
Historical records document medieval immigration from North Africa to Iberia to create Islamic al-Andalus. Here, we present a low-coverage genome of an eleventh century CE man buried in an Islamic necropolis in Segorbe, near Valencia, Spain. Uniparental lineages indicate North African ancestry, but at the autosomal level he displays a mosaic of North African and European-like ancestries, distinct from any present-day population. Altogether, the genome-wide evidence, stable isotope results and the age of the burial indicate that his ancestry was ultimately a result of admixture between recently arrived Amazigh people (Berbers) and the population inhabiting the Peninsula prior to the Islamic conquest. We detect differences between our sample and a previously published group of contemporary individuals from Valencia, exemplifying how detailed, small-scale aDNA studies can illuminate fine-grained regional and temporal differences. His genome demonstrates how ancient DNA studies can capture portraits of past genetic variation that have been erased by later demographic shifts-in this case, most likely the seventeenth century CE expulsion of formerly Islamic communities as tolerance dissipated following the Reconquista by the Catholic kingdoms of the north.
Collapse
Affiliation(s)
- Marina Silva
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - Gonzalo Oteo-García
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Rui Martiniano
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - João Guimarães
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - Ali Madour
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Tarek Shoeib
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- Department of Forensic Science, Faculty of Biomedical Science, University of Benghazi, P.O. Box: 1308, Benghazi, Libya
| | - Alessandro Fichera
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Pierre Justeau
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - M George B Foody
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Krista McGrath
- BioArCh, Department of Archaeology, University of York, York, UK
- Department of Prehistory and Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Amparo Barrachina
- Servei d'Investigacions Arqueològiques i Prehistòriques - Museu Belles Arts de Castelló, Av. Germans Bou, 28, 12003, Castellón, Spain
| | - Vicente Palomar
- Museo Municipal de Arqueología y Etnología de Segorbe, Calle Colón, 98, 12400, Segorbe, Castellón, Spain
| | - Katharina Dulias
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- BioArCh, Department of Archaeology, University of York, York, UK
- Institut für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, 38106, Braunschweig, Germany
| | - Bobby Yau
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Francesca Gandini
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Douglas J Clarke
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Alexandra Rosa
- Faculty of Life Sciences, University of Madeira, Campus of Penteada, 9000-390, Funchal, Portugal
- Human Genetics Laboratory, University of Madeira, Campus of Penteada, 9000-390, Funchal, Portugal
| | - António Brehm
- Human Genetics Laboratory, University of Madeira, Campus of Penteada, 9000-390, Funchal, Portugal
| | - Antònia Flaquer
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU University, Munich, Germany
| | - Teresa Rito
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani, Università di Pavia, 27100, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani, Università di Pavia, 27100, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani, Università di Pavia, 27100, Pavia, Italy
| | - Alberto Gómez-Carballa
- Grupo de Investigacion en Genetica, Vacunas, Infecciones y Pediatria (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Galicia, Spain
| | - Antonio Salas
- Grupo de Investigacion en Genetica, Vacunas, Infecciones y Pediatria (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Jaroslaw Bryk
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Peter W Ditchfield
- School of Archaeology, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK
| | | | - Maria Pala
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Pedro A Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ceiridwen J Edwards
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Martin B Richards
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
6
|
Hernández CL, Pita G, Cavadas B, López S, Sánchez-Martínez LJ, Dugoujon JM, Novelletto A, Cuesta P, Pereira L, Calderón R. Human Genomic Diversity Where the Mediterranean Joins the Atlantic. Mol Biol Evol 2021; 37:1041-1055. [PMID: 31816048 PMCID: PMC7086172 DOI: 10.1093/molbev/msz288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Throughout the past few years, a lively debate emerged about the timing and magnitude of the human migrations between the Iberian Peninsula and the Maghreb. Several pieces of evidence, including archaeological, anthropological, historical, and genetic data, have pointed to a complex and intermingled evolutionary history in the western Mediterranean area. To study to what extent connections across the Strait of Gibraltar and surrounding areas have shaped the present-day genomic diversity of its populations, we have performed a screening of 2.5 million single-nucleotide polymorphisms in 142 samples from southern Spain, southern Portugal, and Morocco. We built comprehensive data sets of the studied area and we implemented multistep bioinformatic approaches to assess population structure, demographic histories, and admixture dynamics. Both local and global ancestry inference showed an internal substructure in the Iberian Peninsula, mainly linked to a differential African ancestry. Western Iberia, from southern Portugal to Galicia, constituted an independent cluster within Iberia characterized by an enriched African genomic input. Migration time modeling showed recent historic dates for the admixture events occurring both in Iberia and in the North of Africa. However, an integrative vision of both paleogenomic and modern DNA data allowed us to detect chronological transitions and population turnovers that could be the result of transcontinental migrations dating back from Neolithic times. The present contribution aimed to fill the gaps in the modern human genomic record of a key geographic area, where the Mediterranean and the Atlantic come together.
Collapse
Affiliation(s)
- Candela L Hernández
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruno Cavadas
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Saioa López
- UCL Cancer Institute, London, United Kingdom
| | - Luis J Sánchez-Martínez
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Jean-Michel Dugoujon
- CNRS UMR 5288 Laboratoire d'Anthropologie Moléculaire et d'Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | - Pedro Cuesta
- Centro de Proceso de Datos, Universidad Complutense, Madrid, Spain
| | - Luisa Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
7
|
Fleskes RE, Ofunniyin AA, Gilmore JK, Poplin E, Abel SM, Bueschgen WD, Juarez C, Butler N, Mishoe G, Oubré L, Cabana GS, Schurr TG. Ancestry, health, and lived experiences of enslaved Africans in 18th century Charleston: An osteobiographical analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 175:3-24. [PMID: 33022107 DOI: 10.1002/ajpa.24149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/30/2020] [Accepted: 09/13/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES In 2013, the burials of 36 individuals of putative African ancestry were discovered during renovation of the Gaillard Center in downtown Charleston, South Carolina. The Charleston community facilitated a bioarchaeological and mitogenomic study to gain insights into the lives of these unknown persons, referred to as the Anson Street Ancestors, including their ancestry, health, and lived experiences in the 18th century. METHODS Metric and morphological assessments of skeletal and dental characteristics were recorded, and enamel and cortical bone strontium stable isotope values generated. Whole mitochondrial genomes were sequenced and analyzed. RESULTS Osteological analysis identified adults, both females and males, and subadults at the site, and estimated African ancestry for most individuals. Skeletal trauma and pathology were infrequent, but many individuals exhibited dental decay and abscesses. Strontium isotope data suggested these individuals mostly originated in Charleston or sub-Saharan Africa, with many being long-term residents of Charleston. Nearly all had mitochondrial lineages belonging to African haplogroups (L0-L3, H1cb1a), with two individuals sharing the same L3e2a haplotype, while one had a Native American A2 mtDNA. DISCUSSION This study generated detailed osteobiographies of the Anson Street Ancestors, who were likely of enslaved status. Our results indicate that the Ancestors have diverse maternal African ancestries and are largely unrelated, with most being born locally. These details reveal the demographic impact of the trans-Atlantic slave trade. Our analysis further illuminates the lived experiences of individuals buried at Anson Street, and expands our understanding of 18th century African history in Charleston.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ade A Ofunniyin
- The Gullah Society, Inc., Mount Pleasant, South Carolina, USA.,Department of Sociology and Anthropology, The College of Charleston, Charleston, South Carolina, USA
| | - Joanna K Gilmore
- The Gullah Society, Inc., Mount Pleasant, South Carolina, USA.,Department of Sociology and Anthropology, The College of Charleston, Charleston, South Carolina, USA
| | - Eric Poplin
- Brockington and Associates, Inc., Mount Pleasant, South Carolina, USA
| | - Suzanne M Abel
- Charleston County Coroner's Office, North Charleston, South Carolina, USA
| | - Wolf D Bueschgen
- Charleston County Coroner's Office, North Charleston, South Carolina, USA
| | - Chelsey Juarez
- Department of Anthropology, California State University, Fresno, California, USA
| | - Nic Butler
- Charleston County Public Library, Charleston, South Carolina, USA
| | - Grant Mishoe
- The Gullah Society, Inc., Mount Pleasant, South Carolina, USA
| | - La'Sheia Oubré
- The Gullah Society, Inc., Mount Pleasant, South Carolina, USA
| | - Graciela S Cabana
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Priehodová E, Austerlitz F, Čížková M, Nováčková J, Ricaut FX, Hofmanová Z, Schlebusch CM, Černý V. Sahelian pastoralism from the perspective of variants associated with lactase persistence. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:423-436. [PMID: 32812238 DOI: 10.1002/ajpa.24116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/17/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Archeological evidence shows that first nomadic pastoralists came to the African Sahel from northeastern Sahara, where milking is reported by ~7.5 ka. A second wave of pastoralists arrived with the expansion of Arabic tribes in 7th-14th century CE. All Sahelian pastoralists depend on milk production but genetic diversity underlying their lactase persistence (LP) is poorly understood. MATERIALS AND METHODS We investigated SNP variants associated with LP in 1,241 individuals from 29 mostly pastoralist populations in the Sahel. Then, we analyzed six SNPs in the neighboring fragment (419 kb) in the Fulani and Tuareg with the -13910*T mutation, reconstructed haplotypes, and calculated expansion age and growth rate of this variant. RESULTS Our results reveal a geographic localization of two different LP variants in the Sahel: -13910*T west of Lake Chad (Fulani and Tuareg pastoralists) and -13915*G east of there (mostly Arabic-speaking pastoralists). We show that -13910*T has a more diversified haplotype background among the Fulani than among the Tuareg and that the age estimate for expansion of this variant among the Fulani (~8.5 ka) corresponds to introduction of cattle to the area. CONCLUSIONS This is the first study showing that the "Eurasian" LP allele -13910*T is widespread both in northern Europe and in the Sahel; however, it is limited to pastoralists in the Sahel. Since the Fulani haplotype with -13910*T is shared with contemporary Eurasians, its origin could be in a region encompassing the Near East and northeastern Africa in a population ancestral to both Saharan pastoralists and European farmers.
Collapse
Affiliation(s)
- Edita Priehodová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Frédéric Austerlitz
- UMR 7206 EcoAnthropologie et Ethnobiologie, CNRS/MNHN/Université Paris Diderot, Musée de l'Homme, Paris, France
| | - Martina Čížková
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jana Nováčková
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - François-Xavier Ricaut
- Department of Evolution and Biological Diversity (UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| | - Zuzana Hofmanová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Carina M Schlebusch
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.,SciLifeLab, Uppsala, Sweden
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
9
|
Mountford HS, Villanueva P, Fernández MA, Jara L, De Barbieri Z, Carvajal-Carmona LG, Cazier JB, Newbury DF. The Genetic Population Structure of Robinson Crusoe Island, Chile. Front Genet 2020; 11:669. [PMID: 32676101 PMCID: PMC7333314 DOI: 10.3389/fgene.2020.00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022] Open
Abstract
Studies examining genetic conditions common in Latin America are highly underrepresented in the scientific literature. Understanding of the population structure is limited, particularly Chile, in part due to the lack of available population specific data. An important first-step in elucidating disease mechanisms in Latin America countries is to understand the genetic structure of isolated populations. Robinson Crusoe Island (RCI) is a small land mass off the coast of Chile. The current population of over 900 inhabitants are primarily descended from a small number of founders who colonized the island in the late 1800s. Extensive genealogical records can trace the ancestry of almost the entire population. We perform a comprehensive genetic analysis to investigate the ancestry of the island population, examining ancestral mitochondrial and Y chromosome haplogroups, as well as autosomal admixture. Mitochondrial and Y chromosome haplogroups indicated a substantial European genetic contribution to the current RCI population. Analysis of the mitochondrial haplogroups found in the present-day population revealed that 79.1% of islanders carried European haplogroups, compared to 60.0% of the mainland Chilean controls from Santiago. Both groups showed a substantially lower contribution of indigenous haplogroups than expected. Analysis of the Y chromosome haplogroups also showed predominantly European haplogroups detected in 92.3% of male islanders and 86.7% of mainland Chilean controls. Using the near-complete genealogical data collected from the RCI population, we successfully inferred the ancestral haplogroups of 16/23 founder individuals, revealing genetic ancestry from Northern and Southern Europe. As mitochondrial and Y investigations only provide information for direct maternal and paternal lineages, we expanded this to investigate genetic admixture using the autosomes. Admixture analysis identified substantial indigenous genetic admixture in the RCI population (46.9%), higher than that found in the Santiago mainland Chilean controls (43.4%), but lower than a more representative Chilean population (Chile_GRU) (49.1%). Our study revealed the Robinson Crusoe Island population show a substantial genetic contribution for indigenous Chileans, similar to the level reported in mainland Chileans. However, direct maternal and paternal haplogroup analysis revealed strong European genetic contributions consistent with the history of the Island.
Collapse
Affiliation(s)
- Hayley S Mountford
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Pía Villanueva
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Human Genetics Division, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - María Angélica Fernández
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lilian Jara
- Human Genetics Division, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Zulema De Barbieri
- Directorate of Academic Development, Academic Vice-Rectory, Research and Postgraduate, Saint Thomas University, Santiago, Chile
| | - Luis G Carvajal-Carmona
- Department of Biochemistry and Molecular Medicine, School of Medicine Genome Center, University of California, Davis, Davis, CA, United States
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dianne F Newbury
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
10
|
Messoussi M, Hajjej A, Ammar Elgaaied AB, Almawi WY, Arnaiz-Villena A, Hmida S, Fadhlaoui-Zid K. HLA Class II Allele and Haplotype Diversity in Libyans and Their Genetic Relationships with Other Populations. Immunol Invest 2019; 48:875-892. [PMID: 31161824 DOI: 10.1080/08820139.2019.1614950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Libya witnessed the succession of many civilizations and ethnic groups throughout history, thereby questioning the origin of present-day Libyans. Indeed, they were considered Africans given the geographical position of the country, Arabs at the cultural level, and Berbers because of the notable presence of Berber tribes. Genetic anthropology studies investigating the origin of Libyans were rarely reported, and thus little was known about the population structure of current Libyans, particularly at autosomic markers level. Methods: We examined HLA class II (DRB1, DQB1) gene profiles of 101 unrelated Libyans, and compared them with Arab-speaking communities and with Sub-Saharan and Mediterranean populations using Neighbour-Joining dendrograms, genetic distances, correspondence, and haplotype analysis. Results: Of the 42 DRB1 alleles identified, DRB1*07:01 (14.36%), DRB1*03:01 (12.38%) were the most frequent, while DQB1*02:01 (24.17%), DQB1*02:02 (13.86%), and DQB1*03:01 (12.38%) were the most frequent of the 17 DQB1 alleles detected. DRB1*03:01-DQB1*02:01 (6.93%), DRB1*07:01-DQB1*02:02 (4.45%), and DRB1*04:03-DQB1*03:02 (3.46%) were the most frequent DRB1-DQB1 haplotypes. Conclusion: Libyans appear to be closely related to North Africans, Saudis, and Iberians, but distinct from Levantine Arabs, East Mediterraneans, and Sub-Saharan Africans. This indicates limited genetic contribution of Levantine Arabs and Sub-Saharans on the makeup of Libyan gene pool. Our study confirmed genetic heterogeneity among Arab populations, with three identified groups. The first comprises North Africans, Saudis, and Kuwaitis who were related to Iberians and West Mediterraneans, while the second consists of Levantine Arabs who were close to East Mediterraneans, and the third contained Sudanese and Comorians, with a close relatedness to Sub-Saharans.
Collapse
Affiliation(s)
- Monia Messoussi
- Laboratory of Genetics, Immunology, and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Abdelhafidh Hajjej
- Department of Immunogenetics, National Blood Transfusion Center , Tunis , Tunisia
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology, and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Wassim Y Almawi
- School of Medicine, Nazarbayev University , Astana , Kazakhstan.,Department of Biological Sciences, Faculty of Sciences, El-Manar University , Tunis , Tunisia
| | - Antonio Arnaiz-Villena
- Department of Immunology, University Complutense, School of Medicine, Madrid Regional Blood Center , Madrid , Spain
| | - Slama Hmida
- Department of Immunogenetics, National Blood Transfusion Center , Tunis , Tunisia
| | - Karima Fadhlaoui-Zid
- Laboratory of Genetics, Immunology, and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia.,Department of Biology, College of Science, Taibah University , Al Madinah Al Monawarah , Saudi Arabia.,Higher Institute of Biotechnology of Beja, University of Jendouba , Beja , Tunisia
| |
Collapse
|
11
|
Badache H, Boussetta S, Elgaaeid AB, Cherni L, El-khil HK. Investigation of the genetic structure of Kabyle and Chaouia Algerian populations through the polymorphism of Alu insertion markers. Ann Hum Biol 2019; 46:150-159. [DOI: 10.1080/03014460.2019.1588994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hocine Badache
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Amel Benammar Elgaaeid
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Houssein Khodjet El-khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
- Department of Biomedical Sciences, College of Health Sciences Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Vai S, Sarno S, Lari M, Luiselli D, Manzi G, Gallinaro M, Mataich S, Hübner A, Modi A, Pilli E, Tafuri MA, Caramelli D, di Lernia S. Ancestral mitochondrial N lineage from the Neolithic 'green' Sahara. Sci Rep 2019; 9:3530. [PMID: 30837540 PMCID: PMC6401177 DOI: 10.1038/s41598-019-39802-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/30/2019] [Indexed: 11/16/2022] Open
Abstract
Because Africa's climate hampers DNA preservation, knowledge of its genetic variability is mainly restricted to modern samples, even though population genetics dynamics and back-migrations from Eurasia may have modified haplotype frequencies, masking ancient genetic scenarios. Thanks to improved methodologies, ancient genetic data for the African continent are now increasingly available, starting to fill in the gap. Here we present newly obtained mitochondrial genomes from two ~7000-year-old individuals from Takarkori rockshelter, Libya, representing the earliest and first genetic data for the Sahara region. These individuals carry a novel mutation motif linked to the haplogroup N root. Our result demonstrates the presence of an ancestral lineage of the N haplogroup in the Holocene "Green Sahara", associated to a Middle Pastoral (Neolithic) context.
Collapse
Affiliation(s)
- Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Giorgio Manzi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Marina Gallinaro
- Department of Ancient World Studies, Sapienza University of Rome, Rome, Italy
| | - Safaa Mataich
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Alexander Hübner
- Max-Planck-Institute for Evolutionary Anthropology, Department Evolutionary Genetics, Leipzig, Germany
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy
| | - Elena Pilli
- Department of Biology, University of Florence, Florence, Italy
| | - Mary Anne Tafuri
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy.
| | - Savino di Lernia
- Department of Ancient World Studies, Sapienza University of Rome, Rome, Italy.
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
13
|
De Angelis F, Scorrano G, Martínez-Labarga C, Scano G, Macciardi F, Rickards O. Mitochondrial variability in the Mediterranean area: a complex stage for human migrations. Ann Hum Biol 2018; 45:5-19. [PMID: 29382277 DOI: 10.1080/03014460.2017.1416172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT The Mediterranean area has always played a significant role in human dispersal due to the large number of migratory events contributing to shape the cultural features and the genetic pool of its populations. OBJECTIVE This paper aims to review and diachronically describe the mitogenome variability in the Mediterranean population and the main demic diffusions that occurred in this area over time. METHODS Frequency distributions of the leading mitochondrial haplogroups have been geographically and chronologically evaluated. The variability of U5b and K lineages has been focussed to broaden the knowledge of their genetic histories. RESULTS The mitochondrial genetic makeup of Palaeolithic hunter-gatherers is poorly defined within the extant Mediterranean populations, since only a few traces of their genetic contribution are still detectable. The Neolithic lineages are more represented, suggesting that the Neolithic revolution had a marked effect on the peopling of the Mediterranean area. The largest effect, however, was provided by historical migrations. CONCLUSION Although the mitogenome variability has been widely used to try and clarify the evolution of the Mediterranean genetic makeup throughout almost 50 000 years, it is necessary to collect whole genome data on both extinct and extant populations from this area to fully reconstruct and interpret the impact of multiple migratory waves and their cultural and genetic consequences on the structure of the Mediterranean populations.
Collapse
Affiliation(s)
- Flavio De Angelis
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Gabriele Scorrano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Cristina Martínez-Labarga
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Giuseppina Scano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Fabio Macciardi
- b Laboratory of Molecular Psychiatry, Department of Psychiatry and Human Behavior , University of California , Irvine , CA , USA
| | - Olga Rickards
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
14
|
Font-Porterias N, Solé-Morata N, Serra-Vidal G, Bekada A, Fadhlaoui-Zid K, Zalloua P, Calafell F, Comas D. The genetic landscape of Mediterranean North African populations through complete mtDNA sequences. Ann Hum Biol 2018; 45:98-104. [DOI: 10.1080/03014460.2017.1413133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neus Font-Porterias
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Neus Solé-Morata
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Serra-Vidal
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Karima Fadhlaoui-Zid
- Laboratoire de Génetique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Univesritaire El Manar II, Université El Manar, Tunis, Tunisia
| | - Pierre Zalloua
- School of Medicine, The Lebanese American University, Chouran, Beirut, Lebanon
| | - Francesc Calafell
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
15
|
Elkamel S, Boussetta S, Khodjet-El-Khil H, Benammar Elgaaied A, Cherni L. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations. Am J Hum Biol 2018; 30:e23100. [PMID: 29359455 DOI: 10.1002/ajhb.23100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. MATERIALS AND METHODS A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). RESULTS Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. CONCLUSIONS The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE.
Collapse
Affiliation(s)
- Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Houssein Khodjet-El-Khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.,High Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
16
|
Kulichová I, Fernandes V, Deme A, Nováčková J, Stenzl V, Novelletto A, Pereira L, Černý V. Internal diversification of non-Sub-Saharan haplogroups in Sahelian populations and the spread of pastoralism beyond the Sahara. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:424-434. [DOI: 10.1002/ajpa.23285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Iva Kulichová
- Department of Anthropology and Human Genetics, Faculty of Science; Charles University in Prague; Czech Republic
| | - Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto; Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto Portugal
| | - Alioune Deme
- Département d'Histoire, Faculté des Lettres et Sciences humaines; Université Cheikh Anta Diop de Dakar; Senegal
| | - Jana Nováčková
- Archaeogenetics Laboratory; Institute of Archaeology of the Academy of Sciences of the Czech Republic; Czech Republic
| | - Vlastimil Stenzl
- Department of Forensic Genetics; Institute of Criminalistics; Prague Czech Republic
| | | | - Luísa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto; Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto Portugal
- Faculdade de Medicina da Universidade do Porto; Porto Portugal
| | - Viktor Černý
- Archaeogenetics Laboratory; Institute of Archaeology of the Academy of Sciences of the Czech Republic; Czech Republic
| |
Collapse
|
17
|
Frigi S, Mota-Vieira L, Cherni L, van Oven M, Pires R, Boussetta S, El-Gaaied ABA. Mitochondrial DNA analysis of Tunisians reveals a mosaic genetic structure with recent population expansion. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2017; 68:298-315. [PMID: 28838744 DOI: 10.1016/j.jchb.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 04/06/2017] [Indexed: 11/25/2022]
Abstract
Tunisia is a country of great interest for human population genetics due to its strategic geographic position and rich human settlement history. These factors significantly contributed to the genetic makeup of present-day Tunisians harbouring components of diverse geographic origins. Here, we investigated the genetic structure of Tunisians by performing a mitochondrial DNA (mtDNA) comparison of 15 Tunisian population groups, in order to explore their complex genetic landscape. All Tunisian data were also analysed against 40 worldwide populations. Statistical results (Tajima's D and Fu's FS tests) suggested recent population expansion for the majority of studied populations, as well as showed (AMOVA test) that all populations were significantly different from each other, which is evidence of population structure even if it is not guided by geographic and ethnic effects. Gene flow analysis revealed the assignment of Tunisians to multiple ancestries, which agrees with their genetic heterogeneity. The resulting picture for the mtDNA pool confirms the evidence of a recent expansion of the Tunisian population and is in accordance with a mosaic structure, composed by North African, Middle Easterner, European and Sub-Saharan lineages, resulting from a complex settlement history.
Collapse
Affiliation(s)
- S Frigi
- Laboratory of Molecular Genetics, Immunology and Human Pathology at the Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
| | - L Mota-Vieira
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPER, Avenida D. Manuel I, 9500-370 Ponta Delgada, São Miguel Island, Azores, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - L Cherni
- Laboratory of Molecular Genetics, Immunology and Human Pathology at the Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia; Higher Institute of Biotechnology of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - M van Oven
- Turkooislaan 60, 3523 GN Utrecht, The Netherlands
| | - R Pires
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPER, Avenida D. Manuel I, 9500-370 Ponta Delgada, São Miguel Island, Azores, Portugal
| | - S Boussetta
- Laboratory of Molecular Genetics, Immunology and Human Pathology at the Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
| | - A Ben Ammar El-Gaaied
- Laboratory of Molecular Genetics, Immunology and Human Pathology at the Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
18
|
Hernández CL, Dugoujon JM, Novelletto A, Rodríguez JN, Cuesta P, Calderón R. The distribution of mitochondrial DNA haplogroup H in southern Iberia indicates ancient human genetic exchanges along the western edge of the Mediterranean. BMC Genet 2017; 18:46. [PMID: 28525980 PMCID: PMC5437654 DOI: 10.1186/s12863-017-0514-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/11/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The structure of haplogroup H reveals significant differences between the western and eastern edges of the Mediterranean, as well as between the northern and southern regions. Human populations along the westernmost Mediterranean coasts, which were settled by individuals from two continents separated by a relatively narrow body of water, show the highest frequencies of mitochondrial haplogroup H. These characteristics permit the analysis of ancient migrations between both shores, which may have occurred via primitive sea crafts and early seafaring. We collected a sample of 750 autochthonous people from the southern Iberian Peninsula (Andalusians from Huelva and Granada provinces). We performed a high-resolution analysis of haplogroup H by control region sequencing and coding SNP screening of the 337 individuals harboring this maternal marker. Our results were compared with those of a wide panel of populations, including individuals from Iberia, the Maghreb, and other regions around the Mediterranean, collected from the literature. RESULTS Both Andalusian subpopulations showed a typical western European profile for the internal composition of clade H, but eastern Andalusians from Granada also revealed interesting traces from the eastern Mediterranean. The basal nodes of the most frequent H sub-haplogroups, H1 and H3, harbored many individuals of Iberian and Maghrebian origins. Derived haplotypes were found in both regions; haplotypes were shared far more frequently between Andalusia and Morocco than between Andalusia and the rest of the Maghreb. These and previous results indicate intense, ancient and sustained contact among populations on both sides of the Mediterranean. CONCLUSIONS Our genetic data on mtDNA diversity, combined with corresponding archaeological similarities, provide support for arguments favoring prehistoric bonds with a genetic legacy traceable in extant populations. Furthermore, the results presented here indicate that the Strait of Gibraltar and the adjacent Alboran Sea, which have often been assumed to be an insurmountable geographic barrier in prehistory, served as a frequently traveled route between continents.
Collapse
Affiliation(s)
- Candela L. Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Jean M. Dugoujon
- CNRS UMR 5288 Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | | | - Pedro Cuesta
- Centro de Proceso de Datos, Universidad Complutense, Madrid, Spain
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
19
|
Kefi R, Hechmi M, Naouali C, Jmel H, Hsouna S, Bouzaid E, Abdelhak S, Beraud-Colomb E, Stevanovitch A. On the origin of Iberomaurusians: new data based on ancient mitochondrial DNA and phylogenetic analysis of Afalou and Taforalt populations. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:147-157. [PMID: 28034339 DOI: 10.1080/24701394.2016.1258406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Western North African population was characterized by the presence of Iberomaurusian civilization at the Epiplaeolithic period (around 20,000 years before present (YBP) to 10,000 YBP). The origin of this population is still not clear: they may come from Europe, Near East, sub-Saharan Africa or they could have evolved in situ in North Africa. With the aim to contribute to a better knowledge of the settlement of North Africa we analysed the mitochondrial DNA extracted from Iberomaurusian skeletons exhumed from the archaeological site of Afalou (AFA) (15,000-11,000 YBP) in Algeria and from the archaeological site of Taforalt (TAF) (23,000-10,800 YBP) in Morocco. Then, we carried out a phylogenetic analysis relating these Iberomaurusians to 61 current Mediterranean populations. The genetic structure of TAF and AFA specimens contains only North African and Eurasian maternal lineages. These finding demonstrate the presence of these haplotypes in North Africa from at least 20,000 YBP. The very low contribution of a Sub-Saharan African haplotype in the Iberomaurusian samples is confirmed. We also highlighted the existence of genetic flows between Southern and Northern coast of the Mediterranean.
Collapse
Affiliation(s)
- Rym Kefi
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia.,b University Tunis El Manar , Tunis , Tunisia
| | - Meriem Hechmi
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia
| | - Chokri Naouali
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia.,b University Tunis El Manar , Tunis , Tunisia
| | - Haifa Jmel
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia
| | - Sana Hsouna
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia.,b University Tunis El Manar , Tunis , Tunisia
| | - Eric Bouzaid
- c Institut National de Police Scientifique Laboratoire de Marseille , Marseille , France
| | - Sonia Abdelhak
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia.,b University Tunis El Manar , Tunis , Tunisia
| | | | - Alain Stevanovitch
- c Institut National de Police Scientifique Laboratoire de Marseille , Marseille , France
| |
Collapse
|
20
|
Elkamel S, Cherni L, Alvarez L, Marques SL, Prata MJ, Boussetta S, Benammar-Elgaaied A, Khodjet-El-Khil H. The Orientalisation of North Africa: New hints from the study of autosomal STRs in an Arab population. Ann Hum Biol 2016; 44:180-190. [DOI: 10.1080/03014460.2016.1205135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- High Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Luis Alvarez
- Instituto de Investigação e Inovação em Saúde/Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Sofia L. Marques
- Instituto de Investigação e Inovação em Saúde/Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Maria J. Prata
- Instituto de Investigação e Inovação em Saúde/Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Amel Benammar-Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Houssein Khodjet-El-Khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
21
|
Hernández CL, Soares P, Dugoujon JM, Novelletto A, Rodríguez JN, Rito T, Oliveira M, Melhaoui M, Baali A, Pereira L, Calderón R. Early Holocenic and Historic mtDNA African Signatures in the Iberian Peninsula: The Andalusian Region as a Paradigm. PLoS One 2015; 10:e0139784. [PMID: 26509580 PMCID: PMC4624789 DOI: 10.1371/journal.pone.0139784] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.
Collapse
Affiliation(s)
- Candela L. Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - Jean M. Dugoujon
- CNRS UMR 5288 Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, 31073 Toulouse, France
| | - Andrea Novelletto
- Dipartimento di Biologia, Università Tor Vergata di Rome, Rome, Italy
| | | | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Marisa Oliveira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | | | - Abdellatif Baali
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - Luisa Pereira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
22
|
Bekada A, Arauna LR, Deba T, Calafell F, Benhamamouch S, Comas D. Genetic Heterogeneity in Algerian Human Populations. PLoS One 2015; 10:e0138453. [PMID: 26402429 PMCID: PMC4581715 DOI: 10.1371/journal.pone.0138453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region.
Collapse
Affiliation(s)
- Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Lara R. Arauna
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Tahria Deba
- Centre de Transfusion Sanguine- Centre Hospitalo-Universitaire d’Oran (CTS-CHUO), Oran, Algeria
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Soraya Benhamamouch
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - David Comas
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
- * E-mail:
| |
Collapse
|
23
|
Zupan A, Hauptman N, Glavač D. The maternal perspective for five Slovenian regions: The importance of regional sampling. Ann Hum Biol 2015; 43:57-66. [PMID: 26065896 DOI: 10.3109/03014460.2015.1006678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The Slovenian territory is geographically positioned between the Alps, Adriatic Sea, Pannonian basin and the Dinaric Mountains and, as such, has served as a passageway for various populations in different periods of time. Turbulent historic events and diverse geography of the region have produced a diverse contemporary population whose genetic analysis could provide insight into past demographic events. AIM The aims of this study were to characterize the Slovenian mitochondrial gene pool at the micro-geographic level and to compare it with surrounding populations. SUBJECTS AND METHODS A total of 402 individuals from five Slovenian regions were analysed in this study by typing HVR I, HVR II and coding region polymorphisms of mtDNA. RESULTS Analysis revealed 47 haplogroups and sub-haplogroups, the most common of which were H*, H1, J1c, T2 and U5a. Intra-population comparisons revealed a sharp gradient of the J1c haplogroup between Slovenian regions, with a peak frequency of 24.5% being observed in the population of the Littoral Region. CONCLUSION The sharp gradient of the J1c haplogroup between Slovenian regions is in line with the archaeological horizon known as Impressed Ware culture and could, therefore, represent a genetic trace of the early Neolithic expansion route along the East Adriatic coastal region.
Collapse
Affiliation(s)
- Andrej Zupan
- a Department of Molecular Genetics , Institute of Pathology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| | - Nina Hauptman
- a Department of Molecular Genetics , Institute of Pathology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| | - Damjan Glavač
- a Department of Molecular Genetics , Institute of Pathology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
24
|
Triki-Fendri S, Sánchez-Diz P, Rey-González D, Ayadi I, Carracedo Á, Rebai A. Paternal lineages in Libya inferred from Y-chromosome haplogroups. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:242-51. [DOI: 10.1002/ajpa.22705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Soumaya Triki-Fendri
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| | - Paula Sánchez-Diz
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
| | - Danel Rey-González
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
| | - Imen Ayadi
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| | - Ángel Carracedo
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University; Jeddah Saudi Arabia
| | - Ahmed Rebai
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| |
Collapse
|
25
|
Castro-Gago M, Dacruz-Alvarez D, Pintos-Martínez E, Beiras-Iglesias A, Delmiro A, Arenas J, Martín MÁ, Martínez-Azorín F. Exome sequencing identifies a CHKB mutation in Spanish patient with megaconial congenital muscular dystrophy and mtDNA depletion. Eur J Paediatr Neurol 2014; 18:796-800. [PMID: 24997086 DOI: 10.1016/j.ejpn.2014.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Choline kinase beta gene (CHKB) mutations have been identified in Megaconial Congenital Muscular Dystrophy (MDCMC) patients, but never in patients with an additional combined deficiency of complexes I, III and IV and mitochondrial DNA (mtDNA) depletion. AIMS To report mutations in carry genes for MDCMC with respiratory chain defects and mtDNA depletion. METHODS Whole-exome sequencing (WES) was used to identify the carry genes in a Spanish child with muscle weakness, mild hypotonia at lower limb muscles, mildly elevated creatine kinase (CK), enlarged mitochondria in the periphery of the fibers, combined deficiency of complex I, III and IV and depletion of mtDNA. RESULTS With WES data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The first filter of WES data with the nuclear-encoded mitochondrial genes (MitoCarta) did not get any candidate. However, the analysis of whole exome uncovered a homozygous nonsense pathogenic mutation in CHKB gene (NM_005198.4:c.810T>A, p.Tyr270*). CONCLUSIONS Our data confirm the role of CHKB in MDCMC and point to this gene as unique candidate for the combined deficiency of respiratory chain and mtDNA depletion observed in this patient.
Collapse
Affiliation(s)
- Manuel Castro-Gago
- Servicio de Neuropediatría, Departamento de Pediatría, Hospital Clínico Universitario, Facultad de Medicina, Santiago de Compostela, Spain
| | - David Dacruz-Alvarez
- Servicio de Neuropediatría, Departamento de Pediatría, Hospital Clínico Universitario, Facultad de Medicina, Santiago de Compostela, Spain
| | - Elena Pintos-Martínez
- Servicio de Anatomía Patológica, Hospital Clínico Universitario, Facultad de Medicina, Santiago de Compostela, Spain
| | - Andrés Beiras-Iglesias
- Servicio de Anatomía Patológica, Hospital Clínico Universitario, Facultad de Medicina, Santiago de Compostela, Spain
| | - Aitor Delmiro
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain
| | - Miguel Ángel Martín
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain
| | - Francisco Martínez-Azorín
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain.
| |
Collapse
|
26
|
Fortes-Lima C, Dugoujon JM, Hernández CL, Reales G, Calderón R. Immunoglobulin genes in Andalusia (Spain). Genetic diversity in the Mediterranean space. C R Biol 2014; 337:646-56. [PMID: 25444709 DOI: 10.1016/j.crvi.2014.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/15/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
Abstract
Andalusia is the most densely populated region of Spain since ancient times, and has a rich history of contacts across the Mediterranean. Earlier studies have underlined the relatively high frequency of the Sub-Saharan GM 1,17 5* haplotype in western Andalusia (Huelva province, n=252) and neighbouring Atlantic regions. Here, we provide novel data on GM/KM markers in eastern Andalusians (n=195) from Granada province, where African GM*1,17 5* frequency is relatively high (0.044). The most frequent GM haplotypes in Andalusia parallel the most common in Europe. Altogether, these data allow us to gain insight into the genetic diversity of southern Iberia. Additionally, we assess population structure by comparing our Iberian samples with 41 Mediterranean populations. GM haplotype variation across the Mediterranean reflects intense and complex interactions between North Africans and South Europeans along human history, highlighting that African influence over the Iberian Peninsula does not follow an isotropic pattern.
Collapse
Affiliation(s)
- César Fortes-Lima
- Laboratoire D'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse-3-Paul-Sabatier, Toulouse, France
| | - Jean-Michel Dugoujon
- Laboratoire D'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse-3-Paul-Sabatier, Toulouse, France.
| | - Candela L Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Guillermo Reales
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
27
|
Secher B, Fregel R, Larruga JM, Cabrera VM, Endicott P, Pestano JJ, González AM. The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents. BMC Evol Biol 2014; 14:109. [PMID: 24885141 PMCID: PMC4062890 DOI: 10.1186/1471-2148-14-109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 05/09/2014] [Indexed: 11/26/2022] Open
Abstract
Background Complete mitochondrial DNA (mtDNA) genome analyses have greatly improved the phylogeny and phylogeography of human mtDNA. Human mitochondrial DNA haplogroup U6 has been considered as a molecular signal of a Paleolithic return to North Africa of modern humans from southwestern Asia. Results Using 230 complete sequences we have refined the U6 phylogeny, and improved the phylogeographic information by the analysis of 761 partial sequences. This approach provides chronological limits for its arrival to Africa, followed by its spreads there according to climatic fluctuations, and its secondary prehistoric and historic migrations out of Africa colonizing Europe, the Canary Islands and the American Continent. Conclusions The U6 expansions and contractions inside Africa faithfully reflect the climatic fluctuations that occurred in this Continent affecting also the Canary Islands. Mediterranean contacts drove these lineages to Europe, at least since the Neolithic. In turn, the European colonization brought different U6 lineages throughout the American Continent leaving the specific sign of the colonizers origin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ana M González
- Department of Genetics, Faculty of Biology, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
28
|
Hernández CL, Reales G, Dugoujon JM, Novelletto A, Rodríguez JN, Cuesta P, Calderón R. Human maternal heritage in Andalusia (Spain): its composition reveals high internal complexity and distinctive influences of mtDNA haplogroups U6 and L in the western and eastern side of region. BMC Genet 2014; 15:11. [PMID: 24460736 PMCID: PMC3905667 DOI: 10.1186/1471-2156-15-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/17/2014] [Indexed: 12/03/2022] Open
Abstract
Background The archeology and history of the ancient Mediterranean have shown that this sea has been a permeable obstacle to human migration. Multiple cultural exchanges around the Mediterranean have taken place with presumably population admixtures. A gravitational territory of those migrations has been the Iberian Peninsula. Here we present a comprehensive analysis of the maternal gene pool, by means of control region sequencing and PCR-RFLP typing, of autochthonous Andalusians originating from the coastal provinces of Huelva and Granada, located respectively in the west and the east of the region. Results The mtDNA haplogroup composition of these two southern Spanish populations has revealed a wide spectrum of haplogroups from different geographical origins. The registered frequencies of Eurasian markers, together with the high incidence and diversification of African maternal lineages (15% of the total mitochondrial variability) among Huelva Andalusians when compared to its eastwards relatives of Granada and other Iberian populations, constitute relevant findings unknown up-to-date on the characteristics of mtDNA within Andalusia that testifies a female population substructure. Therefore, Andalusia must not be considered a single, unique population. Conclusions The maternal legacy among Andalusians reflects distinctive local histories, pointing out the role of the westernmost territory of Peninsular Spain as a noticeable recipient of multiple and diverse human migrations. The obtained results underline the necessity of further research on genetic relationships in both sides of the western Mediterranean, using carefully collected samples from autochthonous individuals. Many studies have focused on recent North African gene flow towards Iberia, yet scientific attention should be now directed to thoroughly study the introduction of European genes in northwest Africa across the sea, in order to determine its magnitude, timescale and methods, and to compare them to those terrestrial movements from eastern Africa and southwestern Asia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
29
|
Bekada A, Fregel R, Cabrera VM, Larruga JM, Pestano J, Benhamamouch S, González AM. Introducing the Algerian mitochondrial DNA and Y-chromosome profiles into the North African landscape. PLoS One 2013; 8:e56775. [PMID: 23431392 PMCID: PMC3576335 DOI: 10.1371/journal.pone.0056775] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography.
Collapse
Affiliation(s)
- Asmahan Bekada
- Department of Biotechnology, Faculty of Sciences, University of Oran, Oran, Algeria
| | - Rosa Fregel
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
- Department of Genetics, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Gran Canaria, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine of Las Palmas, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Vicente M. Cabrera
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - José M. Larruga
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - José Pestano
- Department of Genetics, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Gran Canaria, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine of Las Palmas, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Soraya Benhamamouch
- Department of Biotechnology, Faculty of Sciences, University of Oran, Oran, Algeria
| | - Ana M. González
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
30
|
Moodley Y, Linz B, Bond RP, Nieuwoudt M, Soodyall H, Schlebusch CM, Bernhöft S, Hale J, Suerbaum S, Mugisha L, van der Merwe SW, Achtman M. Age of the association between Helicobacter pylori and man. PLoS Pathog 2012; 8:e1002693. [PMID: 22589724 PMCID: PMC3349757 DOI: 10.1371/journal.ppat.1002693] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/27/2012] [Indexed: 02/07/2023] Open
Abstract
When modern humans left Africa ca. 60,000 years ago (60 kya), they were already infected with Helicobacter pylori, and these bacteria have subsequently diversified in parallel with their human hosts. But how long were humans infected by H. pylori prior to the out-of-Africa event? Did this co-evolution predate the emergence of modern humans, spanning the species divide? To answer these questions, we investigated the diversity of H. pylori in Africa, where both humans and H. pylori originated. Three distinct H. pylori populations are native to Africa: hpNEAfrica in Afro-Asiatic and Nilo-Saharan speakers, hpAfrica1 in Niger-Congo speakers and hpAfrica2 in South Africa. Rather than representing a sustained co-evolution over millions of years, we find that the coalescent for all H. pylori plus its closest relative H. acinonychis dates to 88–116 kya. At that time the phylogeny split into two primary super-lineages, one of which is associated with the former hunter-gatherers in southern Africa known as the San. H. acinonychis, which infects large felines, resulted from a later host jump from the San, 43–56 kya. These dating estimates, together with striking phylogenetic and quantitative human-bacterial similarities show that H. pylori is approximately as old as are anatomically modern humans. They also suggest that H. pylori may have been acquired via a single host jump from an unknown, non-human host. We also find evidence for a second Out of Africa migration in the last 52,000 years, because hpEurope is a hybrid population between hpAsia2 and hpNEAfrica, the latter of which arose in northeast Africa 36–52 kya, after the Out of Africa migrations around 60 kya. We previously showed that the population history of H. pylori may be used as a marker for human migrations, including the demonstration that humans carried H. pylori out of Africa 60,000 years ago during their recent global expansions. But how long were humans infected by H. pylori prior to the out-of-Africa event? Here we showed that chimpanzees in Central-East Africa do not possess Helicobacter-like bacteria, as would have been expected for pathogen-host co-evolution over millions of years. Using H. pylori gene sequences isolated from San, a group of click-speaking hunter-gatherers, and numerous other sources, we calculated that humans have been infected with H. pylori for at least 88,000–116,000 years. Phylogenetic comparisons showed similar evolutionary histories for human and H. pylori lineages and suggest that this association stemmed from a single host jump. We showed that hpAfrica2, the most divergent H. pylori population, arose in the San and that their progenitors were the source of H. acinonychis which was acquired by large felines approximately 50,000 years ago. Furthermore, our data provided clear evidence for a recent second exodus Out of Africa in the last 52,000 years which was essential for the formation of the hybrid population that currently infects Europeans.
Collapse
Affiliation(s)
- Yoshan Moodley
- Max-Planck-Institut für Infektionsbiologie, Department of Molecular Biology, Berlin, Germany
- Konrad Lorenz Institute for Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail: (YM); (BL); (MA)
| | - Bodo Linz
- Max-Planck-Institut für Infektionsbiologie, Department of Molecular Biology, Berlin, Germany
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (YM); (BL); (MA)
| | - Robert P. Bond
- Hepatology and GI-Research Laboratory, Department of Immunology, University of Pretoria, Pretoria, South Africa
| | - Martin Nieuwoudt
- Hepatology and GI-Research Laboratory, Department of Immunology, University of Pretoria, Pretoria, South Africa
| | - Himla Soodyall
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, University of the Witwatersrand/National Health Laboratory Services, Johannesburg, South Africa
| | - Carina M. Schlebusch
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, University of the Witwatersrand/National Health Laboratory Services, Johannesburg, South Africa
| | - Steffi Bernhöft
- Max-Planck-Institut für Infektionsbiologie, Department of Molecular Biology, Berlin, Germany
| | - James Hale
- Environmental Research Institute and Department of Microbiology, University College Cork, Cork, Ireland
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | - Schalk W. van der Merwe
- Hepatology and GI-Research Laboratory, Department of Immunology, University of Pretoria, Pretoria, South Africa
| | - Mark Achtman
- Max-Planck-Institut für Infektionsbiologie, Department of Molecular Biology, Berlin, Germany
- Environmental Research Institute and Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail: (YM); (BL); (MA)
| |
Collapse
|
31
|
Cerezo M, Achilli A, Olivieri A, Perego UA, Gómez-Carballa A, Brisighelli F, Lancioni H, Woodward SR, López-Soto M, Carracedo Á, Capelli C, Torroni A, Salas A. Reconstructing ancient mitochondrial DNA links between Africa and Europe. Genome Res 2012; 22:821-6. [PMID: 22454235 PMCID: PMC3337428 DOI: 10.1101/gr.134452.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/29/2012] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA (mtDNA) lineages of macro-haplogroup L (excluding the derived L3 branches M and N) represent the majority of the typical sub-Saharan mtDNA variability. In Europe, these mtDNAs account for <1% of the total but, when analyzed at the level of control region, they show no signals of having evolved within the European continent, an observation that is compatible with a recent arrival from the African continent. To further evaluate this issue, we analyzed 69 mitochondrial genomes belonging to various L sublineages from a wide range of European populations. Phylogeographic analyses showed that ~65% of the European L lineages most likely arrived in rather recent historical times, including the Romanization period, the Arab conquest of the Iberian Peninsula and Sicily, and during the period of the Atlantic slave trade. However, the remaining 35% of L mtDNAs form European-specific subclades, revealing that there was gene flow from sub-Saharan Africa toward Europe as early as 11,000 yr ago.
Collapse
Affiliation(s)
- María Cerezo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| | - Alessandro Achilli
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, 06123 Perugia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
| | - Ugo A. Perego
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah 84115, USA
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| | - Francesca Brisighelli
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Hovirag Lancioni
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, 06123 Perugia, Italy
| | - Scott R. Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah 84115, USA
| | - Manuel López-Soto
- Instituto Nacional de Toxicología y Ciencias Forenses, 41018 Sevilla, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| |
Collapse
|
32
|
Behar D, Harmant C, Manry J, van Oven M, Haak W, Martinez-Cruz B, Salaberria J, Oyharçabal B, Bauduer F, Comas D, Quintana-Murci L. The Basque paradigm: genetic evidence of a maternal continuity in the Franco-Cantabrian region since pre-Neolithic times. Am J Hum Genet 2012; 90:486-93. [PMID: 22365151 DOI: 10.1016/j.ajhg.2012.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/21/2011] [Accepted: 01/03/2012] [Indexed: 10/28/2022] Open
Abstract
Different lines of evidence point to the resettlement of much of western and central Europe by populations from the Franco-Cantabrian region during the Late Glacial and Postglacial periods. In this context, the study of the genetic diversity of contemporary Basques, a population located at the epicenter of the Franco-Cantabrian region, is particularly useful because they speak a non-Indo-European language that is considered to be a linguistic isolate. In contrast with genome-wide analysis and Y chromosome data, where the problem of poor time estimates remains, a new timescale has been established for the human mtDNA and makes this genome the most informative marker for studying European prehistory. Here, we aim to increase knowledge of the origins of the Basque people and, more generally, of the role of the Franco-Cantabrian refuge in the postglacial repopulation of Europe. We thus characterize the maternal ancestry of 908 Basque and non-Basque individuals from the Basque Country and immediate adjacent regions and, by sequencing 420 complete mtDNA genomes, we focused on haplogroup H. We identified six mtDNA haplogroups, H1j1, H1t1, H2a5a1, H1av1, H3c2a, and H1e1a1, which are autochthonous to the Franco-Cantabrian region and, more specifically, to Basque-speaking populations. We detected signals of the expansion of these haplogroups at ∼4,000 years before present (YBP) and estimated their separation from the pan-European gene pool at ∼8,000 YBP, antedating the Indo-European arrival to the region. Our results clearly support the hypothesis of a partial genetic continuity of contemporary Basques with the preceding Paleolithic/Mesolithic settlers of their homeland.
Collapse
|
33
|
Rapid coastal spread of First Americans: novel insights from South America's Southern Cone mitochondrial genomes. Genome Res 2012; 22:811-20. [PMID: 22333566 PMCID: PMC3337427 DOI: 10.1101/gr.131722.111] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is now widely agreed that the Native American founders originated from a Beringian source population ∼15–18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America.
Collapse
|
34
|
Šarac J, Šarić T, Jeran N, Auguštin DH, Metspalu E, Vekarić N, Missoni S, Villems R, Rudan P. Influence of evolutionary forces and demographic processes on the genetic structure of three Croatian populations: a maternal perspective. Ann Hum Biol 2012; 39:143-55. [PMID: 22324841 DOI: 10.3109/03014460.2012.660194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Many Croatian islands are examples of genetic isolates, with low level of heterozygosity and high level of inbreeding, due to practice of endogamy. AIM The aim was to study the genetic structure of two insular and one mainland population through high-resolution phylogenetic analysis of mitochondrial DNA (mtDNA). SUBJECTS AND METHODS MtDNA polymorphisms were explored in 300 unrelated individuals from Mljet, Lastovo and the coastal city of Dubrovnik, based on SNP polymorphisms. RESULTS All mtDNA haplogroups found in the sample were of typical European origin. However, the frequency distribution of their subclades differed significantly from other Croatian and European populations. MtDNA haplotype analysis revealed only two possible founder lineages on Mljet and six on Lastovo, accounting for almost half of the sample on both islands. The island of Mljet also has the lowest reported haplotype and nucleotide diversity among Croatian isolates and the island of Lastovo, a new sublineage of a usually quite rare U1b clade. CONCLUSION The results can be explained by the effect evolutionary forces have on genetic structure, which is in line with the specific demographic histories of the islands. An additional research value of these two island isolates is the appearance of certain Mendelian disorders, highlighting their importance in epidemiological studies.
Collapse
Affiliation(s)
- Jelena Šarac
- Institute for Anthropological Research, Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Soares P, Alshamali F, Pereira JB, Fernandes V, Silva NM, Afonso C, Costa MD, Musilova E, Macaulay V, Richards MB, Cerny V, Pereira L. The Expansion of mtDNA Haplogroup L3 within and out of Africa. Mol Biol Evol 2011; 29:915-27. [DOI: 10.1093/molbev/msr245] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
36
|
Achilli A, Olivieri A, Pala M, Hooshiar Kashani B, Carossa V, Perego UA, Gandini F, Santoro A, Battaglia V, Grugni V, Lancioni H, Sirolla C, Bonfigli AR, Cormio A, Boemi M, Testa I, Semino O, Ceriello A, Spazzafumo L, Gadaleta MN, Marra M, Testa R, Franceschi C, Torroni A. Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole. PLoS One 2011; 6:e21029. [PMID: 21695278 PMCID: PMC3111471 DOI: 10.1371/journal.pone.0021029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/17/2011] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in rare and common forms of type 2 diabetes (T2DM). Additionally, rare mitochondrial DNA (mtDNA) mutations have been shown to be causal for T2DM pathogenesis. So far, many studies have investigated the possibility that mtDNA variation might affect the risk of T2DM, however, when found, haplogroup association has been rarely replicated, even in related populations, possibly due to an inadequate level of haplogroup resolution. Effects of mtDNA variation on diabetes complications have also been proposed. However, additional studies evaluating the mitochondrial role on both T2DM and related complications are badly needed. To test the hypothesis of a mitochondrial genome effect on diabetes and its complications, we genotyped the mtDNAs of 466 T2DM patients and 438 controls from a regional population of central Italy (Marche). Based on the most updated mtDNA phylogeny, all 904 samples were classified into 57 different mitochondrial sub-haplogroups, thus reaching an unprecedented level of resolution. We then evaluated whether the susceptibility of developing T2DM or its complications differed among the identified haplogroups, considering also the potential effects of phenotypical and clinical variables. MtDNA backgrounds, even when based on a refined haplogroup classification, do not appear to play a role in developing T2DM despite a possible protective effect for the common European haplogroup H1, which harbors the G3010A transition in the MTRNR2 gene. In contrast, our data indicate that different mitochondrial haplogroups are significantly associated with an increased risk of specific diabetes complications: H (the most frequent European haplogroup) with retinopathy, H3 with neuropathy, U3 with nephropathy, and V with renal failure.
Collapse
Affiliation(s)
- Alessandro Achilli
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, Perugia, Italy
| | - Anna Olivieri
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | - Maria Pala
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | | | - Valeria Carossa
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | - Ugo A. Perego
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | - Francesca Gandini
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | - Aurelia Santoro
- Dipartimento di Patologia Sperimentale, Università di Bologna, Bologna, Italy
- CIG-Interdepartmental Center for Biophysics and Biocomplexity Studies, Università di Bologna, Bologna, Italy
| | - Vincenza Battaglia
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | - Viola Grugni
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | - Hovirag Lancioni
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, Perugia, Italy
| | - Cristina Sirolla
- Department of Gerontology Research, Statistic and Biometry Center, Italian National Research Center on Aging (INRCA), Ancona, Italy
| | - Anna Rita Bonfigli
- Metabolic and Nutrition Research Center on Diabetes, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Antonella Cormio
- Dipartimento di Biochimica e Biologia Molecolare “E. Quagliariello”, Università di Bari, Bari, Italy
| | - Massimo Boemi
- Metabolic and Nutrition Research Center on Diabetes, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Ivano Testa
- Metabolic and Nutrition Research Center on Diabetes, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Ornella Semino
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
- Centro Interdipartimentale “Studi di Genere”, Università di Pavia, Pavia, Italy
| | - Antonio Ceriello
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS) and Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadis (CIBERDEM), Barcelona, Spain
| | - Liana Spazzafumo
- Department of Gerontology Research, Statistic and Biometry Center, Italian National Research Center on Aging (INRCA), Ancona, Italy
| | - Maria Nicola Gadaleta
- Dipartimento di Biochimica e Biologia Molecolare “E. Quagliariello”, Università di Bari, Bari, Italy
| | - Maurizio Marra
- Metabolic and Nutrition Research Center on Diabetes, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Roberto Testa
- Metabolic and Nutrition Research Center on Diabetes, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Claudio Franceschi
- Dipartimento di Patologia Sperimentale, Università di Bologna, Bologna, Italy
- CIG-Interdepartmental Center for Biophysics and Biocomplexity Studies, Università di Bologna, Bologna, Italy
| | - Antonio Torroni
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
37
|
Fadhlaoui-Zid K, Rodríguez-Botigué L, Naoui N, Benammar-Elgaaied A, Calafell F, Comas D. Mitochondrial DNA structure in North Africa reveals a genetic discontinuity in the Nile Valley. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:107-17. [PMID: 21312180 DOI: 10.1002/ajpa.21472] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/16/2010] [Indexed: 11/08/2022]
Abstract
Human population movements in North Africa have been mostly restricted to an east-west direction due to the geographical barriers imposed by the Sahara Desert and the Mediterranean Sea. Although these barriers have not completely impeded human migrations, genetic studies have shown that an east-west genetic gradient exists. However, the lack of genetic information of certain geographical areas and the focus of some studies in parts of the North African landscape have limited the global view of the genetic pool of North African populations. To provide a global view of the North African genetic landscape and population structure, we have analyzed ∼2,300 North African mitochondrial DNA lineages (including 269 new sequences from Libya, in the first mtDNA study of the general Libyan population). Our results show a clinal distribution of certain haplogroups, some of them more frequent in Western (H, HV0, L1b, L3b, U6) or Eastern populations (L0a, R0a, N1b, I, J) that might be the result of human migrations from the Middle East, sub-Saharan Africa, and Europe. Despite this clinal pattern, a genetic discontinuity is found in the Libyan/Egyptian border, suggesting a differential gene flow in the Nile River Valley. Finally, frequency of the post-LGM subclades H1 and H3 is predominant in Libya within the H sequences, highlighting the magnitude of the LGM expansion in North Africa.
Collapse
Affiliation(s)
- Karima Fadhlaoui-Zid
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Science of Tunis, University Tunis El Manar, Tunisia
| | | | | | | | | | | |
Collapse
|
38
|
Ottoni C, Larmuseau MHD, Vanderheyden N, Martínez-Labarga C, Primativo G, Biondi G, Decorte R, Rickards O. Deep into the roots of the Libyan Tuareg: a genetic survey of their paternal heritage. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:118-24. [PMID: 21312181 DOI: 10.1002/ajpa.21473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/23/2010] [Indexed: 11/05/2022]
Abstract
Recent genetic studies of the Tuareg have begun to uncover the origin of this semi-nomadic northwest African people and their relationship with African populations. For centuries they were caravan traders plying the trade routes between the Mediterranean coast and south-Saharan Africa. Their origin most likely coincides with the fall of the Garamantes who inhabited the Fezzan (Libya) between the 1st millennium BC and the 5th century AD. In this study we report novel data on the Y-chromosome variation in the Libyan Tuareg from Al Awaynat and Tahala, two villages in Fezzan, whose maternal genetic pool was previously characterized. High-resolution investigation of 37 Y-chromosome STR loci and analysis of 35 bi-allelic markers in 47 individuals revealed a predominant northwest African component (E-M81, haplogroup E1b1b1b) which likely originated in the second half of the Holocene in the same ancestral population that contributed to the maternal pool of the Libyan Tuareg. A significant paternal contribution from south-Saharan Africa (E-U175, haplogroup E1b1a8) was also detected, which may likely be due to recent secondary introduction, possibly through slavery practices or fusion between different tribal groups. The difference in haplogroup composition between the villages of Al Awaynat and Tahala suggests that founder effects and drift played a significant role in shaping the genetic pool of the Libyan Tuareg.
Collapse
Affiliation(s)
- Claudio Ottoni
- Laboratory of Forensic Genetics and Molecular Archaeology, Universitaire Ziekenhuizen, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|