1
|
Di Ianni A, Fraone T, Balestra P, Cowan K, Riccardi Sirtori F, Barbero L. Assessing MAPPs assay as a tool to predict the immunogenicity potential of protein therapeutics. Life Sci Alliance 2024; 7:e202302095. [PMID: 37833075 PMCID: PMC10576005 DOI: 10.26508/lsa.202302095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
MHC-II-associated peptide proteomics (MAPPs) is a mass spectrometry-based (MS) method to identify naturally presented MHC-II-associated peptides that could elicit CD4+T cell activation. MAPPs assay is considered one of the assays that better characterize the safety of biotherapeutics by driving the selection of the best candidates concerning their immunogenicity risk. However, there is little knowledge about the impact of bead material on the recovery of MHC-II MS-eluted ligands in MAPPs assays. Here, we firstly describe a robust MAPPs protocol by implementing streptavidin magnetic beads for the isolation of these peptides instead of commonly used NHS-activated beads. Moreover, we assessed the impact of the cell medium used for cell cultures on the morphology and recovery of the in vitro-generated APCs, and its potential implications in the amount of MHC-II isolated peptides. We also described an example of a MAPPs assay application to investigate drug-induced immunogenicity of two bispecific antibodies and compared them with monospecific trastuzumab IgG1 control. This work highlighted the importance of MAPPs in the preclinical in vitro strategy to mitigate the immunogenicity risk of biotherapeutics.
Collapse
Affiliation(s)
- Andrea Di Ianni
- https://ror.org/048tbm396 Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., An Affiliate of Merck KGaA, Darmstadt, Germany
| | - Tiziana Fraone
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., An Affiliate of Merck KGaA, Darmstadt, Germany
| | - Piercesare Balestra
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., An Affiliate of Merck KGaA, Darmstadt, Germany
| | - Kyra Cowan
- New Biological Entities, Drug Metabolism and Pharmacokinetics (NBE-DMPK), Research and Development, Merck KGaA, Darmstadt, Germany
| | - Federico Riccardi Sirtori
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., An Affiliate of Merck KGaA, Darmstadt, Germany
| | - Luca Barbero
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., An Affiliate of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
2
|
De Groot AS, Roberts BJ, Mattei A, Lelias S, Boyle C, Martin WD. Immunogenicity risk assessment of synthetic peptide drugs and their impurities. Drug Discov Today 2023; 28:103714. [PMID: 37467878 DOI: 10.1016/j.drudis.2023.103714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Peptide drugs play an important part in medicine owing to their many therapeutic applications. Of the 80 peptide drugs approved for use in humans, at least five are now off-patent and are consequently being developed as generic alternatives to the originator products. To accelerate access to generic products, the FDA has proposed new regulatory pathways that do not require direct comparisons of generics to originators in clinical trials. The 'Abbreviated New Drug Application' (ANDA) pathway recommends that sponsors provide information on any new impurities in the generic drug, compared with the originator product, because the impurities can have potential to elicit unwanted immune responses owing to the introduction of T-cell epitopes. This review describes how peptide drug impurities can elicit unexpected immunogenicity and describes a framework for performing immunogenicity risk assessment of all types of bioactive peptide products. Although this report primarily focuses on generic peptides and their impurities, the approach might also be of interest for developers of novel peptide drugs who are preparing their products for an initial regulatory review.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, 188 Valley Street, Suite 424, Providence, RI, USA; University of Georgia, Center for Vaccines and Immunology, Athens, GA USA.
| | | | - Aimee Mattei
- EpiVax, 188 Valley Street, Suite 424, Providence, RI, USA
| | - Sandra Lelias
- EpiVax, 188 Valley Street, Suite 424, Providence, RI, USA
| | | | | |
Collapse
|
3
|
Di Ianni A, Barbero L, Fraone T, Cowan K, Sirtori FR. Preclinical risk assessment strategy to mitigate the T-cell dependent immunogenicity of protein biotherapeutics: State of the art, challenges and future perspectives. J Pharm Biomed Anal 2023; 234:115500. [PMID: 37311374 DOI: 10.1016/j.jpba.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Protein therapeutics hold a prominent role and have brought significant diversity in efficacious medicinal products. Not just monoclonal antibodies and different antibody formats (pegylated antigen-binding fragments, bispecifics, antibody-drug conjugates, single chain variable fragments, nanobodies, dia-, tria- and tetrabodies), but also purified blood products, growth factors, recombinant cytokines, enzyme replacement factors, fusion proteins are all good instances of therapeutic proteins that have been developed in the past decades and approved for their value in oncology, immune-oncology, and autoimmune diseases discovery programs. Although there was an ingrained belief that fully humanized proteins were expected to have limited immunogenicity, adverse effects associated with immune responses to biological therapies raised some concern in biotech companies. Consequently, drug developers are designing strategies to assess potential immune responses to protein therapeutics during both the preclinical and clinical phases of development. Despite the many factors that can contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) immunogenicity seems to play a crucial role in the development of anti-drug antibodies (ADAs) to biologics. A broad range of methodologies to predict and rationally assess Td immune responses to protein drugs has been developed. This review aims to briefly summarize the preclinical immunogenicity risk assessment strategy to mitigate the risk of potential immunogenic candidates coming towards clinical phases, discussing the advantages and limitations of these technologies, and suggesting a rational approach for assessing and mitigating Td immunogenicity.
Collapse
Affiliation(s)
- Andrea Di Ianni
- University of Turin, Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Luca Barbero
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Tiziana Fraone
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Kyra Cowan
- New Biological Entities, Drug Metabolism and Pharmacokinetics (NBE-DMPK), Research and Development, Merck KGaA, Frankfurterstrasse 250, 64293 Darmstadt, Germany
| | - Federico Riccardi Sirtori
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy.
| |
Collapse
|
4
|
Callanan D, Khurana RN, Maturi RK, Patel S, Wykoff CC, Eichenbaum D, Khanani AM, Hassan T, Badger H, Mehta S, Le G, Attar M, Seal J, Li XY. Impact of Modifying Abicipar Manufacturing Process in Patients with Neovascular Age-Related Macular Degeneration: MAPLE Study Results. Clin Ophthalmol 2023; 17:1367-1384. [PMID: 37197577 PMCID: PMC10184835 DOI: 10.2147/opth.s405994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Purpose To evaluate the impact of modifying the abicipar pegol (abicipar) manufacturing process on the safety and treatment effect of abicipar in patients with neovascular age-related macular degeneration (nAMD). Methods A new process for manufacturing abicipar was developed to reduce host cell impurities. In a prospective, Phase 2, multicenter, open-label, 28-week clinical trial, patients (n=123) with active nAMD received intravitreal injections of abicipar 2 mg at baseline (day 1) and weeks 4, 8, 16, and 24. Outcome measures included proportion of patients with stable vision (<15-letter loss from baseline; primary endpoint), change from baseline in best-corrected visual acuity (BCVA) and central retinal thickness (CRT), and adverse events. Results Overall, 8.9% (11/123) of patients experienced intraocular inflammation (IOI) and discontinued treatment. IOI cases were assessed as mild (2.4% [3/123]), moderate (4.9% [6/123]), or severe (1.6% [2/123]) and resolved with steroid treatment. Visual acuity in most patients with IOI (8 of 11) recovered to baseline BCVA or better by study end. No cases of endophthalmitis or retinal vasculitis were reported. Stable vision was maintained for ≥95.9% (≥118/123) of patients at all study visits. At week 28, treatment-naïve patients showed a greater mean improvement from baseline in BCVA compared with previously treated patients (4.4 vs 1.8 letters) and a larger mean CRT reduction from baseline (98.5 vs 45.5 μm). Conclusion Abicipar produced using a modified manufacturing process showed a moderately lower incidence and severity of IOI compared with Phase 3 abicipar studies. Beneficial effects of treatment were demonstrated.
Collapse
Affiliation(s)
- David Callanan
- Texas Retina Associates, Arlington, TX, USA
- Correspondence: David Callanan, Texas Retina Associates, 801 West Randol Mill Road, Suite 101, Arlington, TX, USA, 76012, Tel +1 817-261-9625, Fax +1 817-261-9586, Email
| | - Rahul N Khurana
- Northern California Retina Vitreous Associates, Mountain View, CA, USA
| | - Raj K Maturi
- Midwest Eye Institute, Indianapolis, IN, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Charles C Wykoff
- Retina Consultants of Houston, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - David Eichenbaum
- Retina Vitreous Associates of Florida, St. Petersburg, FL, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Arshad M Khanani
- Sierra Eye Associates, Reno, NV, USA
- University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Tarek Hassan
- Associated Retinal Consultants, Royal Oak, MI, USA
| | - Hanh Badger
- Allergan plc, Irvine, CA, USA, at the time of this work
| | | | - Grace Le
- Allergan plc, Irvine, CA, USA, at the time of this work
| | | | | | - Xiao-Yan Li
- Allergan plc, Irvine, CA, USA, at the time of this work
- VivaVision Biotech, Inc, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Han Q, Bao Z, Luo MZ, Zhang JY. Assessment of innate immune response modulating impurities in glucagon for injection. PLoS One 2022; 17:e0277922. [PMID: 36409759 PMCID: PMC9678265 DOI: 10.1371/journal.pone.0277922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Glucagon for Injection is a polypeptide hormone medication used to treat patients with severe hypoglycemia or low blood sugar. Only recently, was a generic version of glucagon for injection approved by the FDA. While the generic version was deemed equivalent to its brand-name counterpart, the two glucagon products were produced using different manufacturing processes. The brand-name glucagon is produced via recombinant DNA while the generic glucagon is produced by peptide synthesis. Different manufacturing processes can result in different levels of innate immune response modulating impurities (IIRMIs). This study utilized a cell-based assay method, which allows for detection of a broad spectrum of impurities, to investigate the IIRMI risks of the generic glucagon to make sure it has similar or less immunogenicity risks than the brand-name glucagon product. Three commercial cell lines (RAW-Blue™, HEK-Blue™-hNOD1 and HEK-Blue™-hNOD2) carrying a secreted embryonic alkaline phosphatase reporter construct were used to quantify the level of innate immune responses after being treated with the glucagon drugs. The study results showed that despite differences in manufacturing process, the innate immunogenicity risk in the synthetic (generic) glucagon was at negligible level and comparable to the recombinant (brand-name) glucagon product.
Collapse
Affiliation(s)
- Qingxia Han
- Amphastar Pharmaceuticals, Inc., Rancho Cucamonga, California, United States of America
| | - Zhongli Bao
- Amphastar Pharmaceuticals, Inc., Rancho Cucamonga, California, United States of America
| | - Mary Ziping Luo
- Amphastar Pharmaceuticals, Inc., Rancho Cucamonga, California, United States of America
| | - Jack Yongfeng Zhang
- Amphastar Pharmaceuticals, Inc., Rancho Cucamonga, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Thacker SG, Her C, Kelley-Baker L, Ireland DDC, Manangeeswaran M, Pang ES, Verthelyi D. Detection of innate immune response modulating impurities (IIRMI) in therapeutic peptides and proteins: Impact of excipients. Front Immunol 2022; 13:970499. [PMID: 36148237 PMCID: PMC9485840 DOI: 10.3389/fimmu.2022.970499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Unintended immunogenicity can affect the safety and efficacy of therapeutic proteins and peptides, so accurate assessments of immunogenicity risk can aid in the selection, development, and regulation of biologics. Product- and process- related impurities can act as adjuvants that activate the local or systemic innate immune response increasing the likelihood of product immunogenicity. Thus, assessing whether products have innate immune response modulating impurities (IIRMI) is a key component of immunogenicity risk assessments. Identifying trace levels of individual IIRMI can be difficult and testing individually for all potential impurities is not feasible. Therefore, to mitigate the risk, cell-based assays that use human blood cells or monocyte-macrophage reporter cell lines are being developed to detect minute quantities of impurities capable of eliciting innate immune activation. As these are cell-based assays, there is concern that excipients could blunt the cell responses, masking the presence of immunogenic IIRMI. Here, we explore the impact of frequently used excipients (non-ionic detergents, sugars, amino acids, bulking agents) on the sensitivity of reporter cell lines (THP-1- and RAW-Blue cells) and fresh human blood cells to detect purified TLR agonists as model IIRMI. We show that while excipients do not modulate the innate immune response elicited by TLR agonists in vivo, they can impact on the sensitivity of cell-based IIRMI assays. Reduced sensitivity to detect LPS, FSL-1, and other model IIRMI was also evident when testing 3 different recombinant drug products, product A (a representative mAb), B (a representative growth factor), C (a representative peptide), and their corresponding formulations. These results indicate that product formulations need to be considered when developing and validating cell-based assays for assessing clinically relevant levels of IIRMI in therapeutic proteins. Optimization of reporter cells, culture conditions and drug product concentration appear to be critical to minimize the impact of excipients and attain sensitive and reproducible assays.
Collapse
Affiliation(s)
- Seth G. Thacker
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Cheng Her
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Logan Kelley-Baker
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Derek D C. Ireland
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Mohanraj Manangeeswaran
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Eric S. Pang
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Daniela Verthelyi
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
- *Correspondence: Daniela Verthelyi,
| |
Collapse
|
7
|
Tokuda JM, Xie J, Jawa V, Hawkins JM, Ferbas J, Joh NH, Joubert MK. Use of in vitro human skin models to assess potential immune activation in response to biotherapeutic attributes and process-related impurities. J Pharm Sci 2022; 111:1012-1023. [DOI: 10.1016/j.xphs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
|
8
|
Radakovics K, Battin C, Leitner J, Geiselhart S, Paster W, Stöckl J, Hoffmann-Sommergruber K, Steinberger P. A Highly Sensitive Cell-Based TLR Reporter Platform for the Specific Detection of Bacterial TLR Ligands. Front Immunol 2022; 12:817604. [PMID: 35087538 PMCID: PMC8786796 DOI: 10.3389/fimmu.2021.817604] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Toll-like receptors (TLRs) are primary pattern recognition receptors (PRRs), which recognize conserved microbial components. They play important roles in innate immunity but also in the initiation of adaptive immune responses. Impurities containing TLR ligands are a frequent problem in research but also for the production of therapeutics since TLR ligands can exert strong immunomodulatory properties even in minute amounts. Consequently, there is a need for sensitive tools to detect TLR ligands with high sensitivity and specificity. Here we describe the development of a platform based on a highly sensitive NF-κB::eGFP reporter Jurkat JE6-1 T cell line for the detection of TLR ligands. Ectopic expression of TLRs and their coreceptors and CRISPR/Cas9-mediated deletion of endogenously expressed TLRs was deployed to generate reporter cell lines selectively expressing functional human TLR2/1, TLR2/6, TLR4 or TLR5 complexes. Using well-defined agonists for the respective TLR complexes we could demonstrate high specificity and sensitivity of the individual reporter lines. The limit of detection for LPS was below 1 pg/mL and ligands for TLR2/1 (Pam3CSK4), TLR2/6 (Fsl-1) and TLR5 (flagellin) were detected at concentrations as low as 1.0 ng/mL, 0.2 ng/mL and 10 pg/mL, respectively. We showed that the JE6-1 TLR reporter cells have the utility to characterize different commercially available TLR ligands as well as more complex samples like bacterially expressed proteins or allergen extracts. Impurities in preparations of microbial compounds as well as the lack of specificity of detection systems can lead to erroneous results and currently there is no consensus regarding the involvement of TLRs in the recognition of several molecules with proposed immunostimulatory functions. This reporter system represents a highly suitable tool for the definition of structural requirements for agonists of distinct TLR complexes.
Collapse
Affiliation(s)
- Katharina Radakovics
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Clinical Cell Biology and FACS Core Unit, St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Johannes Stöckl
- Division Regulation of the Immune System, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
An In Vitro Assessment of Immunostimulatory Responses to Ten Model Innate Immune Response Modulating Impurities (IIRMIs) and Peptide Drug Product, Teriparatide. Molecules 2021; 26:molecules26247461. [PMID: 34946542 PMCID: PMC8707785 DOI: 10.3390/molecules26247461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding, predicting, and minimizing the immunogenicity of peptide-based therapeutics are of paramount importance for ensuring the safety and efficacy of these products. The so-called anti-drug antibodies (ADA) may have various clinical consequences, including but not limited to the alteration in the product's distribution, biological activity, and clearance profiles. The immunogenicity of biotherapeutics can be influenced by immunostimulation triggered by the presence of innate immune response modulating impurities (IIRMIs) inadvertently introduced during the manufacturing process. Herein, we evaluate the applicability of several in vitro assays (i.e., complement activation, leukocyte proliferation, and cytokine secretion) for the screening of innate immune responses induced by ten common IIRMIs (Bacillus subtilis flagellin, FSL-1, zymosan, ODN2006, poly(I:C) HMW, poly(I:C) LMW, CLO75, MDP, ODN2216, and Escherichia coli O111:B4 LPS), and a model biotherapeutic Forteo™ (teriparatide). Our study identifies cytokine secretion from healthy human donor peripheral blood mononuclear cells (PBMC) as a sensitive method for the in vitro monitoring of innate immune responses to individual IIRMIs and teriparatide (TP). We identify signature cytokines, evaluate both broad and narrow multiplex cytokine panels, and discuss how the assay logistics influence the performance of this in vitro assay.
Collapse
|
10
|
Innate Immunity Modulating Impurities and the Immunotoxicity of Nanobiotechnology-Based Drug Products. Molecules 2021; 26:molecules26237308. [PMID: 34885886 PMCID: PMC8658779 DOI: 10.3390/molecules26237308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Innate immunity can be triggered by the presence of microbial antigens and other contaminants inadvertently introduced during the manufacture and purification of bionanopharmaceutical products. Activation of these innate immune responses, including cytokine secretion, complement, and immune cell activation, can result in unexpected and undesirable host immune responses. These innate modulators can also potentially stimulate the activation of adaptive immune responses, including the formation of anti-drug antibodies which can impact drug effectiveness. To prevent induction of these adverse responses, it is important to detect and quantify levels of these innate immunity modulating impurities (IIMIs) that may be present in drug products. However, while it is universally agreed that removal of IIMIs from drug products is crucial for patient safety and to prevent long-term immunogenicity, there is no single assay capable of directly detecting all potential IIMIs or indirectly quantifying downstream biomarkers. Additionally, there is a lack of agreement as to which of the many analytical assays currently employed should be standardized for general IIMI screening. Herein, we review the available literature to highlight cellular and molecular mechanisms underlying IIMI-mediated inflammation and its relevance to the safety and efficacy of pharmaceutical products. We further discuss methodologies used for direct and indirect IIMI identification and quantification.
Collapse
|
11
|
Aboussahoud WS, Smith H, Stevens A, Wangsaputra I, Hunter HR, Kimber SJ, Seif MW, Brison DR. The expression and activity of Toll-like receptors in the preimplantation human embryo suggest a new role for innate immunity. Hum Reprod 2021; 36:2661-2675. [PMID: 34517414 PMCID: PMC8450873 DOI: 10.1093/humrep/deab188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
STUDY QUESTION Is the innate immunity system active in early human embryo development? SUMMARY ANSWER The pattern recognition receptors and innate immunity Toll-like receptor (TLR) genes are widely expressed in preimplantation human embryos and the pathway appears to be active in response to TLR ligands. WHAT IS KNOWN ALREADY Early human embryos are highly sensitive to their local environment, however relatively little is known about how embryos detect and respond to specific environmental cues. While the maternal immune response is known to be key to the establishment of pregnancy at implantation, the ability of human embryos to detect and signal the presence of pathogens is unknown. STUDY DESIGN, SIZE, DURATION Expression of TLR family and related genes in human embryos was assessed by analysis of published transcriptome data (n = 40). Day 5 (D-5) human embryos (n = 25) were cultured in the presence of known TLR ligands and gene expression and cytokine production measured compared to controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Human embryos surplus to treatment requirements were donated with informed consent from several ART centres. Embryos were cultured to Day 6 (D-6) in the presence of the TLR3 and TLR5 ligands Poly (I: C) and flagellin, with gene expression measured by quantitative PCR and cytokine release into medium measured using cytometric bead arrays. MAIN RESULTS AND THE ROLE OF CHANCE TLR and related genes, including downstream signalling molecules, were expressed variably at all human embryo developmental stages. Results showed the strongest expression in the blastocyst for TLRs 9 and 5, and throughout development for TLRs 9, 5, 2, 6 and 7. Stimulation of Day 5 blastocysts with TLR3 and TLR5 ligands Poly (I: C) and flagellin produced changes in mRNA expression levels of TLR genes, including the hyaluronan-mediated motility receptor (HMMR), TLR5, TLR7, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and monocyte chemoattractant Protein-1 (MCP-1) (P < 0.05, P < 0.001 compared to unstimulated controls), and release into culture medium of cytokines and chemokines, notably IL8 (P = 0.00005 and 0.01277 for flagellin and Poly (I: C), respectively). LIMITATIONS, REASONS FOR CAUTION This was a descriptive and experimental study which suggests that the TLR system is active in human embryos and capable of function, but does not confirm any particular role. Although we identified embryonic transcripts for a range of TLR genes, the expression patterns were not always consistent across published studies and expression levels of some genes were low, leaving open the possibility that these were expressed from the maternal rather than embryonic genome. WIDER IMPLICATIONS OF THE FINDINGS This is the first report of the expression and activity of a number of components of the innate immunity TLR system in human embryos. Understanding the role of TLRs during preimplantation human development may be important to reveal immunological mechanisms and potential clinical markers of embryo quality and pregnancy initiation during natural conception and in ART. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the Ministry of Higher Education, The State of Libya, the UK Medical Research Council, and the NIHR Local Comprehensive Research Network and NIHR Manchester Clinical Research Facility and the European Union's Horizon 2020 Research and Innovation Programmes under the Marie Skłodowska-Curie Grant Agreement No. 812660 (DohART-NET). In accordance with H2020 rules, no new human embryos were sacrificed for research activities performed from the EU funding, which concerned only in silico analyses of recorded time-lapse and transcriptomics datasets. None of the authors has any conflict of interest to declare. TRIAL REGISTRATION NUMBER n/a.
Collapse
Affiliation(s)
- Wedad S Aboussahoud
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Smith
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Ivan Wangsaputra
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen R Hunter
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Mourad W Seif
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
12
|
Immunogenicity Challenges Associated with Subcutaneous Delivery of Therapeutic Proteins. BioDrugs 2021; 35:125-146. [PMID: 33523413 PMCID: PMC7848667 DOI: 10.1007/s40259-020-00465-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The subcutaneous route of administration has provided convenient and non-inferior delivery of therapeutic proteins compared to intravenous infusion, but there is potential for enhanced immunogenicity toward subcutaneously administered proteins in a subset of patients. Unwanted anti-drug antibody response toward proteins or monoclonal antibodies upon repeated administration is shown to impact the pharmacokinetics and efficacy of multiple biologics. Unique immunogenicity challenges of the subcutaneous route have been realized through various preclinical and clinical examples, although subcutaneous delivery has often demonstrated comparable immunogenicity to intravenous administration. Beyond route of administration as a treatment-related factor of immunogenicity, certain product-related risk factors are particularly relevant to subcutaneously administered proteins. This review attempts to provide an overview of the mechanism of immune response toward proteins administered subcutaneously (subcutaneous proteins) and comments on product-related risk factors related to protein structure and stability, dosage form, and aggregation. A two-wave mechanism of antigen presentation in the immune response toward subcutaneous proteins is described, and interaction with dynamic antigen-presenting cells possessing high antigen processing efficiency and migratory activity may drive immunogenicity. Mitigation strategies for immunogenicity are discussed, including those in general use clinically and those currently in development. Mechanistic insights along with consideration of risk factors involved inspire theoretical strategies to provide antigen-specific, long-lasting effects for maintaining the safety and efficacy of therapeutic proteins.
Collapse
|
13
|
The Impact of Product and Process Related Critical Quality Attributes on Immunogenicity and Adverse Immunological Effects of Biotherapeutics. J Pharm Sci 2020; 110:1025-1041. [PMID: 33316242 DOI: 10.1016/j.xphs.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
The pharmaceutical industry has experienced great successes with protein therapeutics in the last two decades and with novel modalities, including cell therapies and gene therapies, more recently. Biotherapeutics are complex in structure and present challenges for discovery, development, regulatory, and life cycle management. Biotherapeutics can interact with the immune system that may lead to undesired immunological responses, including immunogenicity, hypersensitivity reactions (HSR), injection site reactions (ISR), and others. Many product and process related critical quality attributes (CQAs) have the potential to trigger or augment such immunological responses to the product. Tremendous efforts, both clinically and preclinically, have been invested to understand the impact of product and process related CQAs on adverse immunological effects. The information and knowledge are critical for the implementation of Quality by Design (QbD), which requires risk assessment and establishment of specifications and control strategies for CQAs. A quality target product profile (QTPP) that identifies the key CQAs through process development can help assign severity scores based on safety, immunogenicity, pharmacokinetics (PK) and pharmacodynamics (PD) of the molecule. Gaps and future directions related to biotherapeutics and emerging novel modalities are presented.
Collapse
|
14
|
Novel peptide ligands for antibody purification provide superior clearance of host cell protein impurities. J Chromatogr A 2020; 1625:461237. [DOI: 10.1016/j.chroma.2020.461237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022]
|
15
|
Meunier S, de Bourayne M, Hamze M, Azam A, Correia E, Menier C, Maillère B. Specificity of the T Cell Response to Protein Biopharmaceuticals. Front Immunol 2020; 11:1550. [PMID: 32793213 PMCID: PMC7387651 DOI: 10.3389/fimmu.2020.01550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
The anti-drug antibody (ADA) response is an undesired humoral response raised against protein biopharmaceuticals (BPs) which can dramatically disturb their therapeutic properties. One particularity of the ADA response resides in the nature of the immunogens, which are usually human(ized) proteins and are therefore expected to be tolerated. CD4 T cells initiate, maintain and regulate the ADA response and are therefore key players of this immune response. Over the last decade, advances have been made in characterizing the T cell responses developed by patients treated with BPs. Epitope specificity and phenotypes of BP-specific T cells have been reported and highlight the effector and regulatory roles of T cells in the ADA response. BP-specific T cell responses are assessed in healthy subjects to anticipate the immunogenicity of BP prior to their testing in clinical trials. Immunogenicity prediction, also called preclinical immunogenicity assessment, aims at identifying immunogenic BPs and immunogenic BP sequences before any BP injection in humans. All of the approaches that have been developed to date rely on the detection of BP-specific T cells in donors who have never been exposed to BPs. The number of BP-specific T cells circulating in the blood of these donors is therefore limited. T cell assays using cells collected from healthy donors might reveal the weak tolerance induced by BPs, whose endogenous form is expressed at a low level. These BPs have a complete human sequence, but the level of their endogenous form appears insufficient to promote the negative selection of autoreactive T cell clones. Multiple T cell epitopes have also been identified in therapeutic antibodies and some other BPs. The pattern of identified T cell epitopes differs across the antibodies, notwithstanding their humanized, human or chimeric nature. However, in all antibodies, the non-germline amino acid sequences mainly found in the CDRs appear to be the main driver of immunogenicity, provided they can be presented by HLA class II molecules. Considering the fact that the BP field is expanding to include new formats and gene and cell therapies, we face new challenges in understanding and mastering the immunogenicity of new biological products.
Collapse
Affiliation(s)
- Sylvain Meunier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Marie de Bourayne
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Moustafa Hamze
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Aurélien Azam
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Evelyne Correia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Catherine Menier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Jawa V, Terry F, Gokemeijer J, Mitra-Kaushik S, Roberts BJ, Tourdot S, De Groot AS. T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical Assessment and Mitigation-Updated Consensus and Review 2020. Front Immunol 2020; 11:1301. [PMID: 32695107 PMCID: PMC7338774 DOI: 10.3389/fimmu.2020.01301] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
Immune responses to protein and peptide drugs can alter or reduce their efficacy and may be associated with adverse effects. While anti-drug antibodies (ADA) are a standard clinical measure of protein therapeutic immunogenicity, T cell epitopes in the primary sequences of these drugs are the key drivers or modulators of ADA response, depending on the type of T cell response that is stimulated (e.g., T helper or Regulatory T cells, respectively). In a previous publication on T cell-dependent immunogenicity of biotherapeutics, we addressed mitigation efforts such as identifying and reducing the presence of T cell epitopes or T cell response to protein therapeutics prior to further development of the protein therapeutic for clinical use. Over the past 5 years, greater insight into the role of regulatory T cell epitopes and the conservation of T cell epitopes with self (beyond germline) has improved the preclinical assessment of immunogenic potential. In addition, impurities contained in therapeutic drug formulations such as host cell proteins have also attracted attention and become the focus of novel risk assessment methods. Target effects have come into focus, given the emergence of protein and peptide drugs that target immune receptors in immuno-oncology applications. Lastly, new modalities are entering the clinic, leading to the need to revise certain aspects of the preclinical immunogenicity assessment pathway. In addition to drugs that have multiple antibody-derived domains or non-antibody scaffolds, therapeutic drugs may now be introduced via viral vectors, cell-based constructs, or nucleic acid based therapeutics that may, in addition to delivering drug, also prime the immune system, driving immune response to the delivery vehicle as well as the encoded therapeutic, adding to the complexity of assessing immunogenicity risk. While it is challenging to keep pace with emerging methods for the preclinical assessment of protein therapeutics and new biologic therapeutic modalities, this collective compendium provides a guide to current best practices and new concepts in the field.
Collapse
Affiliation(s)
- Vibha Jawa
- Predictive and Clinical Immunogenicity, PPDM, Merck & Co., Kenilworth, NJ, United States
| | | | - Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol-Myers Squibb, Cambridge, MA, United States
| | | | | | - Sophie Tourdot
- BioMedicine Design, Pfizer Inc., Andover, MA, United States
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
17
|
Chamberlain P, Rup B. Immunogenicity Risk Assessment for an Engineered Human Cytokine Analogue Expressed in Different Cell Substrates. AAPS JOURNAL 2020; 22:65. [PMID: 32291556 DOI: 10.1208/s12248-020-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 11/30/2022]
Abstract
The purpose of this article is to illustrate how performance of an immunogenicity risk assessment at the earliest stage of product development can be instructive for critical early decision-making such as choice of host system for expression of a recombinant therapeutic protein and determining the extent of analytical characterization and control of heterogeneity in co- and post-translational modifications. Application of a risk-based approach for a hypothetical recombinant DNA analogue of a human endogenous cytokine with immunomodulatory functions is described. The manner in which both intrinsic and extrinsic factors could interact to influence the relative scale of risk associated with expression in alternative hosts, namely Chinese hamster ovary (CHO) cells, Pichia pastoris, Escherichia coli, or Nicotinia tabacum is considered in relation to the development of the investigational product to treat an autoimmune condition. The article discusses how particular product-related variants (primary amino acid sequence modifications and post-translational glycosylation or other modifications) and process-derived impurities (host cell proteins, endotoxins, beta-glucans) associated with the different expression systems might influence the impact of immunogenicity on overall clinical benefit versus risk for a therapeutic protein candidate that has intrinsic MHC Class II binding potential. The implications of the choice of expression system for relative risk are discussed in relation to specific actions for evaluation and measures for risk mitigation, including use of in silico and in vitro methods to understand intrinsic immunogenic potential relative to incremental risk associated with non-human glycan and protein impurities. Finally, practical guidance on presentation of this information in regulatory submissions to support clinical development is provided.
Collapse
Affiliation(s)
- Paul Chamberlain
- NDA Advisory Board, NDA Regulatory Science Ltd, Grove House, Guildford Road, Leatherhead, Surrey, KT22 9DF, UK.
| | - Bonita Rup
- Bonnie Rup Consulting, LLC, Reading, Massachusetts, USA
| |
Collapse
|
18
|
Thacker SG, McWilliams IL, Bonnet B, Halie L, Beaucage S, Rachuri S, Dey R, Duncan R, Modabber F, Robinson S, Bilbe G, Arana B, Verthelyi D. CpG ODN D35 improves the response to abbreviated low-dose pentavalent antimonial treatment in non-human primate model of cutaneous leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008050. [PMID: 32109251 PMCID: PMC7075640 DOI: 10.1371/journal.pntd.0008050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/16/2020] [Accepted: 01/12/2020] [Indexed: 01/01/2023] Open
Abstract
Cutaneous leishmaniasis (CL) affects the lives of 0.7–1 million people every year causing lesions that take months to heal. These lesions can result in disfiguring scars with psychological, social and economic consequences. Antimonials are the first line of therapy for CL, however the treatment is lengthy and linked to significant toxicities; further, its efficacy is variable and resistant parasites are emerging. Shorter or lower dose antimonial treatment regimens, which would decrease the risk of adverse events and improve patient compliance, have shown reduced efficacy and further increase the risk emergence of antimonial-resistant strains. The progression of lesions in CL is partly determined by the immune response it elicits, and previous studies showed that administration of immunomodulatory type D CpG ODNs, magnifies the immune response to Leishmania and reduces lesion severity in nonhuman primates (NHP) challenged with Leishmania major or Leishmania amazonensis. Here we explored whether the addition of a single dose of immunomodulating CpG ODN D35 augments the efficacy of a short-course, low-dose pentavalent antimonial treatment regimen. Results show that macaques treated with D35 plus 5mg/kg sodium stibogluconate (SbV) for 10 days had smaller lesions and reduced time to re-epithelization after infection with Leishmania major. No toxicities were evident during the studies, even at doses of D35 10 times higher than those used in treatment. Critically, pentavalent antimonial treatment did not modify the ability of D35 to induce type I IFNs. The findings support the efficacy of D35 as adjuvant therapy for shorter, low dose pentavalent antimonial treatment. Cutaneous leishmaniasis is a devastating disease that affects close to a million people every year. Its clinical presentation ranges from small uncomplicated lesions that heal over a few months to debilitating large chronic or recurring lesions that result in disfigurement, stigma, and economic loss. Antimonials are the first line treatment for cutaneous leishmaniasis in most countries, but the lengthy treatment schedules, significant associated toxicities, and the emergence of resistant strains, require the development of alternative strategies. As the immune response is a key determinant of disease course, immunomodulatory therapies could be harnessed to act in concert with antimonials to improve the safety and efficacy of CL treatment. Synthetic oligonucleotide D35 selectively activates plasmacytoid dendritic cells and was previously shown to reduce the severity of L. major and L. amazonensis lesions in rhesus macaques, but its activity in combination with antimonials was unknown. Our studies show that a single subcutaneous dose of innate immune modulator D35 improved the response to a low-dose abbreviated antimonial course, reducing the severity of the lesions and accelerating healing in primates. No toxicities were evident with D35 at doses ten-fold higher than the effective dose. The studies suggest that the combined therapy strategy shows clinical promise.
Collapse
Affiliation(s)
- Seth G Thacker
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ian L. McWilliams
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Beatrice Bonnet
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Lydia Halie
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Serge Beaucage
- Laboratory of Biological Chemistry; Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Swaksha Rachuri
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Robert Duncan
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Farrokh Modabber
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Stephen Robinson
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Graeme Bilbe
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Byron Arana
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
- * E-mail: (BA); (DV)
| | - Daniela Verthelyi
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (BA); (DV)
| |
Collapse
|
19
|
|
20
|
Current In Vitro Assays for Prediction of T Cell Mediated Immunogenicity of Biotherapeutics and Manufacturing Impurities. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09412-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Mufarrege EF, Haile LA, Etcheverrigaray M, Verthelyi DI. Multiplexed Gene Expression as a Characterization of Bioactivity for Interferon Beta (IFN-β) Biosimilar Candidates: Impact of Innate Immune Response Modulating Impurities (IIRMIs). AAPS JOURNAL 2019; 21:26. [DOI: 10.1208/s12248-019-0300-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/12/2019] [Indexed: 01/10/2023]
|
22
|
Wassenaar TM, Zimmermann K. Lipopolysaccharides in Food, Food Supplements, and Probiotics: Should We be Worried? Eur J Microbiol Immunol (Bp) 2018; 8:63-69. [PMID: 30345085 PMCID: PMC6186019 DOI: 10.1556/1886.2018.00017] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
The fever-inducing effect of lipopolysaccharides (LPS) is well known, and human blood is extremely responsive to this pyrogen. Recently, the safety of LPS-containing food supplements and probiotic drugs as immune-stimulants has been questioned, although these products are orally taken and do not reach the bloodstream undigested. The concerns are understandable, as endotoxaemia is a pathological condition, but the oral uptake of probiotic products containing LPS or Gram-negative bacteria does not pose a health risk, based on the available scientific evidence, as is reviewed here. The available methods developed to detect LPS and other pyrogens are mostly used for quality control of parentally applied therapeuticals. Their outcome varies considerably when applied to food supplements, as demonstrated in a simple comparative experiment. Products containing different Escherichia coli strains can result in vastly different results on their LPS content, depending on the method of testing. This is an inherent complication to pyrogen testing, which hampers the communication that the LPS content of food supplements is not a safety concern.
Collapse
Affiliation(s)
- Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultancy, Tannenstrasse 7, 55576 Zotzenheim, Germany
| | | |
Collapse
|
23
|
Polumuri SK, Haile LA, Ireland DDC, Verthelyi D. Aggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impurities. Sci Rep 2018; 8:11477. [PMID: 30065306 PMCID: PMC6068171 DOI: 10.1038/s41598-018-29850-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins can induce immune responses that affect their safety and efficacy. Product aggregates and innate immune response modulating impurities (IIRMI) are risk factors of product immunogenicity. In this study, we use Intravenous Immunoglobulin (IVIG), Avastin, and Human Serum Albumin (HSA) to explore whether increased aggregates activate innate immune cells or modify the response to IIRMI. We show that increased aggregates (shaken or stirred) in IVIG and Avastin, but not HSA, induced activation of MAPKs (pp38, pERK and pJNK) and transcription of immune-related genes including IL8, IL6, IL1β, CSF1, CCL2, CCL7, CCL3, CCL24, CXCL2, IRAK1, EGR2, CEBPβ, PPARg and TNFSF15 in human PBMC. The immunomodulatory effect was primarily mediated by FcγR, but not by TLR. Interestingly, increased aggregates in IVIG or Avastin magnified innate immune responses to TLR2/4 agonists, but diminished responses to TLR3/9 agonists. This study shows that IIRMI and aggregates can modify the activity of immune cells potentially modifying the milieu where the products are delivered highlighting the complex interplay of different impurities on product immunogenicity risk. Further, we show that aggregates could modify the sensitivity of PBMC-based assays designed to detect IIRMI. Understanding and managing immunogenicity risk is a critical component of product development and regulation.
Collapse
Affiliation(s)
- Swamy Kumar Polumuri
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Lydia A Haile
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Derek D C Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
24
|
Faraji F, Karjoo Z, Moghaddam MV, Heidari S, Emameh RZ, Falak R. Challenges related to the immunogenicity of parenteral recombinant proteins: Underlying mechanisms and new approaches to overcome it. Int Rev Immunol 2018; 37:301-315. [PMID: 29851534 DOI: 10.1080/08830185.2018.1471139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune response elicited by therapeutic proteins is an important safety and efficacy issue for regulatory agencies, drug manufacturers, clinicians, and patients. Administration of therapeutic proteins can potentially induce the production of anti-drug antibodies or cell-mediated immune responses. At first, it was speculated that the immunogenicity is related to the non-human origin of these proteins. Later on, it was confirmed that the human proteins may also show immunogenicity. In this review article, we will focus on a number of factors, which play crucial roles in the human protein immunogenicity. These factors are related to the patient's status (or intrinsic properties) and molecular characteristics of the therapeutic protein's (or extrinsic properties). Furthermore, we will discuss available in silico, in vitro, and in vivo methods for the prediction of sequences, which may generate an immune response following parenteral administration of these proteins. In summary, nowadays, it is possible for drug manufacturers to evaluate the risk of immunogenicity of therapeutic proteins and implement a management plan to overcome the problems prior to proceeding to human clinical trials.
Collapse
Affiliation(s)
- Fatemeh Faraji
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,b Department of Immunology, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Zahra Karjoo
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | | | - Sahel Heidari
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,b Department of Immunology, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Reza Zolfaghari Emameh
- c Department of Energy and Environmental Biotechnology, Division of Industrial & Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - Reza Falak
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,b Department of Immunology, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| |
Collapse
|
25
|
Haile LA, Rao R, Polumuri SK, Arepally GM, Keire DA, Verthelyi D, Sommers CD. PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses. Thromb Res 2017; 159:39-47. [DOI: 10.1016/j.thromres.2017.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/19/2017] [Indexed: 01/07/2023]
|
26
|
Gokemeijer J, Jawa V, Mitra-Kaushik S. How Close Are We to Profiling Immunogenicity Risk Using In Silico Algorithms and In Vitro Methods?: an Industry Perspective. AAPS JOURNAL 2017; 19:1587-1592. [PMID: 28971356 DOI: 10.1208/s12248-017-0143-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022]
Abstract
In silico HLA-binding algorithms and in vitro T cell-based assays as predictive tools for human immunogenicity risk have made inroads in the biotherapeutic drug discovery and development process. Currently, these tools are being used only for candidate selection or characterization and not for making a go/no-go decision for further development. A clear limitation for a broader implementation is the lack of correlation between the predicted T cell epitope content/immune reactivity potential of a biotherapeutic and the subsequent ADA-related clinical immunogenicity outcome. The current state of technologies and their pros and cons were discussed as a part of the 2016 AAPS National Biotechnology Conference in a themed session. A review of the advances in the area and the session talks along with the ensuing discussions are summarized in this commentary.
Collapse
Affiliation(s)
- Jochem Gokemeijer
- Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb, Waltham, Massachusetts, USA
| | - Vibha Jawa
- Biologics and Vaccine Formulations, Merck Sharp & Dohme Corp, 2000 Galloping Hill Road, K-15 H406, Kenilworth, New Jersey, 07033, USA
| | - Shibani Mitra-Kaushik
- Biomarker and Clinical Bioanalysis, Sanofi, 1 The Mountain Road, Framingham, Massachusetts, 01701, USA.
| |
Collapse
|
27
|
Cell based assay identifies TLR2 and TLR4 stimulating impurities in Interferon beta. Sci Rep 2017; 7:10490. [PMID: 28874687 PMCID: PMC5585229 DOI: 10.1038/s41598-017-09981-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023] Open
Abstract
Immunogenicity can have devastating consequences on the safety and efficacy of therapeutic proteins. Therefore, evaluating and mitigating the risk of product immunogenicity is critical for the development these products. This study, showed that Betaseron and Extavia, which are reported to be more immunogenic among IFNβ products in clinical usage, contain residual innate immune response modulating impurities (IIRMIs) capable of activating NF-κB and induced expression of inflammatory mediators. These IIRMIs were undetectable in Rebif or Avonex. The stimulatory effect was attributed solely to IIRMIs because it was evident in murine cells lacking the interferon receptor (IFNAR). The IIRMIs in Betaseron and Extavia triggered NF-κB activation in HEK-293 cells bearing TLR2 and TLR4 in MyD88 dependent manner. Importantly, the IIRMIs in Betaseron induced up-regulation of IL-6, IL-1β, and ccl5 in the skin of IFNAR knock out mice following subcutaneous administration. This indicates that trace level IIRMIs in Betaseron could contribute to the higher immunogenicity rates seen in clinics. Together these data suggest that cell based assays can reveal subtle but clinically relevant differences in IIRMIs following manufacturing changes or between products with the same active ingredients but different manufacturing processes. Appreciating these differences may inform immunogenicity risk assessments.
Collapse
|
28
|
Wakshull E, Quarmby V, Mahler HC, Rivers H, Jere D, Ramos M, Szczesny P, Bechtold-Peters K, Masli S, Gupta S. Advancements in Understanding Immunogenicity of Biotherapeutics in the Intraocular Space. AAPS JOURNAL 2017; 19:1656-1668. [PMID: 28795351 DOI: 10.1208/s12248-017-0128-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Therapeutic breakthroughs in a number of retinal degenerative diseases have come about through the development of biotherapeutics administered directly into the eye. As a consequence of their use, we have gained more insight into the immune privileged status of the eye and the various considerations that development, manufacturing, and use of these drugs require. It has been observed that therapeutic proteins injected into the vitreous can elicit an immune response resulting in the production of anti-drug antibodies (ADAs) which can have clinical consequences. This review includes discussion of the anatomy, physiology, and specific area of the eye that are targeted for drug administration. The various immunologic mechanisms involved in the immune responses to intraocularly administered protein are discussed. This review entails discussion on chemistry, manufacturing, and control (CMC) and formulation-related issues that may influence the risk of immunogenicity. Based on the available immunogenicity profile of the marketed intraocular drugs and their reported adverse events, the animal models and the translational gap from animals to human are discussed. Thus, the objective of this review article is to assess the factors that influence immunogenicity in relation to intraocular administration and the steps taken for mitigating immunogenicity risks.
Collapse
Affiliation(s)
- Eric Wakshull
- BioAnalytical Sciences Genentech, South San Francisco, California, USA
| | - Valerie Quarmby
- BioAnalytical Sciences Genentech, South San Francisco, California, USA
| | | | | | | | - Meg Ramos
- AbbVie, Preclinical Safety, North Chicago, Illinois, USA
| | | | | | | | - Swati Gupta
- Nonclinical and Translational Sciences, Allergan, Irvine, California, USA.
| |
Collapse
|
29
|
Wu LC, Chen F, Lee SL, Raw A, Yu LX. Building parity between brand and generic peptide products: Regulatory and scientific considerations for quality of synthetic peptides. Int J Pharm 2017; 518:320-334. [DOI: 10.1016/j.ijpharm.2016.12.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 02/06/2023]
|
30
|
|
31
|
Haile LA, Puig M, Polumuri SK, Ascher J, Verthelyi D. In Vivo Effect of Innate Immune Response Modulating Impurities on the Skin Milieu Using a Macaque Model: Impact on Product Immunogenicity. J Pharm Sci 2016; 106:751-760. [PMID: 27923493 DOI: 10.1016/j.xphs.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 01/04/2023]
Abstract
Unwanted immune responses to therapeutic proteins can severely impact their safety and efficacy. Studies show that the presence of trace amounts of host cells and process-related impurities that stimulate pattern recognition receptors (PRR) can cause local inflammation and enhance product immunogenicity. Here we used purified PRR agonists as model impurities to assess the minimal level of individual innate immune response modulating impurities (IIRMIs) that could activate a local immune response. We show that levels of endotoxin as low as 10 pg (0.01 EU), 1 ng for polyinosinic:polycytidylic acid (PolyI:C), 100 ng for synthetic diacylated liopprotein, thiazoloquinolone compound, or muramyl dipeptide, 1 μg for flagellin or β-glucan, or 5 μg for CpG-oligodeoxynucleotide increased expression of genes linked to innate immune activation and inflammatory processes in the skin of rhesus macaques. Furthermore, spiking studies using rasburicase as a model therapeutic showed that the levels of PRR agonists that induced detectable gene upregulation in the skin were associated with increased immunogenicity for rasburicase. This study underscores the need for testing multiple IIRMIs in biologics, strengthening the connection between the local mRNA induction in skin, innate immune activation, and antibody development in primates, and provides an indication of the levels of IIRMI in therapeutic products that could impact product immunogenicity.
Collapse
Affiliation(s)
- Lydia A Haile
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Montserrat Puig
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Swamy K Polumuri
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Jill Ascher
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Daniela Verthelyi
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993.
| |
Collapse
|
32
|
Jawa V, Joubert MK, Zhang Q, Deshpande M, Hapuarachchi S, Hall MP, Flynn GC. Evaluating Immunogenicity Risk Due to Host Cell Protein Impurities in Antibody-Based Biotherapeutics. AAPS JOURNAL 2016; 18:1439-1452. [DOI: 10.1208/s12248-016-9948-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/11/2016] [Indexed: 11/30/2022]
|
33
|
Moussa EM, Kotarek J, Blum JS, Marszal E, Topp EM. Physical Characterization and Innate Immunogenicity of Aggregated Intravenous Immunoglobulin (IGIV) in an In Vitro Cell-Based Model. Pharm Res 2016; 33:1736-51. [PMID: 27037576 DOI: 10.1007/s11095-016-1914-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate in vitro the innate immune response to accelerated stress-induced aggregates of intravenous immunoglobulin (IGIV) using a well-defined human cell-line model, and to correlate the innate response to physical properties of the aggregates. METHODS IGIV aggregates were prepared by applying various accelerated stress methods, and particle size, count and structure were characterized. Immune cell activation as tracked by inflammatory cytokines released in response to aggregates was evaluated in vitro using peripheral blood mononuclear cells (PBMC), primary monocytes and immortalized human monocyte-like cell lines. RESULTS IGIV aggregates produced by mechanical stress induced higher cytokine release by PBMC and primary monocytes than aggregates formed by other stresses. Results with the monocytic cell line THP-1 paralleled trends in PBMC and primary monocytes. Effects were dose-dependent, enhanced by complement opsonization, and partially inhibited by blocking toll-like receptors (TLR2 and TLR4) and to a lesser extent by blocking Fc gamma receptors (FcγRs). CONCLUSIONS Stress-induced IGIV aggregates stimulate a dose-dependent cytokine response in human monocytes and THP-1 cells, mediated in part by TLRs, FcγRs and complement opsonization. THP-1 cells resemble primary monocytes in many respects with regard to tracking the innate response to IgG aggregates. Accordingly, the measurement of inflammatory cytokines released by THP-1 cells provides a readily accessible assay system to screen for the potential innate immunogenicity of IgG aggregates. The results also highlight the role of aggregate structure in interacting with the different receptors mediating innate immunity.
Collapse
Affiliation(s)
- E M Moussa
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, 47906, West Lafayette, Indiana, USA
| | - J Kotarek
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
- Brand Institute, Rockville, Maryland, USA
| | - J S Blum
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - E Marszal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - E M Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, 47906, West Lafayette, Indiana, USA.
| |
Collapse
|
34
|
Cheung P, Emanuel A, Heward J, Maddalena J, Toth D, Saward L, Kodihalli S. Reduced immunogenic response to residual
CHO
cell protein in recombinant factor
IX
(
IB
1001) drug product in normal healthy rabbits. Haemophilia 2016; 22:e220-2. [DOI: 10.1111/hae.12890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 01/21/2023]
Affiliation(s)
- P. Cheung
- Research and Development Cangene Corporation d/b/a Emergent BioSolutions Winnipeg MB Canadaz
| | - A. Emanuel
- Research and Development Cangene Corporation d/b/a Emergent BioSolutions Winnipeg MB Canadaz
| | | | | | - D. Toth
- Research and Development Cangene Corporation d/b/a Emergent BioSolutions Winnipeg MB Canadaz
| | - L. Saward
- Research and Development Cangene Corporation d/b/a Emergent BioSolutions Winnipeg MB Canadaz
| | - S. Kodihalli
- Research and Development Cangene Corporation d/b/a Emergent BioSolutions Winnipeg MB Canadaz
| |
Collapse
|
35
|
The Role of Aggregates of Therapeutic Protein Products in Immunogenicity: An Evaluation by Mathematical Modeling. J Immunol Res 2015; 2015:401956. [PMID: 26682236 PMCID: PMC4670651 DOI: 10.1155/2015/401956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/07/2015] [Indexed: 01/12/2023] Open
Abstract
Therapeutic protein products (TPP) have been widely used to treat a variety of human diseases, including cancer, hemophilia, and autoimmune diseases. However, TPP can induce unwanted immune responses that can impact both drug efficacy and patient safety. The presence of aggregates is of particular concern as they have been implicated in inducing both T cell-independent and T cell-dependent immune responses. We used mathematical modeling to evaluate several mechanisms through which aggregates of TPP could contribute to the development of immunogenicity. Modeling interactions between aggregates and B cell receptors demonstrated that aggregates are unlikely to induce T cell-independent immune responses by cross-linking B cell receptors because the amount of signal transducing complex that can form under physiologically relevant conditions is limited. We systematically evaluate the role of aggregates in inducing T cell-dependent immune responses using a recently developed multiscale mechanistic mathematical model. Our analysis indicates that aggregates could contribute to T cell-dependent immune response by inducing high affinity epitopes which may not be present in the nonaggregated TPP and/or by enhancing danger signals to break tolerance. In summary, our computational analysis is suggestive of novel insights into the mechanisms underlying aggregate-induced immunogenicity, which could be used to develop mitigation strategies.
Collapse
|
36
|
Christie M, Peritt D, Torres RM, Randolph TW, Carpenter JF. The Role of Protein Excipient in Driving Antibody Responses to Erythropoietin. J Pharm Sci 2015; 104:4041-4055. [PMID: 26375484 DOI: 10.1002/jps.24639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
Human serum albumin (HSA) is an excipient present in formulations of several recombinant protein products that are approved for clinical use. We investigated the relative contributions of HSA and HSA particles to the generation of antibody responses against recombinant human erythropoietin (rhEPO) and the excipient HSA itself. Protein samples were characterized before injection for quantities of monomeric proteins, soluble protein aggregates, and nano- and micron-sized particles. rhEPO, containing various concentrations of HSA particles, were injected three times a week for 8 weeks into mice. Hematocrits and the production of anti-rhEPO and anti-HSA antibodies were determined at various time points. Levels of antibodies against rhEPO in mice injected with HSA-containing rhEPO were higher than those in mice treated with HSA-free rhEPO. Mice injected with formulations that contained particles of HSA produced strong anti-HSA antibody responses; whereas these responses were greatly reduced when particle-free formulations were administered. In contrast, anti-rhEPO antibody responses were not affected by the presence of particles.
Collapse
Affiliation(s)
- Merry Christie
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045
| | - David Peritt
- Global Biologics Research and Development, Hospira, Lake Forest, Illinois 60045
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309
| | - John F Carpenter
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045.
| |
Collapse
|
37
|
Therapeutic outcomes, assessments, risk factors and mitigation efforts of immunogenicity of therapeutic protein products. Cell Immunol 2015; 295:118-26. [DOI: 10.1016/j.cellimm.2015.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
|
38
|
Haile LA, Puig M, Kelley-Baker L, Verthelyi D. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS One 2015; 10:e0125078. [PMID: 25901912 PMCID: PMC4406594 DOI: 10.1371/journal.pone.0125078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 12/31/2022] Open
Abstract
Therapeutic proteins can contain multiple impurities, some of which are variants of the product, while others are derived from the cell substrate and the manufacturing process. Such impurities, even when present at trace levels, have the potential to activate innate immune cells in peripheral blood or embedded in tissues causing expression of cytokines and chemokines, increasing antigen uptake, facilitating processing and presentation by antigen presenting cells, and fostering product immunogenicity. Currently, while products are tested for host cell protein content, assays to control innate immune response modulating impurities (IIRMIs) in products are focused mainly on endotoxin and nucleic acids, however, depending on the cell substrate and the manufacturing process, numerous other IIRMI could be present. In these studies we assess two approaches that allow for the detection of a broader subset of IIRMIs. In the first, we use commercial cell lines transfected with Toll like receptors (TLR) to detect receptor-specific agonists. This method is sensitive to trace levels of IIRMI and provides information of the type of IIRMIs present but is limited by the availability of stably transfected cell lines and requires pre-existing knowledge of the IIRMIs likely to be present in the product. Alternatively, the use of a combination of macrophage cell lines of human and mouse origin allows for the detection of a broader spectrum of impurities, but does not identify the source of the activation. Importantly, for either system the lower limit of detection (LLOD) of impurities was similar to that of PBMC and it was not modified by the therapeutic protein tested, even in settings where the product had inherent immune modulatory properties. Together these data indicate that a cell-based assay approach could be used to screen products for the presence of IIRMIs and inform immunogenicity risk assessments, particularly in the context of comparability exercises.
Collapse
Affiliation(s)
- Lydia Asrat Haile
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Montserrat Puig
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Logan Kelley-Baker
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Daniela Verthelyi
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Kirshner SL. Mechanisms Underlying the Immunogenicity of Therapeutic Proteins: Risk Assessment and Management Strategies. J Interferon Cytokine Res 2014; 34:923-930. [PMID: 25493959 DOI: 10.1089/jir.2013.0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibodies to therapeutic proteins have caused serious adverse events and loss of efficacy in patients. Therefore, it is critical to manage the risk of antitherapeutic antibodies (ATA) during drug development and in the postmarketing environment. Risk assessments are an important tool for managing immunogenicity risk because they provide a format for considering the consequences and likelihood of ATA development. Because many factors influence both the severity of the consequences and likelihood of ATA development, successful risk assessments require input from all relevant disciplines, including product quality, manufacturing, nonclinical, pharmacology, and clinical. The results of risk assessments are used to develop appropriate risk reduction strategies, which may include product quality and manufacturing controls and elements of clinical trial design. This article discusses considerations for immunogenicity risk assessments and management.
Collapse
Affiliation(s)
- Susan L Kirshner
- Division of Therapeutic Proteins, U.S. Food and Drug Administration , Bethesda, Maryland
| |
Collapse
|
40
|
A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 1-theoretical model. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e133. [PMID: 25184733 PMCID: PMC4211265 DOI: 10.1038/psp.2014.30] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/19/2014] [Indexed: 12/26/2022]
Abstract
A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins was formulated by recapitulating key biological mechanisms, including antigen presentation, activation, proliferation, and differentiation of immune cells, secretion of antidrug antibodies (ADA), as well as in vivo disposition of ADA and therapeutic proteins. This system-level model contains three scales: a subcellular level representing antigen presentation processes by dendritic cells; a cellular level accounting for cell kinetics during humoral immune response; and a whole-body level accounting for therapeutic protein in vivo disposition. The model simulations for in vivo responses against antigenic protein challenge are consistent with many known immunological observations. By simulating immune responses under various initial parameter conditions, the model suggests hypotheses for future experimental investigation and contributes to the mechanistic understanding of immunogenicity. With future experimental validation, this model may potentially provide a platform to generate and test hypotheses about immunogenicity risk assessment and ultimately aid in immunogenicity prediction.
Collapse
|
41
|
Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. Clin Immunol 2013; 149:534-55. [PMID: 24263283 DOI: 10.1016/j.clim.2013.09.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 02/07/2023]
Abstract
Protein therapeutics hold a prominent and rapidly expanding place among medicinal products. Purified blood products, recombinant cytokines, growth factors, enzyme replacement factors, monoclonal antibodies, fusion proteins, and chimeric fusion proteins are all examples of therapeutic proteins that have been developed in the past few decades and approved for use in the treatment of human disease. Despite early belief that the fully human nature of these proteins would represent a significant advantage, adverse effects associated with immune responses to some biologic therapies have become a topic of some concern. As a result, drug developers are devising strategies to assess immune responses to protein therapeutics during both the preclinical and the clinical phases of development. While there are many factors that contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) responses appear to play a critical role in the development of antibody responses to biologic therapeutics. A range of methodologies to predict and measure Td immune responses to protein drugs has been developed. This review will focus on the Td contribution to immunogenicity, summarizing current approaches for the prediction and measurement of T cell-dependent immune responses to protein biologics, discussing the advantages and limitations of these technologies, and suggesting a practical approach for assessing and mitigating Td immunogenicity.
Collapse
|
42
|
Meechan P, Tungtrongchitr A, Chaisri U, Maklon K, Indrawattana N, Chaicumpa W, Sookrung N. Intranasal, liposome-adjuvanted cockroach allergy vaccines made of refined major allergen and whole-body extract of Periplaneta americana. Int Arch Allergy Immunol 2013; 161:351-62. [PMID: 23689057 DOI: 10.1159/000348314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cockroach (CR) allergens frequently cause severe asthma in CR-sensitized subjects. Allergen-specific immunotherapy causes a shift of allergic Th2 responses towards Th1 and/or regulatory T cell (Treg) responses which reduce airway inflammation and prevent disease progression. Data are relatively limited on immunotherapy via CR allergy vaccine. METHODS The therapeutic efficacy of an intranasal liposome-adjuvant vaccine made of a refined Periplaneta americana arginine kinase (AK) was compared to the liposome-entrapped P. americana crude extract (CRE) vaccine. Adult BALB/c mice were rendered allergic to CRE. Three allergic mouse groups were immunized intranasally on alternate days with 8 doses of liposome-entrapped CRE (L-CRE), liposome-entrapped AK and placebo, respectively. One week later, all mice received a nebulized CRE provocation. Evaluation of vaccine efficacy was performed 1 day after provocation. RESULTS Liposome-entrapped native AK attenuated airway inflammation after the CRE provocation and caused a shift of allergic Th2 to Th1 and Treg responses. The L-CRE also induced a shift from the Th2 to the Th1 response but did not induce a Treg response and could not attenuate the airway inflammation upon allergen reexposure. CONCLUSIONS Intranasal liposome-adjuvant CR allergy vaccine containing native AK (Per a 9) is better than L-CRE in attenuating allergic airway inflammation. The findings of this study not only document a more comprehensive and beneficial immune response induced by the refined allergen vaccine but also raise the point that the shift from the Th2 to the Th1 response alone might not correlate with improved airway histopathology, clinical outcome and quality of life.
Collapse
Affiliation(s)
- Panissara Meechan
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
43
|
Rosenberg AS, Verthelyi D, Cherney BW. Managing uncertainty: A perspective on risk pertaining to product quality attributes as they bear on immunogenicity of therapeutic proteins. J Pharm Sci 2012; 101:3560-7. [DOI: 10.1002/jps.23244] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 01/09/2023]
|
44
|
Lee EC, Owen M. The application of transgenic mice for therapeutic antibody discovery. Methods Mol Biol 2012; 901:137-48. [PMID: 22723098 DOI: 10.1007/978-1-61779-931-0_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2006, panitumumab, the first fully human antibody generated from transgenic mice, was approved for clinical use by the US Food and Drug Administration (FDA). Since then, a further seven such antibodies have been approved. In this chapter, we discuss how transgenic mice technologies can provide a powerful platform for creating human therapeutic antibodies.
Collapse
|