1
|
A Hepatitis B Virus-Derived Peptide Exerts an Anticancer Effect via TNF/iNOS-producing Dendritic Cells in Tumor-Bearing Mouse Model. Cancers (Basel) 2021; 13:cancers13030407. [PMID: 33499256 PMCID: PMC7865762 DOI: 10.3390/cancers13030407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, we reported a 6-mer hepatitis B virus (HBV)-derived peptide, Poly6, that exerts antiviral effects against human immunodeficiency virus type 1 (HIV-1). Here, we explored the immunotherapeutic potential of Poly6 via its administration into dendritic cells (DCs) in a mouse model. Our data revealed that Poly6 treatment led to enhanced production of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS)-producing DCs (Tip-DCs) in a type 1 interferon (IFN-I)-dependent manner via the induction of mitochondrial stress. Poly6 treatment in mice implanted with MC38 cells, a murine colon adenocarcinoma line, led to attenuated tumor formation, primarily due to direct cell death induced by Tip-DC mediated nitric oxide (NO) production and indirect killing by Tip-DC mediated cluster of differentiation 8 (CD8) cytotoxic T lymphocyte (CTL) activation via CD40 activation. Moreover, Poly6 treatment demonstrated an enhanced anticancer effect with one of the checkpoint inhibitors, the anti PD-L1 antibody. In conclusion, our data reveal that Poly6 treatment elicits an antitumor immune response in mice, possibly through NO-mediated oncolytic activity via Tip-DC activation and Tip-DC mediated CTL activation. This suggests that Poly6 represents a potential adjuvant for cancer immunotherapy by enhancing the anticancer effects of immune checkpoint inhibitors.
Collapse
|
2
|
Uccellini MB, García-Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep 2019; 25:2784-2796.e3. [PMID: 30517866 PMCID: PMC6317368 DOI: 10.1016/j.celrep.2018.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Type I and type III interferons (IFNs) are critical for controlling viral infections. However, the precise dynamics of the IFN response have been difficult to define in vivo. Signaling through type I IFN receptors leads to interferon-stimulated response element (ISRE)-dependent gene expression and an antiviral state. As an alternative to tracking IFN, we used an ISRE-dependent reporter mouse to define the cell types, localization, and kinetics of IFN responding cells during influenza virus infection. We find that measurable IFN responses are largely limited to hematopoietic cells, which show a high sensitivity to IFN. Inflammatory monocytes display high basal IFN responses, which are enhanced upon infection and correlate with infection of these cells. We find that inflammatory monocyte development is independent of IFN signaling; however, IFN is critical for chemokine production and recruitment following infection. The data reveal a role for inflammatory monocytes in both basal IFN responses and responses to infection. Uccellini and García-Sastre create an ISRE reporter mouse and track interferon (IFN) responses in vivo in response to pathogen-associated molecular pattern (PAMP) stimulation and influenza infection. They find that IFN responses are highest in hematopoietic cells during infection. Specifically, Ly6Chi inflammatory monocytes have high basal IFN responses that are further enhanced upon infection.
Collapse
Affiliation(s)
- Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Howe M, Bauer J, Schulze A, Kropp S, Locksley RM, Alferink J, Weighardt H, Scheu S. Production of IFNβ by Conventional Dendritic Cells after Stimulation with Viral Compounds and IFNβ-Independent IFNAR1-Signaling Pathways are Associated with Aggravation of Polymicrobial Sepsis. Int J Mol Sci 2019; 20:ijms20184410. [PMID: 31500303 PMCID: PMC6770674 DOI: 10.3390/ijms20184410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022] Open
Abstract
Viral infections are associated with increased incidence of severe sepsis. Particularly during the early stages, type I interferons (IFNs) are known mediators of detrimental effects. However, the functional role of early interferon β (IFNβ) and its cellular source during sepsis in the context of preexisting viral infections has not been defined. Using the colon ascendens stent peritonitis (CASP) model, we demonstrate that IFNβ−/− and type I IFN receptor (IFNAR1)−/− mice were less susceptible to sepsis after pre-stimulation with the viral mimetic poly(I:C). Wild type (WT) mice treated with poly(I:C) exhibited altered expression patterns of TNF and IL-12p40 during CASP which were dependent on IFNβ or IFNAR1, suggesting a mechanism for the increased sepsis susceptibility of WT mice. Using a double cytokine reporter mouse model, we present novel data on the simultaneous expression of IFNβ and IL-12p40 on a single cell level during polymicrobial sepsis in vivo. Conventional dendritic cells (cDCs) were identified as primary source of IFNβ and the protective cytokine IL-12p40 after CASP surgery irrespective of poly(I:C) pre-stimulation. These data demonstrated that if polymicrobial sepsis is preceded by a viral infection, IFNβ and IL-12p40 are expressed by polyfunctional cDCs suggesting that these cells can play both detrimental and beneficial roles during sepsis development.
Collapse
Affiliation(s)
- Magdalena Howe
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jens Bauer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sonja Kropp
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Richard M Locksley
- Howard Hughes Medical Institute and Departments of Medicine and Microbiology/Immunology, University of California, San Francisco, CA 94143, USA
| | - Judith Alferink
- Department of Psychiatry, University of Münster, 48149 Münster, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster, Germany
| | - Heike Weighardt
- Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
4
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
5
|
Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol 2019; 10:778. [PMID: 31031767 PMCID: PMC6473462 DOI: 10.3389/fimmu.2019.00778] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural "IFN producing cells" due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Pott J, Stockinger S. Type I and III Interferon in the Gut: Tight Balance between Host Protection and Immunopathology. Front Immunol 2017; 8:258. [PMID: 28352268 PMCID: PMC5348535 DOI: 10.3389/fimmu.2017.00258] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
The intestinal mucosa forms an active interface to the outside word, facilitating nutrient and water uptake and at the same time acts as a barrier toward the highly colonized intestinal lumen. A tight balance of the mucosal immune system is essential to tolerate harmless antigens derived from food or commensals and to effectively defend against potentially dangerous pathogens. Interferons (IFN) provide a first line of host defense when cells detect an invading organism. Whereas type I IFN were discovered almost 60 years ago, type III IFN were only identified in the early 2000s. It was initially thought that type I IFN and type III IFN performed largely redundant functions. However, it is becoming increasingly clear that type III IFN exert distinct and non-redundant functions compared to type I IFN, especially in mucosal tissues. Here, we review recent progress made in unraveling the role of type I/III IFN in intestinal mucosal tissue in the steady state, in response to mucosal pathogens and during inflammation.
Collapse
Affiliation(s)
- Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Silvia Stockinger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine , Vienna , Austria
| |
Collapse
|
7
|
Mueller-Ortiz SL, Calame DG, Shenoi N, Li YD, Wetsel RA. The Complement Anaphylatoxins C5a and C3a Suppress IFN-β Production in Response to Listeria monocytogenes by Inhibition of the Cyclic Dinucleotide-Activated Cytosolic Surveillance Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 198:3237-3244. [PMID: 28275134 DOI: 10.4049/jimmunol.1601420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes is an intracellular Gram-positive bacterium that induces expression of type I IFNs (IFN-α/IFN-β) during infection. These cytokines are detrimental to the host during infection by priming leukocytes to undergo L. monocytogenes-mediated apoptosis. Our previous studies showed that C5aR1-/- and C3aR-/- mice are highly susceptible to L. monocytogenes infection as a result of increased IFN-β-mediated apoptosis of major leukocyte cell populations, including CD4+ and CD8+ T cells. However, the mechanisms by which C3a and C5a modulate IFN-β expression during L. monocytogenes infection were not examined in these initial investigations. Accordingly, we report in this article that C5a and C3a suppress IFN-β production in response to L. monocytogenes via cyclic di-AMP (c-di-AMP), a secondary messenger molecule of L. monocytogenes, in J774A.1 macrophage-like cells and in bone marrow-derived dendritic cells (BMDCs). Moreover, C5a and C3a suppress IFN-β production by acting through their respective receptors, because no inhibition was seen in C5aR1-/- or C3aR-/- BMDCs, respectively. C5a and C3a suppress IFN-β production in a manner that is dependent on Bruton's tyrosine kinase, p38 MAPK, and TANK-binding kinase 1 (TBK1), as demonstrated by the individual use of Bruton's tyrosine kinase, p38 MAPK, and TBK1 inhibitors. Pretreatment of cells with C5a and C3a reduced the expression of the IFN-β signaling molecules DDX41, STING, phosphorylated TBK1, and phosphorylated p38 MAPK in wild-type BMDCs following treatment with c-di-AMP. Collectively, these data demonstrate that C3a and C5a, via direct signaling through their specific receptors, suppress IFN-β expression by modulation of a distinct innate cytosolic surveillance pathway involving DDX41, STING, and other downstream molecular targets of L. monocytogenes-generated c-di-AMP.
Collapse
Affiliation(s)
- Stacey L Mueller-Ortiz
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX 77030; and
| | - Daniel G Calame
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX 77030; and
| | - Nancy Shenoi
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX 77030; and
| | - Yi-Dong Li
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX 77030; and
| | - Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX 77030; and .,Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, TX 77030
| |
Collapse
|
8
|
Nasef NA, Mehta S, Ferguson LR. Susceptibility to chronic inflammation: an update. Arch Toxicol 2017; 91:1131-1141. [PMID: 28130581 DOI: 10.1007/s00204-016-1914-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022]
Abstract
Chronic inflammation is defined by the persistence of inflammatory processes beyond their physiological function, resulting in tissue destruction. Chronic inflammation is implicated in the progression of many chronic diseases and plays a central role in chronic inflammatory and autoimmune disease. As such, this review aims to collate some of the latest research in relation to genetic and environmental susceptibilities to chronic inflammation. In the genetic section, we discuss some of the updates in cytokine research and current treatments that are being developed. We also discuss newly identified canonical and non-canonical genes associated with chronic inflammation. In the environmental section, we highlight some of the latest updates and evidence in relation to the role that infection, diet and stress play in promoting inflammation. The aim of this review is to provide an overview of the latest research to build on our current understanding of chronic inflammation. It highlights the complexity associated with chronic inflammation, as well as provides insights into potential new targets for therapies that could be used to treat chronic inflammation and consequently prevent disease progression.
Collapse
Affiliation(s)
- Noha Ahmed Nasef
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Lynnette R Ferguson
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
Kovarik P, Castiglia V, Ivin M, Ebner F. Type I Interferons in Bacterial Infections: A Balancing Act. Front Immunol 2016; 7:652. [PMID: 28082986 PMCID: PMC5183637 DOI: 10.3389/fimmu.2016.00652] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 01/21/2023] Open
Abstract
Defense against bacterial infections requires activation of the immune response as well as timely reestablishment of tissue and immune homeostasis. Instauration of homeostasis is critical for tissue regeneration, wound healing, and host recovery. Recent studies revealed that severe infectious diseases frequently result from failures in homeostatic processes rather than from inefficient pathogen eradication. Type I interferons (IFN) appear to play a key role in such processes. Remarkably, the involvement of type I IFNs in the regulation of immune and tissue homeostasis upon bacterial insult may have beneficial or detrimental consequences for the host. The reasons for such ambivalent function of type I IFNs are not understood. The disparate effects of type I IFNs on bacterial infections are in marked contrast to their well-established protective roles in most viral infections. In this review, we will focus on type I IFN effector mechanisms which balance processes involved in immune and tissue homeostasis during specific bacterial infections and highlight the most important missing links in our understanding of type I IFN functions.
Collapse
Affiliation(s)
- Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | - Masa Ivin
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Florian Ebner
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Van Prooyen N, Henderson CA, Hocking Murray D, Sil A. CD103+ Conventional Dendritic Cells Are Critical for TLR7/9-Dependent Host Defense against Histoplasma capsulatum, an Endemic Fungal Pathogen of Humans. PLoS Pathog 2016; 12:e1005749. [PMID: 27459510 PMCID: PMC4961300 DOI: 10.1371/journal.ppat.1005749] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 06/17/2016] [Indexed: 11/23/2022] Open
Abstract
Innate immune cells shape the host response to microbial pathogens. Here we elucidate critical differences in the molecular response of macrophages vs. dendritic cells (DCs) to Histoplasma capsulatum, an intracellular fungal pathogen of humans. It has long been known that macrophages are permissive for Histoplasma growth and succumb to infection, whereas DCs restrict fungal growth and survive infection. We used murine macrophages and DCs to identify host pathways that influence fungal proliferation and host-cell viability. Transcriptional profiling experiments revealed that DCs produced a strong Type I interferon (IFN-I) response to infection with Histoplasma yeasts. Toll-like receptors 7 and 9 (TLR7/9), which recognize nucleic acids, were required for IFN-I production and restriction of fungal growth in DCs, but mutation of TLR7/9 had no effect on the outcome of macrophage infection. Moreover, TLR7/9 were essential for the ability of infected DCs to elicit production of the critical cytokine IFNγ from primed CD4+ T cells in vitro, indicating the role of this pathway in T cell activation. In a mouse model of infection, TLR7/9 were required for optimal production of IFN-I and IFNγ, host survival, and restriction of cerebral fungal burden. These data demonstrate the critical role of this pathway in eliciting an appropriate adaptive immune response in the host. Finally, although other fungal pathogens have been shown to elicit IFN-I in mouse models, the specific host cell responsible for producing IFN-I has not been elucidated. We found that CD103+ conventional DCs were the major producer of IFN-I in the lungs of wild-type mice infected with Histoplasma. Mice deficient in this DC subtype displayed reduced IFN-I production in vivo. These data reveal a previously unknown role for CD103+ conventional DCs and uncover the pivotal function of these cells in modulating the host immune response to endemic fungi. Innate immune cells such as macrophages and dendritic cells (DCs) are critical elements of the initial response to pathogens. Whereas both of these cell types utilize robust anti-microbial strategies to kill internalized microbes, intracellular pathogens have developed mechanisms to manipulate the host response and survive within host cells. In the case of the intracellular fungal pathogen Histoplasma capsulatum, the fungus proliferates within macrophages, resulting in host-cell lysis. In contrast, DCs are able to restrict Histoplasma growth. Here we discovered that the ability of DCs to produce Type I interferons (IFN-I) is critical to their capacity to restrict fungal proliferation and survive infection. IFN-I are cytokines that are elicited during a variety of viral, bacterial, and fungal infections. We performed in vivo and in vitro experiments to show that pattern recognition receptors TLR7 and TLR9 are critical for the IFN-I response and host survival in the mouse model of infection. Additionally we defined a specific DC subset (CD103+ conventional DCs) in the mouse lung that is responsible for the IFN-I response, revealing a previously unknown role for these cells. These data provide insight on the pivotal role of a specific host-response pathway at both a cellular and organismal level during infection with endemic fungi.
Collapse
Affiliation(s)
- Nancy Van Prooyen
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - C. Allen Henderson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Davina Hocking Murray
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Lauvau G, Loke P, Hohl TM. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol 2016; 27:397-409. [PMID: 27021645 DOI: 10.1016/j.smim.2016.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023]
Abstract
Circulating blood monocytes are a heterogeneous leukocyte population that contributes critical antimicrobial and regulatory functions during systemic and tissue-specific infections. These include patrolling vascular tissue for evidence of microbial invasion, infiltrating peripheral tissues and directly killing microbial invaders, conditioning the inflammatory milieu at sites of microbial tissue invasion, and orchestrating the activation of innate and adaptive immune effector cells. The central focus of this review is the in vivo mechanisms by which monocytes and their derivative cells promote microbial clearance and immune regulation. We include an overview of murine models to examine monocyte functions during microbial challenges and review our understanding of the functional roles of monocytes and their derivative cells in host defense against bacteria, fungi, and parasites.
Collapse
Affiliation(s)
- Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY, United States.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Immunology Program, Memorial Sloan Kettering Cencer Center, New York, NY, United States.
| |
Collapse
|
12
|
Pitt JM, Blankley S, Potempa K, Graham CM, Moreira-Teixeira L, McNab FW, Howes A, Stavropoulos E, Pascual V, Banchereau J, Chaussabel D, O’Garra A. Analysis of Transcriptional Signatures in Response to Listeria monocytogenes Infection Reveals Temporal Changes That Result from Type I Interferon Signaling. PLoS One 2016; 11:e0150251. [PMID: 26918359 PMCID: PMC4768944 DOI: 10.1371/journal.pone.0150251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 02/11/2016] [Indexed: 01/12/2023] Open
Abstract
Analysis of the mouse transcriptional response to Listeria monocytogenes infection reveals that a large set of genes are perturbed in both blood and tissue and that these transcriptional responses are enriched for pathways of the immune response. Further we identified enrichment for both type I and type II interferon (IFN) signaling molecules in the blood and tissues upon infection. Since type I IFN signaling has been reported widely to impair bacterial clearance we examined gene expression from blood and tissues of wild type (WT) and type I IFNαβ receptor-deficient (Ifnar1-/-) mice at the basal level and upon infection with L. monocytogenes. Measurement of the fold change response upon infection in the absence of type I IFN signaling demonstrated an upregulation of specific genes at day 1 post infection. A less marked reduction of the global gene expression signature in blood or tissues from infected Ifnar1-/- as compared to WT mice was observed at days 2 and 3 after infection, with marked reduction in key genes such as Oasg1 and Stat2. Moreover, on in depth analysis, changes in gene expression in uninfected mice of key IFN regulatory genes including Irf9, Irf7, Stat1 and others were identified, and although induced by an equivalent degree upon infection this resulted in significantly lower final gene expression levels upon infection of Ifnar1-/- mice. These data highlight how dysregulation of this network in the steady state and temporally upon infection may determine the outcome of this bacterial infection and how basal levels of type I IFN-inducible genes may perturb an optimal host immune response to control intracellular bacterial infections such as L. monocytogenes.
Collapse
Affiliation(s)
- Jonathan M. Pitt
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Simon Blankley
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Krzysztof Potempa
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Christine M. Graham
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Lucia Moreira-Teixeira
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Finlay W. McNab
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Ashleigh Howes
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Evangelos Stavropoulos
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Virginia Pascual
- Baylor Institute for Immunology Research/ANRS Center for Human Vaccines, INSERM, Dallas, Texas, United States of America
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, 263 Farmington Ave, Farmington, CT 06030, Connecticut, United States of America
| | - Damien Chaussabel
- Systems Immunology, Benaroya Research Institute, Seattle, Washington, United States of America
- Sidra Medical and Research Center, Doha, Qatar
| | - Anne O’Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- Department of Medicine, NHLI, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Lv M, Wu W, Zhang Y, Zhu M. Herpes virus entry mediator licenses Listeria infection induced immunopathology through control of type I interferon. Sci Rep 2015; 5:12954. [PMID: 26245828 PMCID: PMC4526852 DOI: 10.1038/srep12954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 01/28/2023] Open
Abstract
Apoptosis of the splenic lymphocytes is often induced during the acute phase of Listeria infection in mice. However, the underlying mechanism remains incompletely understood. Here, we found that herpes virus entry mediator (HVEM) plays an important role for Listeria infection induced lymphocyte apoptosis. Mechanistically, HVEM is not directly involved in listeriolysin O (LLO) induced lymphocyte apoptosis or interferon beta induced T cell activation per se. Interestingly, HVEM is partially required for Listeria induced interferon (IFN)-I production in the spleen, particularly in macrophages. Consequently, the bystander activation of lymphocytes is significantly lower in HVEM deficient mice than that in wild-type (WT) mice upon Listeria infection. Thus, our results have revealed a novel role of HVEM on the regulation of IFN-I and immunopathology during Listeria infection.
Collapse
Affiliation(s)
- Mengjie Lv
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Wu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuejiao Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Martínez del Hoyo G, Ramírez-Huesca M, Levy S, Boucheix C, Rubinstein E, Minguito de la Escalera M, González-Cintado L, Ardavín C, Veiga E, Yáñez-Mó M, Sánchez-Madrid F. CD81 controls immunity to Listeria infection through rac-dependent inhibition of proinflammatory mediator release and activation of cytotoxic T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:6090-101. [PMID: 25972472 DOI: 10.4049/jimmunol.1402957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/19/2015] [Indexed: 01/28/2023]
Abstract
Despite recent evidence on the involvement of CD81 in pathogen binding and Ag presentation by dendritic cells (DCs), the molecular mechanism of how CD81 regulates immunity during infection remains to be elucidated. To investigate the role of CD81 in the regulation of defense mechanisms against microbial infections, we have used the Listeria monocytogenes infection model to explore the impact of CD81 deficiency in the innate and adaptive immune response against this pathogenic bacteria. We show that CD81(-/-) mice are less susceptible than wild-type mice to systemic Listeria infection, which correlates with increased numbers of inflammatory monocytes and DCs in CD81(-/-) spleens, the main subsets controlling early bacterial burden. Additionally, our data reveal that CD81 inhibits Rac/STAT-1 activation, leading to a negative regulation of the production of TNF-α and NO by inflammatory DCs and the activation of cytotoxic T cells by splenic CD8α(+) DCs. In conclusion, this study demonstrates that CD81-Rac interaction exerts an important regulatory role on the innate and adaptive immunity against bacterial infection and suggests a role for CD81 in the development of novel therapeutic targets during infectious diseases.
Collapse
Affiliation(s)
- Gloria Martínez del Hoyo
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain;
| | - Marta Ramírez-Huesca
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Shoshana Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94035
| | - Claude Boucheix
- INSERM, Université Paris-Sud, Institut André Lwoff, 94807 Villejuif, France
| | - Eric Rubinstein
- INSERM, Université Paris-Sud, Institut André Lwoff, 94807 Villejuif, France
| | - María Minguito de la Escalera
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Leticia González-Cintado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Esteban Veiga
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain; and
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain; and
| | - Francisco Sánchez-Madrid
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| |
Collapse
|
15
|
McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103. [PMID: 25614319 DOI: 10.1038/nri3787] [Citation(s) in RCA: 1745] [Impact Index Per Article: 193.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) have diverse effects on innate and adaptive immune cells during infection with viruses, bacteria, parasites and fungi, directly and/or indirectly through the induction of other mediators. Type I IFNs are important for host defence against viruses. However, recently, they have been shown to cause immunopathology in some acute viral infections, such as influenza virus infection. Conversely, they can lead to immunosuppression during chronic viral infections, such as lymphocytic choriomeningitis virus infection. During bacterial infections, low levels of type I IFNs may be required at an early stage, to initiate cell-mediated immune responses. High concentrations of type I IFNs may block B cell responses or lead to the production of immunosuppressive molecules, and such concentrations also reduce the responsiveness of macrophages to activation by IFNγ, as has been shown for infections with Listeria monocytogenes and Mycobacterium tuberculosis. Recent studies in experimental models of tuberculosis have demonstrated that prostaglandin E2 and interleukin-1 inhibit type I IFN expression and its downstream effects, demonstrating that a cross-regulatory network of cytokines operates during infectious diseases to provide protection with minimum damage to the host.
Collapse
Affiliation(s)
- Finlay McNab
- 1] Allergic Inflammation Discovery Performance Unit, Respiratory Disease Respiratory Research and Development, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK. [2] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Katrin Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Andreas Wack
- Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Anne O'Garra
- 1] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. [2] National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Kocur M, Schneider R, Pulm AK, Bauer J, Kropp S, Gliem M, Ingwersen J, Goebels N, Alferink J, Prozorovski T, Aktas O, Scheu S. IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta Neuropathol Commun 2015; 3:20. [PMID: 25853624 PMCID: PMC4383054 DOI: 10.1186/s40478-015-0192-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS) leading to progressive neurological disability. Interferon β (IFNβ) represents a standard treatment for relapsing-remitting MS and exogenous administration of IFNβ exhibits protective effects in experimentally induced CNS autoimmunity. Also, genetic deletion of IFNβ in mice leads to an aggravation of disease symptoms in the MS model of experimental autoimmune encephalomyelitis (EAE). However, neither the underlying mechanisms mediating the beneficial effects nor the cellular source of IFNβ have been fully elucidated. Results In this report, a subpopulation of activated microglia was identified as the major producers of IFNβ in the CNS at the peak of EAE using an IFNβ-fluorescence reporter mouse model. These IFNβ expressing microglia specifically localized to active CNS lesions and were associated with myelin debris in demyelinated cerebellar organotypic slice cultures (OSCs). In response to IFNβ microglia showed an enhanced capacity to phagocytose myelin in vitro and up-regulated the expression of phagocytosis-associated genes. IFNβ treatment was further sufficient to stimulate association of microglia with myelin debris in OSCs. Moreover, IFNβ-producing microglia mediated an enhanced removal of myelin debris when co-transplanted onto demyelinated OSCs as compared to IFNβ non-producing microglia. Conclusions These data identify activated microglia as the major producers of protective IFNβ at the peak of EAE and as orchestrators of IFNβ-induced clearance of myelin debris. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0192-4) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Calame DG, Mueller-Ortiz SL, Morales JE, Wetsel RA. The C5a anaphylatoxin receptor (C5aR1) protects against Listeria monocytogenes infection by inhibiting type 1 IFN expression. THE JOURNAL OF IMMUNOLOGY 2014; 193:5099-107. [PMID: 25297874 DOI: 10.4049/jimmunol.1401750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is a major cause of mortality resulting from food poisoning in the United States. In mice, C5 has been genetically linked to host resistance to listeriosis. Despite this genetic association, it remains poorly understood how C5 and its activation products, C5a and C5b, confer host protection to this Gram-positive intracellular bacterium. In this article, we show in a systemic infection model that the major receptor for C5a, C5aR1, is required for a normal robust host immune response against L. monocytogenes. In comparison with wild-type mice, C5aR1(-/-) mice had reduced survival and increased bacterial burden in their livers and spleens. Infected C5aR1(-/-) mice exhibited a dramatic reduction in all major subsets of splenocytes, which was associated with elevated caspase-3 activity and increased TUNEL staining. Because type 1 IFN has been reported to impede the host response to L. monocytogenes through the promotion of splenocyte death, we examined the effect of C5aR1 on type 1 IFN expression in vivo. Indeed, serum levels of IFN-α and IFN-β were significantly elevated in L. monocytogenes-infected C5aR1(-/-) mice. Similarly, the expression of TRAIL, a type 1 IFN target gene and a proapoptotic factor, was elevated in NK cells isolated from infected C5aR1(-/-) mice. Treatment of C5aR1(-/-) mice with a type 1 IFNR blocking Ab resulted in near-complete rescue of L. monocytogenes-induced mortality. Thus, these findings reveal a critical role for C5aR1 in host defense against L. monocytogenes through the suppression of type 1 IFN expression.
Collapse
Affiliation(s)
- Daniel G Calame
- The Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030; M.D./Ph.D. Program, University of Texas Medical School at Houston/The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030; and
| | - Stacey L Mueller-Ortiz
- The Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - John E Morales
- The Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Rick A Wetsel
- The Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030; Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030
| |
Collapse
|
18
|
Abstract
Monocytes are blood-derived mononuclear phagocytic cells that traffic throughout the body and can provide rapid innate immune effector responses in response to microbial pathogen infections. Among blood monocytes, the most abundant subset in mice is represented by inflammatory Ly6C(+) CCR2(+) monocytes and is the functional equivalent of the CD14(+) monocytes in humans. Herein we focus on published evidence describing the exquisite functional plasticity of these cells, and we extend this overview to their multiples roles in vivo during host immune defenses against microbial pathogen infections, as antigen-presenting cells, inflammatory cells or Trojan horse cells.
Collapse
|
19
|
Frenz T, Graalmann L, Detje CN, Döring M, Grabski E, Scheu S, Kalinke U. Independent of Plasmacytoid Dendritic Cell (pDC) infection, pDC Triggered by Virus-Infected Cells Mount Enhanced Type I IFN Responses of Different Composition as Opposed to pDC Stimulated with Free Virus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2496-503. [DOI: 10.4049/jimmunol.1400215] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Škrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzmán CA. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS One 2014; 9:e95728. [PMID: 24755640 PMCID: PMC3996008 DOI: 10.1371/journal.pone.0095728] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/29/2014] [Indexed: 12/25/2022] Open
Abstract
The cyclic di-nucleotide bis-(3′,5′)-cyclic dimeric adenosine monophosphate (c-di-AMP) is a candidate mucosal adjuvant with proven efficacy in preclinical models. It was shown to promote specific humoral and cellular immune responses following mucosal administration. To date, there is only fragmentary knowledge on the cellular and molecular mode of action of c-di-AMP. Here, we report on the identification of dendritic cells and macrophages as target cells of c-di-AMP. We show that c-di-AMP induces the cell surface up-regulation of T cell co-stimulatory molecules as well as the production of interferon-β. Those responses were characterized by in vitro experiments with murine and human immune cells and in vivo studies in mice. Analyses of dendritic cell subsets revealed conventional dendritic cells as principal responders to stimulation by c-di-AMP. We discuss the impact of the reported antigen presenting cell activation on the previously observed adjuvant effects of c-di-AMP in mouse immunization studies.
Collapse
Affiliation(s)
- Ivana Škrnjug
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christine Rueckert
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rimma Libanova
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Lienenklaus
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
21
|
Ashhurst TM, van Vreden C, Munoz-Erazo L, Niewold P, Watabe K, Terry RL, Deffrasnes C, Getts DR, King NJC. Antiviral macrophage responses in flavivirus encephalitis. Indian J Med Res 2013; 138:632-47. [PMID: 24434318 PMCID: PMC3928696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mosquito-borne flaviviruses are a major current and emerging threat, affecting millions of people worldwide. Global climate change, combined with increasing proximity of humans to animals and mosquito vectors by expansion into natural habitats, coupled with the increase in international travel, have resulted in significant spread and concomitant increase in the incidence of infection and severe disease. Although neuroinvasive disease has been well described for some viral infections such as Japanese Encephalitis virus (JEV) and West Nile virus (WNV), others such as dengue virus (DENV) have recently displayed an emerging pattern of neuroinvasive disease, distinct from the previously observed, systemically-induced encephalomyelopathy. In this setting, the immune response is a crucial component of host defence, in preventing viral dissemination and invasion of the central nervous system (CNS). However, subversion of the anti-viral activities of macrophages by flaviviruses can facilitate viral replication and spread, enhancing the intensity of immune responses, leading to severe immune-mediated disease which may be further exacerbated during the subsequent infection with some flaviviruses. Furthermore, in the CNS myeloid cells may be responsible for inducing specific inflammatory changes, which can lead to significant pathological damage during encephalitis. The interaction of virus and cells of the myeloid lineage is complex, and this interaction is likely responsible at least in part, for crucial differences between viral clearance and pathology. Recent studies on the role of myeloid cells in innate immunity and viral control, and the mechanisms of evasion and subversion used by flaviviruses are rapidly advancing our understanding of the immunopathological mechanisms involved in flavivirus encephalitis and will lead to the development of therapeutic strategies previously not considered.
Collapse
Affiliation(s)
- Thomas Myles Ashhurst
- Viral Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch Institute & The Marie Bashir Institute for Infectious Disease & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia
| | - Caryn van Vreden
- Viral Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch Institute & The Marie Bashir Institute for Infectious Disease & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia
| | - Luis Munoz-Erazo
- Viral Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch Institute & The Marie Bashir Institute for Infectious Disease & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paula Niewold
- Viral Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch Institute & The Marie Bashir Institute for Infectious Disease & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kanami Watabe
- Viral Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch Institute & The Marie Bashir Institute for Infectious Disease & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachael L. Terry
- Viral Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch Institute & The Marie Bashir Institute for Infectious Disease & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia,Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Celine Deffrasnes
- Viral Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch Institute & The Marie Bashir Institute for Infectious Disease & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia,CSIRO, Animal, Food & Health Science, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | - Daniel R. Getts
- Viral Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch Institute & The Marie Bashir Institute for Infectious Disease & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia,Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Nicholas Jonathan Cole King
- Viral Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, Sydney Medical School, Bosch Institute & The Marie Bashir Institute for Infectious Disease & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Abstract
Although type I interferons (IFN-I) were initially defined as potent antiviral agents, they can also cause decreased host resistance to some bacterial and viral infections. The many antiviral functions of the IFN-I include direct suppression of viral replication and activation of the immune response against viruses. In addition to their antiviral effects, IFN-I are also protective against several extracellular bacterial infections, in part, by promoting the induction of TNF-α and nitric oxide. In contrast, there is a negative effect of IFN-I on host resistance during chronic infection with lymphocytic choriomeningitis virus (LCMV) and acute infections with intracellular bacteria. In the case of LCMV, chronic IFN-I signaling induces adaptive immune system suppression. Blockade of IFN-I signaling removes the suppression and allows CD4 T-cell- and IFN-γ-mediated resolution of the infection. During acute intracellular bacterial infection, IFN-I suppress innate immunity by at least two defined mechanisms. During Francisella infection, IFN-I prevent IL-17 upregulation on γδ T cells and neutrophil recruitment. Following Listeria infection, IFN-I promote the cell death of macrophages and lymphocytes, which leads to innate immune suppression. These divergent findings for the role of IFN-I on pathogen control emphasize the complexity of the interferons system and force more mechanistic evaluation of its role in pathogenesis. This review evaluates IFN-I during infection with an emphasis on work carried out IFN-I-receptor-deficient mice.
Collapse
Affiliation(s)
- Javier Antonio Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
23
|
Segura E, Amigorena S. Inflammatory dendritic cells in mice and humans. Trends Immunol 2013; 34:440-5. [PMID: 23831267 DOI: 10.1016/j.it.2013.06.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/21/2013] [Accepted: 06/05/2013] [Indexed: 02/05/2023]
Abstract
Dendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells. Several murine DC subsets have been identified that differ in their phenotype and functional properties. In the steady state, DC precursors originating from the bone marrow give rise to lymphoid-organ-resident DCs and to migratory tissue DCs. During inflammation, an additional DC subset has been described, so-called inflammatory DCs (infDCs), which differentiate from monocytes recruited to the site of inflammation. Here, we review recent work on the development and functions of murine infDCs. We also examine the criteria that define infDCs. Finally, we discuss the characterization of human infDCs and their potential role in inflammatory diseases.
Collapse
Affiliation(s)
- Elodie Segura
- INSERM U932, 26 rue d'Ulm, 75005 Paris, France; Institut Curie, Section Recherche, 26 rue d'Ulm, 75005 Paris, France.
| | | |
Collapse
|
24
|
Age-dependent differences in systemic and cell-autonomous immunity to L. monocytogenes. Clin Dev Immunol 2013; 2013:917198. [PMID: 23653659 PMCID: PMC3638699 DOI: 10.1155/2013/917198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/07/2013] [Indexed: 12/13/2022]
Abstract
Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.
Collapse
|
25
|
Jin L, Getahun A, Knowles HM, Mogan J, Akerlund LJ, Packard TA, Perraud AL, Cambier JC. STING/MPYS mediates host defense against Listeria monocytogenes infection by regulating Ly6C(hi) monocyte migration. THE JOURNAL OF IMMUNOLOGY 2013; 190:2835-43. [PMID: 23378430 DOI: 10.4049/jimmunol.1201788] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MPYS (also known as STING, MITA, and TMEM173) is a type I IFN stimulator that is essential for host defense against DNA virus infection and appears important in defense against certain bacteria. The in vivo significance and mechanisms by which MPYS mediates host defense against nonviral pathogens are unknown. Using an MPYS-deficient mouse (Tmem173(<tm1Camb>)), we determined that, distinct from the IFNAR(-/-) mice, MPYS deficiency leads to increased bacterial burden in the liver upon Listeria monocytogenes infection. The increase was correlated with the diminished MCP-1 and MCP-3 chemokine production and decreased blood and liver Ly6C(hi) monocyte frequency. We further demonstrate that MPYS-deficient Ly6C(hi) monocytes are intrinsically defective in migration to the liver. Lastly, adoptive transfer of wild-type Ly6C(hi) monocyte into MPYS-deficient mice decreases their liver bacterial burden. Our findings reveal a novel in vivo function of MPYS that is distinct from its role in activating type I IFN production.
Collapse
Affiliation(s)
- Lei Jin
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee CC, Kung JT. Marginal zone B cell is a major source of Il-10 in Listeria monocytogenes susceptibility. THE JOURNAL OF IMMUNOLOGY 2012; 189:3319-27. [PMID: 22933629 DOI: 10.4049/jimmunol.1201247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rag-1-knockout (KO) mice are highly resistant to Listeria monocytogenes infection. The role played by the many Rag-1-dependent lymphocyte lineages was studied using a genetic approach in which each Rag-1-dependent lymphocyte lineage was eliminated one at a time. Only B cell-deficient Igh-KO mice displayed reduced bacterial load and improved survival upon Listeria infection. Listeria infection of Rag-1-KO and Il-10-KO hosts that had been adoptively transferred with wild-type marginal zone B (MZB) cells, but not follicular B cells, resulted in heightened bacterial load and increased Il-10 production in the spleen, but not the liver. This MZB cell-dependent increase in bacterial load was eliminated by anti-Il-10 mAb. In addition, Listeria infection of MZB cell-deficient Rbpj-cKO mice showed decreased bacterial load and increased survival. Whereas multiple cell types have been shown to be capable of Il-10 production, our results indicate that the MZB cell is the most dominant and relevant Il-10 source in the context of Listeria susceptibility. In marked contrast to the generally protective nature of MZB cells in defending against pathogenic infection, our results demonstrate that MZB cells play a detrimental role in Listeria infection and possibly other infections as well.
Collapse
Affiliation(s)
- Chen-Cheng Lee
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, Republic of China
| | | |
Collapse
|
27
|
Jounai K, Ikado K, Sugimura T, Ano Y, Braun J, Fujiwara D. Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells. PLoS One 2012; 7:e32588. [PMID: 22505996 PMCID: PMC3323594 DOI: 10.1371/journal.pone.0032588] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/30/2012] [Indexed: 01/04/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are a specialized sensor of viral and bacterial nucleic acids and a major producer of IFN-α that promotes host defense by priming both innate and acquired immune responses. Although synthetic Toll-like receptor (TLR) ligands, pathogenic bacteria and viruses activate pDC, there is limited investigation of non-pathogenic microbiota that are in wide industrial dietary use, such as lactic acid bacteria (LAB). In this study, we screened for LAB strains, which induce pDC activation and IFN-α production using murine bone marrow (BM)-derived Flt-3L induced dendritic cell culture. Microbial strains with such activity on pDC were absent in a diversity of bacillary strains, but were observed in certain spherical species (Lactococcus, Leuconostoc, Streptococcus and Pediococcus), which was correlated with their capacity for uptake by pDC. Detailed study of Lactococcus lactis subsp. lactis JCM5805 and JCM20101 revealed that the major type I and type III interferons were induced (IFN-α, -β, and λ). IFN-α induction was TLR9 and MyD88-dependent; a slight impairment was also observed in TLR4-/- cells. While these responses occurred with purified pDC, IFN-α production was synergistic upon co-culture with myeloid dendritic cells (mDC), an interaction that required direct mDC-pDC contact. L. lactis strains also stimulated expression of immunoregulatory receptors on pDC (ICOS-L and PD-L1), and accordingly augmented pDC induction of CD4+CD25+FoxP3+ Treg compared to the Lactobacillus strain. Oral administration of L. lactis JCM5805 induced significant activation of pDC resident in the intestinal draining mesenteric lymph nodes, but not in a remote lymphoid site (spleen). Taken together, certain non-pathogenic spherical LAB in wide dietary use has potent and diverse immunomodulatory effects on pDC potentially relevant to anti-viral immunity and chronic inflammatory disease.
Collapse
Affiliation(s)
- Kenta Jounai
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd., Kanazawa, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Soloff AC, Weirback HK, Ross TM, Barratt-Boyes SM. Plasmacytoid dendritic cell depletion leads to an enhanced mononuclear phagocyte response in lungs of mice with lethal influenza virus infection. Comp Immunol Microbiol Infect Dis 2012; 35:309-17. [PMID: 22421538 DOI: 10.1016/j.cimid.2012.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 11/19/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) have been implicated both in the control and pathogenesis of influenza virus infection. We demonstrate that pDC depletion has marked effects on the response of mononuclear phagocytes, including conventional DCs (cDCs) and macrophages, to lethal influenza virus infection. Infection of mice lacking pDCs through antibody-mediated depletion resulted in substantially increased accumulation of mononuclear phagocytes and their progenitors in lungs compared to non-treated controls. pDC ablation resulted in a 5- to 35-fold enhancement of intracellular TNF-α and IL-6 production from inflammatory cDCs and exudate macrophages. Purified pulmonary cDCs and macrophages cultured from pDC-depleted mice produced significantly elevated levels of pro-inflammatory cytokines and chemokines compared to pDC-intact counterparts. Elimination of pDCs resulted in decreased lung IFN-α production and an immediate and transient reduction in lung virus burden but did not impact disease outcome. These data reveal a suppressive effect of pDCs on the inflammatory response to influenza virus infection in the lung.
Collapse
Affiliation(s)
- Adam C Soloff
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
29
|
Schmid M, Wege AK, Ritter U. Characteristics of "Tip-DCs and MDSCs" and Their Potential Role in Leishmaniasis. Front Microbiol 2012; 3:74. [PMID: 22416241 PMCID: PMC3298847 DOI: 10.3389/fmicb.2012.00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/13/2012] [Indexed: 12/23/2022] Open
Abstract
Since the first description of dendritic cells (DCs) by Steinman and Cohn (1973), the myeloid lineage of leukocytes was investigated intensively. Nowadays it is obvious that myeloid cells, especially DCs, are crucial for the adaptive and innate immune response against intracellular pathogens such as Leishmania major parasites. Based on the overlapping expression of molecules that were commonly used to classify myeloid cells, it becomes difficult to denominate those cell types precisely. Of note, most of these markers used for myeloid cell identification are expressed on a broad range of myeloid cells, and should therefore be handled with care if used for subtyping of myeloid cells. In this mini-review we aim to discuss the relative impact of DCs that release TNF and nitric oxide (Tip-DCs) and myeloid cells with suppressive capacities (myeloid-derived suppressor cells, MDSCs) in infectious diseases such as experimental leishmaniasis. In our point of view it cannot be excluded that the novel subsets that were denominated as “Tip-DCs” and “MDSCs” might not be classical “subsets” but rather represent myeloid cells in a transient maturation stage expressing different genes, in response to the surrounding environment.
Collapse
Affiliation(s)
- Maximilian Schmid
- Institute of Immunology, University of Regensburg Regensburg, Germany
| | | | | |
Collapse
|
30
|
Abstract
Infection with Listeria monocytogenes shows an early stage of lymphocyte apoptosis. This is an obligatory stage the extent of which depends on infective dose. Lymphocyte apoptosis occurs early and is rapidly superseded, yet it has a strong biological consequence. The immunological effect of lymphocyte apoptosis following infection is increased susceptibility to L. monocytogenes infection due, in part, to upregulation of IL-10 on macrophages and DC. Lymphocyte apoptosis is dependent on bacterial expression of the pore-forming toxin listeriolysin O (LLO). Also, purified LLO can lead to the induction of death pathways similar to infection, demonstrating that it is a killer agent generated by L. monocytogenes. Signaling through the type I interferon receptor potentiates cell death induced by the bacteria or LLO. Infection with L. monocytogenes also causes death of phagocytic cells, the nature and significance of which is not clear at present. Infection with L. monocytogenes is a tractable model to examine pathogen-induced cell death pathways and their possible immunological consequences in multiple cell types following infection.
Collapse
|
31
|
Abstract
Dendritic cells (DCs) represent a unique collection of innate immune cells present throughout the body as distinct subpopulations generally sharing the functions of pathogen recognition, cytokine production, and antigen presentation. A large body of work in recent years has examined DC functions during infection with Listeria monocytogenes (Lm), particularly in the murine model. Here, I review several aspects of DC biology in this model, with particular emphasis on the role DCs play in the establishment of a productive Lm infection and the role of DCs as cytokine producers and antigen-presenting cells in this system.
Collapse
Affiliation(s)
- Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Type I interferons: diversity of sources, production pathways and effects on immune responses. Curr Opin Virol 2011; 1:463-75. [PMID: 22440910 DOI: 10.1016/j.coviro.2011.10.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 12/24/2022]
Abstract
Type I interferons (IFN-I) were first described over 50 years ago as factors produced by cells that interfere with virus replication and promote an antiviral state. Innate and adaptive immune responses to viruses are also greatly influenced by IFN-I. In this article we discuss the diversity of cellular sources of IFN-I and the pathways leading to IFN-I production during viral infections. Finally, we discuss the effects of IFN-I on cells of the immune system with emphasis on dendritic cells.
Collapse
|
33
|
Edelson BT, Bradstreet TR, Hildner K, Carrero JA, Frederick KE, KC W, Belizaire R, Aoshi T, Schreiber RD, Miller MJ, Murphy TL, Unanue ER, Murphy KM. CD8α(+) dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 2011; 35:236-48. [PMID: 21867927 PMCID: PMC3172670 DOI: 10.1016/j.immuni.2011.06.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/26/2011] [Accepted: 06/15/2011] [Indexed: 11/28/2022]
Abstract
CD8α(+) dendritic cells (DCs) prime cytotoxic T lymphocytes during viral infections and produce interleukin-12 in response to pathogens. Although the loss of CD8α(+) DCs in Batf3(-/-) mice increases their susceptibility to several pathogens, we observed that Batf3(-/-) mice exhibited enhanced resistance to the intracellular bacterium Listeria monocytogenes. In wild-type mice, Listeria organisms, initially located in the splenic marginal zone, migrated to the periarteriolar lymphoid sheath (PALS) where they grew exponentially and induced widespread lymphocyte apoptosis. In Batf3(-/-) mice, however, Listeria organisms remain trapped in the marginal zone, failed to traffic into the PALS, and were rapidly cleared by phagocytes. In addition, Batf3(-/-) mice, which lacked the normal population of hepatic CD103(+) peripheral DCs, also showed protection from liver infection. These results suggest that Batf3-dependent CD8α(+) and CD103(+) DCs provide initial cellular entry points within the reticuloendothelial system by which Listeria establishes productive infection.
Collapse
Affiliation(s)
- Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jin L, Hill KK, Filak H, Mogan J, Knowles H, Zhang B, Perraud AL, Cambier JC, Lenz LL. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. THE JOURNAL OF IMMUNOLOGY 2011; 187:2595-601. [PMID: 21813776 DOI: 10.4049/jimmunol.1100088] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclic-di-GMP and cyclic-di-AMP are second messengers produced by bacteria and influence bacterial cell survival, differentiation, colonization, biofilm formation, virulence, and bacteria-host interactions. In this study, we show that in both RAW264.7 macrophage cells and primary bone marrow-derived macrophages, the production of IFN-β and IL-6, but not TNF, in response to cyclic-di-AMP and cyclic-di-GMP requires MPYS (also known as STING, MITA, and TMEM173). Furthermore, expression of MPYS was required for IFN response factor 3 but not NF-κB activation in response to these bacterial metabolites. We also confirm that MPYS is required for type I IFN production by cultured macrophages infected with the intracellular pathogens Listeria monocytogenes and Francisella tularensis. However, during systemic infection with either pathogen, MPYS deficiency did not impact bacterial burdens in infected spleens. Serum IFN-β and IL-6 concentrations in the infected control and MPYS(-/-) mice were also similar at 24 h postinfection, suggesting that these pathogens stimulate MPYS-independent cytokine production during in vivo infection. Our findings indicate that bifurcating MPYS-dependent and -independent pathways mediate sensing of cytosolic bacterial infections.
Collapse
Affiliation(s)
- Lei Jin
- Integrated Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Manifestation of spontaneous and early autoimmune gastritis in CCR7-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:754-65. [PMID: 21801869 DOI: 10.1016/j.ajpath.2011.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/16/2011] [Accepted: 04/12/2011] [Indexed: 11/20/2022]
Abstract
Autoimmune gastritis is a common autoimmune disorder characterized by chronic inflammatory cell infiltrates, atrophy of the corpus and fundus, and the occurrence of autoantibodies to parietal cell antigen. In CCR7-deficient mice, autoimmune gastritis developed spontaneously and was accompanied by metaplasia of the gastric mucosa and by the formation of tertiary lymphoid organs at gastric mucosal sites. T cells of CCR7-deficient mice showed an activated phenotype in the gastric mucosa, mesenteric lymph nodes, and peripheral blood. In addition, elevated serum IgG levels specific to gastric parietal cell antigen were detected. Because the role of organized lymphocytic aggregates at this inflammatory site is not completely understood, we first analyzed the cellular requirements for the formation of these structures. Autoreactive CD4(+) T cells were pivotal for tertiary lymphoid follicle formation, most likely in cooperation with dendritic cells, macrophages, and B cells. Second, we analyzed the necessity of secondary lymph nodes and tertiary lymphoid organs for the development of autoimmune gastritis using CCR7 single- and CCR7/lymphotoxin α double-deficient mice. Strikingly, manifestation of autoimmune gastritis was observed in the absence of secondary lymph nodes and preceded the development of tertiary lymphoid organs. Taken together, these findings identify an inflammatory process where gastric autoreactive T cells independent of organized tertiary lymphoid organs and classic lymph nodes can induce and maintain autoimmune gastritis.
Collapse
|
36
|
Solodova E, Jablonska J, Weiss S, Lienenklaus S. Production of IFN-β during Listeria monocytogenes infection is restricted to monocyte/macrophage lineage. PLoS One 2011; 6:e18543. [PMID: 21494554 PMCID: PMC3073975 DOI: 10.1371/journal.pone.0018543] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/04/2011] [Indexed: 12/19/2022] Open
Abstract
The family of type I interferons (IFN), which consists of several IFN-α and one IFN-β, are produced not only after stimulation by viruses, but also after infection with non-viral pathogens. In the course of bacterial infections, these cytokines could be beneficial or detrimental. IFN-β is the primary member of type I IFN that initiates a cascade of IFN-α production. Here we addressed the question which cells are responsible for IFN-β expression after infection with the intracellular pathogen Listeria monocytogenes by using a genetic approach. By means of newly established reporter mice, maximum of IFN-β expression was observed at 24 hours post infection in spleen and, surprisingly, 48 hours post infection in colonized cervical and inguinal lymph nodes. Colonization of lymph nodes was independent of the type I IFN signaling, as well as bacterial dose and strain. Using cell specific reporter function and conditional deletions we could define cells expressing LysM as the major IFN-β producers, with cells formerly defined as Tip-DCs being the highest. Neutrophilic granulocytes, dendritic cells and plasmacytoid dendritic cells did not significantly contribute to type I IFN production.
Collapse
Affiliation(s)
- Evgenia Solodova
- Department of Molecular Biotechnology, Helmholtz Centre for Infection Research, Brunswick, Germany.
| | | | | | | |
Collapse
|