1
|
Rocher C, Vernale A, Fierro-Constaín L, Séjourné N, Chenesseau S, Marschal C, Issartel J, Le Goff E, Stroebel D, Jouvion J, Dutilleul M, Matthews C, Marschal F, Brouilly N, Massey-Harroche D, Schenkelaars Q, Ereskovsky A, Le Bivic A, Renard E, Borchiellini C. The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024. [PMID: 39364688 DOI: 10.1002/jez.b.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
The comparative study of the four non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera) provides insights into the origin of bilaterian traits. To complete our knowledge of the cell biology and development of these animals, additional non-bilaterian models are needed. Given the developmental, histological, ecological, and genomic differences between the four sponge classes (Demospongiae, Calcarea, Homoscleromorpha, and Hexactinellida), we have been developing the Oscarella lobularis (Porifera, class Homoscleromorpha) model over the past 15 years. Here, we report a new step forward by inducing, producing, and maintaining in vitro thousands of clonal buds that now make possible various downstream applications. This study provides a full description of bud morphology, physiology, cells and tissues, from their formation to their development into juveniles, using adapted cell staining protocols. In addition, we show that buds have outstanding capabilities of regeneration after being injured and of re-epithelization after complete cell dissociation. Altogether, Oscarella buds constitute a relevant all-in-one sponge model to access a large set of biological processes, including somatic morphogenesis, epithelial morphogenesis, cell fate, body axes formation, nutrition, contraction, ciliary beating, and respiration.
Collapse
Grants
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE;
- AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR).
- The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments.
- The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
Collapse
Affiliation(s)
- Caroline Rocher
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | - Amélie Vernale
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
- Aix Marseille University, Marseille, France
| | | | - Nina Séjourné
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | | | | | - Julien Issartel
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | - Emilie Le Goff
- ISEM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Stroebel
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Julie Jouvion
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Morgan Dutilleul
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | | | - Florent Marschal
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | | | | | | | | | | | - Emmanuelle Renard
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
- Aix Marseille University, Marseille, France
| | | |
Collapse
|
2
|
Lu Z, Lin Q, Zhang H. Characterization of the Complete Mitochondrial Genome of Agelas nakamurai from the South China Sea. Int J Mol Sci 2023; 25:357. [PMID: 38203529 PMCID: PMC10779334 DOI: 10.3390/ijms25010357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The Agelas genus sponges are widely distributed and provide shelter for organisms that inhabit reefs. However, there is a lack of research on the genetic diversity of the Agelas sponges. Additionally, only one Agelas mitochondrial genome has been documented, leaving the characteristics of the Agelas genus's mitogenome in need of further clarification. To address this research gap, we utilized Illumina HiSeq4000 sequencing and de novo assembly to ascertain the complete mitochondrial genome of Agelas sp. specimens, sourced from the South China Sea. Our analysis of the cox1 barcoding similarity and phylogenetic relationship reveals that taxonomically, the Agelas sp. corresponds to Agelas nakamurai. The mitogenome of Agelas nakamurai is 20,885 bp in length, encoding 14 protein-coding genes, 24 transfer RNA genes, and 2 ribosomal RNA genes. Through a comparison of the mitochondrial genes, we discovered that both Agelas nakamurai and Agelas schmidti have an identical gene arrangement. Furthermore, we observed a deletion in the trnD gene and duplication and remodeling of the trnL gene in the Agelas nakamurai's mitogenome. Our evolutionary analysis also identified lineage-specific positive selection sites in the nad3 and nad5 genes of the Agelas sponges' mitogenome. These findings shed light on the gene rearrangement events and positive selection sites in the mitogenome of Agelas nakamurai, providing valuable molecular insights into the evolutionary processes of this genus.
Collapse
Affiliation(s)
- Zijian Lu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
3
|
Lavrov DV, Diaz MC, Maldonado M, Morrow CC, Perez T, Pomponi SA, Thacker RW. Phylomitogenomics bolsters the high-level classification of Demospongiae (phylum Porifera). PLoS One 2023; 18:e0287281. [PMID: 38048310 PMCID: PMC10695373 DOI: 10.1371/journal.pone.0287281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Class Demospongiae is the largest in the phylum Porifera (Sponges) and encompasses nearly 8,000 accepted species in three subclasses: Keratosa, Verongimorpha, and Heteroscleromorpha. Subclass Heteroscleromorpha contains ∼90% of demosponge species and is subdivided into 17 orders. The higher level classification of demosponges underwent major revision as the result of nearly three decades of molecular studies. However, because most of the previous molecular work only utilized partial data from a small number of nuclear and mitochondrial (mt) genes, this classification scheme needs to be tested by larger datasets. Here we compiled a mt dataset for 136 demosponge species-including 64 complete or nearly complete and six partial mt-genome sequences determined or assembled for this study-and used it to test phylogenetic relationships among Demospongiae in general and Heteroscleromorpha in particular. We also investigated the phylogenetic position of Myceliospongia araneosa, a highly unusual demosponge without spicules and spongin fibers, currently classified as Demospongiae incertae sedis, for which molecular data were not available. Our results support the previously inferred sister-group relationship between Heteroscleromorpha and Keratosa + Verongimorpha and suggest five main clades within Heteroscleromorpha: Clade C0 composed of order Haplosclerida; Clade C1 composed of Scopalinida, Sphaerocladina, and Spongillida; Clade C2 composed of Axinellida, Biemnida, Bubarida; Clade C3 composed of Tetractinellida; and Clade C4 composed of Agelasida, Clionaida, Desmacellida, Merliida, Suberitida, Poecilosclerida, Polymastiida, and Tethyida. The inferred relationships among these clades were (C0(C1(C2(C3+C4)))). Analysis of molecular data from M. araneosa placed it in the C3 clade as a sister taxon to the highly skeletonized tetractinellids Microscleroderma sp. and Leiodermatium sp. Molecular clock analysis dated divergences among the major clades in Heteroscleromorpha from the Cambrian to the Early Silurian, the origins of most heteroscleromorph orders in the middle Paleozoic, and the most basal splits within these orders around the Paleozoic to Mesozoic transition. Overall, the results of this study are mostly congruent with the accepted classification of Heteroscleromorpha, but add temporal perspective and new resolution to phylogenetic relationships within this subclass.
Collapse
Affiliation(s)
- Dennis V. Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Maria C. Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
- Museo Marino de Margarita, Boca de Río, Nueva Esparta, Venezuela
| | - Manuel Maldonado
- Department of Marine Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| | - Christine C. Morrow
- Zoology Department, School of Natural Sciences & Ryan Institute, NUI Galway, University Road, Galway, Ireland
- Ireland and Queen’s University Marine Laboratory, Portaferry, Northern Ireland
| | - Thierry Perez
- Institut Méditerranéen de la Biodiversité et d’Ecologie marine et continentale (IMBE), CNRS, Aix-Marseille Université, IRD, Avignon Université City, Provence, France
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
| | - Robert W. Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States of America
- Smithsonian Tropical Research Institute, Balboa, Panama City, Republic of Panama
| |
Collapse
|
4
|
Tessler M, Neumann JS, Kamm K, Osigus HJ, Eshel G, Narechania A, Burns JA, DeSalle R, Schierwater B. Phylogenomics and the first higher taxonomy of Placozoa, an ancient and enigmatic animal phylum. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1016357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Placozoa is an ancient phylum of extraordinarily unusual animals: miniscule, ameboid creatures that lack most fundamental animal features. Despite high genetic diversity, only recently have the second and third species been named. While prior genomic studies suffer from incomplete placozoan taxon sampling, we more than double the count with protein sequences from seven key genomes and produce the first nuclear phylogenomic reconstruction of all major placozoan lineages. This leads us to the first complete Linnaean taxonomic classification of Placozoa, over a century after its discovery: This may be the only time in the 21st century when an entire higher taxonomy for a whole animal phylum is formalized. Our classification establishes 2 new classes, 4 new orders, 3 new families, 1 new genus, and 1 new species, namely classes Polyplacotomia and Uniplacotomia; orders Polyplacotomea, Trichoplacea, Cladhexea, and Hoilungea; families Polyplacotomidae, Cladtertiidae, and Hoilungidae; and genus Cladtertia with species Cladtertia collaboinventa, nov. Our likelihood and gene content tree topologies refine the relationships determined in previous studies. Adding morphological data into our phylogenomic matrices suggests sponges (Porifera) as the sister to other animals, indicating that modest data addition shifts this node away from comb jellies (Ctenophora). Furthermore, by adding the first genomic protein data of the exceptionally distinct and branching Polyplacotoma mediterranea, we solidify its position as sister to all other placozoans; a divergence we estimate to be over 400 million years old. Yet even this deep split sits on a long branch to other animals, suggesting a bottleneck event followed by diversification. Ancestral state reconstructions indicate large shifts in gene content within Placozoa, with Hoilungia hongkongensis and its closest relatives having the most unique genetics.
Collapse
|
5
|
Lubośny M, Śmietanka B, Lasota R, Burzyński A. Confirmation of the first intronic sequence in the bivalvian mitochondrial genome of Macoma balthica (Linnaeus, 1758). Biol Lett 2022; 18:20220275. [PMID: 36196553 PMCID: PMC9532982 DOI: 10.1098/rsbl.2022.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
In 2020, the first male-type mitochondrial genome from the clam Macoma balthica was published. Apart from the unusual doubly uniparental inheritance of mtDNA, scientists observed a unique (over 4k bp long) extension in the middle of the cox2 gene. We have attempted to replicate these data by NGS DNA sequencing and explore further the expression of the long cox2 gene. In our study, we report an even longer cox2 gene (over 5.5 kbp) with no stop codon separating conserved cox2 domains, as well as, based on the rtPCR, a lower relative gene expression pattern of the middle part of the gene (5' = 1; mid = 0.46; 3' = 0.89). Lastly, we sequenced the cox2 gene transcript proving the excision of the intronic sequence.
Collapse
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot 81-712, Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot 81-712, Poland
| | - Rafał Lasota
- Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, University of Gdańsk, Gdynia 81-378, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot 81-712, Poland
| |
Collapse
|
6
|
Anteneh YS, Yang Q, Brown MH, Franco CMM. Factors affecting the isolation and diversity of marine sponge-associated bacteria. Appl Microbiol Biotechnol 2022; 106:1729-1744. [PMID: 35103809 PMCID: PMC8882111 DOI: 10.1007/s00253-022-11791-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Marine sponges are an ideal source for isolating as yet undiscovered microorganisms with some sponges having about 50% of their biomass composed of microbial symbionts. This study used a variety of approaches to investigate the culturable diversity of the sponge-associated bacterial community from samples collected from the South Australian marine environment. Twelve sponge samples were selected from two sites and their bacterial population cultivated using seven different agar media at two temperatures and three oxygen levels over 3 months. These isolates were identified using microscopic, macroscopic, and 16S rRNA gene analysis. A total of 1234 bacterial colonies were isolated which consisted of four phyla: Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes, containing 21 genera. The diversity of the bacterial population was demonstrated to be influenced by the type of isolation medium, length of the incubation period and temperature, sponge type, and oxygen level. The findings of this study showed that marine sponges of South Australia can yield considerable bacterial culturable diversity if a comprehensive isolation strategy is implemented. Two sponges, with the highest and the lowest diversity of culturable isolates, were examined using next-generation sequencing to better profile the bacterial population. A marked difference in terms of phyla and genera was observed using culture-based and culture-independent approaches. This observed variation displays the importance of utilizing both methods to reflect a more complete picture of the microbial population of marine sponges. KEY POINTS: Improved bacterial diversity due to long incubations, 2 temperatures, and 3 oxygen levels. Isolates identified by morphology, restriction digests, and 16S rRNA gene sequencing. At least 70% of culturable genera were not revealed by NGS methods.
Collapse
Affiliation(s)
- Yitayal S Anteneh
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
- Department of Medical Microbiology, College of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Qi Yang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Christopher M M Franco
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
7
|
Borchiellini C, Degnan SM, Le Goff E, Rocher C, Vernale A, Baghdiguian S, Séjourné N, Marschal F, Le Bivic A, Godefroy N, Degnan BM, Renard E. Staining and Tracking Methods for Studying Sponge Cell Dynamics. Methods Mol Biol 2021; 2219:81-97. [PMID: 33074535 DOI: 10.1007/978-1-0716-0974-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To better understand the origin of animal cell types, body plans, and other morphological features, further biological knowledge and understanding are needed from non-bilaterian phyla, namely, Placozoa, Ctenophora, and Porifera. This chapter describes recent cell staining approaches that have been developed in three phylogenetically distinct sponge species-the homoscleromorph Oscarella lobularis, and the demosponges Amphimedon queenslandica and Lycopodina hypogea-to enable analyses of cell death, proliferation, and migration. These methods allow for a more detailed understanding of cellular behaviors and fates, and morphogenetic processes in poriferans, building on current knowledge of sponge cell biology that relies chiefly on classical (static) histological observations.
Collapse
Affiliation(s)
| | - Sandie M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Emilie Le Goff
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Amélie Vernale
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille University, CNRS, UMR 7288, IBDM, Marseille, France
| | | | - Nina Séjourné
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Florent Marschal
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - André Le Bivic
- Aix Marseille University, CNRS, UMR 7288, IBDM, Marseille, France
| | - Nelly Godefroy
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille University, CNRS, UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
8
|
Pozdnyakov I, Agniya S, Sergey K, César R, Thierry P, Irina E, Alexander E. Morphological variability of choanocyte kinetids supports a novel systematic division within Oscarellidae (Porifera, Homoscleromorpha). J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Igor Pozdnyakov
- Zoological Institute of Russian Academy of Sciences St. Petersburg Russia
| | - Sokolova Agniya
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences Moscow Russia
| | - Karpov Sergey
- Zoological Institute of Russian Academy of Sciences St. Petersburg Russia
- Department of Invertebrate Zoology Biological Faculty St. Petersburg State University St. Petersburg Russia
| | - Ruiz César
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE) Aix Marseille UniversityCNRSIRDAvignon UniversityStation marine d'Endoume Marseille France
| | - Pérez Thierry
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE) Aix Marseille UniversityCNRSIRDAvignon UniversityStation marine d'Endoume Marseille France
| | - Ekimova Irina
- Department of Invertebrate Zoology Lomonosov Moscow State University Moscow Russia
| | - Ereskovsky Alexander
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences Moscow Russia
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE) Aix Marseille UniversityCNRSIRDAvignon UniversityStation marine d'Endoume Marseille France
- Department of Embryology Biological Faculty St. Petersburg State University St. Petersburg Russia
| |
Collapse
|
9
|
Oliveira BFR, Lopes IR, Canellas ALB, Muricy G, Dobson ADW, Laport MS. Not That Close to Mommy: Horizontal Transmission Seeds the Microbiome Associated with the Marine Sponge Plakina cyanorosea. Microorganisms 2020; 8:E1978. [PMID: 33322780 PMCID: PMC7764410 DOI: 10.3390/microorganisms8121978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 01/28/2023] Open
Abstract
Marine sponges are excellent examples of invertebrate-microbe symbioses. In this holobiont, the partnership has elegantly evolved by either transmitting key microbial associates through the host germline and/or capturing microorganisms from the surrounding seawater. We report here on the prokaryotic microbiota during different developmental stages of Plakina cyanorosea and their surrounding environmental samples by a 16S rRNA metabarcoding approach. In comparison with their source adults, larvae housed slightly richer and more diverse microbial communities, which are structurally more related to the environmental microbiota. In addition to the thaumarchaeal Nitrosopumilus, parental sponges were broadly dominated by Alpha- and Gamma-proteobacteria, while the offspring were particularly enriched in the Vibrionales, Alteromonodales, Enterobacterales orders and the Clostridia and Bacteroidia classes. An enterobacterial operational taxonomic unit (OTU) was the dominant member of the strict core microbiota. The most abundant and unique OTUs were not significantly enriched amongst the microbiomes from host specimens included in the sponge microbiome project. In a wider context, Oscarella and Plakina are the sponge genera with higher divergence in their associated microbiota compared to their Homoscleromorpha counterparts. Our results indicate that P. cyanorosea is a low microbial abundance sponge (LMA), which appears to heavily depend on the horizontal transmission of its microbial partners that likely help the sponge host in the adaptation to its habitat.
Collapse
Affiliation(s)
- Bruno F. R. Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
| | - Isabelle R. Lopes
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Anna L. B. Canellas
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Guilherme Muricy
- Laboratório de Biologia de Porifera, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940040, Brazil;
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Marinella S. Laport
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| |
Collapse
|
10
|
Stroebel D, Paoletti P. Architecture and function of NMDA receptors: an evolutionary perspective. J Physiol 2020; 599:2615-2638. [PMID: 32786006 DOI: 10.1113/jp279028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are a major class of ligand-gated ion channels that are widespread in the living kingdom. Their critical role in excitatory neurotransmission and brain function of arthropods and vertebrates has made them a compelling subject of interest for neurophysiologists and pharmacologists. This is particularly true for NMDA receptor (NMDARs), a subclass of iGluRs that act as central drivers of synaptic plasticity in the CNS. How and when the unique properties of NMDARs arose during evolution, and how they relate to the evolution of the nervous system, remain open questions. Recent years have witnessed a boom in both genomic and structural data, such that it is now possible to analyse the evolution of iGluR genes on an unprecedented scale and within a solid molecular framework. In this review, combining insights from phylogeny, atomic structure and physiological and mechanistic data, we discuss how evolution of NMDAR motifs and sequences shaped their architecture and functionalities. We trace differences and commonalities between NMDARs and other iGluRs, emphasizing a few distinctive properties of the former regarding ligand binding and gating, permeation, allosteric modulation and intracellular signalling. Finally, we speculate on how specific molecular properties of iGuRs arose to supply new functions to the evolving structure of the nervous system, from early metazoan to present mammals.
Collapse
Affiliation(s)
- David Stroebel
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Pierre Paoletti
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| |
Collapse
|
11
|
Schultz DT, Eizenga JM, Corbett-Detig RB, Francis WR, Christianson LM, Haddock SH. Conserved novel ORFs in the mitochondrial genome of the ctenophore Beroe forskalii. PeerJ 2020; 8:e8356. [PMID: 32025367 PMCID: PMC6991124 DOI: 10.7717/peerj.8356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
To date, five ctenophore species' mitochondrial genomes have been sequenced, and each contains open reading frames (ORFs) that if translated have no identifiable orthologs. ORFs with no identifiable orthologs are called unidentified reading frames (URFs). If truly protein-coding, ctenophore mitochondrial URFs represent a little understood path in early-diverging metazoan mitochondrial evolution and metabolism. We sequenced and annotated the mitochondrial genomes of three individuals of the beroid ctenophore Beroe forskalii and found that in addition to sharing the same canonical mitochondrial genes as other ctenophores, the B. forskalii mitochondrial genome contains two URFs. These URFs are conserved among the three individuals but not found in other sequenced species. We developed computational tools called pauvre and cuttlery to determine the likelihood that URFs are protein coding. There is evidence that the two URFs are under negative selection, and a novel Bayesian hypothesis test of trinucleotide frequency shows that the URFs are more similar to known coding genes than noncoding intergenic sequence. Protein structure and function prediction of all ctenophore URFs suggests that they all code for transmembrane transport proteins. These findings, along with the presence of URFs in other sequenced ctenophore mitochondrial genomes, suggest that ctenophores may have uncharacterized transmembrane proteins present in their mitochondria.
Collapse
Affiliation(s)
- Darrin T. Schultz
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Jordan M. Eizenga
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russell B. Corbett-Detig
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Warren R. Francis
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - Steven H.D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
12
|
Muricy G, Domingos C, Lage A, Lanna E, Hardoim CCP, Laport MS, Zilberberg C. Integrative taxonomy widens our knowledge of the diversity, distribution and biology of the genus Plakina (Homosclerophorida: Plakinidae). INVERTEBR SYST 2019. [DOI: 10.1071/is18027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the evolutionary significance of Homoscleromorpha, their diversity and biology are largely unknown. Here we integrate data of morphology, cytology, microbiology, ecology, reproduction, and mitochondrial cox-1 and cob gene sequences to resolve a complex of sympatric species of Plakina in South-eastern Brazil. All datasets congruently supported the delimitation of three species, two of which are new to science. Plakina coerulea has its distribution extended from one locality to over 2360 km wide. Plakina cabofriense, sp. nov. also occurs in North-eastern Brazil. Plakina cyanorosea, sp. nov. occurs only in a single, small tide pool and may be critically endangered. Plakina cyanorosea, sp. nov. produces conspicuous, abundant larvae useful for laboratory investigations. A thin, bright orange organic coat covers some spicules of P. cabofriense, sp. nov. and P. cyanorosea, sp. nov. The three Plakina species harbour diverse microbial symbiont communities, including previously unknown morphologies. Molecular phylogenies and barcoding gaps based on cox-1 and cob sequences supported that each species is monophyletic and distinct from other congeners. The genus Plakina is paraphyletic and strongly needs redefinition. The integrative approach provides new data that widens our knowledge of Homoscleromorpha diversity, distribution and biology.
Collapse
|
13
|
Izumi T, Ise Y, Yanagi K, Shibata D, Ueshima R. First Detailed Record of Symbiosis Between a Sea Anemone and Homoscleromorph Sponge, With a Description of Tempuractis rinkai gen. et sp. nov. (Cnidaria: Anthozoa: Actiniaria: Edwardsiidae). Zoolog Sci 2018; 35:188-198. [PMID: 29623791 DOI: 10.2108/zs170042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new species in a new genus of sea anemone, Tempuractis rinkai gen. et sp. nov., was discovered at several localities along the temperate rocky shores of Japan. The new species is approximately 4 mm in length and has been assigned to family Edwardsiidae, because it has eight macrocnemes, lacks sphincter and basal muscles, and possesses rounded aboral end. The sea anemone, however, also has a peculiar body shape unlike that of any other known taxa. This new species resembles some genera, especially Drillactis and Nematostella, in smooth column surface without nemathybomes or tenaculi, but is distinguishable from them by several morphological features: the presence of holotrichs and absence of nematosomes. Furthermore, this edwardsiid species exhibits a peculiar symbiotic ecology with sponges. Therefore, a new genus, Tempuractis, is proposed for this species. In the field, T. rinkai sp. nov. was always found living inside homosclerophorid sponge of the genus Oscarella, which suggests a possible obligate symbiosis between Porifera and Actiniaria. The benefit of this symbiosis is discussed on the basis of observations of live specimens, both in the aquarium and field. This is the first report of symbiosis between a sea anemone and a homoscleromorph sponge.
Collapse
Affiliation(s)
- Takato Izumi
- 1 Department of Biological Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Ise
- 2 Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Mie 517-0004, Japan
| | - Kensuke Yanagi
- 3 Coastal Branch of Natural History Museum and Institute, Chiba, Kastsuura, Chiba 299-5242, Japan
| | - Daisuke Shibata
- 4 Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka 415-0025, Japan
| | - Rei Ueshima
- 1 Department of Biological Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Ereskovsky AV, Richter DJ, Lavrov DV, Schippers KJ, Nichols SA. Transcriptome sequencing and delimitation of sympatric Oscarella species (O. carmela and O. pearsei sp. nov) from California, USA. PLoS One 2017; 12:e0183002. [PMID: 28892487 PMCID: PMC5593202 DOI: 10.1371/journal.pone.0183002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/21/2017] [Indexed: 11/19/2022] Open
Abstract
The homoscleromorph sponge Oscarella carmela, first described from central California, USA is shown to represent two superficially similar but both morphologically and phylogenetically distinct species that are co-distributed. We here describe a new species as Oscarella pearsei, sp. nov. and re-describe Oscarella carmela; the original description was based upon material from both species. Further, we correct the identification of published genomic/transcriptomic resources that were originally attributed to O. carmela, and present new Illumina-sequenced transcriptome assemblies for each of these species, and the mitochondrial genome sequence for O. pearsei sp. nov. Using SSU and LSU ribosomal DNA and the mitochondrial genome, we report the phylogenetic relationships of these species relative to other Oscarella species, and find strong support for the placement of O. pearsei sp. nov. in a distinct clade within genus Oscarella defined by the presence of spherulous cells that contain paracrystalline inclusions; O. carmela lacks this cell type. Oscarella pearsei sp. nov and O. carmela can be tentatively distinguished based upon gross morphological differences such as color, surface texture and extent of mucus production, but can be more reliably identified using mitochondrial and nuclear barcode sequencing, ultrastructural characteristics of cells in the mesohyl, and the morphology of the follicle epithelium which surrounds the developing embryo in reproductively active individuals.
Collapse
Affiliation(s)
- Alexander V. Ereskovsky
- Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d’Endoume, Marseille, France
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 7/9 Universitetskaya emb., St. Petersburg, Russia
| | - Daniel J. Richter
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Dennis V. Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Klaske J. Schippers
- Department of Biological Sciences, SGM 203, University of Denver, Denver, CO, United States of America
| | - Scott A. Nichols
- Department of Biological Sciences, SGM 203, University of Denver, Denver, CO, United States of America
| |
Collapse
|
15
|
Schuster A, Lopez JV, Becking LE, Kelly M, Pomponi SA, Wörheide G, Erpenbeck D, Cárdenas P. Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding. BMC Evol Biol 2017; 17:82. [PMID: 28320321 PMCID: PMC5360047 DOI: 10.1186/s12862-017-0928-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mitochondrial introns intermit coding regions of genes and feature characteristic secondary structures and splicing mechanisms. In metazoans, mitochondrial introns have only been detected in sponges, cnidarians, placozoans and one annelid species. Within demosponges, group I and group II introns are present in six families. Based on different insertion sites within the cox1 gene and secondary structures, four types of group I and two types of group II introns are known, which can harbor up to three encoding homing endonuclease genes (HEG) of the LAGLIDADG family (group I) and/or reverse transcriptase (group II). However, only little is known about sponge intron mobility, transmission, and origin due to the lack of a comprehensive dataset. We analyzed the largest dataset on sponge mitochondrial group I introns to date: 95 specimens, from 11 different sponge genera which provided novel insights into the evolution of group I introns. RESULTS For the first time group I introns were detected in four genera of the sponge family Scleritodermidae (Scleritoderma, Microscleroderma, Aciculites, Setidium). We demonstrated that group I introns in sponges aggregate in the most conserved regions of cox1. We showed that co-occurrence of two introns in cox1 is unique among metazoans, but not uncommon in sponges. However, this combination always associates an active intron with a degenerating one. Earlier hypotheses of HGT were confirmed and for the first time VGT and secondary losses of introns conclusively demonstrated. CONCLUSION This study validates the subclass Spirophorina (Tetractinellida) as an intron hotspot in sponges. Our analyses confirm that most sponge group I introns probably originated from fungi. DNA barcoding is discussed and the application of alternative primers suggested.
Collapse
Affiliation(s)
- Astrid Schuster
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
| | - Jose V. Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL 33004 USA
| | - Leontine E. Becking
- Marine Animal Ecology, Wageningen University & Research Centre, P.O. Box 3700, AH, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Marine Zoology Department, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - Michelle Kelly
- National Centre for Aquatic Biodiversity and Biosecurity, National Institute of Water and Atmospheric Research, P.O. Box 109–695, Newmarket, Auckland, New Zealand
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute-Florida Atlantic University, 5600 U.S. 1 North, Ft Pierce, FL 34946 USA
| | - Gert Wörheide
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- SNSB - Bavarian State Collections of Palaeontology and Geology, Richard-Wagner Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Paco Cárdenas
- Department of Medicinal Chemistry, Division of Pharmacognosy, BioMedical Center, Uppsala University, Husargatan 3, 75123 Uppsala, Sweden
| |
Collapse
|
16
|
Determination of the Halogenated Skeleton Constituents of the Marine Demosponge Ianthella basta. Mar Drugs 2017; 15:md15020034. [PMID: 28208597 PMCID: PMC5334614 DOI: 10.3390/md15020034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
Demosponges of the order Verongida such as Ianthella basta exhibit skeletons containing spongin, a collagenous protein, and chitin. Moreover, Verongida sponges are well known to produce bioactive brominated tyrosine derivatives. We recently demonstrated that brominated compounds do not only occur in the cellular matrix but also in the skeletons of the marine sponges Aplysina cavernicola and I. basta. Further investigations revealed the amino acid composition of the skeletons of A. cavernicola including the presence of several halogenated amino acids. In the present work, we investigated the skeletal amino acid composition of the demosponge I. basta, which belongs to the Ianthellidae family, and compared it with that of A. cavernicola from the Aplysinidae family. Seventeen proteinogenic and five non-proteinogenic amino acids were detected in I. basta. Abundantly occurring amino acids like glycine and hydroxyproline show the similarity of I. basta and A. cavernicola and confirm the collagenous nature of their sponging fibers. We also detected nine halogenated tyrosines as an integral part of I. basta skeletons. Since both sponges contain a broad variety of halogenated amino acids, this seems to be characteristic for Verongida sponges. The observed differences of the amino acid composition confirm that spongin exhibits a certain degree of variability even among the members of the order Verongida.
Collapse
|
17
|
Lavrov DV, Pett W. Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages. Genome Biol Evol 2016; 8:2896-2913. [PMID: 27557826 PMCID: PMC5633667 DOI: 10.1093/gbe/evw195] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 12/11/2022] Open
Abstract
Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria. Within these groups, mt-genomes are characterized by varying numbers of both linear and circular chromosomes, extra genes (e.g. atp9, polB, tatC), large variation in the number of encoded mitochondrial transfer RNAs (tRNAs) (0-25), at least seven different genetic codes, presence/absence of introns, tRNA and mRNA editing, fragmented ribosomal RNA genes, translational frameshifting, highly variable substitution rates, and a large range of genome sizes. This newly discovered diversity allows a better understanding of the evolutionary plasticity and conservation of animal mtDNA and provides insights into the molecular and evolutionary mechanisms shaping mitochondrial genomes.
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Walker Pett
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
18
|
Punia K, Bucaro M, Mancuso A, Cuttitta C, Marsillo A, Bykov A, L'Amoreaux W, Raja KS. Rediscovering Chemical Gardens: Self-Assembling Cytocompatible Protein-Intercalated Silicate-Phosphate Sponge-Mimetic Tubules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8748-58. [PMID: 27443165 DOI: 10.1021/acs.langmuir.6b01721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The classic chemical garden experiment is reconstructed to produce protein-intercalated silicate-phosphate tubules that resemble tubular sponges. The constructs were synthesized by seeding calcium chloride into a solution of sodium silicate-potassium phosphate and gelatin. Sponge-mimetic tubules were fabricated with varying percentages of gelatin (0-15% w/v), in diameters ranging from 200 μm to 2 mm, characterized morphologically and compositionally, functionalized with biomolecules for cell adhesion, and evaluated for cytocompatibility. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) experiments showed that the external surface of the tubules was relatively more amorphous in texture and carbon/protein-rich in comparison to the interior surface. Transmission electron microscopy (TEM) images indicate a network composed of gelatin incorporated into the inorganic scaffold. The presence of gelatin in the constructs was confirmed by infrared spectroscopy. Powder X-ray diffraction (XRD) was used to identify inorganic crystalline phases in the scaffolds that are mainly composed of Ca(OH)2, NaCl, and Ca2SiO4 along with a band corresponding to amorphous gelatin. Bioconjugation and coating protocols were developed to program the scaffolds with cues for cell adhesion, and the resulting constructs were employed for 3D cell culture of marine (Pyrocystis lunula) and mammalian (HeLa and H9C2) cell lines. The cytocompatibility of the constructs was demonstrated by live cell assays. We have successfully shown that these biomimetic materials can indeed support life; they serve as scaffolds that facilitate the attachment and assembly of individual cells to form multicellular entities, thereby revisiting the 350-year-old effort to link chemical gardens with the origins of life. Hybrid chemical garden biomaterials are programmable, readily fabricated and could be employed in tissue engineering, biomolecular materials development, 3D mammalian cell culture and by researchers investigating the origins of multicellular life.
Collapse
Affiliation(s)
- Kamia Punia
- Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | | | - Andrew Mancuso
- Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | | | - Alexandra Marsillo
- Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | - Alexey Bykov
- Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
- Department of Physics, City College of New York , 160 Convent Avenue, New York, New York 10031, United States
| | - William L'Amoreaux
- Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | - Krishnaswami S Raja
- Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
19
|
Ostrovsky AN, Lidgard S, Gordon DP, Schwaha T, Genikhovich G, Ereskovsky AV. Matrotrophy and placentation in invertebrates: a new paradigm. Biol Rev Camb Philos Soc 2016; 91:673-711. [PMID: 25925633 PMCID: PMC5098176 DOI: 10.1111/brv.12189] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022]
Abstract
Matrotrophy, the continuous extra-vitelline supply of nutrients from the parent to the progeny during gestation, is one of the masterpieces of nature, contributing to offspring fitness and often correlated with evolutionary diversification. The most elaborate form of matrotrophy-placentotrophy-is well known for its broad occurrence among vertebrates, but the comparative distribution and structural diversity of matrotrophic expression among invertebrates is wanting. In the first comprehensive analysis of matrotrophy across the animal kingdom, we report that regardless of the degree of expression, it is established or inferred in at least 21 of 34 animal phyla, significantly exceeding previous accounts and changing the old paradigm that these phenomena are infrequent among invertebrates. In 10 phyla, matrotrophy is represented by only one or a few species, whereas in 11 it is either not uncommon or widespread and even pervasive. Among invertebrate phyla, Platyhelminthes, Arthropoda and Bryozoa dominate, with 162, 83 and 53 partly or wholly matrotrophic families, respectively. In comparison, Chordata has more than 220 families that include or consist entirely of matrotrophic species. We analysed the distribution of reproductive patterns among and within invertebrate phyla using recently published molecular phylogenies: matrotrophy has seemingly evolved at least 140 times in all major superclades: Parazoa and Eumetazoa, Radiata and Bilateria, Protostomia and Deuterostomia, Lophotrochozoa and Ecdysozoa. In Cycliophora and some Digenea, it may have evolved twice in the same life cycle. The provisioning of developing young is associated with almost all known types of incubation chambers, with matrotrophic viviparity more widespread (20 phyla) than brooding (10 phyla). In nine phyla, both matrotrophic incubation types are present. Matrotrophy is expressed in five nutritive modes, of which histotrophy and placentotrophy are most prevalent. Oophagy, embryophagy and histophagy are rarer, plausibly evolving through heterochronous development of the embryonic mouthparts and digestive system. During gestation, matrotrophic modes can shift, intergrade, and be performed simultaneously. Invertebrate matrotrophic adaptations are less complex structurally than in chordates, but they are more diverse, being formed either by a parent, embryo, or both. In a broad and still preliminary sense, there are indications of trends or grades of evolutionarily increasing complexity of nutritive structures: formation of (i) local zones of enhanced nutritional transport (placental analogues), including specialized parent-offspring cell complexes and various appendages increasing the entire secreting and absorbing surfaces as well as the contact surface between embryo and parent, (ii) compartmentalization of the common incubatory space into more compact and 'isolated' chambers with presumably more effective nutritional relationships, and (iii) internal secretory ('milk') glands. Some placental analogues in onychophorans and arthropods mimic the simplest placental variants in vertebrates, comprising striking examples of convergent evolution acting at all levels-positional, structural and physiological.
Collapse
Affiliation(s)
- Andrew N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034, Saint Petersburg, Russia
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Geozentrum, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Scott Lidgard
- Integrative Research Center, Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL, 60605, U.S.A
| | - Dennis P Gordon
- National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand
| | - Thomas Schwaha
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Grigory Genikhovich
- Department for Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Alexander V Ereskovsky
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034, Saint Petersburg, Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Aix Marseille Université, CNRS, IRD, Avignon Université, Station marine d'Endoume, Chemin de la Batterie des Lions, 13007, Marseille, France
| |
Collapse
|
20
|
Kelly M, Cárdenas P. An unprecedented new genus and family of Tetractinellida (Porifera, Demospongiae) from New Zealand's Colville Ridge, with a new type of mitochondrial group I intron. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michelle Kelly
- Coasts and Oceans National Centre; National Institute of Water & Atmospheric Research Ltd; Private Bag 99940 Newmarket Auckland New Zealand
| | - Paco Cárdenas
- Department of Medicinal Chemistry; Division of Pharmacognosy; BioMedical Centre; Husargatan 3; Uppsala University; 751 23 Uppsala Sweden
- Department of Systematic Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 752 36 Uppsala Sweden
| |
Collapse
|
21
|
Ubare VV, Mohan PM. A New Species of Genus Plakortis Schulze 1880 (Porifera: Homoscleromorpha) from Badabalu, Andaman and Nicobar Islands, India. Zool Stud 2016; 55:e2. [PMID: 31966147 PMCID: PMC6511823 DOI: 10.6620/zs.2016.55-02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
Abstract
Vibha V. Ubare and PM. Mohan (2016) Recently revealed Class: Homoscleromorpha play a significant role in sponge systematics. The smaller size, cryptic habits and unresolved species complex are greater obstacles for the taxonomic identification of this class. Out of < 100 species, only 6 species have been described from the Indian region. Till date, only one species of the genus Plakortis, that is, P. simplex has been described from this region. The present study provides a detailed description of new species of the genus Plakortis, Schulze 1880. P. badabaluensis sp. nov. is characterized by the two size classes of diods (one is thick and the other is thin), triods and smooth microrhabds; with well differentiated ectosome, presence of subectosomal lacunae and confused choanosome. The identification of this new species has increased the number of plakinid species from one to two in the Andaman and Nicobar Islands, India. Further detailed studies are required to explore this type of cryptic species in this region.
Collapse
Affiliation(s)
- Vibha V. Ubare
- Department of Ocean Studies and Marine Biology,
Pondicherry University, Brookshabad, Port Blair – 744 112, Andaman and Nicobar Islands,
India
| | - PM Mohan
- Department of Ocean Studies and Marine Biology,
Pondicherry University, Brookshabad, Port Blair – 744 112, Andaman and Nicobar Islands,
India
| |
Collapse
|
22
|
Huchon D, Szitenberg A, Shefer S, Ilan M, Feldstein T. Mitochondrial group I and group II introns in the sponge orders Agelasida and Axinellida. BMC Evol Biol 2015; 15:278. [PMID: 26653218 PMCID: PMC4676843 DOI: 10.1186/s12862-015-0556-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/03/2015] [Indexed: 11/21/2022] Open
Abstract
Background Self-splicing introns are present in the mitochondria of members of most eukaryotic lineages. They are divided into Group I and Group II introns, according to their secondary structure and splicing mechanism. Being rare in animals, self-splicing introns were only described in a few sponges, cnidarians, placozoans and one annelid species. In sponges, three types of mitochondrial Group I introns were previously described in two demosponge families (Tetillidae, and Aplysinellidae) and in the homoscleromorph family Plakinidae. These three introns differ in their insertion site, secondary structure and in the sequence of the LAGLIDADG gene they encode. Notably, no group II introns have been previously described in sponges. Results We report here the presence of mitochondrial introns in the cytochrome oxidase subunit 1 (COI) gene of three additional sponge species from three different families: Agelas oroides (Agelasidae, Agelasida), Cymbaxinellapverrucosa (Hymerhabdiidae, Agelasida) and Axinella polypoides (Axinellidae, Axinellida). We show, for the first time, that sponges can also harbour Group II introns in their COI gene, whose presence in animals’ mitochondria has so far been described in only two phyla, Placozoa and Annelida. Surprisingly, two different Group II introns were discovered in the COI gene of C. verrucosa. Phylogenetic analysis indicates that the Group II introns present in C. verrucosa are related to red algae (Rhodophyta) introns. Conclusions The differences found among intron secondary structures and the phylogenetic inferences support the hypothesis that the introns originated from independent horizontal gene transfer events. Our results thus suggest that self-splicing introns are more diverse in the mitochondrial genome of sponges than previously anticipated. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0556-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorothée Huchon
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Amir Szitenberg
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Current address: School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, HU6 7RX, UK.
| | - Sigal Shefer
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Tamar Feldstein
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
23
|
Igloi GL, Leisinger AK. Identity elements for the aminoacylation of metazoan mitochondrial tRNA(Arg) have been widely conserved throughout evolution and ensure the fidelity of the AGR codon reassignment. RNA Biol 2015; 11:1313-23. [PMID: 25603118 PMCID: PMC4615739 DOI: 10.1080/15476286.2014.996094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Eumetazoan mitochondrial tRNAs possess structures (identity elements) that require the specific recognition by their cognate nuclear-encoded aminoacyl-tRNA synthetases. The AGA (arginine) codon of the standard genetic code has been reassigned to serine/glycine/termination in eumetazoan organelles and is translated in some organisms by a mitochondrially encoded tRNA(Ser)UCU. One mechanism to prevent mistranslation of the AGA codon as arginine would require a set of tRNA identity elements distinct from those possessed by the cytoplasmic tRNAArg in which the major identity elements permit the arginylation of all 5 encoded isoacceptors. We have performed comparative in vitro aminoacylation using an insect mitochondrial arginyl-tRNA synthetase and tRNAArgUCG structural variants. The established identity elements are sufficient to maintain the fidelity of tRNASerUCU reassignment. tRNAs having a UCU anticodon cannot be arginylated but can be converted to arginine acceptance by identity element transplantation. We have examined the evolutionary distribution and functionality of these tRNA elements within metazoan taxa. We conclude that the identity elements that have evolved for the recognition of mitochondrial tRNAArgUCG by the nuclear encoded mitochondrial arginyl-tRNA synthetases of eumetazoans have been extensively, but not universally conserved, throughout this clade. They ensure that the AGR codon reassignment in eumetazoan mitochondria is not compromised by misaminoacylation. In contrast, in other metazoans, such as Porifera, whose mitochondrial translation is dictated by the universal genetic code, recognition of the 2 encoded tRNAArgUCG/UCU isoacceptors is achieved through structural features that resemble those employed by the yeast cytoplasmic system.
Collapse
Affiliation(s)
- Gabor L Igloi
- a Institute of Biology III ; University of Freiburg ; Freiburg , Germany
| | | |
Collapse
|
24
|
Sahyoun AH, Hölzer M, Jühling F, Höner zu Siederdissen C, Al-Arab M, Tout K, Marz M, Middendorf M, Stadler PF, Bernt M. Towards a comprehensive picture of alloacceptor tRNA remolding in metazoan mitochondrial genomes. Nucleic Acids Res 2015; 43:8044-56. [PMID: 26227972 PMCID: PMC4783518 DOI: 10.1093/nar/gkv746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/11/2015] [Indexed: 12/03/2022] Open
Abstract
Remolding of tRNAs is a well-documented process in mitochondrial genomes that changes the identity of a tRNA. It involves a duplication of a tRNA gene, a mutation that changes the anticodon and the loss of the ancestral tRNA gene. The net effect is a functional tRNA that is more closely related to tRNAs of a different alloacceptor family than to tRNAs with the same anticodon in related species. Beyond being of interest for understanding mitochondrial tRNA function and evolution, tRNA remolding events can lead to artifacts in the annotation of mitogenomes and thus in studies of mitogenomic evolution. Therefore, it is important to identify and catalog these events. Here we describe novel methods to detect tRNA remolding in large-scale data sets and apply them to survey tRNA remolding throughout animal evolution. We identify several novel remolding events in addition to the ones previously mentioned in the literature. A detailed analysis of these remoldings showed that many of them are derived from ancestral events.
Collapse
Affiliation(s)
- Abdullah H Sahyoun
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany Bioinformatics Unit and Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Frank Jühling
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Christian Höner zu Siederdissen
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
| | - Marwa Al-Arab
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon
| | - Kifah Tout
- Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany Michael Stifel Center Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Martin Middendorf
- Parallel Computing and Complex Systems Group, Department of Computer Science, Leipzig University, Augustusplatz 10, D-04109 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria Max-Planck-Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany Fraunhofer Institut für Zelltherapie und Immunologie Perlickstraße 1, D-04103 Leipzig, Germany Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg, Denmark Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, Leipzig University, Augustusplatz 10, D-04109 Leipzig, Germany
| |
Collapse
|
25
|
Pett W, Lavrov DV. Cytonuclear Interactions in the Evolution of Animal Mitochondrial tRNA Metabolism. Genome Biol Evol 2015; 7:2089-101. [PMID: 26116918 PMCID: PMC4558845 DOI: 10.1093/gbe/evv124] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of mitochondrial information processing pathways, including replication, transcription and translation, is characterized by the gradual replacement of mitochondrial-encoded proteins with nuclear-encoded counterparts of diverse evolutionary origins. Although the ancestral enzymes involved in mitochondrial transcription and replication have been replaced early in eukaryotic evolution, mitochondrial translation is still carried out by an apparatus largely inherited from the α-proteobacterial ancestor. However, variation in the complement of mitochondrial-encoded molecules involved in translation, including transfer RNAs (tRNAs), provides evidence for the ongoing evolution of mitochondrial protein synthesis. Here, we investigate the evolution of the mitochondrial translational machinery using recent genomic and transcriptomic data from animals that have experienced the loss of mt-tRNAs, including phyla Cnidaria and Ctenophora, as well as some representatives of all four classes of Porifera. We focus on four sets of mitochondrial enzymes that directly interact with tRNAs: Aminoacyl-tRNA synthetases, glutamyl-tRNA amidotransferase, tRNAIle lysidine synthetase, and RNase P. Our results support the observation that the fate of nuclear-encoded mitochondrial proteins is influenced by the evolution of molecules encoded in mitochondrial DNA, but in a more complex manner than appreciated previously. The data also suggest that relaxed selection on mitochondrial translation rather than coevolution between mitochondrial and nuclear subunits is responsible for elevated rates of evolution in mitochondrial translational proteins.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University Present address: Laboratoire de Biométrie et Biologie Évolutive CNRS UMR 5558, Université Lyon 1, Villeurbanne, France
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| |
Collapse
|
26
|
Niemann H, Marmann A, Lin W, Proksch P. Sponge Derived Bromotyrosines: Structural Diversity through Natural Combinatorial Chemistry. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sponge derived bromotyrosines are a multifaceted class of marine bioactive compounds that are important for the chemical defense of sponges but also for drug discovery programs as well as for technical applications in the field of antifouling constituents. These compounds, which are mainly accumulated by Verongid sponges, exhibit a diverse range of bioactivities including antibiotic, cytotoxic and antifouling effects. In spite of the simple biogenetic building blocks, which consist only of brominated tyrosine and tyramine units, an impressive diversity of different compounds is obtained through different linkages between these precursors and through structural modifications of the side chains and/or aromatic rings resembling strategies that are known from combinatorial chemistry. As examples for bioactive, structurally divergent bromotyrosines psammaplin A, Aplysina alkaloids featuring aerothionin, aeroplysinin-1 and the dienone, and the bastadins, including the synthetically derived hemibastadin congeners, have been selected for this review. Whereas all of these natural products are believed to be involved in the chemical defense of sponges, some of them may also be of particular relevance to drug discovery due to their interaction with specific molecular targets in eukaryotic cells. These targets involve important enzymes and receptors, such as histone deacetylases (HDAC) and DNA methyltransferases (DNMT), which are inhibited by psammaplin A, as well as ryanodine receptors that are targeted by bastadine type compounds. The hemibastadins such as the synthetically derived dibromohemibastadin are of particular interest due to their antifouling activity. For the latter, a phenoloxidase which catalyzes the bioglue formation needed for firm attachment of fouling organisms to a given substrate was identified as a molecular target. The Aplysina alkaloids finally provide a vivid example for dynamic wound induced bioconversions of natural products that generate highly efficient chemical weapons precisely when and where needed.
Collapse
Affiliation(s)
- Hendrik Niemann
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Andreas Marmann
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Health Science Center, Beijing100191, China
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Abstract
We discovered for the first time a mitochondrial intron in a non-tetillid demosponge, which sheds new light on the interpretation of mitochondrial intron evolution among non-bilaterian animals and has consequences for phylogenetic and DNA barcoding studies. The newly discovered class 1 intron of Aplysinella rhax (Verongida) CO1 has an ORF for a putative LAGLIDADG-type and resembles other sponge and cnidarian mitochondrial introns. Our analysis of the Aplysinella rhax intron underlines that the patchy distribution of introns in sponges is caused by a combination of horizontal and vertical transmission. Further implications for CO1 phylogenetic and barcoding projects are discussed.
Collapse
|
28
|
Affiliation(s)
- James O McInerney
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland
| | - Mary J O'Connell
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
29
|
Ganot P, Zoccola D, Tambutté E, Voolstra CR, Aranda M, Allemand D, Tambutté S. Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes. Mol Biol Evol 2014; 32:44-62. [PMID: 25246700 DOI: 10.1093/molbev/msu265] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.
Collapse
Affiliation(s)
- Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| |
Collapse
|
30
|
Cruz-Barraza JA, Vega C, Carballo JL. Taxonomy of family Plakinidae (Porifera: Homoscleromorpha) from eastern Pacific coral reefs, through morphology andcox1andcob mtDNA data. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- José Antonio Cruz-Barraza
- Instituto de Ciencias del Mar y Limnología; Universidad Nacional Autónoma de México (Unidad Académica Mazatlán); Avenida Joel Montes Camarena s/n, PO box 811 Mazatlán SIN 82000 México
| | - Cristina Vega
- Instituto de Ciencias del Mar y Limnología; Universidad Nacional Autónoma de México (Unidad Académica Mazatlán); Avenida Joel Montes Camarena s/n, PO box 811 Mazatlán SIN 82000 México
| | - José Luis Carballo
- Instituto de Ciencias del Mar y Limnología; Universidad Nacional Autónoma de México (Unidad Académica Mazatlán); Avenida Joel Montes Camarena s/n, PO box 811 Mazatlán SIN 82000 México
| |
Collapse
|
31
|
Eight new mtDNA sequences of glass sponges reveal an extensive usage of +1 frameshifting in mitochondrial translation. Gene 2013; 535:336-44. [PMID: 24177232 DOI: 10.1016/j.gene.2013.10.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/22/2022]
Abstract
Three previously studied mitochondrial genomes of glass sponges (phylum Porifera, class Hexactinellida) contained single nucleotide insertions in protein coding genes inferred as sites of +1 translational frameshifting. To investigate the distribution and evolution of these sites and to help elucidate the mechanism of frameshifting, we determined eight new complete or nearly complete mtDNA sequences from glass sponges and examined individual mitochondrial genes from three others. We found nine new instances of single nucleotide insertions in these sequences and analyzed them both comparatively and phylogenetically. The base insertions appear to have been gained and lost repeatedly in hexactinellid mt protein genes, suggesting no functional significance for the frameshifting sites. A high degree of sequence conservation, the presence of unusual tRNAs, and a distinct pattern of codon usage suggest the "out-of-frame pairing" model of translational frameshifting. Additionally, we provide evidence that relaxed selection pressure on glass sponge mtDNA - possibly a result of their low growth rates and deep-water lifestyle - has allowed frameshift insertions to be tolerated for hundreds of millions of years. Our study provides the first example of a phylogenetically diverse and extensive usage of translational frameshifting in animal mitochondrial coding sequences.
Collapse
|
32
|
Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B. Mitogenomics at the base of Metazoa. Mol Phylogenet Evol 2013; 69:339-51. [PMID: 23891951 DOI: 10.1016/j.ympev.2013.07.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/29/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022]
Abstract
Unraveling the base of metazoan evolution is of crucial importance for rooting the metazoan Tree of Life. This subject has attracted substantial attention for more than a century and recently fueled a burst of modern phylogenetic studies. Conflicting scenarios from different studies and incongruent results from nuclear versus mitochondrial markers challenge current molecular phylogenetic approaches. Here we analyze the presently most comprehensive data sets of mitochondrial genomes from non-bilaterian animals to illuminate the phylogenetic relationships among early branching metazoan phyla. The results of our analyses illustrate the value of mitogenomics and support previously known topologies between animal phyla but also identify several problematic taxa, which are sensitive to long branch artifacts or missing data.
Collapse
Affiliation(s)
- Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology and Evolution, Buenteweg 17d, D-30559 Hannover, Germany.
| | | | | | | | | |
Collapse
|
33
|
Pett W, Lavrov DV. The twin-arginine subunit C in Oscarella: origin, evolution, and potential functional significance. Integr Comp Biol 2013; 53:495-502. [PMID: 23864529 DOI: 10.1093/icb/ict079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is a protein transport system that moves completely folded proteins across lipid membranes. Genes encoding components of the pathway have been found in the genomes of many Bacteria, Archaea, and eukaryotic organelles including chloroplasts, plant mitochondria, and the mitochondria of many protists. However, with a single exception, Tat genes are absent from the mitochondrial genomes of all animals. The only exception comes from the homoscleromorph sponges in the family Oscarellidae, whose mitochondrial genomes encode a gene for tatC, the largest subunit of the complex. Here, we explore the origin and evolution of the mitochondrial tatC gene in Oscarellidae, and use bioinformatic approaches to evaluate its functional significance. We conclude that tatC in Homoscleromorpha sponges was likely inherited from the ancestral proto-mitochondrial genome, implying multiple independent losses of the mitochondrial Tat pathway during the evolution of opisthokonts. In addition, bioinformatic evidence suggests that tatC comprises the entire Tat pathway in Oscarellidae, and that the Rieske Fe/S protein of mitochondrial complex III is its likely substrate.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | | |
Collapse
|
34
|
Redmond NE, Morrow CC, Thacker RW, Diaz MC, Boury-Esnault N, Cardenas P, Hajdu E, Lobo-Hajdu G, Picton BE, Pomponi SA, Kayal E, Collins AG. Phylogeny and Systematics of Demospongiae in Light of New Small-Subunit Ribosomal DNA (18S) Sequences. Integr Comp Biol 2013; 53:388-415. [DOI: 10.1093/icb/ict078] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Morrow CC, Redmond NE, Picton BE, Thacker RW, Collins AG, Maggs CA, Sigwart JD, Allcock AL. Molecular phylogenies support homoplasy of multiple morphological characters used in the taxonomy of Heteroscleromorpha (Porifera: Demospongiae). Integr Comp Biol 2013; 53:428-46. [PMID: 23753661 DOI: 10.1093/icb/ict065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sponge classification has long been based mainly on morphocladistic analyses but is now being greatly challenged by more than 12 years of accumulated analyses of molecular data analyses. The current study used phylogenetic hypotheses based on sequence data from 18S rRNA, 28S rRNA, and the CO1 barcoding fragment, combined with morphology to justify the resurrection of the order Axinellida Lévi, 1953. Axinellida occupies a key position in different morphologically derived topologies. The abandonment of Axinellida and the establishment of Halichondrida Vosmaer, 1887 sensu lato to contain Halichondriidae Gray, 1867, Axinellidae Carter, 1875, Bubaridae Topsent, 1894, Heteroxyidae Dendy, 1905, and a new family Dictyonellidae van Soest et al., 1990 was based on the conclusion that an axially condensed skeleton evolved independently in separate lineages in preference to the less parsimonious assumption that asters (star-shaped spicules), acanthostyles (club-shaped spicules with spines), and sigmata (C-shaped spicules) each evolved more than once. Our new molecular trees are congruent and contrast with the earlier, morphologically based, trees. The results show that axially condensed skeletons, asters, acanthostyles, and sigmata are all homoplasious characters. The unrecognized homoplasious nature of these characters explains much of the incongruence between molecular-based and morphology-based phylogenies. We use the molecular trees presented here as a basis for re-interpreting the morphological characters within Heteroscleromorpha. The implications for the classification of Heteroscleromorpha are discussed and a new order Biemnida ord. nov. is erected.
Collapse
Affiliation(s)
- Christine C Morrow
- *School of Biological Sciences, MBC, 97 Lisburn Road, Queen's University, Belfast BT9 7BL, UK; National Systematics Laboratory, National Museum of Natural History, MRC-153, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA; National Museums Northern Ireland, 153 Bangor Road, Holywood BT18 0EU, Northern Ireland, UK; Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA; School of Natural Science and Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gazave E, Lavrov DV, Cabrol J, Renard E, Rocher C, Vacelet J, Adamska M, Borchiellini C, Ereskovsky AV. Systematics and molecular phylogeny of the family oscarellidae (homoscleromorpha) with description of two new oscarella species. PLoS One 2013; 8:e63976. [PMID: 23737959 PMCID: PMC3667853 DOI: 10.1371/journal.pone.0063976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/06/2013] [Indexed: 11/19/2022] Open
Abstract
The family Oscarellidae is one of the two families in the class Homoscleromorpha (phylum Porifera) and is characterized by the absence of a skeleton and the presence of a specific mitochondrial gene, tatC. This family currently encompasses sponges in two genera: Oscarella with 17 described species and Pseudocorticium with one described species. Although sponges in this group are relatively well-studied, phylogenetic relationships among members of Oscarellidae and the validity of genus Pseudocorticium remain open questions. Here we present a phylogenetic analysis of Oscarellidae using four markers (18S rDNA, 28S rDNA, atp6, tatC), and argue that it should become a mono-generic family, with Pseudocorticium being synonymized with Oscarella, and with the transfer of Pseudocorticium jarrei to Oscarella jarrei. We show that the genus Oscarella can be subdivided into four clades, each of which is supported by either a small number of morphological characters or by molecular synapomorphies. In addition, we describe two new species of Oscarella from Norwegian fjords: O. bergenensis sp. nov. and O. nicolae sp. nov., and we compare their morphology, anatomy, and cytology with other species in this genus. Internal anatomical characters are similar in both species, but details of external morphology and particularly of cytological characters provide diagnostic features. Our study also confirms that O. lobularis and O. tuberculata are two distinct polychromic sibling species. This study highlights the difficulties of species identification in skeleton-less sponges and, more generally, in groups where morphological characters are scarce. Adopting a multi-marker approach is thus highly suitable for these groups.
Collapse
Affiliation(s)
- Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Boury-Esnault N, Lavrov DV, Ruiz CA, Pérez T. The integrative taxonomic approach applied to porifera: a case study of the homoscleromorpha. Integr Comp Biol 2013; 53:416-27. [PMID: 23670632 DOI: 10.1093/icb/ict042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The two main scientific tasks of taxonomy are species' delineation and classification. These two tasks are often treated differently, with classification accomplished by newly-developed phylogenetic methods, often based on molecular sequences, while delimitation of species is conducted by what is often considered to be an "old-fashioned" typological approach based on morphological description. A new "integrative taxonomy" has been proposed which maintains that species delimitation should be a multidisciplinary undertaking combining several independent datasets. Here we argue that the same principle is relevant to the classification of species. In the past 20 years, we assembled various datasets based on the external morphology, anatomy, cytology, spicule shapes, geography, reproduction, genetic sequences, and metabolomics of homoscleromorph sponges. We show how we used these datasets to describe new species of homoscleromorph sponges and to elucidate their phylogenetic relationships and their phylogenetic position within the phylum Porifera.
Collapse
Affiliation(s)
- Nicole Boury-Esnault
- *IMBE-UMR7263 CNRS, Université d'Aix-Marseille, Station Marine d'Endoume, Marseille, France; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | | | | |
Collapse
|
38
|
Hooper JNA, Hall KA, Ekins M, Erpenbeck D, Wörheide G, Jolley-Rogers G. Managing and sharing the escalating number of sponge "unknowns": the SpongeMaps project. Integr Comp Biol 2013; 53:473-81. [PMID: 23652200 DOI: 10.1093/icb/ict038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Contemporary collections of sponges in the Indo-west Pacific have escalated substantially due to pharmaceutical discovery, national bioregional planning, and compliance with international conventions on the seabed and its marine genetic resources beyond national jurisdictions. These partially processed operational taxonomic unit (OTU) collections now vastly outweigh the expertise available to make them better "known" via complete taxonomy, yet for many bioregions they represent the most significant body of currently available knowledge. Increasing numbers of cryptic species, previously undetected morphologically, are now being discovered by molecular and chemical analyses. The uncoordinated and fragmented nature of many previous collections, however, means that knowledge and expertise gained from a particular project are often lost to future projects without a biodiversity informatics legacy. Integrating these diverse data (GIS; OTUs; images; molecular, chemical, and other datasets) required a two-way iterative process so far unavailable for sponges with existing biodiversity informatics tools. SpongeMaps arose from the initial need for online collaboration to integrate morphometric data with molecular barcodes, including the Porifera Tree of Life (PorTol) project. It provides interrogation of existing data to better process new collections; capacity to create new OTUs; publication of online pages for individual species, so as to interpret GIS and other data for online biodiversity databases and services; and automatic links to external datasets for taxonomic hierarchy, specimen GIS and mapping, DNA sequence data, chemical structures, and images.
Collapse
Affiliation(s)
- J N A Hooper
- *Natural Environments Program, Queensland Museum, South Brisbane 4101, Australia; Eskitis Institute for Cell and Molecular Therapies, Griffith University, Mt Gravatt Research Park, Nathan 4111, Australia; Department of Earth and Environmental Sciences and GeoBio-Center, Ludwig-Maximilians Universität München, Richard-Wagner-Strasse 10, 80333 München, Germany; Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333 München, Germany; CSIRO Plant Industry, Canberra 2601, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 2013; 13:5. [PMID: 23302374 PMCID: PMC3598815 DOI: 10.1186/1471-2148-13-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/21/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) - cnidarians with a reproductive polyp and the absence of a medusa stage - and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) - cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. RESULTS We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. CONCLUSIONS Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria.
Collapse
Affiliation(s)
- Ehsan Kayal
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 20013-7012, Washington, DC, USA
| | - Béatrice Roure
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Hervé Philippe
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Allen G Collins
- National Systematics Laboratory of NOAA’s Fisheries Service, National Museum of Natural History, MRC-153, Smithsonian Institution, PO Box 37012, 20013-7012, Washington, DC, USA
| | - Dennis V Lavrov
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
| |
Collapse
|
40
|
Lavrov DV, Pett W, Voigt O, Wörheide G, Forget L, Lang BF, Kayal E. Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Mol Biol Evol 2012; 30:865-80. [PMID: 23223758 DOI: 10.1093/molbev/mss274] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges (phylum Porifera) are a large and ancient group of morphologically simple but ecologically important aquatic animals. Although their body plan and lifestyle are relatively uniform, sponges show extensive molecular and genetic diversity. In particular, mitochondrial genomes from three of the four previously studied classes of Porifera (Demospongiae, Hexactinellida, and Homoscleromorpha) have distinct gene contents, genome organizations, and evolutionary rates. Here, we report the mitochondrial genome of Clathrina clathrus (Calcinea, Clathrinidae), a representative of the fourth poriferan class, the Calcarea, which proves to be the most unusual. Clathrina clathrus mitochondrial DNA (mtDNA) consists of six linear chromosomes 7.6-9.4 kb in size and encodes at least 37 genes: 13 protein codings, 2 ribosomal RNAs (rRNAs), and 24 transfer RNAs (tRNAs). Protein genes include atp9, which has now been found in all major sponge lineages, but no atp8. Our analyses further reveal the presence of a novel genetic code that involves unique reassignments of the UAG codons from termination to tyrosine and of the CGN codons from arginine to glycine. Clathrina clathrus mitochondrial rRNAs are encoded in three (srRNA) and ≥6 (lrRNA) fragments distributed out of order and on several chromosomes. The encoded tRNAs contain multiple mismatches in the aminoacyl acceptor stems that are repaired posttranscriptionally by 3'-end RNA editing. Although our analysis does not resolve the phylogenetic position of calcareous sponges, likely due to their high rates of mitochondrial sequence evolution, it confirms mtDNA as a promising marker for population studies in this group. The combination of unusual mitochondrial features in C. clathrus redefines the extremes of mtDNA evolution in animals and further argues against the idea of a "typical animal mtDNA."
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Iowa, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
42
|
Huynen MA, Duarte I, Szklarczyk R. Loss, replacement and gain of proteins at the origin of the mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:224-31. [PMID: 22902511 DOI: 10.1016/j.bbabio.2012.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/19/2012] [Accepted: 08/05/2012] [Indexed: 01/28/2023]
Abstract
We review what has been inferred about the changes at the level of the proteome that accompanied the evolution of the mitochondrion from an alphaproteobacterium. We regard these changes from an alphaproteobacterial perspective: which proteins were lost during mitochondrial evolution? And, of the proteins that were lost, which ones have been replaced by other, non-orthologous proteins with a similar function? Combining literature-supported replacements with quantitative analyses of mitochondrial proteomics data we infer that most of the loss and replacements that separate current day mitochondria in mammals from alphaproteobacteria took place before the radiation of the eukaryotes. Recent analyses show that also the acquisition of new proteins to the large protein complexes of the oxidative phosphorylation and the mitochondrial ribosome occurred mainly before the divergence of the eukaryotes. These results indicate a significant number of pivotal evolutionary events between the acquisition of the endosymbiont and the radiation of the eukaryotes and therewith support an early acquisition of mitochondria in eukaryotic evolution. Technically, advancements in the reconstruction of the evolutionary trajectories of loss, replacement and gain of mitochondrial proteins depend on using profile-based homology detection methods for sequence analysis. We highlight the mitochondrial Holliday junction resolvase endonuclease, for which such methods have detected new "family members" and in which function differentiation is accompanied by the loss of catalytic residues for the original enzymatic function and the gain of a protein domain for the new function. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6400 HB Nijmegen, The Netherlands.
| | | | | |
Collapse
|
43
|
Abstract
The modular domain structure of extracellular matrix (ECM) proteins and their genes has allowed extensive exon/domain shuffling during evolution to generate hundreds of ECM proteins. Many of these arose early during metazoan evolution and have been highly conserved ever since. Others have undergone duplication and divergence during evolution, and novel combinations of domains have evolved to generate new ECM proteins, particularly in the vertebrate lineage. The recent sequencing of several genomes has revealed many details of this conservation and evolution of ECM proteins to serve diverse functions in metazoa.
Collapse
Affiliation(s)
- Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 2012; 10:483-96. [PMID: 22683878 DOI: 10.1038/nrmicro2814] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The twin-arginine translocation (Tat) protein export system is present in the cytoplasmic membranes of most bacteria and archaea and has the highly unusual property of transporting fully folded proteins. The system must therefore provide a transmembrane pathway that is large enough to allow the passage of structured macromolecular substrates of different sizes but that maintains the impermeability of the membrane to ions. In the Gram-negative bacterium Escherichia coli, this complex task can be achieved by using only three small membrane proteins: TatA, TatB and TatC. In this Review, we summarize recent advances in our understanding of how this remarkable machine operates.
Collapse
Affiliation(s)
- Tracy Palmer
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
45
|
Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution. Dev Genes Evol 2012; 223:5-22. [PMID: 22543423 DOI: 10.1007/s00427-012-0399-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/26/2012] [Indexed: 12/21/2022]
Abstract
The emergence of multicellularity is regarded as one of the major evolutionary events of life. This transition unicellularity/pluricellularity was acquired independently several times (King 2004). The acquisition of multicellularity implies the emergence of cellular cohesion and means of communication, as well as molecular mechanisms enabling the control of morphogenesis and body plan patterning. Some of these molecular tools seem to have predated the acquisition of multicellularity while others are regarded as the acquisition of specific lineages. Morphogenesis consists in the spatial migration of cells or cell layers during embryonic development, metamorphosis, asexual reproduction, growth, and regeneration, resulting in the formation and patterning of a body. In this paper, our aim is to review what is currently known concerning basal metazoans--sponges' morphogenesis from the tissular, cellular, and molecular points of view--and what remains to elucidate. Our review attempts to show that morphogenetic processes found in sponges are as diverse and complex as those found in other animals. In true epithelial sponges (Homoscleromorpha), as well as in others, we find similar cell/layer movements, cellular shape changes involved in major morphogenetic processes such as embryogenesis or larval metamorphosis. Thus, sponges can provide information enabling us to better understand early animal evolution at the molecular level but also at the cell/cell layer level. Indeed, comparison of molecular tools will only be of value if accompanied by functional data and expression studies during morphogenetic processes.
Collapse
|
46
|
Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, De Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA. Global diversity of sponges (Porifera). PLoS One 2012; 7:e35105. [PMID: 22558119 PMCID: PMC3338747 DOI: 10.1371/journal.pone.0035105] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.
Collapse
Affiliation(s)
- Rob W M Van Soest
- Netherlands Centre for Biodiversity Naturalis, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cárdenas P, Pérez T, Boury-Esnault N. Sponge systematics facing new challenges. ADVANCES IN MARINE BIOLOGY 2012; 61:79-209. [PMID: 22560778 DOI: 10.1016/b978-0-12-387787-1.00010-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Systematics is nowadays facing new challenges with the introduction of new concepts and new techniques. Compared to most other phyla, phylogenetic relationships among sponges are still largely unresolved. In the past 10 years, the classical taxonomy has been completely overturned and a review of the state of the art appears necessary. The field of taxonomy remains a prominent discipline of sponge research and studies related to sponge systematics were in greater number in the Eighth World Sponge Conference (Girona, Spain, September 2010) than in any previous world sponge conferences. To understand the state of this rapidly growing field, this chapter proposes to review studies, mainly from the past decade, in sponge taxonomy, nomenclature and phylogeny. In a first part, we analyse the reasons of the current success of this field. In a second part, we establish the current sponge systematics theoretical framework, with the use of (1) cladistics, (2) different codes of nomenclature (PhyloCode vs. Linnaean system) and (3) integrative taxonomy. Sponges are infamous for their lack of characters. However, by listing and discussing in a third part all characters available to taxonomists, we show how diverse characters are and that new ones are being used and tested, while old ones should be revisited. We then review the systematics of the four main classes of sponges (Hexactinellida, Calcispongiae, Homoscleromorpha and Demospongiae), each time focusing on current issues and case studies. We present a review of the taxonomic changes since the publication of the Systema Porifera (2002), and point to problems a sponge taxonomist is still faced with nowadays. To conclude, we make a series of proposals for the future of sponge systematics. In the light of recent studies, we establish a series of taxonomic changes that the sponge community may be ready to accept. We also propose a series of sponge new names and definitions following the PhyloCode. The issue of phantom species (potential new species revealed by molecular studies) is raised, and we show how they could be dealt with. Finally, we present a general strategy to help us succeed in building a Porifera tree along with the corresponding revised Porifera classification.
Collapse
Affiliation(s)
- P Cárdenas
- Département Milieux et Peuplements Aquatiques, Muséum National d'Histoire Naturelle, UMR 7208 "BOrEA", Paris, France
| | | | | |
Collapse
|
48
|
Wörheide G, Dohrmann M, Erpenbeck D, Larroux C, Maldonado M, Voigt O, Borchiellini C, Lavrov DV. Deep phylogeny and evolution of sponges (phylum Porifera). ADVANCES IN MARINE BIOLOGY 2012; 61:1-78. [PMID: 22560777 DOI: 10.1016/b978-0-12-387787-1.00007-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sponges (phylum Porifera) are a diverse taxon of benthic aquatic animals of great ecological, commercial, and biopharmaceutical importance. They are arguably the earliest-branching metazoan taxon, and therefore, they have great significance in the reconstruction of early metazoan evolution. Yet, the phylogeny and systematics of sponges are to some extent still unresolved, and there is an on-going debate about the exact branching pattern of their main clades and their relationships to the other non-bilaterian animals. Here, we review the current state of the deep phylogeny of sponges. Several studies have suggested that sponges are paraphyletic. However, based on recent phylogenomic analyses, we suggest that the phylum Porifera could well be monophyletic, in accordance with cladistic analyses based on morphology. This finding has many implications for the evolutionary interpretation of early animal traits and sponge development. We further review the contribution that mitochondrial genes and genomes have made to sponge phylogenetics and explore the current state of the molecular phylogenies of the four main sponge lineages (Classes), that is, Demospongiae, Hexactinellida, Calcarea, and Homoscleromorpha, in detail. While classical systematic systems are largely congruent with molecular phylogenies in the class Hexactinellida and in certain parts of Demospongiae and Homoscleromorpha, the high degree of incongruence in the class Calcarea still represents a challenge. We highlight future areas of research to fill existing gaps in our knowledge. By reviewing sponge development in an evolutionary and phylogenetic context, we support previous suggestions that sponge larvae share traits and complexity with eumetazoans and that the simple sedentary adult lifestyle of sponges probably reflects some degree of secondary simplification. In summary, while deep sponge phylogenetics has made many advances in the past years, considerable efforts are still required to achieve a comprehensive understanding of the relationships among and within the main sponge lineages to fully appreciate the evolution of this extraordinary metazoan phylum.
Collapse
Affiliation(s)
- G Wörheide
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kohn AB, Citarella MR, Kocot KM, Bobkova YV, Halanych KM, Moroz LL. Rapid evolution of the compact and unusual mitochondrial genome in the ctenophore, Pleurobrachia bachei. Mol Phylogenet Evol 2011; 63:203-7. [PMID: 22201557 DOI: 10.1016/j.ympev.2011.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 12/29/2022]
Abstract
Ctenophores are one of the most basally branching lineages of metazoans with the largest mitochondrial organelles in the animal kingdom. We sequenced the mitochondrial (mtDNA) genome from the Pacific cidipid ctenophore, Pleurobrachia bachei. The circular mitochondrial genome is 11,016 nts, with only 12 genes, and one of the smallest metazoan mtDNA genomes recorded. The protein coding genes are intronless cox1-3, cob, nad1, 3, 4, 4L and 5. The nad2 and 6 genes are represented as short fragments whereas the atp6 gene was found in the nuclear genome. Only the large ribosomal RNA subunit and two tRNAs were present with possibly the small subunit unidentifiable due to extensive fragmentation. The observed unique features of this mitochondrial genome suggest that nuclear and mitochondrial genomes have evolved at very different rates. This reduced mtDNA genome sharply contrasts with the very large sizes of mtDNA found in other basal metazoans including Porifera (sponges), and Placozoa (Trichoplax).
Collapse
Affiliation(s)
- Andrea B Kohn
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | | | | | | | | | | |
Collapse
|