1
|
Ko JH, Lee HJ, Yoon CH, Choi YR, Ryu JS, Oh JY. Activation of Toll-like receptor 2 promotes mesenchymal stem/stromal cell-mediated immunoregulation and angiostasis through AKR1C1. Theranostics 2024; 14:4713-4729. [PMID: 39239520 PMCID: PMC11373616 DOI: 10.7150/thno.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
Background: Mesenchymal stem/stromal cells (MSCs) maintain tissue homeostasis in response to microenvironmental perturbations. Toll-like receptors (TLRs) are key sensors for exogenous and endogenous signals produced during injury. In this study, we aimed to investigate whether TLRs affect the homeostatic functions of MSCs after injury. Methods: We examined the expression of TLR2, TLR3 and TLR4 in MSCs, and analyzed the functional significance of TLR2 activation using single-cell RNA sequencing. Additionally, we investigated the effects and mechanisms of TLR2 and its downstream activation in MSCs on the MSCs themselves, on monocytes/macrophages, and in a mouse model of sterile injury-induced inflammatory corneal angiogenesis. Results: MSCs expressed TLR2, which was upregulated by monocytes/macrophages. Activation of TLR2 in MSCs promoted their immunoregulatory and angiostatic functions in monocytes/macrophages and in mice with inflammatory corneal angiogenesis, whereas TLR2 inhibition attenuated these functions. Single-cell RNA sequencing revealed AKR1C1, a gene encoding aldo-keto reductase family 1 member C1, as the most significantly inducible gene in MSCs upon TLR2 stimulation, though its stimulation did not affect cell compositions. AKR1C1 protected MSCs against ferroptosis, increased secretion of anti-inflammatory cytokines, and enhanced their ability to drive monocytes/macrophages towards immunoregulatory phenotypes, leading to the amelioration of inflammatory corneal neovascularization in mice. Conclusion: Our findings suggest that activation of TLR2-AKR1C1 signaling in MSCs serves as an important pathway for the survival and homeostatic activities of MSCs during injury.
Collapse
Affiliation(s)
- Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Chang Ho Yoon
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Yoo Rim Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
2
|
Kaçaroğlu D, Yaylacı S. Enhancing the Regenerative Potential of Adipose-Derived Mesenchymal Stem Cells Through TLR4-Mediated Signaling. Curr Stem Cell Res Ther 2024; 19:1514-1524. [PMID: 38204244 DOI: 10.2174/011574888x283664231219080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Toll-like receptor 4 (TLR4) is a receptor that traditionally plays an important role in immunomodulation (regulation of the immune system) and the initiation of proinflammatory responses. TLR4 is used in the body to recognize molecular patterns of pathogens or damaged cells from outside. However, in recent years, it has also become clear that TLR4 can affect the immune system and the function of stem cells, especially mesenchymal stem cells. Therefore, understanding how TLR4 signaling works at the cellular and molecular level and using this knowledge in regenerative medicine could be potentially useful, especially in the treatment of adipose- derived mesenchymal stem cells (ADMSCs). How these cells can use TLR4 signaling when used to increase their regenerative potential and repair tissues is an area of research. AIMS This study aims to elucidate the multifaceted role of TLR4-mediated signaling in ADMSCs. METHODS Employing a comprehensive set of assays, including MTT for cell viability, flow cytometry for surface marker expression, and gene expression analysis, we demonstrate that TLR4 activation significantly modulates key aspects of ADMSC biology. Specifically, TLR4 signaling was found to regulate ADMSCs proliferation, surface marker expression, and regenerative capacity in a dose- and time-dependent manner. Furthermore, TLR4 activation conferred cytoprotective effects against Doxorubicin (DOX)-induced cellular apoptosis. RESULTS These findings suggest that TLR4 signaling could be used to enhance the regenerative abilities of ADMSCs and enable ADMSC-based therapies to be used more effectively for tissue engineering and therapeutic purposes. CONCLUSION However, it is important to note that research in this area needs more details and clinical studies.
Collapse
Affiliation(s)
- Demet Kaçaroğlu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Seher Yaylacı
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
3
|
Schary Y, Rotem I, Caller T, Lewis N, Shaihov-Teper O, Brzezinski RY, Lendengolts D, Raanani E, Sternik L, Naftali-Shani N, Leor J. CRISPR-Cas9 editing of TLR4 to improve the outcome of cardiac cell therapy. Sci Rep 2023; 13:4481. [PMID: 36934130 PMCID: PMC10024743 DOI: 10.1038/s41598-023-31286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
Inflammation and fibrosis limit the reparative properties of human mesenchymal stromal cells (hMSCs). We hypothesized that disrupting the toll-like receptor 4 (TLR4) gene would switch hMSCs toward a reparative phenotype and improve the outcome of cell therapy for infarct repair. We developed and optimized an improved electroporation protocol for CRISPR-Cas9 gene editing. This protocol achieved a 68% success rate when applied to isolated hMSCs from the heart and epicardial fat of patients with ischemic heart disease. While cell editing lowered TLR4 expression in hMSCs, it did not affect classical markers of hMSCs, proliferation, and migration rate. Protein mass spectrometry analysis revealed that edited cells secreted fewer proteins involved in inflammation. Analysis of biological processes revealed that TLR4 editing reduced processes linked to inflammation and extracellular organization. Furthermore, edited cells expressed less NF-ƙB and secreted lower amounts of extracellular vesicles and pro-inflammatory and pro-fibrotic cytokines than unedited hMSCs. Cell therapy with both edited and unedited hMSCs improved survival, left ventricular remodeling, and cardiac function after myocardial infarction (MI) in mice. Postmortem histologic analysis revealed clusters of edited cells that survived in the scar tissue 28 days after MI. Morphometric analysis showed that implantation of edited cells increased the area of myocardial islands in the scar tissue, reduced the occurrence of transmural scar, increased scar thickness, and decreased expansion index. We show, for the first time, that CRISPR-Cas9-based disruption of the TLR4-gene reduces pro-inflammatory polarization of hMSCs and improves infarct healing and remodeling in mice. Our results provide a new approach to improving the outcomes of cell therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Yeshai Schary
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Itai Rotem
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Tal Caller
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Nir Lewis
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Olga Shaihov-Teper
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Rafael Y Brzezinski
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Daria Lendengolts
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Ehud Raanani
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Sternik
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nili Naftali-Shani
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel.
| |
Collapse
|
4
|
Li G, Kong J, Dong S, Niu H, Wu S, Sun W. Circular BANP knockdown inhibits the malignant progression of residual hepatocellular carcinoma after insufficient radiofrequency ablation. Chin Med J (Engl) 2022; Publish Ahead of Print:00029330-990000000-00112. [PMID: 35941728 DOI: 10.1097/cm9.00000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are endogenous non-coding RNAs, some of which have pathological roles. The current study aimed to explore the role of circRNA BTG3-associated nuclear protein (circ-BANP) binding with let-7f-5p and its regulation of the toll-like receptor 4 (TLR4)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in residual hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA). METHODS Circ-BANP, let-7f-5p, and TLR4 expressions in HCC samples were assessed using reverse transcription- quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Bioinformatics prediction, RNA pull-down assay, and dual luciferase reporter gene assay were used to analyze the relationships among circ-BANP, let-7f-5p, and TLR4. Huh7 cells were used to generate an in vitro model of residual HCC, defined as Huh7-H cells, which were transfected with either a plasmid or the sequence of circ-BANP, let-7f-5p, or TLR4. Expression of circ-BANP, let-7f-5p, and TLR4 mRNA was determined by RT-qPCR. TLR4, STAT3, p-STAT3, vascular endothelial growth factor A, vascular endothelial growth factor receptor-2, and epithelial-mesenchymal transformation (EMT)-related factors proteins were determined by Western blotting. Cell proliferation was determined by cell counting kit-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assay and cell migration and invasion by Transwell assay. Animal studies were performed by inducing xenograft tumors in nude mice. RESULTS Circ-BANP and TLR4 mRNAs were upregulated in HCC tissues (the fold change for circ-BANP was 1.958 and that for TLR4 was 1.736 relative to para-tumors) and expression further increased following insufficient RFA (fold change for circ- BANP was 2.407 and that of TLR4 was 2.224 relative to para-tumors). Expression of let-7f-5p showed an opposite tendency (fold change for let-7f-5p in HCC tissues was 0.491 and that in tumors after insufficient RFA was 0.300 relative to para-tumors). Competitive binding of circ-BANP to let-7f-5p was demonstrated and TLR4 was identified as a target of let-7f-5p (P < 0.01). Knockdown of circ-BANP or elevation of let-7f-5p expression inhibited the TLR4/STAT3 signaling pathway, proliferation, invasion, migration, angiogenesis, and EMT in Huh7 and Huh7-H cells (P < 0.01). The effects induced by circ-BANP knockdown were reversed by let-7f-5p inhibition. Overexpression of TLR4 reversed the impact of let-7f-5p upregulation on the cells (P < 0.01). Silencing of circ-BANP inhibited the in vivo growth of residual HCC cells after insufficient RFA (P < 0.01). CONCLUSIONS Knockdown of circ-BANP upregulated let-7f-5p to inhibit proliferation, migration, and EMT formation in residual HCC remaining after insufficient RFA. Effects occur via regulation of the TLR4/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Guoming Li
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
- The Second Department of General Surgery, Chaoyang Central Hospital, Chaoyang, Liaoning 122000, China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Shuying Dong
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Haigang Niu
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, Shanxi 032200, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| |
Collapse
|
5
|
Li G, Kong J, Dong S, Niu H, Wu S, Sun W. Circular BANP knockdown inhibits the malignant progression of residual hepatocellular carcinoma after insufficient radiofrequency ablation. Chin Med J (Engl) 2022; 135:00029330-900000000-98220. [PMID: 34985013 PMCID: PMC9532039 DOI: 10.1097/cm9.0000000000001822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are endogenous non-coding RNAs, some of which have pathological roles. The current study aimed to explore the role of circRNA BTG3-associated nuclear protein (circ-BANP) binding with let-7f-5p and its regulation of the toll-like receptor 4 (TLR4)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in residual hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA). METHODS Circ-BANP, let-7f-5p, and TLR4 expressions in HCC samples were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Bioinformatics prediction, RNA pull-down assay, and dual luciferase reporter gene assay were used to analyze the relationships among circ-BANP, let-7f-5p, and TLR4. Huh7 cells were used to generate an in vitro model of residual HCC, defined as Huh7-H cells, which were transfected with either a plasmid or the sequence of circ-BANP, let-7f-5p, or TLR4. Expression of circ-BANP, let-7f-5p, and TLR4 mRNA was determined by RT-qPCR. TLR4, STAT3, p-STAT3, vascular endothelial growth factor A, vascular endothelial growth factor receptor-2, and epithelial-mesenchymal transformation (EMT)-related factors proteins were determined by Western blotting. Cell proliferation was determined by cell counting kit-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assay and cell migration and invasion by Transwell assay. Animal studies were performed by inducing xenograft tumors in nude mice. RESULTS Circ-BANP and TLR4 mRNAs were upregulated in HCC tissues (the fold change for circ-BANP was 1.958 and that for TLR4 was 1.736 relative to para-tumors) and expression further increased following insufficient RFA (fold change for circ-BANP was 2.407 and that of TLR4 was 2.224 relative to para-tumors). Expression of let-7f-5p showed an opposite tendency (fold change for let-7f-5p in HCC tissues was 0.491 and that in tumors after insufficient RFA was 0.300 relative to para-tumors). Competitive binding of circ-BANP to let-7f-5p was demonstrated and TLR4 was identified as a target of let-7f-5p (P < 0.01). Knockdown of circ-BANP or elevation of let-7f-5p expression inhibited the TLR4/STAT3 signaling pathway, proliferation, invasion, migration, angiogenesis, and EMT in Huh7 and Huh7-H cells (P < 0.01). The effects induced by circ-BANP knockdown were reversed by let-7f-5p inhibition. Overexpression of TLR4 reversed the impact of let-7f-5p upregulation on the cells (P < 0.01). Silencing of circ-BANP inhibited the in vivo growth of residual HCC cells after insufficient RFA (P < 0.01). CONCLUSIONS Knockdown of circ-BANP upregulated let-7f-5p to inhibit proliferation, migration, and EMT formation in residual HCC remaining after insufficient RFA. Effects occur via regulation of the TLR4/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Guoming Li
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
- The Second Department of General Surgery, Chaoyang Central Hospital, Chaoyang, Liaoning 122000, China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Shuying Dong
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Haigang Niu
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, Shanxi 032200, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing ChaoYang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| |
Collapse
|
6
|
Bonet IJM, Araldi D, Green PG, Levine JD. Sexually Dimorphic Role of Toll-like Receptor 4 (TLR4) in High Molecular Weight Hyaluronan (HMWH)-induced Anti-hyperalgesia. THE JOURNAL OF PAIN 2021; 22:1273-1282. [PMID: 33892155 PMCID: PMC8500912 DOI: 10.1016/j.jpain.2021.03.152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
High molecular weight hyaluronan (HMWH), a prominent component of the extracellular matrix binds to and signals via multiple receptors, including cluster of differentiation 44 (CD44) and toll-like receptor 4 (TLR4). We tested the hypothesis that, in the setting of inflammation, HMWH acts at TLR4 to attenuate hyperalgesia. We found that the attenuation of prostaglandin E2 (PGE2)-induced hyperalgesia by HMWH was attenuated by a TLR4 antagonist (NBP2-26245), but only in male and ovariectomized female rats. In this study we sought to evaluated the role of the TLR4 signaling pathway in anti-hyperalgesia induced by HMWH in male rats. Decreasing expression of TLR4 in nociceptors, by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to TLR4 mRNA, also attenuated HMWH-induced anti-hyperalgesia, in male and ovariectomized female rats. Estrogen replacement in ovariectomized females reconstituted the gonad-intact phenotype. The administration of an inhibitor of myeloid differentiation factor 88 (MyD88), a TLR4 second messenger, attenuated HMWH-induced anti-hyperalgesia, while an inhibitor of the MyD88-independent TLR4 signaling pathway did not. Since it has previously been shown that HMWH-induced anti-hyperalgesia is also mediated, in part by CD44 we evaluated the effect of the combination of ODN antisense to TLR4 and CD44 mRNA. This treatment completely reversed HMWH-induced anti-hyperalgesia in male rats. Our results demonstrate a sex hormone-dependent, sexually dimorphic involvement of TLR4 in HMWH-induced anti-hyperalgesia, that is MyD88 dependent. PERSPECTIVE: The role of TLR4 in anti-hyperalgesia induced by HMWH is a sexually dimorphic, TLR4 dependent inhibition of inflammatory hyperalgesia that provides a novel molecular target for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Ivan J M Bonet
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco
| | - Dionéia Araldi
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco
| | - Paul G Green
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco; Departments of Preventative and Restorative Dental Sciences, University of California at San Francisco, San Francisco
| | - Jon D Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, San Francisco; UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco; Departments of Medicine, University of California at San Francisco, San Francisco.
| |
Collapse
|
7
|
Suppressing Pyroptosis Augments Post-Transplant Survival of Stem Cells and Cardiac Function Following Ischemic Injury. Int J Mol Sci 2021; 22:ijms22157946. [PMID: 34360711 PMCID: PMC8348609 DOI: 10.3390/ijms22157946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The acute demise of stem cells following transplantation significantly compromises the efficacy of stem cell-based cell therapeutics for infarcted hearts. As the stem cells transplanted into the damaged heart are readily exposed to the hostile environment, it can be assumed that the acute death of the transplanted stem cells is also inflicted by the same environmental cues that caused massive death of the host cardiac cells. Pyroptosis, a highly inflammatory form of programmed cell death, has been added to the list of important cell death mechanisms in the damaged heart. However, unlike the well-established cell death mechanisms such as necrosis or apoptosis, the exact role and significance of pyroptosis in the acute death of transplanted stem cells have not been explored in depth. In the present study, we found that M1 macrophages mediate the pyroptosis in the ischemia/reperfusion (I/R) injured hearts and identified miRNA-762 as an important regulator of interleukin 1β production and subsequent pyroptosis. Delivery of exogenous miRNA-762 prior to transplantation significantly increased the post-transplant survival of stem cells and also significantly ameliorated cardiac fibrosis and heart functions following I/R injury. Our data strongly suggest that suppressing pyroptosis can be an effective adjuvant strategy to enhance the efficacy of stem cell-based therapeutics for diseased hearts.
Collapse
|
8
|
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18:151-166. [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7] [Citation(s) in RCA: 964] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Galow AM, Goldammer T, Hoeflich A. Xenogeneic and Stem Cell-Based Therapy for Cardiovascular Diseases: Genetic Engineering of Porcine Cells and Their Applications in Heart Regeneration. Int J Mol Sci 2020; 21:ijms21249686. [PMID: 33353186 PMCID: PMC7766969 DOI: 10.3390/ijms21249686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases represent a major health concern worldwide with few therapy options for ischemic injuries due to the limited regeneration potential of affected cardiomyocytes. Innovative cell replacement approaches could facilitate efficient regenerative therapy. However, despite extensive attempts to expand primary human cells in vitro, present technological limitations and the lack of human donors have so far prevented their broad clinical use. Cell xenotransplantation might provide an ethically acceptable unlimited source for cell replacement therapies and bridge the gap between waiting recipients and available donors. Pigs are considered the most suitable candidates as a source for xenogeneic cells and tissues due to their anatomical and physiological similarities with humans. The potential of porcine cells in the field of stem cell-based therapy and regenerative medicine is under intensive investigation. This review outlines the current progress and highlights the most promising approaches in xenogeneic cell therapy with a focus on the cardiovascular system.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany; (T.G.); (A.H.)
- Correspondence: ; Tel.: +49-38208-68-723
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany; (T.G.); (A.H.)
- Molecular Biology and Fish Genetics Unit, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany; (T.G.); (A.H.)
| |
Collapse
|
10
|
Wu Z, Liang J, Huang W, Jiang L, Paul C, Gao X, Alam P, Kanisicak O, Xu M, Wang Y. Immunomodulatory effects of mesenchymal stem cells for the treatment of cardiac allograft rejection. Exp Biol Med (Maywood) 2020; 246:851-860. [PMID: 33327780 DOI: 10.1177/1535370220978650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.
Collapse
Affiliation(s)
- Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xiang Gao
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
11
|
Naskou MC, Sumner S, Berezny A, Copland IB, Peroni JF. Fibrinogen-Depleted Equine Platelet Lysate Affects the Characteristics and Functionality of Mesenchymal Stem Cells. Stem Cells Dev 2020; 28:1572-1580. [PMID: 31637965 DOI: 10.1089/scd.2019.0070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fetal bovine serum (FBS) is widely used to culture mesenchymal stem cells (MSCs) in the laboratory; however, FBS has been linked to adverse immune-mediated reactions prompting the search for alternative cell culture medium. Platelet lysate (PL) as an FBS substitute has been shown to promote MSCs growth without compromising their functionality. Fibrinogen contained in PL has been shown to negatively impact the immune modulating properties of MSCs; therefore, we sought to deplete fibrinogen from PL and compare proliferation, viability, and immunomodulatory capacities of MSCs in FBS or PL without fibrinogen. We depleted fibrinogen from equine platelet lysate (ePL) and measured platelet-derived growth factor-beta (PDGF-β), transforming growth factor-beta (TGF-β) and tumor necrosis factor-alpha (TNF-α) through ELISA. First, we determined the ability of 10% ePL or fibrinogen-depleted lysate (fdePL) compared with 10% FBS to suppress monocyte activation by measuring TNF-α from culture supernatants. We then evaluated proliferation, viability, and immunomodulatory characteristics of bone marrow-derived MSCs (BM-MSCs) cultured in FBS or ePL with or without fibrinogen. Growth factor concentrations decreased in ePL after fibrinogen depletion. Lipopolysaccharide (LPS)-stimulated monocytes exposed to ePL and fdePL produced less TNF-α than LPS-stimulated monocytes in 10% FBS. BM-MSCs cultured in fdePL exhibited lower proliferation rates, but similar viability compared with BM-MSCs in ePL. BM-MSCs in fdePL did not effectively suppress TNF-α expression from LPS-stimulated monocytes compared with BM-MSCs in FBS. Depleting fibrinogen results in a lysate that suppresses TNF-α expression from LPS-stimulated monocytes, but that does not support proliferation and immune-modulatory capacity of BM-MSCs as effectively as nondepleted lysate.
Collapse
Affiliation(s)
- Maria C Naskou
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Scarlett Sumner
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Alysha Berezny
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Ian B Copland
- Emory Personalized Immunotherapy Center [EPIC], Emory University School of Medicine, Atlanta, Georgia
| | - John F Peroni
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
12
|
Mechanisms Mediating High-Molecular-Weight Hyaluronan-Induced Antihyperalgesia. J Neurosci 2020; 40:6477-6488. [PMID: 32665406 DOI: 10.1523/jneurosci.0166-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 11/21/2022] Open
Abstract
We evaluated the mechanism by which high-molecular-weight hyaluronan (HMWH) attenuates nociceptor sensitization, in the setting of inflammation. HMWH attenuated mechanical hyperalgesia induced by the inflammatory mediator prostaglandin E2 (PGE2) in male and female rats. Intrathecal administration of an oligodeoxynucleotide antisense (AS-ODN) to mRNA for cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, and intradermal administration of A5G27, a CD44 receptor antagonist, both attenuated antihyperalgesia induced by HMWH. In male rats, HMWH also signals via Toll-like receptor 4 (TLR4), and AS-ODN for TLR4 mRNA administered intrathecally, attenuated HMWH-induced antihyperalgesia. Since HMWH signaling is dependent on CD44 clustering in lipid rafts, we pretreated animals with methyl-β-cyclodextrin (MβCD), which disrupts lipid rafts. MβCD markedly attenuated HMWH-induced antihyperalgesia. Inhibitors for components of intracellular signaling pathways activated by CD44, including phospholipase C and phosphoinositide 3-kinase (PI3K), also attenuated HMWH-induced antihyperalgesia. Furthermore, in vitro application of HMWH attenuated PGE2-induced sensitization of tetrodotoxin-resistant sodium current, in small-diameter dorsal root ganglion neurons, an effect that was attenuated by a PI3K inhibitor. Our results indicate a central role of CD44 signaling in HMWH-induced antihyperalgesia and suggest novel therapeutic targets, downstream of CD44, for the treatment of pain generated by nociceptor sensitization.SIGNIFICANCE STATEMENT High-molecular-weight-hyaluronan (HMWH) is used to treat osteoarthritis and other pain syndromes. In this study we demonstrate that attenuation of inflammatory hyperalgesia by HMWH is mediated by its action at cluster of differentiation 44 (CD44) and activation of its downstream signaling pathways, including RhoGTPases (RhoA and Rac1), phospholipases (phospholipases Cε and Cγ1), and phosphoinositide 3-kinase, in nociceptors. These findings contribute to our understanding of the antihyperalgesic effect of HMWH and support the hypothesis that CD44 and its downstream signaling pathways represent novel therapeutic targets for the treatment of inflammatory pain.
Collapse
|
13
|
Chu X, Xu B, Gao H, Li BY, Liu Y, Reiter JL, Wang Y. Lipopolysaccharides Improve Mesenchymal Stem Cell-Mediated Cardioprotection by MyD88 and stat3 Signaling in a Mouse Model of Cardiac Ischemia/Reperfusion Injury. Stem Cells Dev 2019; 28:620-631. [PMID: 30808255 DOI: 10.1089/scd.2018.0213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) improve cardiac function after ischemia/reperfusion injury, in part, due to the release of cytoprotective paracrine factors. Toll-like receptor 4 (TLR4) is expressed in MSCs and regulates the expression of cytoprotective factors, cytokines, and chemokines. Lipopolysaccharide (LPS) stimulation of TLR4 activates two distinct signaling pathways that are either MyD88 dependent or MyD88 independent/TIR-domain-containing adapter-inducing interferon-β (TRIF) dependent. While it was reported previously that LPS treatment improved MSC-mediated cardioprotection, the mechanism underlying such improved effect remains unknown. To study the role of MyD88 signaling in MSC cardioprotective activity, wild type (WT) and MyD88-/- MSCs were treated with LPS (200 ng/mL) for 24 h. WT and MyD88-/- MSCs with or without LPS pretreatment were infused into the coronary circulation of isolated mouse hearts (Langendorff model) and then subjected to ischemia (25 min) and reperfusion (50 min). Saline served as a negative control. Both untreated and LPS-pretreated WT MSCs significantly improved postischemic recovery of myocardial function of isolated mouse hearts, as evidenced by improved left ventricular developed pressure and ventricular contractility assessment (ie, the rate of left ventricle pressure change over time, ± dp/dt). LPS-pretreated WT MSCs conferred better cardiac function recovery than untreated MSCs; however, such effect of LPS was abolished when using MyD88-/- MSCs. In addition, LPS stimulated stat3 activity in WT MSCs, but not MyD88-/- MSCs. stat3 small interfering RNA abolished the effect of LPS in improving the cardioprotection of WT MSCs. In conclusion, this study demonstrates that LPS improves MSC-mediated cardioprotection by MyD88-dependent activation of stat3.
Collapse
Affiliation(s)
- Xiaona Chu
- 1 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bing Xu
- 1 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Hongyu Gao
- 1 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bai-Yan Li
- 2 Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Yunlong Liu
- 1 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,3 Centers for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jill L Reiter
- 1 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,3 Centers for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yue Wang
- 1 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
14
|
Chae DS, Lee CY, Lee J, Seo HH, Choi CH, Lee S, Hwang KC. Priming stem cells with protein kinase C activator enhances early stem cell-chondrocyte interaction by increasing adhesion molecules. Biol Res 2018; 51:41. [PMID: 30384862 PMCID: PMC6211543 DOI: 10.1186/s40659-018-0191-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) can be defined as degradation of articular cartilage of the joint, and is the most common degenerative disease. To regenerate the damaged cartilage, different experimental approaches including stem cell therapy have been tried. One of the major limitations of stem cell therapy is the poor post-transplantation survival of the stem cells. Anoikis, where insufficient matrix support and adhesion to extracellular matrix causes apoptotic cell death, is one of the main causes of the low post-transplantation survival rate of stem cells. Therefore, enhancing the initial interaction of the transplanted stem cells with chondrocytes could improve the therapeutic efficacy of stem cell therapy for OA. Previously, protein kinase C activator phorbol 12-myristate 13-acetate (PMA)-induced increase of mesenchymal stem cell adhesion via activation of focal adhesion kinase (FAK) has been reported. In the present study, we examine the effect PMA on the adipose-derived stem cells (ADSCs) adhesion and spreading to culture substrates, and further on the initial interaction between ADSC and chondrocytes. RESULTS PMA treatment increased the initial adhesion of ADSC to culture substrate and cellular spreading with increased expression of adhesion molecules, such as FAK, vinculin, talin, and paxillin, at both RNA and protein level. Priming of ADSC with PMA increased the number of ADSCs attached to confluent layer of cultured chondrocytes compared to that of untreated ADSCs at early time point (4 h after seeding). CONCLUSION Taken together, the results of this study suggest that priming ADSCs with PMA can increase the initial interaction with chondrocytes, and this proof of concept can be used to develop a non-invasive therapeutic approach for treating OA. It may also accelerate the regeneration process so that it can relieve the accompanied pain faster in OA patients. Further in vivo studies examining the therapeutic effect of PMA pretreatment of ADSCs for articular cartilage damage are required.
Collapse
Affiliation(s)
- Dong-Sik Chae
- Department of Medicine, The Graduate School, Yonsei University, Seoul, South Korea.,Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Chong-Hyuk Choi
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea.
| |
Collapse
|
15
|
Griffin C, Eter L, Lanzetta N, Abrishami S, Varghese M, McKernan K, Muir L, Lane J, Lumeng CN, Singer K. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c + adipose tissue macrophage production in obese mice. J Biol Chem 2018; 293:8775-8786. [PMID: 29636416 DOI: 10.1074/jbc.ra117.001526] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity-induced chronic inflammation is associated with metabolic disease. Results from mouse models utilizing a high-fat diet (HFD) have indicated that an increase in activated macrophages, including CD11c+ adipose tissue macrophages (ATMs), contributes to insulin resistance. Obesity primes myeloid cell production from hematopoietic stem cells (HSCs) and Toll-like receptor 4 (TLR4), and the downstream TIR domain-containing adapter protein-inducing interferon-β (TRIF)- and MyD88-mediated pathways regulate production of similar myeloid cells after lipopolysaccharide stimulation. However, the role of these pathways in HFD-induced myelopoiesis is unknown. We hypothesized that saturated fatty acids and HFD alter myelopoiesis by activating TLR4 pathways in HSCs, differentially producing pro-inflammatory CD11c+ myeloid cells that contribute to obesity-induced metabolic disease. Results from reciprocal bone marrow transplants (BMTs) with Tlr4-/- and WT mice indicated that TLR4 is required for HFD-induced myelopoiesis and production of CD11c+ ATMs. Experiments with homozygous knockouts of Irakm (encoding a suppressor of MyD88 inactivation) and Trif in competitive BMTs revealed that MyD88 is required for HFD expansion of granulocyte macrophage progenitors and that Trif is required for pregranulocyte macrophage progenitor expansion. A comparison of WT, Tlr4-/-, Myd88-/-, and Trif-/- mice on HFD demonstrated that TLR4 plays a role in the production of CD11c+ ATMs, and both Myd88-/- and Trif-/- mice produced fewer ATMs than WT mice. Moreover, HFD-induced TLR4 activation inhibited macrophage proliferation, leading to greater accumulation of recruited CD11c+ ATMs. Our results indicate that HFD potentiates TLR4 and both its MyD88- and TRIF-mediated downstream pathways within progenitors and adipose tissue and leads to macrophage polarization.
Collapse
Affiliation(s)
- Cameron Griffin
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Leila Eter
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Nico Lanzetta
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Simin Abrishami
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Mita Varghese
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kaitlin McKernan
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Lindsey Muir
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jamie Lane
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Carey N Lumeng
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kanakadurga Singer
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
16
|
Puddighinu G, D'Amario D, Foglio E, Manchi M, Siracusano A, Pontemezzo E, Cordella M, Facchiano F, Pellegrini L, Mangoni A, Tafani M, Crea F, Germani A, Russo MA, Limana F. Molecular mechanisms of cardioprotective effects mediated by transplanted cardiac ckit + cells through the activation of an inflammatory hypoxia-dependent reparative response. Oncotarget 2017; 9:937-957. [PMID: 29416668 PMCID: PMC5787525 DOI: 10.18632/oncotarget.22946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
The regenerative effects of cardiac ckit+ stem cells (ckit+CSCs) in acute myocardial infarction (MI) have been studied extensively, but how these cells exert a protective effect on cardiomyocytes is not well known. Growing evidences suggest that in adult stem cells injury triggers inflammatory signaling pathways which control tissue repair and regeneration. Aim of the present study was to determine the mechanisms underlying the cardioprotective effects of ckit+CSCs following transplantation in a murine model of MI. Following isolation and in vitro expansion, cardiac ckit+CSCs were subjected to normoxic and hypoxic conditions and assessed at different time points. These cells adapted to hypoxia as showed by the activation of HIF-1α and the expression of a number of genes, such as VEGF, GLUT1, EPO, HKII and, importantly, of alarmin receptors, such as RAGE, P2X7R, TLR2 and TLR4. Activation of these receptors determined an NFkB-dependent inflammatory and reparative gene response (IRR). Importantly, hypoxic ckit+CSCs increased the secretion of the survival growth factors IGF-1 and HGF. To verify whether activation of the IRR in a hypoxic microenvironment could exert a beneficial effect in vivo, autologous ckit+CSCs were transplanted into mouse heart following MI. Interestingly, transplantation of ckit+CSCs lowered apoptotic rates and induced autophagy in the peri-infarct area; further, it reduced hypertrophy and fibrosis and, most importantly, improved cardiac function. ckit+CSCs are able to adapt to a hypoxic environment and activate an inflammatory and reparative response that could account, at least in part, for a protective effect on stressed cardiomyocytes following transplantation in the infarcted heart.
Collapse
Affiliation(s)
- Giovanni Puddighinu
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Domenico D'Amario
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Melissa Manchi
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Andrea Siracusano
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Elena Pontemezzo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Cordella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pellegrini
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Antonella Mangoni
- Department of Pathological Anatomy, Catholic University of The Sacred Heart, Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Antonia Germani
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Matteo Antonio Russo
- IRCCS San Raffaele Pisana, Rome, Italy.,MEBIC Consortium, San Raffaele Roma Open University, Rome, Italy
| | - Federica Limana
- IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
17
|
DADLE enhances viability and anti-inflammatory effect of human MSCs subjected to ‘serum free’ apoptotic condition in part via the DOR/PI3K/AKT pathway. Life Sci 2017; 191:195-204. [DOI: 10.1016/j.lfs.2017.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/29/2023]
|
18
|
Naftali-Shani N, Levin-Kotler LP, Palevski D, Amit U, Kain D, Landa N, Hochhauser E, Leor J. Left Ventricular Dysfunction Switches Mesenchymal Stromal Cells Toward an Inflammatory Phenotype and Impairs Their Reparative Properties Via Toll-Like Receptor-4. Circulation 2017; 135:2271-2287. [PMID: 28356441 DOI: 10.1161/circulationaha.116.023527] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Little is known about the potentially unfavorable effects of mesenchymal stromal cell (MSC) activation on the heart. MSCs can respond to tissue injury by anti- or proinflammatory activation. We aimed to study the potential negative interaction between left ventricular dysfunction (LVD) and MSC activation. METHODS We isolated MSCs from cardiac and subcutaneous fat tissues of mice with LVD 28 days after myocardial infarction or sham operation. To evaluate the effect of LVD on MSCs, we characterized cardiac MSCs and subcutaneous MSCs in vitro. Subsequently, we injected MSCs or saline into the infarcted myocardium of mice and evaluated LV remodeling and function 28 days after myocardial infarction. To test the hypothesis that toll-like receptor 4 (TLR4) mediates proinflammatory polarization of MSCs, we characterized cardiac MSCs from TLR4-/- and wild-type (WT) mice after inflammatory stimulation in vitro. Next, we transplanted cardiac MSCs from TLR4-/- and WT male mice into the infarcted myocardium of female WT mice and evaluated infarct size, MSC retention, inflammation, remodeling, and function after 7 days. RESULTS LVD switched cardiac MSCs toward an inflammatory phenotype, with increased secretion of inflammatory cytokines as well as chemokines. The effect of LVD on subcutaneous MSCs was less remarkable. Although transplantation of cardiac MSCs and subcutaneous MSCs from LVD and sham hearts did not improve LV remodeling and function, cardiac MSCs from LVD exacerbated anterior wall thinning 28 days after myocardial infarction. The inflammatory polarization of cardiac MSCs by LVD was mediated by TLR4, as we found less secretion of inflammatory cytokines and higher secretion of anti-inflammatory cytokines from activated cardiac MSCs of TLR4-deficient mice, compared with WT cardiac MSCs. Significantly, TLR4 deficiency preserved the expression of CD47 (don't eat me signal) on cardiac MSCs after both TLR4 stimulation in vitro and transplantation into the infarcted heart. Compared with WT cardiac MSCs and saline, TLR4-/- cardiac MSCs survived in the cardiac tissue and maintained their reparative properties, reduced infarct size, increased scar thickness, and attenuated LV dilatation 7 days after myocardial infarction. CONCLUSIONS The environment of the failing and infarcted myocardium drives resident and transplanted MSCs toward a proinflammatory phenotype and restricts their survival and reparative effects in a mechanism mediated by TLR4.
Collapse
Affiliation(s)
- Nili Naftali-Shani
- From Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Sheba Center for Regenerative Medicine, Stem Cell and Tissue Engineering, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); and Cardiac Research Laboratory, Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel-Aviv University, Petah Tikva, Israel (E.H.)
| | - La-Paz Levin-Kotler
- From Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Sheba Center for Regenerative Medicine, Stem Cell and Tissue Engineering, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); and Cardiac Research Laboratory, Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel-Aviv University, Petah Tikva, Israel (E.H.)
| | - Dahlia Palevski
- From Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Sheba Center for Regenerative Medicine, Stem Cell and Tissue Engineering, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); and Cardiac Research Laboratory, Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel-Aviv University, Petah Tikva, Israel (E.H.)
| | - Uri Amit
- From Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Sheba Center for Regenerative Medicine, Stem Cell and Tissue Engineering, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); and Cardiac Research Laboratory, Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel-Aviv University, Petah Tikva, Israel (E.H.)
| | - David Kain
- From Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Sheba Center for Regenerative Medicine, Stem Cell and Tissue Engineering, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); and Cardiac Research Laboratory, Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel-Aviv University, Petah Tikva, Israel (E.H.)
| | - Natalie Landa
- From Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Sheba Center for Regenerative Medicine, Stem Cell and Tissue Engineering, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); and Cardiac Research Laboratory, Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel-Aviv University, Petah Tikva, Israel (E.H.)
| | - Edith Hochhauser
- From Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Sheba Center for Regenerative Medicine, Stem Cell and Tissue Engineering, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); and Cardiac Research Laboratory, Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel-Aviv University, Petah Tikva, Israel (E.H.)
| | - Jonathan Leor
- From Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Tamman Cardiovascular Research Institute, Leviev Heart Center, Sheba Medical Center, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); Sheba Center for Regenerative Medicine, Stem Cell and Tissue Engineering, Tel-Hashomer, Israel (N.N.-S., L.-P.L.-K., D.P., U.A., D.K., N.L., J.L.); and Cardiac Research Laboratory, Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel-Aviv University, Petah Tikva, Israel (E.H.).
| |
Collapse
|
19
|
Shirjang S, Mansoori B, Solali S, Hagh MF, Shamsasenjan K. Toll-like receptors as a key regulator of mesenchymal stem cell function: An up-to-date review. Cell Immunol 2016; 315:1-10. [PMID: 28284487 DOI: 10.1016/j.cellimm.2016.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/07/2016] [Accepted: 12/24/2016] [Indexed: 02/07/2023]
Abstract
Understanding the role of toll-like receptors (TLRs) in the immunomodulation potential, differentiation, migration, and survival of mesenchymal stem cells (MSCs) is absolutely vital to fully exploiting their MSC-based therapeutic potential. Furthermore, through recognition of exogenous or endogenous ligands produced upon injury, TLRs have been linked to allograft rejection and maintenance of chronic inflammatory diseases, including Crohn's disease, rheumatoid arthritis. Characterizing the effect of TLRs in biological control of MSCs fate and function could improve our knowledge about the MSC-based cell therapy and immunotherapy. In this paper, we outline the impacts of TLR activation and mechanisms on MSCs immunomodulatory functions, differentiation, migration, and survivability. Moreover, we indicate that the expression patterns of TLRs in MSCs from different sources.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Karpov AA, Udalova DV, Pliss MG, Galagudza MM. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif 2016; 50. [PMID: 27878916 DOI: 10.1111/cpr.12316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct-limiting effects in numerous experimental and clinical studies. However, recent meta-analyses of randomized clinical trials on MSC-based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three-dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non-genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury.
Collapse
Affiliation(s)
- Andrey A Karpov
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia.,Department of Pathophysiology, First Pavlov State Medical University of Saint Petersburg, St Petersburg, Russia
| | - Daria V Udalova
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia
| | - Michael G Pliss
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia
| | - Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia.,ITMO University, St Petersburg, Russia
| |
Collapse
|
21
|
Synergistic and Superimposed Effect of Bone Marrow-Derived Mesenchymal Stem Cells Combined with Fasudil in Experimental Autoimmune Encephalomyelitis. J Mol Neurosci 2016; 60:486-497. [PMID: 27573128 DOI: 10.1007/s12031-016-0819-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/23/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are the ideal transplanted cells of cellular therapy for promoting neuroprotection and neurorestoration. However, the optimization of transplanted cells and the improvement of microenvironment around implanted cells are still two critical challenges for enhancing therapeutic effect. In the current study, we observed the therapeutic potential of MSCs combined with Fasudil in mouse model of experimental autoimmune encephalomyelitis (EAE) and explored possible mechanisms of action. The results clearly show that combined intervention of MSCs and Fasudil further reduced the severity of EAE compared with MSCs or Fasudil alone, indicating a synergistic and superimposed effect in treating EAE. The addition of Fasudil inhibited MSC-induced inflammatory signaling TLR-4/MyD88 and inflammatory molecule IFN-γ, IL-1β, and TNF-α but did not convert M1 microglia to M2 phenotype. The delivery of MSCs enhanced the expression of glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) compared with that of Fasudil. Importantly, combined intervention of MSCs and Fasudil further increased the expression of BDNF and GDNF compared with the delivery of MSCs alone, indicating that combined intervention of MSCs and Fasudil synergistically contributes to the expression of neurotrophic factors which should be related to the expression of increased galactocerebroside (GalC) compared with mice treated with Fasudil and MSCs alone. However, a lot of investigation is warranted to further elucidate the cross talk of MSCs and Fasudil in the therapeutic potential of EAE/multiple sclerosis.
Collapse
|
22
|
Chen Y, Wang C, Huang Q, Wu D, Cao J, Xu X, Yang C, Li X. Caveolin-1 Plays an Important Role in the Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Cardiomyocytes. Cardiology 2016; 136:40-48. [PMID: 27554796 DOI: 10.1159/000446869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/15/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Accumulating evidence has demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs) may transdifferentiate into cardiomyocytes, making BMSCs a promising source of cardiomyocytes for transplantation. However, little is known about the molecular mechanisms underlying myogenic conversion of BMSCs. METHODS This study was designed to investigate the functional role of caveolin-1 in the cardiomyocyte differentiation of BMSCs and to explore the potential underlying molecular mechanisms. RESULTS BMSC differentiation was induced by treatment with 10 μM 5-azacytidine, and immunofluorescence assay showed that the expression of cardiomyocyte marker cardiac troponin T (cTnT) was significantly increased compared with a control group. Meanwhile, an increased caveolin-1 expression was found during the 5-azacytidine-induced BMSC differentiation. Additionally, the role of caveolin-1 in the differentiation process was then studied by using caveolin-1 siRNAs. We found that silencing caveolin-1 during induction remarkably enhanced the expression of cardiomyocyte marker genes, including cTnT, Nkx2.5 (cardiac-specific transcription factor), α-cardiac actin and α-myosin heavy chain (α-MHC). Moreover, we observed that downregulation of caveolin-1 was accompanied by inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation. CONCLUSIONS Taken together, these findings demonstrate that caveolin-1 plays an important role in the differentiation of BMSCs into cardiomyocytes in conjunction with the STAT3 pathway.
Collapse
Affiliation(s)
- Ying Chen
- Department of Cardiology, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhou A, Li M, He B, Feng W, Huang F, Xu B, Dunker AK, Balch C, Li B, Liu Y, Wang Y. Lipopolysaccharide treatment induces genome-wide pre-mRNA splicing pattern changes in mouse bone marrow stromal stem cells. BMC Genomics 2016; 17 Suppl 7:509. [PMID: 27557078 PMCID: PMC5001229 DOI: 10.1186/s12864-016-2898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) is a gram-negative bacterial antigen that triggers a series of cellular responses. LPS pre-conditioning was previously shown to improve the therapeutic efficacy of bone marrow stromal cells/bone-marrow derived mesenchymal stem cells (BMSCs) for repairing ischemic, injured tissue. RESULTS In this study, we systematically evaluated the effects of LPS treatment on genome-wide splicing pattern changes in mouse BMSCs by comparing transcriptome sequencing data from control vs. LPS-treated samples, revealing 197 exons whose BMSC splicing patterns were altered by LPS. Functional analysis of these alternatively spliced genes demonstrated significant enrichment of phosphoproteins, zinc finger proteins, and proteins undergoing acetylation. Additional bioinformatics analysis strongly suggest that LPS-induced alternatively spliced exons could have major effects on protein functions by disrupting key protein functional domains, protein-protein interactions, and post-translational modifications. CONCLUSION Although it is still to be determined whether such proteome modifications improve BMSC therapeutic efficacy, our comprehensive splicing characterizations provide greater understanding of the intracellular mechanisms that underlie the therapeutic potential of BMSCs.
Collapse
Affiliation(s)
- Ao Zhou
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Bioinformatics Program, Indiana University School of Informatics, Indianapolis, IN, 46202, USA
| | - Meng Li
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Bo He
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Weixing Feng
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Fei Huang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bing Xu
- Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Curt Balch
- Bioscience Advising, Indianapolis, IN, 46227, USA
| | - Baiyan Li
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yue Wang
- Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
24
|
Wang Y, Li Y, Song L, Li Y, Jiang S, Zhang S. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep 2016; 14:234-42. [PMID: 27151366 PMCID: PMC4918560 DOI: 10.3892/mmr.2016.5212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 04/22/2016] [Indexed: 12/24/2022] Open
Abstract
Amniotic fluid-derived mesenchymal stem cells (AFMSCs) are an attractive cell source for applications in regenerative medicine, due to characteristics such as proliferative capacity and multipotency. In addition, Akt, a serine‑threonine kinase, maintains stem cells by promoting viability and proliferation. Whether the transplantation of Akt-overexpressing AFMSCs protects the heart against ischemia‑reperfusion (I/R) injury has yet to be elucidated. Accordingly, the Akt gene was overexpressed in AFMSCs using lentiviral transduction, and Akt‑AFMSCs were transplanted into the ischemic myocardium of rabbits prior to reperfusion. Any protective effects resulting from this procedure were subsequently sought after three weeks later. A histological examination revealed that there was a decrease in intramyocardial inflammation and ultrastructural damage, and an increase in capillary density and in the levels of GATA binding protein 4, connexin 43 and cardiac troponin T in the Akt‑AFMSC group compared with the control group. A significant decrease in cardiomyocyte apoptosis, accompanying an increase in phosphorylated Akt and B‑cell lymphoma 2 (Bcl-2) and a decrease in caspase‑3, was also observed. Furthermore, the left ventricular function was markedly augmented in the Akt‑AFMSC group compared with the control group. These observations suggested that the protective effect of AFMSCs may be due to the delivery of secreted cytokines, promotion of neoangiogenesis, prevention of cardiomyocyte apoptosis, transdifferentiation into cardiomyocytes and promotion of the viability of AFMSCs, which are assisted by Akt gene modification. Taken together, the results of the present study have indicated that transplantation of Akt-AFMSCs is able to alleviate myocardial I/R injury and improve cardiac function.
Collapse
Affiliation(s)
- Yan Wang
- Department of Geriatrics, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Yigang Li
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Lei Song
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Yanyan Li
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Shan Jiang
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Song Zhang
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| |
Collapse
|
25
|
Hou YS, Liu LY, Chai JK, Yu YH, Duan HJ, Hu Q, Yin HN, Wang YH, Zhuang SB, Fan J, Chu WL, Ma L. Lipopolysaccharide pretreatment inhibits LPS-induced human umbilical cord mesenchymal stem cell apoptosis via upregulating the expression of cellular FLICE-inhibitory protein. Mol Med Rep 2015; 12:2521-8. [PMID: 25955291 PMCID: PMC4464426 DOI: 10.3892/mmr.2015.3723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based regenerative therapy is currently regarded as a novel approach with which to repair damaged tissues. However, the efficiency of MSC transplantation is limited due to the low survival rate of engrafted MSCs. Lipopolysaccharide (LPS) production is increased in numerous diseases and serves an essential function in the regulation of apoptosis in a variety of cell types. Previous studies have indicated that low-dose LPS pretreatment contributes to cytoprotection. In the current study, LPS was demonstrated to induce apoptosis in human umbilical cord mesenchymal stem cells (hUCMSCs) via the activation of caspase, in a dose-dependent manner. Low-dose LPS pretreatment may protect hUCMSCs against apoptosis induced by high-dose LPS, by upregulating the expression of cellular FADD-like IL-1β-converting enzyme-inhibitory protein (c-FLIP). The results of the present study indicate that pretreatment with an appropriate concentration of LPS may alleviate high-dose LPS-induced apoptosis.
Collapse
Affiliation(s)
- Yu Sen Hou
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Ling Ying Liu
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Jia Ke Chai
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Yong Hui Yu
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Hong Jie Duan
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Quan Hu
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Hui Nan Yin
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Yi He Wang
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Shu Bo Zhuang
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Jun Fan
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Wan Li Chu
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Li Ma
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
26
|
Xu B, Luo Y, Liu Y, Li BY, Wang Y. Platelet-derived growth factor-BB enhances MSC-mediated cardioprotection via suppression of miR-320 expression. Am J Physiol Heart Circ Physiol 2015; 308:H980-9. [PMID: 25724494 DOI: 10.1152/ajpheart.00737.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/21/2015] [Indexed: 01/10/2023]
Abstract
Delivery of bone marrow-derived mesenchymal stem cells (MSCs) to myocardium protects ischemic tissue through the paracrine release of beneficial angiogenic and cytoprotective factors. Platelet-derived growth factor (PDGF)-BB, a potent mitogen of MSCs, is involved in the pathophysiology of ischemic heart disease. However, the role(s) of PDGF in MSC-mediated cardioprotection remains unknown. Here, we found that PDGF treatment of MSCs resulted in rapid activation of both Akt and ERK (central intracellular signal mediators), upregulated VEGF, and induced phosphorylation of the activator protein-1 (AP-1) transcription factor c-Jun. Examination of several microRNA genes having predicted promoter c-Jun-binding sites showed that PDGF treatment resulted in upregulation of miR-16-2 and downregulation of miRs-23b, -27b, and -320b. To examine possible PDGF augmentation of therapeutic potential, we evaluated the effects of PDGF using an ex vivo isolated mouse heart ischemia-reperfusion model. Human MSCs, with or without PDGF preconditioning, were infused into the coronary circulation of isolated mouse hearts. The hearts that received PDGF-treated MSCs exhibited a greater functional recovery compared with naïve MSC-infused hearts, following ischemia-reperfusion injury. This enhanced functional recovery was abolished by overexpression of miR-320, a microRNA we found downregulated by PDGF-activated c-Jun. Overexpression of miR-320 also resulted in upregulation of insulin-like growth factor binding protein (IGFBP) family members, suggesting PDGF "cross talk" with the mitogenic IGF signaling pathway. Collectively, we conclude that PDGF enhances MSC-mediated cardioprotection via a c-Jun/miR-320 signaling mechanism and PDGF MSC preconditioning may be an effective therapeutic strategy for cardiac ischemia.
Collapse
Affiliation(s)
- Bing Xu
- Department of Pharmacology, Harbin Medical University, Harbin, China; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yong Luo
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Bai-Yan Li
- Department of Pharmacology, Harbin Medical University, Harbin, China; Department of Biomedical Engineering, Indiana University Purdue University, Indianapolis, Indiana
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana;
| |
Collapse
|
27
|
Lee S, Choi E, Cha MJ, Hwang KC. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:632902. [PMID: 25722795 PMCID: PMC4333334 DOI: 10.1155/2015/632902] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
The literature provides abundant evidence that mesenchymal stem cells (MSCs) are an attractive resource for therapeutics and have beneficial effects in regenerating injured tissues due to their self-renewal ability and broad differentiation potential. Although the therapeutic potential of MSCs has been proven in both preclinical and clinical studies, several questions have not yet been addressed. A major limitation to the use of MSCs in clinical applications is their poor viability at the site of injury due to the harsh microenvironment and to anoikis driven by the loss of cell adhesion. To improve the survival of the transplanted MSCs, strategies to regulate apoptotic signaling and enhance cell adhesion have been developed, such as pretreatment with cytokines, growth factors, and antiapoptotic molecules, genetic modifications, and hypoxic preconditioning. More appropriate animal models and a greater understanding of the therapeutic mechanisms of MSCs will be required for their successful clinical application. Nevertheless, the development of stem cell therapies using MSCs has the potential to treat degenerative diseases. This review discusses various approaches to improving MSC survival by inhibiting anoikis.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| |
Collapse
|
28
|
Zmijewski E, Lu S, Harrison-Findik DD. TLR4 signaling and the inhibition of liver hepcidin expression by alcohol. World J Gastroenterol 2014; 20:12161-12170. [PMID: 25232250 PMCID: PMC4161801 DOI: 10.3748/wjg.v20.i34.12161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To understand the role of toll-like receptor 4 (TLR4) signaling in the regulation of iron-regulatory hormone, hepcidin by chronic alcohol consumption.
METHODS: For chronic alcohol intake studies, TLR4 mutant mice on C3H/HeJ background and wildtype counterpart on C3H/HeOuJ background were pair-fed with regular (control) and ethanol-containing Lieber De Carli liquids diets. Gene expression was determined by real-time quantitative PCR. Protein-protein interactions and protein expression were determined by co-immunoprecipitation and western blotting. The occupancy of hepcidin gene promoter was determined by chromatin immunoprecipitation assays.
RESULTS: Chronic alcohol intake suppressed hepcidin mRNA expression in the livers of wildtype, but not TLR4 mutant, mice. The phosphorylation and nuclear translocation of nuclear factor (NF)-κB p65 subunit protein was observed in alcohol-fed wildtype, but not in alcohol-fed TLR4 mutant, mice. Similarly, alcohol induced the binding of NF-κB p50 subunit protein to hepcidin gene promoter in wildtype, but not in TLR4 mutant, mice. In contrast, the phosphorylation of Stat3 in the liver was stronger in alcohol-treated TLR4 mutant mice compared to alcohol-treated wildtype mice. The occupancy of hepcidin gene promoter by Stat3 was observed in alcohol-fed mutant, but not in wildtype, mice. An interaction between NF-κB p65 subunit protein and small heterodimer partner protein (SHP) was observed in the livers of both wildtype and TLR4 mutant mice fed with the control diet, as shown by co-immunoprecipitation studies. Alcohol intake elevated cytosolic SHP expression but attenuated its interaction with NF-κB in the liver, which was more prominent in the livers of wildtype compared to TLR4 mutant mice.
CONCLUSION: Activation of TLR4 signaling and NF-кB are involved in the suppression of hepcidin gene transcription by alcohol in the presence of inflammation in the liver.
Collapse
|
29
|
Dittmer J, Leyh B. Paracrine effects of stem cells in wound healing and cancer progression (Review). Int J Oncol 2014; 44:1789-98. [PMID: 24728412 PMCID: PMC4063537 DOI: 10.3892/ijo.2014.2385] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/21/2014] [Indexed: 12/18/2022] Open
Abstract
Stem cells play an important role in tissue repair and cancer development. The capacity to self-renew and to differentiate to specialized cells allows tissue-specific stem cells to rebuild damaged tissue and cancer stem cells to initiate and promote cancer. Mesenchymal stem cells, attracted to wounds and cancer, facilitate wound healing and support cancer progression primarily by secreting bioactive factors. There is now growing evidence that, like mesenchymal stem cells, also tissue-specific and cancer stem cells manipulate their environment by paracrine actions. Soluble factors and microvesicles released by these stem cells have been shown to protect recipient cells from apoptosis and to stimulate neovascularization. These paracrine mechanisms may allow stem cells to orchestrate wound healing and cancer progression. Hence, understanding these stem cell-driven paracrine effects may help to improve tissue regeneration and cancer treatment.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, University of Halle, Halle/Saale, Germany
| | - Benjamin Leyh
- Clinic for Gynecology, University of Halle, Halle/Saale, Germany
| |
Collapse
|
30
|
Vogel S, Chatterjee M, Metzger K, Borst O, Geisler T, Seizer P, Müller I, Mack A, Schumann S, Bühring HJ, Lang F, Sorg RV, Langer H, Gawaz M. Activated platelets interfere with recruitment of mesenchymal stem cells to apoptotic cardiac cells via high mobility group box 1/Toll-like receptor 4-mediated down-regulation of hepatocyte growth factor receptor MET. J Biol Chem 2014; 289:11068-11082. [PMID: 24567328 DOI: 10.1074/jbc.m113.530287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recruitment of mesenchymal stem cells (MSC) following cardiac injury, such as myocardial infarction, plays a critical role in tissue repair and may contribute to myocardial recovery. However, the mechanisms that regulate migration of MSC to the site of tissue damage remain elusive. Here, we demonstrate in vitro that activated platelets substantially inhibit recruitment of MSC toward apoptotic cardiac myocytes and fibroblasts. The alarmin high mobility group box 1 (HMGB1) was released by platelets upon activation and mediated inhibition of the cell death-dependent migratory response through Toll-like receptor (TLR)-4 expressed on the MSC. Migration of MSC to apoptotic cardiac myocytes and fibroblasts was driven by hepatocyte growth factor (HGF), and platelet activation was followed by HMGB1/TLR-4-dependent down-regulation of HGF receptor MET on MSC, thereby impairing HGF-driven MSC recruitment. We identify a novel mechanism by which platelets, upon activation, interfere with MSC recruitment to apoptotic cardiac cells, a process that may be of particular relevance for myocardial repair and regeneration.
Collapse
Affiliation(s)
- Sebastian Vogel
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Madhumita Chatterjee
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Katja Metzger
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Oliver Borst
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Tobias Geisler
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Peter Seizer
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Iris Müller
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Andreas Mack
- the Institute of Anatomy, Eberhard Karls University, 72076 Tübingen, Germany
| | - Susanne Schumann
- the Department of Oncology, Haematology, Immunology, Rheumatology and Pulmonology, and Eberhard Karls University, 72076 Tübingen, Germany
| | - Hans-Jörg Bühring
- the Department of Oncology, Haematology, Immunology, Rheumatology and Pulmonology, and Eberhard Karls University, 72076 Tübingen, Germany
| | - Florian Lang
- the Institute of Physiology, Eberhard Karls University, 72076 Tübingen, Germany and
| | - Rüdiger V Sorg
- the Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Harald Langer
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- From the Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
31
|
Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediators Inflamm 2013; 2013:181020. [PMID: 24391353 PMCID: PMC3872440 DOI: 10.1155/2013/181020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/14/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND After myocardial infarction (MI), the inflammatory response is indispensable for initiating reparatory processes. However, the intensity and duration of the inflammation cause additional damage to the already injured myocardium. Treatment with mesenchymal stem cells (MSC) upon MI positively affects cardiac function. This happens likely via a paracrine mechanism. As MSC are potent modulators of the immune system, this could influence this postinfarct immune response. Since MSC express toll-like receptors (TLR), danger signal (DAMP) produced after MI could influence their immunomodulatory properties. SCOPE OF REVIEW Not much is known about the direct immunomodulatory efficiency of MSC when injected in a strong inflammatory environment. This review focuses first on the interactions between MSC and the immune system. Subsequently, an overview is provided of the effects of DAMP-associated TLR activation on MSC and their immunomodulative properties after myocardial infarction. MAJOR CONCLUSIONS MSC can strongly influence most cell types of the immune system. TLR signaling can increase and decrease this immunomodulatory potential, depending on the available ligands. Although reports are inconsistent, TLR3 activation may boost immunomodulation by MSC, while TLR4 activation suppresses it. GENERAL SIGNIFICANCE Elucidating the effects of TLR activation on MSC could identify new preconditioning strategies which might improve their immunomodulative properties.
Collapse
|
32
|
Becerra P, Ricucci D, Loghin S, Gibbs JL, Lin LM. Histologic study of a human immature permanent premolar with chronic apical abscess after revascularization/revitalization. J Endod 2013; 40:133-9. [PMID: 24332005 DOI: 10.1016/j.joen.2013.07.017] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/17/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Histologic studies of teeth from animal models of revascularization/revitalization are available; however, specimens from human studies are lacking. The nature of tissues formed in the canal of human revascularized/revitalized teeth was not well established. METHODS An immature mandibular premolar with infected necrotic pulp and a chronic apical abscess was treated with revascularization/revitalization procedures. At both the 18-month and 2-year follow-up visits, radiographic examination showed complete resolution of the periapical lesion, narrowing of the root apex without root lengthening, and minimal thickening of the canal walls. The revascularized/revitalized tooth was removed because of orthodontic treatment and processed for histologic examination. RESULTS The large canal space of revascularized/revitalized tooth was not empty and filled with fibrous connective tissue. The apical closure was caused by cementum deposition without dentin. Some cementum-like tissue was formed on the canal dentin walls. Inflammatory cells were observed in the coronal and middle third of revascularized/revitalized tissue. CONCLUSIONS In the present case, the tissue formed in the canal of a human revascularized/revitalized tooth was soft connective tissue similar to that in the periodontal ligament and cementum-like or bone-like hard tissue, which is comparable with the histology observed in the canals of teeth from animal models of revascularization/revitalization.
Collapse
Affiliation(s)
- Patricia Becerra
- Department of Endodontics, Faculty of Dentistry, University Santo Tomás in Bogotá, Bogotá, Colombia
| | | | | | - Jennifer L Gibbs
- Department of Endodontics, New York University, New York, New York
| | - Louis M Lin
- Department of Endodontics, New York University, New York, New York
| |
Collapse
|
33
|
Copland IB, Garcia MA, Waller EK, Roback JD, Galipeau J. The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy. Biomaterials 2013; 34:7840-50. [PMID: 23891515 DOI: 10.1016/j.biomaterials.2013.06.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/26/2013] [Indexed: 01/15/2023]
Abstract
Human platelet lysate (PL) represents an attractive alternative to fetal bovine serum (FBS) for the ex vivo expansion of human mesenchymal stromal cells (MSCs). However, there is controversy whether MSCs propagated in unfractionated PL retain their immunosuppressive properties. Since fibrinogen can be a major component of PL, we hypothesized that the fibrinogen content in PL negatively affects the suppressor function of MSCs. Pools of outdated plateletpheresis products underwent a double freeze-thaw centrifugation and filtration to produce unfractionated platelet lysates (uPL), followed by a temperature controlled clotting procedure to produce a fibrinogen depleted platelet lysate (fdPL). Fibrinogen depletion affected neither the mitogenic properties of PL or growth factor content, however fdPL was less prone to develop precipitate over time. Functionally, fibrinogen interacted directly with MSCs, dose dependently increased IL-6, IL-8 and MCP-1 protein production, and compromised the ability of MSCs to up-regulate indoleamine dioxygenase (IDO), as well as, mitigate T-cell proliferation. Similarly uPL expanded MSCs showed a reduced capability of inducing IDO and suppressing T-cell proliferation compared to FBS expanded MSCs. Replacing uPL with fdPL largely restored the immune modulating effects of MSCs. Together these data suggest that fibrinogen negatively affects the immunomodulatory functions of MSCs and fdPL can serve as non-xenogenic mitogenic supplement for expansion of clinical grade MSCs for immune modulation.
Collapse
Affiliation(s)
- Ian B Copland
- Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
34
|
The seed and the soil: optimizing stem cells and their environment for tissue regeneration. Ann Plast Surg 2013; 70:235-9. [PMID: 23295233 DOI: 10.1097/sap.0b013e31826a18fb] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The potential for stem cells to serve as cellular building blocks for reconstruction of complex defects has prompted significant enthusiasm in the field of regenerative medicine. Clinical application, however, is still limited, as implantation of cells into hostile wound environments may greatly hinder their tissue forming capacity. To circumvent this obstacle, novel approaches have been developed to manipulate both the stem cell itself and its surrounding environmental niche. By understanding this paradigm of seed and soil optimization, innovative strategies may thus be developed to harness the true promise of stem cells for tissue regeneration.
Collapse
|
35
|
Cai B, Li J, Wang J, Luo X, Ai J, Liu Y, Wang N, Liang H, Zhang M, Chen N, Wang G, Xing S, Zhou X, Yang B, Wang X, Lu Y. microRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling. Stem Cells 2013; 30:1746-55. [PMID: 22696253 DOI: 10.1002/stem.1154] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Accumulating evidence demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs) may transdifferentiate into cardiomyocytes and replace apoptotic myocardium so as to improve functions of damaged hearts. However, little information is known about molecular mechanisms underlying myogenic conversion of BMSCs. microRNAs as endogenous noncoding small molecules function to inhibit protein translation post-transcriptionally by binding to complementary sequences of targeted mRNAs. Here, we reported that miR-124 was remarkably downregulated during cardiomyocyte differentiation of BMSCs induced by coculture with cardiomyocytes. Forced expression of miR-124 led to a significant downregulation of cardiac-specific markers-ANP, TNT, and α-MHC proteins as well as reduction of cardiac potassium channel currents in cocultured BMSCs. On the contrary, the inhibition of endogenous miR-124 with its antisense oligonucleotide AMO-124 obviously reversed the changes of ANP, TNT, and α-MHC proteins and increased cardiac potassium channel currents. Further study revealed that miR-124 targeted the 3'UTR of STAT3 gene so as to suppress the expression of STAT3 protein but did not affect its mRNA level. STAT3 inhibitors AG490, WP1066, and S3I-201 were shown to attenuate the augmented expression of ANP, TNT, α-MHC, GATA-4 proteins, and mRNAs in cocultured BMSCs with AMO-124 transfection. Moreover, GATA-4 siRNA reduced the expression of ANP, TNT, α-MHC, and GATA-4 proteins but did not impact STAT3 protein in cocultured BMSCs, indicating GATA-4 serves as an effector of STAT3. In summary, we found that miR-124 regulated myogenic differentiation of BMSCs via targeting STAT3 mRNA, which provides new insights into molecular mechanisms of cardiomyogenesis of BMSCs.
Collapse
Affiliation(s)
- Benzhi Cai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 2012; 10:244-58. [PMID: 22385653 DOI: 10.1016/j.stem.2012.02.005] [Citation(s) in RCA: 631] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The broad repertoire of secreted trophic and immunomodulatory cytokines produced by mesenchymal stem cells (MSCs), generally referred to as the MSC secretome, has considerable potential for the treatment of cardiovascular disease. However, harnessing this MSC secretome for meaningful therapeutic outcomes is challenging due to the limited control of cytokine production following their transplantation. This review outlines the current understanding of the MSC secretome as a therapeutic for treatment of ischemic heart disease. We discuss ongoing investigative directions aimed at improving cellular activity and characterizing the secretome and its regulation in greater detail. Finally, we provide insights on and perspectives for future development of the MSC secretome as a therapeutic tool.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | |
Collapse
|
37
|
Delarosa O, Dalemans W, Lombardo E. Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 2012; 3:182. [PMID: 22783256 PMCID: PMC3387651 DOI: 10.3389/fimmu.2012.00182] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/13/2012] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have differentiation and immunomodulatory properties that make them interesting tools for the treatment of degenerative disorders, allograft rejection, or inflammatory and autoimmune diseases. Biological properties of MSCs can be modulated by the inflammatory microenvironment they face at the sites of injury or inflammation. Indeed, MSCs do not constitutively exert their immunomodulating properties but have to be primed by inflammatory mediators released from immune cells and inflamed tissue. A polarization process, mediated by Toll-like receptors (TLRs), toward either an anti-inflammatory or a pro-inflammatory phenotype has been described for MSCs. TLRs have been linked to allograft rejection and the perpetuation of chronic inflammatory diseases (e.g., Crohn’s disease, rheumatoid arthritis) through the recognition of conserved pathogen-derived components or endogenous ligands (danger signals) produced upon injury. Interest in understanding the effects of TLR activation on MSCs has greatly increased in the last few years since MSCs will likely encounter TLR ligands at sites of injury, and it has been proven that the activation of TLRs in MSCs can modulate their function and therapeutic effect.
Collapse
Affiliation(s)
- Olga Delarosa
- Research and Development Department, TiGenix SA, Parque Tecnológico de Madrid Madrid, Spain
| | | | | |
Collapse
|
38
|
Toll-like receptor 4 ablation improves stem cell survival after hypoxic injury. J Surg Res 2012; 177:330-3. [PMID: 22703984 DOI: 10.1016/j.jss.2012.04.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/11/2012] [Accepted: 04/18/2012] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Mesenchymal stem cell (MSC) therapy improves cardiac function after ischemia/reperfusion injury, but its effectiveness is limited by MSC survival in hypoxic environments. Toll-like receptor 4 (TLR4) contributes to pro-apoptotic signaling under hypoxic conditions. Activation of intracellular AKT and ERK pathways opposes this signal and improves cell survival. It is unknown whether ablation of TLR4 affects these pathways after hypoxic injury in MSCs. We hypothesized that: 1) TLR4 knockout (TLR4KO) in MSCs improves survival after hypoxic injury; and 2) this survival difference is due to improved signaling in the AKT and ERK pathways. MATERIALS AND METHODS Murine wild-type (WT) and TLR4KO MSCs were harvested from bone marrow and grown in vitro. A total of 0.1 × 10(6) cells/well were incubated in hypoxic conditions versus normoxic controls. After 24 h, these groups were examined for cell survival via counting and compared using a t-test with P < 0.05 = statistical significance. AKT and ERK concentrations were measured in lysate using Western blot analysis. RESULTS The morphology of WT and TLR4KO MSCs was similar. In line with our previous findings, hypoxia did significantly increase cell death in WT cells (1.79 × 10(5) living cells/mL control versus 0.88 × 10(5) hypoxia, P < 0.05). Hypoxic injury did not increase cell death in the TLR4KO group (1.68 × 10(5) control versus 1.82 × 10(5) hypoxia, P < 0.05). Increased AKT activation was observed in all TLR4KO groups. TLR4 did not affect phosphorylated ERK levels. CONCLUSION TLR4-knockout MSCs show improved survival after hypoxic injury because of increased AKT pathway signal. Use of TLR4-knockout MSCs in ischemia/reperfusion studies results in enhanced cardioprotection; improved stem cell survival was likely a contributing factor.
Collapse
|
39
|
Huang C, Gu H, Yu Q, Manukyan MC, Poynter JA, Wang M. Sca-1+ cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion. PLoS One 2011; 6:e29246. [PMID: 22195033 PMCID: PMC3240662 DOI: 10.1371/journal.pone.0029246] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/23/2011] [Indexed: 11/21/2022] Open
Abstract
Background Cardiac stem cells (CSCs) promote myocardial recovery following ischemia through their regenerative properties. However, little is known regarding the implication of paracrine action by CSCs in the setting of myocardial ischemia/reperfusion (I/R) injury although it is well documented that non-cardiac stem cells mediate cardioprotection via the production of paracrine protective factors. Here, we studied whether CSCs could initiate acute protection following global myocardial I/R via paracrine effect and what component from CSCs is critical to this protection. Methodology/Principal Findings A murine model of global myocardial I/R was utilized to investigate paracrine effect of Sca-1+ CSCs on cardiac function. Intracoronary delivery of CSCs or CSC conditioned medium (CSC CM) prior to ischemia significantly improved myocardial function following I/R. siRNA targeting of VEGF in CSCs did not affect CSC-preserved myocardial function in response to I/R injury. However, differentiation of CSCs to cardiomyocytes (DCSCs) abolished this protection. Through direct comparison of the protein expression profiles of CSCs and DCSCs, SDF-1 was identified as one of the dominant paracrine factors secreted by CSCs. Blockade of the SDF-1 receptor by AMD3100 or downregulated SDF-1 expression in CSCs by specific SDF-1 siRNA dramatically impaired CSC-induced improvement in cardiac function and increased myocardial damage following I/R. Of note, CSC treatment increased myocardial STAT3 activation after I/R, whereas downregulation of SDF-1 action by blockade of the SDF-1 receptor or SDF-1 siRNA transfection abolished CSC-induced STAT3 activation. In addition, inhibition of STAT3 activation attenuated CSC-mediated cardioprotection following I/R. Finally, post-ischemic infusion of CSC CM was shown to significantly protect I/R-caused myocardial dysfunction. Conclusions/Significance This study suggests that CSCs acutely improve post-ischemic myocardial function through paracrine factor SDF-1 and up-regulated myocardial STAT3 activation.
Collapse
Affiliation(s)
- Chunyan Huang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hongmei Gu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Qing Yu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mariuxi C. Manukyan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jeffrey A. Poynter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
40
|
Maumus M, Guérit D, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Res Ther 2011; 2:14. [PMID: 21457518 PMCID: PMC3226285 DOI: 10.1186/scrt55] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Growing knowledge on the biology of mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for rheumatologic disorders. Historically, their potential to differentiate into cells of the bone and cartilage lineages has led to a variety of experimental strategies to investigate whether MSCs can be used for tissue engineering approaches. Beyond this potential, MSCs also display immunosuppressive properties, which have prompted research on their capacity to suppress local inflammation and tissue damage in a variety of inflammatory autoimmune diseases and, in particular, in rheumatoid arthritis. Currently, an emerging field of research comes from the possibility that these cells, through their trophic/regenerative potential, may also influence the course of chronic degenerative disorders and prevent cartilage degradation in osteoarthritis. This review focuses on these advances, specifically on the biological properties of MSCs, including their immunoregulatory characteristics, differentiation capacity and trophic potential, as well as the relevance of MSC-based therapies for rheumatic diseases.
Collapse
|
41
|
Carlson S, Trial J, Soeller C, Entman ML. Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction. Cardiovasc Res 2011; 91:99-107. [PMID: 21357194 DOI: 10.1093/cvr/cvr061] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS Therapeutic advances in prevention and treatment of myocardial infarction (MI) have decreased patient mortality and increased concern about efficient repair and scar formation, processes that are necessary to attenuate complications such as adverse remodelling and heart failure. Since the rapid accumulation and activity of cardiac fibroblasts is critical for proper scar formation, we hypothesized that infarct fibroblasts are generated by a cardiac-resident progenitor cell population. METHODS AND RESULTS We found that infarct fibroblasts in C57BL/6 mice are generated by a mesenchymal stem cell (MSC) population that responds robustly to injury by proliferating and accumulating in the infarct. We report that stem cell-derived fibroblasts contribute to the formation of a scar after an infarction by differentiating into matrix-producing fibroblasts closely associated with fibrillar collagen in the infarct. Further characterization of these cells revealed a heterogenous population with expression of both stem cell and canonical cardiac fibroblast markers, suggesting that some have a commitment to the fibroblast phenotype. Our in vitro study of these cells shows that they have extended self-renewal capability and express the primitive marker Nanog. In keeping with these observations, we also report that these cells are multipotent and differentiate readily into fibroblasts as well as other mesenchymal lineages. CONCLUSION Cells with the properties of MSCs participate in wound healing after MI in the adult heart.
Collapse
Affiliation(s)
- Signe Carlson
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Mailstation BCM620, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Raicevic G, Najar M, Stamatopoulos B, De Bruyn C, Meuleman N, Bron D, Toungouz M, Lagneaux L. The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cell Immunol 2011; 270:207-16. [DOI: 10.1016/j.cellimm.2011.05.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/29/2011] [Accepted: 05/13/2011] [Indexed: 01/14/2023]
|