1
|
Alesi N, Asrani K, Lotan TL, Henske EP. The Spectrum of Renal "TFEopathies": Flipping the mTOR Switch in Renal Tumorigenesis. Physiology (Bethesda) 2024; 39:0. [PMID: 39012319 DOI: 10.1152/physiol.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
The mammalian target of Rapamycin complex 1 (mTORC1) is a serine/threonine kinase that couples nutrient and growth factor signaling to the cellular control of metabolism and plays a fundamental role in aberrant proliferation in cancer. mTORC1 has previously been considered an "on/off" switch, capable of phosphorylating the entire pool of its substrates when activated. However, recent studies have indicated that mTORC1 may be active toward its canonical substrates, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and S6 kinase (S6K), involved in mRNA translation and protein synthesis, and inactive toward TFEB and TFE3, transcription factors involved in the regulation of lysosome biogenesis, in several pathological contexts. Among these conditions are Birt-Hogg-Dubé syndrome (BHD) and, recently, tuberous sclerosis complex (TSC). Furthermore, increased TFEB and TFE3 nuclear localization in these syndromes, and in translocation renal cell carcinomas (tRCC), drives mTORC1 activity toward the canonical substrates, through the transcriptional activation of the Rag GTPases, thereby positioning TFEB and TFE3 upstream of mTORC1 activity toward 4EBP1 and S6K. The expanding importance of TFEB and TFE3 in the pathogenesis of these renal diseases warrants a novel clinical grouping that we term "TFEopathies." Currently, there are no therapeutic options directly targeting TFEB and TFE3, which represents a challenging and critically required avenue for cancer research.
Collapse
Affiliation(s)
- Nicola Alesi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Kaushal Asrani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth P Henske
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Baraban E, Fishman EK, Lafaro K, Lin MT, Ged Y, Hruban RH, Argani P. A Confirmed Extrarenal Birt-Hogg-Dubé-Associated Oncocytic Neoplasm. Am J Surg Pathol 2024:00000478-990000000-00410. [PMID: 39221876 DOI: 10.1097/pas.0000000000002305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Birt-Hogg-Dubé (BHD) syndrome is a rare inherited disease characterized by a variety of renal epithelial tumors and oncocytosis, with extrarenal manifestations primarily consisting of pulmonary cysts and cutaneous fibrofolliculomas. Here we report a unique case of a primary extrarenal BHD-associated oncocytic epithelial neoplasm which arose between the duodenum and head of the pancreas. The unusual morphology and immunoprofile of this lesion defied classification as any previously reported entity, despite an extensive diagnostic workup. The immunohistochemical and molecular features indicate the tumor was driven by FLCN loss, and thus a consequence of the underlying germline mutation with a somatic second hit. This tumor is the first reported example of an extrarenal BHD-associated oncocytic epithelial tumor driven by FLCN loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralph H Hruban
- Department of Pathology, Johns Hopkins Hospital
- Oncology, Johns Hopkins Hospital
- The Sol Goldman Pancreatic Cancer Research Center, Baltimore MD
| | | |
Collapse
|
3
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Karin Öllinger
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
4
|
Wangsiricharoen S, Ingram DR, Morey RR, Wani K, Lazar AJ, Wang WL. Glycoprotein Nonmetastatic Melanoma Protein B (GPNMB) Immunohistochemistry Can Be a Useful Ancillary Tool to Identify Perivascular Epithelioid Cell Tumor. Mod Pathol 2024; 37:100426. [PMID: 38219952 DOI: 10.1016/j.modpat.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/13/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors that express smooth muscle and melanocytic makers. Diagnosis of PEComas can be challenging due to focal or lost expression of traditional immunohistochemical markers, limited availability of molecular testing, and morphological overlap with much more common smooth muscle tumors. This study evaluates the use of glycoprotein nonmetastatic melanoma protein B (GPNMB) immunohistochemical staining as a surrogate marker for TSC1/2/MTOR alteration or TFE3 rearrangement to differentiate PEComas from other mesenchymal tumors. Cathepsin K was also assessed for comparison. A total of 399 tumors, including PEComas, alveolar soft part sarcomas, and other histologic PEComa mimics, were analyzed using GPNMB and cathepsin K immunohistochemistry. GPNMB expression was seen in all PEComas and alveolar soft part sarcomas with the majority showing diffuse and moderate-to-strong labeling, whereas other sarcomas were negative or showed focal labeling. When a cutoff of diffuse and at least moderate staining was used, GPNMB demonstrated 95% sensitivity and 97% specificity in distinguishing PEComas from leiomyosarcoma, well-differentiated/dedifferentiated liposarcomas, and undifferentiated pleomorphic sarcomas. Cathepsin K with a cutoff of any labeling had lower sensitivity (78%) and similar specificity (94%) to GPNMB. This study highlights GPNMB as a highly sensitive marker for PEComas and suggests its potential use as an ancillary tool within a panel of markers for accurate classification of these tumors.
Collapse
Affiliation(s)
- Sintawat Wangsiricharoen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, Oregon
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rohini R Morey
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
5
|
Yang S, Ting CY, Lilly MA. The GATOR2 complex maintains lysosomal-autophagic function by inhibiting the protein degradation of MiT/TFEs. Mol Cell 2024; 84:727-743.e8. [PMID: 38325378 PMCID: PMC10940221 DOI: 10.1016/j.molcel.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Lysosomes are central to metabolic homeostasis. The microphthalmia bHLH-LZ transcription factors (MiT/TFEs) family members MITF, TFEB, and TFE3 promote the transcription of lysosomal and autophagic genes and are often deregulated in cancer. Here, we show that the GATOR2 complex, an activator of the metabolic regulator TORC1, maintains lysosomal function by protecting MiT/TFEs from proteasomal degradation independent of TORC1, GATOR1, and the RAG GTPase. We determine that in GATOR2 knockout HeLa cells, members of the MiT/TFEs family are ubiquitylated by a trio of E3 ligases and are degraded, resulting in lysosome dysfunction. Additionally, we demonstrate that GATOR2 protects MiT/TFE proteins in pancreatic ductal adenocarcinoma and Xp11 translocation renal cell carcinoma, two cancers that are driven by MiT/TFE hyperactivation. In summary, we find that the GATOR2 complex has independent roles in TORC1 regulation and MiT/TFE protein protection and thus is central to coordinating cellular metabolism with control of the lysosomal-autophagic system.
Collapse
Affiliation(s)
- Shu Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chun-Yuan Ting
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary A Lilly
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Diesler R, Ahmad K, Chalabreysse L, Glérant JC, Harzallah I, Touraine R, Si-Mohamed S, Cottin V. [Genetic diffuse cystic lung disease in adults]. Rev Mal Respir 2024; 41:69-88. [PMID: 37951745 DOI: 10.1016/j.rmr.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 11/14/2023]
Abstract
Multiple cystic lung diseases comprise a wide range of various diseases, some of them of genetic origin. Lymphangioleiomyomatosis (LAM) is a disease occurring almost exclusively in women, sporadically or in association with tuberous sclerosis complex (TSC). Patients with LAM present with lymphatic complications, renal angiomyolipomas and cystic lung disease responsible for spontaneous pneumothoraces and progressive respiratory insufficiency. TSC and LAM have been ascribed to mutations in TSC1 or TSC2 genes. Patients with TSC are variably affected by cutaneous, cognitive and neuropsychiatric manifestations, epilepsy, cerebral and renal tumors, usually of benign nature. Birt-Hogg-Dubé syndrome is caused by mutations in FLCN encoding folliculin. This syndrome includes lung cysts of basal predominance, cutaneous fibrofolliculomas and various renal tumors. The main complications are spontaneous pneumothoraces and renal tumors requiring systematic screening. The mammalian target of rapamycin (mTOR) pathway is involved in the pathophysiology of TSC, sporadic LAM and Birt-Hogg-Dubé syndrome. MTOR inhibitors are used in LAM and in TSC while Birt-Hogg-Dubé syndrome does not progress towards chronic respiratory failure. Future challenges in these often under-recognized diseases include the need to reduce the delay to diagnosis, and to develop potentially curative treatments. In France, physicians can seek help from the network of reference centers for the diagnosis and management of rare pulmonary diseases.
Collapse
Affiliation(s)
- R Diesler
- UMR754, INRAE, ERN-LUNG, service de pneumologie, centre de référence coordonnateur des maladies pulmonaires rares (OrphaLung), hôpital Louis-Pradel, Hospices civils de Lyon, université Lyon 1, Lyon, France
| | - K Ahmad
- ERN-LUNG, service de pneumologie, centre de référence coordonnateur des maladies pulmonaires Rares (OrphaLung), hôpital Louis-Pradel, Hospices civils de Lyon, université Lyon 1, Lyon, France
| | - L Chalabreysse
- Service de pathologie, groupe hospitalier Est, Hospices civils de Lyon, université Lyon 1, Lyon, France
| | - J-C Glérant
- Service d'explorations fonctionnelles respiratoires, hôpital Louis-Pradel, Hospices civils de Lyon, Lyon, France
| | - I Harzallah
- Service de génétique clinique, chromosomique et moléculaire, CHU-hôpital Nord, Saint-Étienne, France
| | - R Touraine
- Service de génétique clinique, chromosomique et moléculaire, CHU-hôpital Nord, Saint-Étienne, France
| | - S Si-Mohamed
- Service d'imagerie, hôpital Louis-Pradel, Hospices civils de Lyon, université Lyon 1, Lyon, France
| | - V Cottin
- UMR754, INRAE, ERN-LUNG, service de pneumologie, centre de référence coordonnateur des maladies pulmonaires rares (OrphaLung), hôpital Louis-Pradel, Hospices civils de Lyon, université Lyon 1, Lyon, France.
| |
Collapse
|
7
|
Alchoueiry M, Cornejo K, Henske EP. Kidney cancer: Links between hereditary syndromes and sporadic tumorigenesis. Semin Diagn Pathol 2024; 41:1-7. [PMID: 38008653 DOI: 10.1053/j.semdp.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Multiple hereditary syndromes predispose to kidney cancer, including Von Hippel-Lindau syndrome, BAP1-Tumor Predisposition Syndrome, Hereditary Papillary Renal Cell Carcinoma, Tuberous Sclerosis Complex, Birt-Hogg-Dubé syndrome, Hereditary Paraganglioma-Pheochromocytoma Syndrome, Fumarate Hydratase Tumor Predisposition Syndrome, and Cowden syndrome. In some cases, mutations in the genes that cause hereditary kidney cancer are tightly linked to similar histologic features in sporadic RCC. For example, clear cell RCC occurs in the hereditary syndrome VHL, and sporadic ccRCC usually has inactivation of the VHL gene. In contrast, mutations in FLCN, the causative gene for Birt-Hogg-Dube syndrome, are rarely found in sporadic RCC. Here, we focus on the genes and pathways that link hereditary and sporadic RCC.
Collapse
Affiliation(s)
- Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristine Cornejo
- Pathology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Goul C, Peruzzo R, Zoncu R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat Rev Mol Cell Biol 2023; 24:857-875. [PMID: 37612414 DOI: 10.1038/s41580-023-00641-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient-mTORC1 signalling in multiple diseases.
Collapse
Affiliation(s)
- Claire Goul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Zoncu R, Perera RM. Emerging roles of the MiT/TFE factors in cancer. Trends Cancer 2023; 9:817-827. [PMID: 37400313 DOI: 10.1016/j.trecan.2023.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
The microphthalmia/transcription factor E (MiT/TFE) transcription factors (TFs; TFEB, TFE3, MITF, and TFEC) play a central role in cellular catabolism and quality control and are subject to extensive layers of regulation that influence their localization, stability, and activity. Recent studies have highlighted a broader role for these TFs in driving diverse stress-adaptation pathways, which manifest in a context- and tissue-dependent manner. Several human cancers upregulate the MiT/TFE factors to survive extreme fluctuations in nutrients, energy, and pharmacological challenges. Emerging data suggest that reduced activity of the MiT/TFE factors can also promote tumorigenesis. Here, we outline recent findings relating to novel mechanisms of regulation and activity of MiT/TFE proteins across some of the most aggressive human cancers.
Collapse
Affiliation(s)
- Roberto Zoncu
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Rushika M Perera
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Huang W, Peng Y, Zhang Y, Qiu Y, Liu Y, Wang A, Kang L. Multimodality imaging of Xp11.2 translocation/TFE3 gene fusion associated with renal cell carcinoma: a case report. Front Med (Lausanne) 2023; 10:1266630. [PMID: 37795411 PMCID: PMC10546202 DOI: 10.3389/fmed.2023.1266630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Background Xp11.2 translocation/TFE3 gene fusion associated with renal cell carcinoma (Xp11.2 RCC) exhibits unique biological characteristics and is associated with an increased incidence of tumor thrombosis, lymph node metastasis, and advanced disease stages. Multimodality imaging, including US, contrast-enhanced CT, multi-parametric MRI, and 18F-FDG PET/CT plays a crucial role in the preoperative diagnosis and differentiation of renal tumors. Case report A 15-year-old female presented with lumbar pain worsened, and developed persistent painless hematuria. The CT attenuation values of the scan without contrast, corticomedullary phase, nephrographic phase, and delayed phases were 35 HU, 83 HU, 82 HU, and 75 HU, respectively. The solid component of the mass displayed heterogeneous marked enhancement. Furthermore, MRU indicated that the lesion involved the cortical medulla and infringed on the renal sinus fat. The lesion appeared isosignal in T1WI, slightly low signal in T2WI, and slightly high signal in DWI. The degree of enhancement in the three phases of enhancement scan was lower than that in the renal parenchyma, and hemorrhage and necrosis were observed within the internal part of the lesion. To further clarify the staging, the patient underwent 18F-FDG PET/CT. PET/CT images showed multiple irregular occupancies in the right kidney with unclear borders, showing a heterogeneous increase in 18F-FDG uptake, with SUVmax values ranging from 2.3 to 5.2 in the routine imaging phase (60 min post-injection), compared to SUVmax values ranging from 2.8 to 6.9 in the delayed imaging phase (160 min post-injection). Additionally, multiple enlarged and fused lymph nodes were observed in the medial part of the right kidney and the retroperitoneum, exhibiting a heterogeneous increase in 18F-FDG uptake, with SUVmax values ranging from 4.1 to 8.7 in the routine imaging phase, compared to SUVmax values ranging from 4.4 to 9.1 in the delayed imaging phase. The postoperative pathology, immunohistochemistry, and molecular analysis of histiocytes were consistent with a diagnosis of Xp11.2 RCC. One month after surgery, enhanced-CT examination of the patient revealed lung metastasis, peritoneal metastasis, and multiple lymph node metastases throughout the body, with an overall survival of 16 months. Conclusion Xp11.2 RCC exhibits unique biological characteristics and is associated with an increased incidence of tumor thrombosis, lymph node metastasis, and advanced disease stages. Long-term follow-up is essential to monitor the likelihood of recurrence and metastasis. 18F-FDG PET/CT examination can comprehensively visualize the lesion's location and extent, providing a basis for clinical tumor staging and aiding in treatment monitoring and follow-up. To address the limitations of FDG, the utilization of specific tracers designed for RCC or tracers that are not excreted via the urinary system would be ideal. Further advancements in molecular imaging technologies and the development of novel tracers hold great promise in advancing the diagnosis and management of RCC, ultimately contributing to better patient outcomes and overall disease management.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yushuo Peng
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yi Liu
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Aixiang Wang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
11
|
Schmidt LS, Vocke CD, Ricketts CJ, Blake Z, Choo KK, Nielsen D, Gautam R, Crooks DR, Reynolds KL, Krolus JL, Bashyal M, Karim B, Cowen EW, Malayeri AA, Merino MJ, Srinivasan R, Ball MW, Zbar B, Marston Linehan W. PRDM10 RCC: A Birt-Hogg-Dubé-like Syndrome Associated With Lipoma and Highly Penetrant, Aggressive Renal Tumors Morphologically Resembling Type 2 Papillary Renal Cell Carcinoma. Urology 2023; 179:58-70. [PMID: 37331486 PMCID: PMC10592549 DOI: 10.1016/j.urology.2023.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE To characterize the clinical manifestations and genetic basis of a familial cancer syndrome in patients with lipomas and Birt-Hogg-Dubé-like clinical manifestations including fibrofolliculomas and trichodiscomas and kidney cancer. METHODS Genomic analysis of blood and renal tumor DNA was performed. Inheritance pattern, phenotypic manifestations, and clinical and surgical management were documented. Cutaneous, subcutaneous, and renal tumor pathologic features were characterized. RESULTS Affected individuals were found to be at risk for a highly penetrant and lethal form of bilateral, multifocal papillary renal cell carcinoma. Whole genome sequencing identified a germline pathogenic variant in PRDM10 (c.2029 T>C, p.Cys677Arg), which cosegregated with disease. PRDM10 loss of heterozygosity was identified in kidney tumors. PRDM10 was predicted to abrogate expression of FLCN, a transcriptional target of PRDM10, which was confirmed by tumor expression of GPNMB, a TFE3/TFEB target and downstream biomarker of FLCN loss. In addition, a sporadic papillary RCC from the TCGA cohort was identified with a somatic PRDM10 mutation. CONCLUSION We identified a germline PRDM10 pathogenic variant in association with a highly penetrant, aggressive form of familial papillary RCC, lipomas, and fibrofolliculomas/trichodiscomas. PRDM10 loss of heterozygosity and elevated GPNMB expression in renal tumors indicate that PRDM10 alteration leads to reduced FLCN expression, driving TFE3-induced tumor formation. These findings suggest that individuals with Birt-Hogg-Dubé-like manifestations and subcutaneous lipomas, but without a germline pathogenic FLCN variant, should be screened for germline PRDM10 variants. Importantly, kidney tumors identified in patients with a pathogenic PRDM10 variant should be managed with surgical resection instead of active surveillance.
Collapse
Affiliation(s)
- Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Zoë Blake
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kristin K Choo
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Deborah Nielsen
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rabindra Gautam
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Krista L Reynolds
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Janis L Krolus
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Meena Bashyal
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Ashkan A Malayeri
- Radiology and Imaging Sciences, Clinical Research Center, National Institutes of Health, Bethesda, MD
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark W Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Berton Zbar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
12
|
Yang H, Tan JX. Lysosomal quality control: molecular mechanisms and therapeutic implications. Trends Cell Biol 2023; 33:749-764. [PMID: 36717330 PMCID: PMC10374877 DOI: 10.1016/j.tcb.2023.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
Lysosomes are essential catabolic organelles with an acidic lumen and dozens of hydrolytic enzymes. The detrimental consequences of lysosomal leakage have been well known since lysosomes were discovered during the 1950s. However, detailed knowledge of lysosomal quality control mechanisms has only emerged relatively recently. It is now clear that lysosomal leakage triggers multiple lysosomal quality control pathways that replace, remove, or directly repair damaged lysosomes. Here, we review how lysosomal damage is sensed and resolved in mammalian cells, with a focus on the molecular mechanisms underlying different lysosomal quality control pathways. We also discuss the clinical implications and therapeutic potential of these pathways.
Collapse
Affiliation(s)
- Haoxiang Yang
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Jay Xiaojun Tan
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
13
|
Ong AJS, Bladen CE, Tigani TA, Karamalakis AP, Evason KJ, Brown KK, Cox AG. The KEAP1-NRF2 pathway regulates TFEB/TFE3-dependent lysosomal biogenesis. Proc Natl Acad Sci U S A 2023; 120:e2217425120. [PMID: 37216554 PMCID: PMC10235939 DOI: 10.1073/pnas.2217425120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The maintenance of redox and metabolic homeostasis is integral to embryonic development. Nuclear factor erythroid 2-related factor 2 (NRF2) is a stress-induced transcription factor that plays a central role in the regulation of redox balance and cellular metabolism. Under homeostatic conditions, NRF2 is repressed by Kelch-like ECH-associated protein 1 (KEAP1). Here, we demonstrate that Keap1 deficiency induces Nrf2 activation and postdevelopmental lethality. Loss of viability is preceded by severe liver abnormalities characterized by an accumulation of lysosomes. Mechanistically, we demonstrate that loss of Keap1 promotes aberrant activation of transcription factor EB (TFEB)/transcription factor binding to IGHM Enhancer 3 (TFE3)-dependent lysosomal biogenesis. Importantly, we find that NRF2-dependent regulation of lysosomal biogenesis is cell autonomous and evolutionarily conserved. These studies identify a role for the KEAP1-NRF2 pathway in the regulation of lysosomal biogenesis and suggest that maintenance of lysosomal homeostasis is required during embryonic development.
Collapse
Affiliation(s)
- Athena Jessica S. Ong
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Cerys E. Bladen
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Tara A. Tigani
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Anthony P. Karamalakis
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Kimberley J. Evason
- Division of Anatomic Pathology, Department of Pathology, University of Utah, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT84112, USA
| | - Kristin K. Brown
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Andrew G. Cox
- Peter MacCallum Cancer Centre, Melbourne, VIC3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC3010, Australia
| |
Collapse
|
14
|
Di Malta C, Zampelli A, Granieri L, Vilardo C, De Cegli R, Cinque L, Nusco E, Pece S, Tosoni D, Sanguedolce F, Sorrentino NC, Merino MJ, Nielsen D, Srinivasan R, Ball MW, Ricketts CJ, Vocke CD, Lang M, Karim B, Lanfrancone L, Schmidt LS, Linehan WM, Ballabio A. TFEB and TFE3 drive kidney cystogenesis and tumorigenesis. EMBO Mol Med 2023; 15:e16877. [PMID: 36987696 PMCID: PMC10165358 DOI: 10.15252/emmm.202216877] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Birt-Hogg-Dubé (BHD) syndrome is an inherited familial cancer syndrome characterized by the development of cutaneous lesions, pulmonary cysts, renal tumors and cysts and caused by loss-of-function pathogenic variants in the gene encoding the tumor-suppressor protein folliculin (FLCN). FLCN acts as a negative regulator of TFEB and TFE3 transcription factors, master controllers of lysosomal biogenesis and autophagy, by enabling their phosphorylation by the mechanistic Target Of Rapamycin Complex 1 (mTORC1). We have previously shown that deletion of Tfeb rescued the renal cystic phenotype of kidney-specific Flcn KO mice. Using Flcn/Tfeb/Tfe3 double and triple KO mice, we now show that both Tfeb and Tfe3 contribute, in a differential and cooperative manner, to kidney cystogenesis. Remarkably, the analysis of BHD patient-derived tumor samples revealed increased activation of TFEB/TFE3-mediated transcriptional program and silencing either of the two genes rescued tumorigenesis in human BHD renal tumor cell line-derived xenografts (CDXs). Our findings demonstrate in disease-relevant models that both TFEB and TFE3 are key drivers of renal tumorigenesis and suggest novel therapeutic strategies based on the inhibition of these transcription factors.
Collapse
Affiliation(s)
- Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Angela Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Letizia Granieri
- Department of Experimental OncologyEuropean Institute of Oncology IRCCS (IEO)MilanItaly
| | - Claudia Vilardo
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Laura Cinque
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Salvatore Pece
- Department of Experimental OncologyEuropean Institute of Oncology IRCCS (IEO)MilanItaly
| | - Daniela Tosoni
- Department of Experimental OncologyEuropean Institute of Oncology IRCCS (IEO)MilanItaly
| | | | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Department of Clinical Medicine and SurgeryFederico II UniversityNaplesItaly
| | - Maria J Merino
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Deborah Nielsen
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Mark W Ball
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Baktiar Karim
- Molecular Histopathology LaboratoryFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Luisa Lanfrancone
- Department of Experimental OncologyEuropean Institute of Oncology IRCCS (IEO)MilanItaly
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
- Basic Science Program, Frederick National Laboratory for Cancer ResearchNational Cancer InstituteFrederickMDUSA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTXUSA
| |
Collapse
|
15
|
Lang M, Schmidt LS, Wilson KM, Ricketts CJ, Sourbier C, Vocke CD, Wei D, Crooks DR, Yang Y, Gibbs BK, Zhang X, Klumpp-Thomas C, Chen L, Guha R, Ferrer M, McKnight C, Itkin Z, Wangsa D, Wangsa D, James A, Difilippantonio S, Karim B, Morís F, Ried T, Merino MJ, Srinivasan R, Thomas CJ, Linehan WM. High-throughput and targeted drug screens identify pharmacological candidates against MiT-translocation renal cell carcinoma. J Exp Clin Cancer Res 2023; 42:99. [PMID: 37095531 PMCID: PMC10127337 DOI: 10.1186/s13046-023-02667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.
Collapse
Affiliation(s)
- Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, 39100, Italy
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin K Gibbs
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Darawalee Wangsa
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danny Wangsa
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy James
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktir Karim
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, AS, 33011, Spain
| | - Thomas Ried
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Son S, Kim H, Lim H, Lee JH, Lee KM, Shin I. CCN3/NOV promotes metastasis and tumor progression via GPNMB-induced EGFR activation in triple-negative breast cancer. Cell Death Dis 2023; 14:81. [PMID: 36737605 PMCID: PMC9898537 DOI: 10.1038/s41419-023-05608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. TNBC patients typically exhibit unfavorable outcomes due to its rapid growth and metastatic potential. Here, we found overexpression of CCN3 in TNBC patients. We identified that CCN3 knockdown diminished cancer stem cell formation, metastasis, and tumor growth in vitro and in vivo. Mechanistically, ablation of CCN3 reduced activity of the EGFR/MAPK pathway. Transcriptome profiling revealed that CCN3 induces glycoprotein nonmetastatic melanoma protein B (GPNMB) expression, which in turn activates the EGFR pathway. An interrogation of the TCGA dataset further supported the transcriptional regulation of GPNMB by CCN3. Finally, we showed that CCN3 activates Wnt signaling through a ligand-dependent or -independent mechanism, which increases microphthalmia-associated transcription factor (MITF) protein, a transcription factor inducing GPNMB expression. Together, our findings demonstrate the oncogenic role of CCN3 in TNBC, and we propose CCN3 as a putative therapeutic target for TNBC.
Collapse
Affiliation(s)
- Seogho Son
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Hogeun Lim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Joo-Hyung Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Kyung-Min Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
- Natural Science Institute, Hanyang University, Seoul, 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, 04763, Korea.
- Natural Science Institute, Hanyang University, Seoul, 04763, Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
17
|
Tang J, Baba M. MiT/TFE Family Renal Cell Carcinoma. Genes (Basel) 2023; 14:genes14010151. [PMID: 36672892 PMCID: PMC9859458 DOI: 10.3390/genes14010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The microphthalmia-associated transcription factor/transcription factor E (MiT/TFE) family of transcription factors are evolutionarily conserved, basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors, consisting of MITF, TFEB, TFE3, and TFEC. MiT/TFE proteins, with the exception of TFEC, are involved in the development of renal cell carcinoma (RCC). Most of the MiT/TFE transcription factor alterations seen in sporadic RCC cases of MiT family translocation renal cell carcinoma (tRCC) are chimeric proteins generated by chromosomal rearrangements. These chimeric MiT/TFE proteins retain the bHLH-Zip structures and act as oncogenic transcription factors. The germline variant of MITF p.E318K has been reported as a risk factor for RCC. E 318 is present at the SUMOylation consensus site of MITF. The p.E318K variant abrogates SUMOylation on K 316, which results in alteration of MITF transcriptional activity. Only a few cases of MITF p.E318K RCC have been reported, and their clinical features have not yet been fully described. It would be important for clinicians to recognize MITF p.E318K RCC and consider MITF germline testing for undiagnosed familial RCC cases. This review outlines the involvement of the MiT/TFE transcription factors in RCC, both in sporadic and hereditary cases. Further elucidation of the molecular function of the MiT/TFE family is necessary for better diagnosis and treatment of these rare diseases.
Collapse
|
18
|
Webster BR, Gopal N, Ball MW. Tumorigenesis Mechanisms Found in Hereditary Renal Cell Carcinoma: A Review. Genes (Basel) 2022; 13:2122. [PMID: 36421797 PMCID: PMC9690265 DOI: 10.3390/genes13112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma is a heterogenous cancer composed of an increasing number of unique subtypes each with their own cellular and tumor behavior. The study of hereditary renal cell carcinoma, which composes just 5% of all types of tumor cases, has allowed for the elucidation of subtype-specific tumorigenesis mechanisms that can also be applied to their sporadic counterparts. This review will focus on the major forms of hereditary renal cell carcinoma and the genetic alterations contributing to their tumorigenesis, including von Hippel Lindau syndrome, Hereditary Papillary Renal Cell Carcinoma, Succinate Dehydrogenase-Deficient Renal Cell Carcinoma, Hereditary Leiomyomatosis and Renal Cell Carcinoma, BRCA Associated Protein 1 Tumor Predisposition Syndrome, Tuberous Sclerosis, Birt-Hogg-Dubé Syndrome and Translocation RCC. The mechanisms for tumorigenesis described in this review are beginning to be exploited via the utilization of novel targets to treat renal cell carcinoma in a subtype-specific fashion.
Collapse
Affiliation(s)
| | | | - Mark W. Ball
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Asrani K, Woo J, Mendes AA, Schaffer E, Vidotto T, Villanueva CR, Feng K, Oliveira L, Murali S, Liu HB, Salles DC, Lam B, Argani P, Lotan TL. An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss. Nat Commun 2022; 13:6808. [PMID: 36357396 PMCID: PMC9649702 DOI: 10.1038/s41467-022-34617-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/01/2022] [Indexed: 11/12/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates inputs from growth factors and nutrients, but how mTORC1 autoregulates its activity remains unclear. The MiT/TFE transcription factors are phosphorylated and inactivated by mTORC1 following lysosomal recruitment by RagC/D GTPases in response to amino acid stimulation. We find that starvation-induced lysosomal localization of the RagC/D GAP complex, FLCN:FNIP2, is markedly impaired in a mTORC1-sensitive manner in renal cells with TSC2 loss, resulting in unexpected TFEB hypophosphorylation and activation upon feeding. TFEB phosphorylation in TSC2-null renal cells is partially restored by destabilization of the lysosomal folliculin complex (LFC) induced by FLCN mutants and is fully rescued by forced lysosomal localization of the FLCN:FNIP2 dimer. Our data indicate that a negative feedback loop constrains amino acid-induced, FLCN:FNIP2-mediated RagC activity in renal cells with constitutive mTORC1 signaling, and the resulting MiT/TFE hyperactivation may drive oncogenesis with loss of the TSC2 tumor suppressor.
Collapse
Affiliation(s)
- Kaushal Asrani
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Juhyung Woo
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Adrianna A. Mendes
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ethan Schaffer
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Thiago Vidotto
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Clarence Rachel Villanueva
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kewen Feng
- grid.21107.350000 0001 2171 9311Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Lia Oliveira
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sanjana Murali
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Hans B. Liu
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Daniela C. Salles
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Brandon Lam
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Pedram Argani
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Tamara L. Lotan
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
20
|
Napolitano G, Di Malta C, Ballabio A. Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol 2022; 32:920-931. [PMID: 35654731 DOI: 10.1016/j.tcb.2022.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/21/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling hub integrates multiple environmental cues to modulate cell growth and metabolism. Over the past decade considerable knowledge has been gained on the mechanisms modulating mTORC1 lysosomal recruitment and activation. However, whether and how mTORC1 is able to elicit selective responses to diverse signals has remained elusive until recently. We discuss emerging evidence for a 'non-canonical' mTORC1 signaling pathway that controls the function of microphthalmia/transcription factor E (MiT-TFE) transcription factors, key regulators of cell metabolism. This signaling pathway is mediated by a specific mechanism of substrate recruitment, and responds to stimuli that appear to converge on the lysosomal surface. We discuss the relevance of this pathway in physiological and disease conditions.
Collapse
Affiliation(s)
- Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy.
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy.
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Dong X, Chen Y, Pan J, Ma W, Zhou P, Chen M, Guo H, Gan W. Clinicopathological features and prognosis of TFE3-positive renal cell carcinoma. Front Oncol 2022; 12:1017425. [PMID: 36276115 PMCID: PMC9582134 DOI: 10.3389/fonc.2022.1017425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background This study aimed to investigate the expression profile of TFE3 in renal cell carcinoma (RCC) and the clinicopathological features as well as prognosis of TFE3-positive RCC. Methods Tissue sections from 796 patients with RCC were collected for immunohistochemical staining of TFE3. Molecular TFE3 rearrangement tests were also carried out on the TFE3-positive RCCs using fluorescence in situ hybridization and RNA-sequencing assays. Both clinicopathological features and follow-up information were collected for further analysis. Results The present study showed that 91 patients with RCC (91/796, 11.4%) were TFE3 positive expression but only 31 (31/91, 34.1%) of the patients were diagnosed with Xp11.2 translocation RCC. Further, it was found that the patients with TFE3-positive RCCs were more likely to develop lymph node and distant metastasis at diagnosis as well as presented a significantly higher WHO/ISUP nuclear grade and AJCC stage as compared with patients with TFE3-negative RCCs (p<0.01). Results of univariate and multivariate analyses showed that TFE3 positive expression was an independent prognostic factor associated with poor progression-free survival. Further, the findings of survival analysis showed that patients with positive TFE3 expression showed a shorter progression-free survival as compared with the patients with negative expression of TFE3 (p<0.001). In addition, results of the survival analysis found that there was no significant difference in progression-free survival between the Xp11.2 translocation RCC and TFE3-positive non-Xp11.2 translocation RCC groups (p=0.9607). Conclusion This study found that nuclear TFE3 expression is not specific to the Xp11.2 translocation RCC. Moreover, the positive TFE3 expression is associated with tumor progression and poor prognosis in patients with RCC irrespective of the presence of TFE3 translocation.
Collapse
Affiliation(s)
- Xiang Dong
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Pan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Zhou
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ming Chen
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Weidong Gan,
| |
Collapse
|
22
|
Iyer H, Shen K, Meireles AM, Talbot WS. A lysosomal regulatory circuit essential for the development and function of microglia. SCIENCE ADVANCES 2022; 8:eabp8321. [PMID: 36044568 PMCID: PMC9432849 DOI: 10.1126/sciadv.abp8321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/18/2022] [Indexed: 05/17/2023]
Abstract
As the primary phagocytic cells of the central nervous system, microglia exquisitely regulate their lysosomal activity to facilitate brain development and homeostasis. However, mechanisms that coordinate lysosomal activity with microglia development, chemotaxis, and function remain unclear. Here, we show that embryonic macrophages require the lysosomal guanosine triphosphatase (GTPase) RagA and the GTPase-activating protein Folliculin to colonize the brain in zebrafish. We demonstrate that embryonic macrophages in rraga mutants show increased expression of lysosomal genes but display significant down-regulation of immune- and chemotaxis-related genes. Furthermore, we find that RagA and Folliculin repress the key lysosomal transcription factor Tfeb and its homologs Tfe3a and Tfe3b in the macrophage lineage. Using RNA sequencing, we establish that Tfeb and Tfe3 are required for activation of lysosomal target genes under conditions of stress but not for basal expression of lysosomal pathways. Collectively, our data define a lysosomal regulatory circuit essential for macrophage development and function in vivo.
Collapse
|
23
|
A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids. Nat Cell Biol 2022; 24:1394-1406. [PMID: 36097072 PMCID: PMC9481461 DOI: 10.1038/s41556-022-00976-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Amino acid availability controls mTORC1 activity via a heterodimeric Rag GTPase complex that functions as a scaffold at the lysosomal surface, bringing together mTORC1 with its activators and effectors. Mammalian cells express four Rag proteins (RagA–D) that form dimers composed of RagA/B bound to RagC/D. Traditionally, the Rag paralogue pairs (RagA/B and RagC/D) are referred to as functionally redundant, with the four dimer combinations used interchangeably in most studies. Here, by using genetically modified cell lines that express single Rag heterodimers, we uncover a Rag dimer code that determines how amino acids regulate mTORC1. First, RagC/D differentially define the substrate specificity downstream of mTORC1, with RagD promoting phosphorylation of its lysosomal substrates TFEB/TFE3, while both Rags are involved in the phosphorylation of non-lysosomal substrates such as S6K. Mechanistically, RagD recruits mTORC1 more potently to lysosomes through increased affinity to the anchoring LAMTOR complex. Furthermore, RagA/B specify the signalling response to amino acid removal, with RagB-expressing cells maintaining lysosomal and active mTORC1 even upon starvation. Overall, our findings reveal key qualitative differences between Rag paralogues in the regulation of mTORC1, and underscore Rag gene duplication and diversification as a potentially impactful event in mammalian evolution. Gollwitzer, Grützmacher et al. and Figlia et al. establish that the various Rag GTPase genes and isoforms differentially regulate mTORC1 activity and distinctly modulate the responsiveness of mammalian cells to amino acid availability.
Collapse
|
24
|
Kmeid M, Akgul M. TFE3 Rearrangement and Expression in Renal Cell Carcinoma. Int J Surg Pathol 2022:10668969221108517. [PMID: 35912477 DOI: 10.1177/10668969221108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TFE3 rearranged Renal cell carcinoma (RCC) is not very common, and demonstrates unique heterogenous morphological features overlapping other recognized entities and distinct immunoprofile. It can be seen in any age group, therefore practicing pathologists should be aware of the distinctive clinical settings and histologic findings associated with these tumors and subsequently employ an adequate panel of ancillary studies in order to confirm the diagnosis. Recognizing these entities remains crucial for future clinical trials and development of novel therapies.
Collapse
Affiliation(s)
- Michel Kmeid
- Department of Pathology and Laboratory Medicine, 138207Albany Medical Center, Albany, NY, USA
| | - Mahmut Akgul
- Department of Pathology and Laboratory Medicine, 138207Albany Medical Center, Albany, NY, USA
| |
Collapse
|
25
|
Glykofridis IE, Henneman AA, Balk JA, Goeij-de Haas R, Westland D, Piersma SR, Knol JC, Pham TV, Boekhout M, Zwartkruis FJT, Wolthuis RMF, Jimenez CR. Phosphoproteomic analysis of FLCN inactivation highlights differential kinase pathways and regulatory TFEB phosphoserines. Mol Cell Proteomics 2022; 21:100263. [PMID: 35863698 PMCID: PMC9421328 DOI: 10.1016/j.mcpro.2022.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/26/2022] Open
Abstract
In Birt-Hogg-Dubé (BHD) syndrome, germline mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address how FLCN affects cellular kinase signaling pathways, we analyzed comprehensive phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15744 phosphorylated peptides were identified from 4329 phosphorylated proteins. INKA analysis revealed that FLCN loss alters the activity of numerous kinases, including tyrosine kinases EGFR, MET and the Ephrin receptor subfamily (EPHA2 and EPHB1), as well their downstream targets MAPK1/3. Validation experiments in the BHD renal tumor cell line UOK257 confirmed that FLCN loss contributes to enhanced MAPK1/3 and downstream RPS6K1/3 signaling. The clinically available MAPK inhibitor Ulixertinib showed enhanced toxicity in FLCNNEG cells. Interestingly, FLCN inactivation induced the phosphorylation of PIK3CD (Tyr524) without altering the phosphorylation of canonical Akt1/Akt2/mTOR/EIF4EBP1 phosphosites. Also, we identified that FLCN inactivation resulted in dephosphorylation of TFEB Ser109, Ser114 and Ser122, which may be caused by fact that FLCNNEG cells experience oxidative stress. Together, our study highlights differential phosphorylation of specific kinases and substrates in FLCNNEG renal cells. This provides insight into BHD-associated renal tumorigenesis and may point to several novel candidates for targeted therapies.
Collapse
Affiliation(s)
- Iris E Glykofridis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Alex A Henneman
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jesper A Balk
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Richard Goeij-de Haas
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Denise Westland
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Sander R Piersma
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jaco C Knol
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Thang V Pham
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Michiel Boekhout
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Fried J T Zwartkruis
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| | - Connie R Jimenez
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Lang M, Pramstaller PP, Pichler I. Crosstalk of organelles in Parkinson's disease - MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol Neurodegener 2022; 17:50. [PMID: 35842725 PMCID: PMC9288732 DOI: 10.1186/s13024-022-00555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Living organisms constantly need to adapt to their surrounding environment and have evolved sophisticated mechanisms to deal with stress. Mitochondria and lysosomes are central organelles in the response to energy and nutrient availability within a cell and act through interconnected mechanisms. However, when such processes become overwhelmed, it can lead to pathologies. Parkinson's disease (PD) is a common neurodegenerative disorder (NDD) characterized by proteinaceous intracellular inclusions and progressive loss of dopaminergic neurons, which causes motor and non-motor symptoms. Genetic and environmental factors may contribute to the disease etiology. Mitochondrial dysfunction has long been recognized as a hallmark of PD pathogenesis, and several aspects of mitochondrial biology are impaired in PD patients and models. In addition, defects of the autophagy-lysosomal pathway have extensively been observed in cell and animal models as well as PD patients' brains, where constitutive autophagy is indispensable for adaptation to stress and energy deficiency. Genetic and molecular studies have shown that the functions of mitochondria and lysosomal compartments are tightly linked and influence each other. Connections between these organelles are constituted among others by mitophagy, organellar dynamics and cellular signaling cascades, such as calcium (Ca2+) and mTOR (mammalian target of rapamycin) signaling and the activation of transcription factors. Members of the Microphthalmia-associated transcription factor family (MiT), including MITF, TFE3 and TFEB, play a central role in regulating cellular homeostasis in response to metabolic pressure and are considered master regulators of lysosomal biogenesis. As such, they are part of the interconnection between mitochondria and lysosome functions and therefore represent attractive targets for therapeutic approaches against NDD, including PD. The activation of MiT transcription factors through genetic and pharmacological approaches have shown encouraging results at ameliorating PD-related phenotypes in in vitro and in vivo models. In this review, we summarize the relationship between mitochondrial and autophagy-lysosomal functions in the context of PD etiology and focus on the role of the MiT pathway and its potential as pharmacological target against PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
27
|
Emerging Link between Tsc1 and FNIP Co-Chaperones of Hsp90 and Cancer. Biomolecules 2022; 12:biom12070928. [PMID: 35883484 PMCID: PMC9312812 DOI: 10.3390/biom12070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein-90 (Hsp90) is an ATP-dependent molecular chaperone that is tightly regulated by a group of proteins termed co-chaperones. This chaperone system is essential for the stabilization and activation of many key signaling proteins. Recent identification of the co-chaperones FNIP1, FNIP2, and Tsc1 has broadened the spectrum of Hsp90 regulators. These new co-chaperones mediate the stability of critical tumor suppressors FLCN and Tsc2 as well as the various classes of Hsp90 kinase and non-kinase clients. Many early observations of the roles of FNIP1, FNIP2, and Tsc1 suggested functions independent of FLCN and Tsc2 but have not been fully delineated. Given the broad cellular impact of Hsp90-dependent signaling, it is possible to explain the cellular activities of these new co-chaperones by their influence on Hsp90 function. Here, we review the literature on FNIP1, FNIP2, and Tsc1 as co-chaperones and discuss the potential downstream impact of this regulation on normal cellular function and in human diseases.
Collapse
|
28
|
Sano T, Fukui T, Makita N, Shimizu K, Kono J, Masui K, Sato T, Goto T, Sawada A, Fujimoto M, Kojima F, Torishima M, Wada T, Furuya M, Ogawa O, Kobayashi T, Akamatsu S. A novel missense mutation in the folliculin gene associated with the renal tumor-only phenotype of Birt-Hogg-Dubé syndrome. Cancer Genet 2022; 266-267:28-32. [DOI: 10.1016/j.cancergen.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022]
|
29
|
Wang T, Yang Y, Feng H, Cui B, Lv Z, Zhao W, Zhang X, Ma X. Concurrent Germline and Somatic Mutations in FLCN and Preliminary Exploration of Its Function: A Case Report. Front Oncol 2022; 12:877470. [PMID: 35664771 PMCID: PMC9162506 DOI: 10.3389/fonc.2022.877470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
Birt-Hogg-Dube syndrome is an autosomal dominant condition that arises from germline folliculin (FLCN) mutations. It is characterized by skin fibrofolliculomas, lung cysts, pneumothorax, and renal cancer. Here, we present the case of a 36-year-old woman with asymptomatic, multiple renal tumors and a history of spontaneous pneumothorax. Genetic analysis revealed a hotspot FLCN germline mutation, c.1285dupC (p.H429fs), and a novel somatic mutation, c.470delT (p.F157fs). This information and the results of immunohistochemical analysis of the renal tumors indicated features compatible with a tumor suppressor role of FLCN. Two transcription factors, oncogenic TFEB and TFE3, were shown to be regulated by FLCN inactivation, which results in their nuclear localization. We showed that a deficiency in the tumor suppressor FLCN leads to deregulation of the mammalian target of rapamycin signaling (mTOR) pathway. A potential link between FLCN mutation and ciliary length was also examined. Thus, the mutation identified in our patient provides novel insights into the relationship among FLCN mutations, TFEB/TFE3, mTOR, and cilia. However, an in-depth understanding of the role of folliculin in the molecular pathogenesis of renal cancer requires further study.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, The Third Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Yang Yang
- Department of Urology, The Third Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Huayi Feng
- Department of Urology, The Third Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Bo Cui
- Department of Urology, The Third Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Zheng Lv
- Department of Urology, The Third Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Wenlei Zhao
- Department of Urology, The Third Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Xiangyi Zhang
- Department of Urology, The Third Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Xin Ma
- Department of Urology, The Third Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| |
Collapse
|
30
|
Gosis BS, Wada S, Thorsheim C, Li K, Jung S, Rhoades JH, Yang Y, Brandimarto J, Li L, Uehara K, Jang C, Lanza M, Sanford NB, Bornstein MR, Jeong S, Titchenell PM, Biddinger SB, Arany Z. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 2022; 376:eabf8271. [PMID: 35420934 PMCID: PMC9811404 DOI: 10.1126/science.abf8271] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) remain without effective therapies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is a potential therapeutic target, but conflicting interpretations have been proposed for how mTORC1 controls lipid homeostasis. We show that selective inhibition of mTORC1 signaling in mice, through deletion of the RagC/D guanosine triphosphatase-activating protein folliculin (FLCN), promotes activation of transcription factor E3 (TFE3) in the liver without affecting other mTORC1 targets and protects against NAFLD and NASH. Disease protection is mediated by TFE3, which both induces lipid consumption and suppresses anabolic lipogenesis. TFE3 inhibits lipogenesis by suppressing proteolytic processing and activation of sterol regulatory element-binding protein-1c (SREBP-1c) and by interacting with SREBP-1c on chromatin. Our data reconcile previously conflicting studies and identify selective inhibition of mTORC1 as a potential approach to treat NASH and NAFLD.
Collapse
Affiliation(s)
- Bridget S Gosis
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shogo Wada
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chelsea Thorsheim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Joshua H Rhoades
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yifan Yang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Brandimarto
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan B Sanford
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc R Bornstein
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunhye Jeong
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Folliculin promotes substrate-selective mTORC1 activity by activating RagC to recruit TFE3. PLoS Biol 2022; 20:e3001594. [PMID: 35358174 PMCID: PMC9004751 DOI: 10.1371/journal.pbio.3001594] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanistic target of rapamycin complex I (mTORC1) is central to cellular metabolic regulation. mTORC1 phosphorylates a myriad of substrates, but how different substrate specificity is conferred on mTORC1 by different conditions remains poorly defined. Here, we show how loss of the mTORC1 regulator folliculin (FLCN) renders mTORC1 specifically incompetent to phosphorylate TFE3, a master regulator of lysosome biogenesis, without affecting phosphorylation of other canonical mTORC1 substrates, such as S6 kinase. FLCN is a GTPase-activating protein (GAP) for RagC, a component of the mTORC1 amino acid (AA) sensing pathway, and we show that active RagC is necessary and sufficient to recruit TFE3 onto the lysosomal surface, allowing subsequent phosphorylation of TFE3 by mTORC1. Active mutants of RagC, but not of RagA, rescue both phosphorylation and lysosomal recruitment of TFE3 in the absence of FLCN. These data thus advance the paradigm that mTORC1 substrate specificity is in part conferred by direct recruitment of substrates to the subcellular compartments where mTORC1 resides and identify potential targets for specific modulation of specific branches of the mTOR pathway. How does the mTORC1 complex, which influences myriad cellular processes, achieve specificity? This study shows that substrate specificity is in part conferred by modulating the recruitment of substrates, in this case the transcription factor TFE3, to mTORC1.
Collapse
|
32
|
Biondini M, Kiepas A, El-Houjeiri L, Annis MG, Hsu BE, Fortier AM, Morin G, Martina JA, Sirois I, Aguilar-Mahecha A, Gruosso T, McGuirk S, Rose AAN, Tokat UM, Johnson RM, Sahin O, Bareke E, St-Pierre J, Park M, Basik M, Majewski J, Puertollano R, Pause A, Huang S, Keler T, Siegel PM. HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene 2022; 41:1701-1717. [PMID: 35110681 DOI: 10.1038/s41388-022-02206-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022]
Abstract
Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.
Collapse
Affiliation(s)
- Marco Biondini
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alex Kiepas
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Matthew G Annis
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Brian E Hsu
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Fortier
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Geneviève Morin
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Isabelle Sirois
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Tina Gruosso
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shawn McGuirk
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - April A N Rose
- Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Unal M Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Eric Bareke
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Morag Park
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada.,Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Jacek Majewski
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Arnim Pause
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Sidong Huang
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
33
|
Feng R, Tao Y, Chen Y, Xu W, Zhang G, Wang H. Renal cancer associated with Xp11.2 translocation/TFE3 gene fusion: Clinicopathological analysis of 13 cases. Ann Diagn Pathol 2022; 58:151908. [DOI: 10.1016/j.anndiagpath.2022.151908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022]
|
34
|
Salles DC, Asrani K, Woo J, Vidotto T, Liu HB, Vidal I, Matoso A, Netto GJ, Argani P, Lotan TL. GPNMB
expression identifies
TSC1
/2/
mTOR
‐associated and
MiT
family translocation‐driven renal neoplasms. J Pathol 2022; 257:158-171. [PMID: 35072947 PMCID: PMC9310781 DOI: 10.1002/path.5875] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
GPNMB (glycoprotein nonmetastatic B) and other TFE3/TFEB transcriptional targets have been proposed as markers for microphthalmia (MiT) translocation renal cell carcinomas (tRCCs). We recently demonstrated that constitutive mTORC1 activation via TSC1/2 loss leads to increased activity of TFE3/TFEB, suggesting that the pathogenesis and molecular markers for tRCCs and TSC1/2‐associated tumors may be overlapping. We examined GPNMB expression in human kidney and angiomyolipoma (AML) cell lines with TSC2 and/or TFE3/TFEB loss produced using CRISPR–Cas9 genome editing as well as in a mouse model of Tsc2 inactivation‐driven renal tumorigenesis. Using an automated immunohistochemistry (IHC) assay for GPNMB, digital image analysis was employed to quantitatively score expression in clear cell RCC (ccRCC, n = 87), papillary RCC (papRCC, n = 53), chromophobe RCC (chRCC, n = 34), oncocytoma (n = 4), TFE3‐ or TFEB‐driven tRCC (n = 56), eosinophilic solid and cystic RCC (ESC, n = 6), eosinophilic vacuolated tumor (EVT, n = 4), and low‐grade oncocytic tumor (LOT, n = 3), as well as AML (n = 29) and perivascular epithelioid cell tumors (PEComas, n = 8). In cell lines, GPNMB was upregulated following TSC2 loss in a MiT/TFE‐ and mTORC1‐dependent fashion. Renal tumors in Tsc2+/− A/J mice showed upregulation of GPNMB compared with normal kidney. Mean GPNMB expression was significantly higher in tRCC than in ccRCC (p < 0.0001), papRCC (p < 0.0001), and chRCC (p < 0.0001). GPNMB expression in TSC1/2/MTOR alteration‐associated renal tumors (including ESC, LOT, AML, and PEComa) was comparable to that in tRCC. The immunophenotype of tRCC and TSC1/2/MTOR alteration‐associated renal tumors is highly overlapping, likely due to the increased activity of TFE3/TFEB in both, revealing an important caveat regarding the use of TFE3/TFEB‐transcriptional targets as diagnostic markers. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Daniela C. Salles
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Kaushal Asrani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Juhyung Woo
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Thiago Vidotto
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Hans B. Liu
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Igor Vidal
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Andres Matoso
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - George J. Netto
- Department of Pathology University of Alabama Birmingham Alabama USA
| | - Pedram Argani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Tamara L. Lotan
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Urology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
35
|
Woodford MR, Andreou A, Baba M, van de Beek I, Di Malta C, Glykofridis I, Grimes H, Henske EP, Iliopoulos O, Kurihara M, Lazor R, Linehan WM, Matsumoto K, Marciniak SJ, Namba Y, Pause A, Rajan N, Ray A, Schmidt LS, Shi W, Steinlein OK, Thierauf J, Zoncu R, Webb A, Mollapour M. Seventh BHD international symposium: recent scientific and clinical advancement. Oncotarget 2022; 13:173-181. [PMID: 35070081 PMCID: PMC8780807 DOI: 10.18632/oncotarget.28176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 11/25/2022] Open
Abstract
The 7th Birt-Hogg-Dubé (BHD) International Symposium convened virtually in October 2021. The meeting attracted more than 200 participants internationally and highlighted recent findings in a variety of areas, including genetic insight and molecular understanding of BHD syndrome, structure and function of the tumor suppressor Folliculin (FLCN), therapeutic and clinical advances as well as patients' experiences living with this malady.
Collapse
Affiliation(s)
- Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Avgi Andreou
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Irma van de Beek
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Iris Glykofridis
- Amsterdam UMC, Location VUmc, Human Genetics Department, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hannah Grimes
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Elizabeth P. Henske
- Center for LAM Research and Clinical Care, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Othon Iliopoulos
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Masatoshi Kurihara
- Pneumothorax Research Center and Division of Thoracic Surgery, Nissan Tamagawa Hospital, Setagayaku, Tokyo, Japan
| | - Romain Lazor
- Respiratory Medicine Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kenki Matsumoto
- Department of Respiratory Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Yukiko Namba
- Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Arnim Pause
- Department of Biochemistry, Goodman Cancer Research Institute, McGill University, Montréal, Canada
| | - Neil Rajan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anindita Ray
- Indian Statistical Institute, Kolkata, WB, India
| | - Laura S. Schmidt
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wei Shi
- The Saban Research Institute, Children's Hospital Los Angeles, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ortrud K. Steinlein
- Institute of Human Genetics, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Julia Thierauf
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital and Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Anna Webb
- The BHD Foundation, The Myrovlytis Trust, London, UK
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
36
|
El-Houjeiri L, Biondini M, Paquette M, Kuasne H, Pacis A, Park M, Siegel PM, Pause A. Folliculin impairs breast tumor growth by repressing TFE3-dependent induction of the Warburg effect and angiogenesis. J Clin Invest 2021; 131:144871. [PMID: 34779410 DOI: 10.1172/jci144871] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Growing tumors exist in metabolically compromised environments that require activation of multiple pathways to scavenge nutrients to support accelerated rates of growth. The folliculin (FLCN) tumor suppressor complex (FLCN, FNIP1, FNIP2) is implicated in the regulation of energy homeostasis via 2 metabolic master kinases: AMPK and mTORC1. Loss-of-function mutations of the FLCN tumor suppressor complex have only been reported in renal tumors in patients with the rare Birt-Hogg-Dube syndrome. Here, we revealed that FLCN, FNIP1, and FNIP2 are downregulated in many human cancers, including poor-prognosis invasive basal-like breast carcinomas where AMPK and TFE3 targets are activated compared with the luminal, less aggressive subtypes. FLCN loss in luminal breast cancer promoted tumor growth through TFE3 activation and subsequent induction of several pathways, including autophagy, lysosomal biogenesis, aerobic glycolysis, and angiogenesis. Strikingly, induction of aerobic glycolysis and angiogenesis in FLCN-deficient cells was dictated by the activation of the PGC-1α/HIF-1α pathway, which we showed to be TFE3 dependent, directly linking TFE3 to Warburg metabolic reprogramming and angiogenesis. Conversely, FLCN overexpression in invasive basal-like breast cancer models attenuated TFE3 nuclear localization, TFE3-dependent transcriptional activity, and tumor growth. These findings support a general role of a deregulated FLCN/TFE3 tumor suppressor pathway in human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Morag Park
- Goodman Cancer Institute.,Department of Biochemistry.,Department of Medicine, and.,Department of Pathology, McGill University, Montréal, Canada
| | - Peter M Siegel
- Goodman Cancer Institute.,Department of Biochemistry.,Department of Medicine, and
| | - Arnim Pause
- Goodman Cancer Institute.,Department of Biochemistry
| |
Collapse
|
37
|
Chronic activation of AMP-activated protein kinase leads to early-onset polycystic kidney phenotype. Clin Sci (Lond) 2021; 135:2393-2408. [PMID: 34622923 DOI: 10.1042/cs20210821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) plays a key role in the cellular response to low energy stress and has emerged as an attractive therapeutic target for tackling metabolic diseases. Whilst significant progress has been made regarding the physiological role of AMPK, its function in the kidney remains only partially understood. We use a mouse model expressing a constitutively active mutant of AMPK to investigate the effect of AMPK activation on kidney function in vivo. Kidney morphology and changes in gene and protein expression were monitored and serum and urine markers were measured to assess kidney function in vivo. Global AMPK activation resulted in an early-onset polycystic kidney phenotype, featuring collecting duct cysts and compromised renal function in adult mice. Mechanistically, the cystic kidneys had increased cAMP levels and ERK activation, increased hexokinase I (Hk I) expression, glycogen accumulation and altered expression of proteins associated with autophagy. Kidney tubule-specific activation of AMPK also resulted in a polycystic phenotype, demonstrating that renal tubular AMPK activation caused the cystogenesis. Importantly, human autosomal dominant polycystic kidney disease (ADPKD) kidney sections revealed similar protein localisation patterns to that observed in the murine cystic kidneys. Our findings show that early-onset chronic AMPK activation leads to a polycystic kidney phenotype, suggesting dysregulated AMPK signalling is a contributing factor in cystogenesis.
Collapse
|
38
|
Loss of hepatic Flcn protects against fibrosis and inflammation by activating autophagy pathways. Sci Rep 2021; 11:21268. [PMID: 34711912 PMCID: PMC8553785 DOI: 10.1038/s41598-021-99958-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), which is characterized by triglyceride accumulation, inflammation, and fibrosis. No pharmacological agents are currently approved to treat these conditions, but it is clear now that modulation of lipid synthesis and autophagy are key biological mechanisms that could help reduce or prevent these liver diseases. The folliculin (FLCN) protein has been recently identified as a central regulatory node governing whole body energy homeostasis, and we hypothesized that FLCN regulates highly metabolic tissues like the liver. We thus generated a liver specific Flcn knockout mouse model to study its role in liver disease progression. Using the methionine- and choline-deficient diet to mimic liver fibrosis, we demonstrate that loss of Flcn reduced triglyceride accumulation, fibrosis, and inflammation in mice. In this aggressive liver disease setting, loss of Flcn led to activation of transcription factors TFEB and TFE3 to promote autophagy, promoting the degradation of intracellular lipid stores, ultimately resulting in reduced hepatocellular damage and inflammation. Hence, the activity of FLCN could be a promising target for small molecule drugs to treat liver fibrosis by specifically activating autophagy. Collectively, these results show an unexpected role for Flcn in fatty liver disease progression and highlight new potential treatment strategies.
Collapse
|
39
|
Goodwin JM, Walkup WG, Hooper K, Li T, Kishi-Itakura C, Ng A, Lehmberg T, Jha A, Kommineni S, Fletcher K, Garcia-Fortanet J, Fan Y, Tang Q, Wei M, Agrawal A, Budhe SR, Rouduri SR, Baird D, Saunders J, Kiselar J, Chance MR, Ballabio A, Appleton BA, Brumell JH, Florey O, Murphy LO. GABARAP sequesters the FLCN-FNIP tumor suppressor complex to couple autophagy with lysosomal biogenesis. SCIENCE ADVANCES 2021; 7:eabj2485. [PMID: 34597140 PMCID: PMC10938568 DOI: 10.1126/sciadv.abj2485] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/11/2021] [Indexed: 05/28/2023]
Abstract
Adaptive changes in lysosomal capacity are driven by the transcription factors TFEB and TFE3 in response to increased autophagic flux and endolysosomal stress, yet the molecular details of their activation are unclear. LC3 and GABARAP members of the ATG8 protein family are required for selective autophagy and sensing perturbation within the endolysosomal system. Here, we show that during the conjugation of ATG8 to single membranes (CASM), Parkin-dependent mitophagy, and Salmonella-induced xenophagy, the membrane conjugation of GABARAP, but not LC3, is required for activation of TFEB/TFE3 to control lysosomal capacity. GABARAP directly binds to a previously unidentified LC3-interacting motif (LIR) in the FLCN/FNIP tumor suppressor complex and mediates sequestration to GABARAP-conjugated membrane compartments. This disrupts FLCN/FNIP GAP function toward RagC/D, resulting in impaired substrate-specific mTOR-dependent phosphorylation of TFEB. Thus, the GABARAP-FLCN/FNIP-TFEB axis serves as a molecular sensor that coordinates lysosomal homeostasis with perturbations and cargo flux within the autophagy-lysosomal network.
Collapse
Affiliation(s)
| | - Ward G. Walkup
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA 02139, USA
| | - Kirsty Hooper
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Taoyingnan Li
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Aylwin Ng
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA 02139, USA
| | | | - Archana Jha
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | - Asmita Agrawal
- Sai Life Sciences Limited, Pune 411057, Maharashtra, India
| | - Sagar R. Budhe
- Sai Life Sciences Limited, Pune 411057, Maharashtra, India
| | | | - Dan Baird
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA 02139, USA
| | - Jeff Saunders
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA 02139, USA
| | | | - Mark R. Chance
- NEO Proteomics Inc., Cleveland, OH 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | | | - John H. Brumell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- SickKids IBD Centre, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Leon O. Murphy
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Webster BR, Rompre-Brodeur A, Daneshvar M, Pahwa R, Srinivasan R. Kidney cancer: from genes to therapy. Curr Probl Cancer 2021; 45:100773. [PMID: 34261604 DOI: 10.1016/j.currproblcancer.2021.100773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
Renal cell carcinoma incidence is rising worldwide with increasing subtype stratification by the World Health Organization. Each subtype has unique genetic alterations, cell biology changes and clinical findings. Such genetic alterations offer the potential for individualized therapeutic approaches that are rapidly progressing. This review highlights the most common subtypes of renal cell carcinoma, including both hereditary and sporadic forms, with a focus on genetic changes, clinical findings and ongoing clinical trials.
Collapse
Affiliation(s)
- Bradley R Webster
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Alexis Rompre-Brodeur
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Michael Daneshvar
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Roma Pahwa
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Ramaprasad Srinivasan
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Ramirez Reyes JMJ, Cuesta R, Pause A. Folliculin: A Regulator of Transcription Through AMPK and mTOR Signaling Pathways. Front Cell Dev Biol 2021; 9:667311. [PMID: 33981707 PMCID: PMC8107286 DOI: 10.3389/fcell.2021.667311] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/β, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/β. Other pathways and cellular processes regulated by FLCN will be briefly discussed.
Collapse
Affiliation(s)
- Josué M. J. Ramirez Reyes
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rafael Cuesta
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
42
|
Paquette M, El-Houjeiri L, C Zirden L, Puustinen P, Blanchette P, Jeong H, Dejgaard K, Siegel PM, Pause A. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy 2021; 17:3957-3975. [PMID: 33734022 DOI: 10.1080/15548627.2021.1898748] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased macroautophagy/autophagy and lysosomal activity promote tumor growth, survival and chemo-resistance. During acute starvation, autophagy is rapidly engaged by AMPK (AMP-activated protein kinase) activation and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) inhibition to maintain energy homeostasis and cell survival. TFEB (transcription factor E3) and TFE3 (transcription factor binding to IGHM enhancer 3) are master transcriptional regulators of autophagy and lysosomal activity and their cytoplasm/nuclear shuttling is controlled by MTORC1-dependent multisite phosphorylation. However, it is not known whether and how the transcriptional activity of TFEB or TFE3 is regulated. We show that AMPK mediates phosphorylation of TFEB and TFE3 on three serine residues, leading to TFEB and TFE3 transcriptional activity upon nutrient starvation, FLCN (folliculin) depletion and pharmacological manipulation of MTORC1 or AMPK. Collectively, we show that MTORC1 specifically controls TFEB and TFE3 cytosolic retention, whereas AMPK is essential for TFEB and TFE3 transcriptional activity. This dual and opposing regulation of TFEB and TFE3 by MTORC1 and AMPK is reminiscent of the regulation of another critical regulator of autophagy, ULK1 (unc-51 like autophagy activating kinase 1). Surprisingly, we show that chemoresistance is mediated by AMPK-dependent activation of TFEB, which is abolished by pharmacological inhibition of AMPK or mutation of serine 466, 467 and 469 to alanine residues within TFEB. Altogether, we show that AMPK is a key regulator of TFEB and TFE3 transcriptional activity, and we validate AMPK as a promising target in cancer therapy to evade chemotherapeutic resistance.AbbreviationsACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; AMPKi: AMPK inhibitor, SBI-0206965; CA: constitutively active; CARM1: coactivator-associated arginine methyltransferase 1; CFP: cyan fluorescent protein; CLEAR: coordinated lysosomal expression and regulation; DKO: double knock-out; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DQ-BSA: self-quenched BODIPY® dye conjugates of bovine serum albumin; EBSS: Earle's balanced salt solution; FLCN: folliculin; GFP: green fluorescent protein; GST: glutathione S-transferases; HD: Huntington disease; HTT: huntingtin; KO: knock-out; LAMP1: lysosomal associated membrane protein 1; MEF: mouse embryonic fibroblasts; MITF: melanocyte inducing transcription factor; MTORC1: MTOR complex 1; PolyQ: polyglutamine; RPS6: ribosomal protein S6; RT-qPCR: reverse transcription quantitative polymerase chain reaction; TCL: total cell lysates; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TKO: triple knock-out; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mathieu Paquette
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Linda C Zirden
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Pietri Puustinen
- Cell Death and Metabolism, Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| | - Paola Blanchette
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Hyeonju Jeong
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Kurt Dejgaard
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
43
|
Lang M, Vocke CD, Ricketts CJ, Metwalli AR, Ball MW, Schmidt LS, Linehan WM. Clinical and Molecular Characterization of Microphthalmia-associated Transcription Factor (MITF)-related Renal Cell Carcinoma. Urology 2021; 149:89-97. [PMID: 33242557 PMCID: PMC8728951 DOI: 10.1016/j.urology.2020.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To characterize the clinical presentation, genomic alterations, pathologic phenotype and clinical management of microphthalmia-associated transcription factor (MITF) familial renal cell carcinoma (RCC), caused by a member of the TFE3, TFEB, and MITF family of transcription factor genes. METHODS The clinical presentation, family history, tumor histopathology, and surgical management were evaluated and reported herein. DNA sequencing was performed on blood DNA, tumor DNA and DNA extracted from adjacent normal kidney tissue. Copy number and gene expression analyses on tumor and normal tissues were performed by Real-Time Polymerase chain reaction. TCGA gene expression data were used for comparative analysis. Protein expression and subcellular localization were evaluated by immunohistochemistry. RESULTS Germline genomic analysis identified the MITF p.E318K variant in a patient with bilateral, multifocal type 1 papillary RCC and a family history of RCC. All tumors displayed the MITF variant and were characterized by amplification of chromosomes 7 and 17, hallmarks of type 1 papillary RCC. We demonstrated that MITF p.E318K variant results in altered transcriptional activity and that downstream targets of MiT family members, such as GPNMB, are dysregulated in the tumors. CONCLUSION Association of the pathogenic MITF variant with bilateral and multifocal type 1 papillary RCC in this family supports its role as a risk allele for the development of RCC and emphasizes the importance of screening for MITF variants irrelevant of the RCC histologic subtype. This study identifies potential biomarkers for the disease, such as GPNMB expression, that may facilitate the development of targeted therapies for patients affected with MITF-associated RCC.
Collapse
Affiliation(s)
- Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Adam R Metwalli
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark W Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - William M Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
44
|
Wang X, Wu H, Zhao L, Liu Z, Qi M, Jin Y, Liu W. FLCN regulates transferrin receptor 1 transport and iron homeostasis. J Biol Chem 2021; 296:100426. [PMID: 33609526 PMCID: PMC7995610 DOI: 10.1016/j.jbc.2021.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Birt–Hogg–Dubé (BHD) syndrome is a multiorgan disorder caused by inactivation of the folliculin (FLCN) protein. Previously, we identified FLCN as a binding protein of Rab11A, a key regulator of the endocytic recycling pathway. This finding implies that the abnormal localization of specific proteins whose transport requires the FLCN-Rab11A complex may contribute to BHD. Here, we used human kidney-derived HEK293 cells as a model, and we report that FLCN promotes the binding of Rab11A with transferrin receptor 1 (TfR1), which is required for iron uptake through continuous trafficking between the cell surface and the cytoplasm. Loss of FLCN attenuated the Rab11A–TfR1 interaction, resulting in delayed recycling transport of TfR1. This delay caused an iron deficiency condition that induced hypoxia-inducible factor (HIF) activity, which was reversed by iron supplementation. In a Drosophila model of BHD syndrome, we further demonstrated that the phenotype of BHD mutant larvae was substantially rescued by an iron-rich diet. These findings reveal a conserved function of FLCN in iron metabolism and may help to elucidate the mechanisms driving BHD syndrome.
Collapse
Affiliation(s)
- Xiaojuan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Hanjie Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Lingling Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Zeyao Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Maozhen Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China.
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China.
| |
Collapse
|
45
|
Glykofridis IE, Knol JC, Balk JA, Westland D, Pham TV, Piersma SR, Lougheed SM, Derakhshan S, Veen P, Rooimans MA, van Mil SE, Böttger F, Poddighe PJ, van de Beek I, Drost J, Zwartkruis FJ, de Menezes RX, Meijers-Heijboer HE, Houweling AC, Jimenez CR, Wolthuis RM. Loss of FLCN-FNIP1/2 induces a non-canonical interferon response in human renal tubular epithelial cells. eLife 2021; 10:61630. [PMID: 33459596 PMCID: PMC7899648 DOI: 10.7554/elife.61630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Germline mutations in the Folliculin (FLCN) tumor suppressor gene cause Birt–Hogg–Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing carriers to kidney tumors. FLCN is a conserved, essential gene linked to diverse cellular processes but the mechanism by which FLCN prevents kidney cancer remains unknown. Here, we show that disrupting FLCN in human renal tubular epithelial cells (RPTEC/TERT1) activates TFE3, upregulating expression of its E-box targets, including RRAGD and GPNMB, without modifying mTORC1 activity. Surprisingly, the absence of FLCN or its binding partners FNIP1/FNIP2 induces interferon response genes independently of interferon. Mechanistically, FLCN loss promotes STAT2 recruitment to chromatin and slows cellular proliferation. Our integrated analysis identifies STAT1/2 signaling as a novel target of FLCN in renal cells and BHD tumors. STAT1/2 activation appears to counterbalance TFE3-directed hyper-proliferation and may influence immune responses. These findings shed light on unique roles of FLCN in human renal tumorigenesis and pinpoint candidate prognostic biomarkers.
Collapse
Affiliation(s)
- Iris E Glykofridis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jesper A Balk
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Denise Westland
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg, Utrecht, Netherlands
| | - Thang V Pham
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sinéad M Lougheed
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sepide Derakhshan
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan, Utrecht, Netherlands
| | - Puck Veen
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Martin A Rooimans
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Saskia E van Mil
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Franziska Böttger
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Pino J Poddighe
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam, Netherlands
| | - Irma van de Beek
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan, Utrecht, Netherlands
| | - Fried Jt Zwartkruis
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg, Utrecht, Netherlands
| | | | - Hanne Ej Meijers-Heijboer
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Arjan C Houweling
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam, Netherlands
| | - Connie R Jimenez
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Rob Mf Wolthuis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
46
|
Ju X, Sun Y, Zhang F, Wei X, Wang Z, He X. Long Non-Coding RNA LINC02747 Promotes the Proliferation of Clear Cell Renal Cell Carcinoma by Inhibiting miR-608 and Activating TFE3. Front Oncol 2020; 10:573789. [PMID: 33425728 PMCID: PMC7786277 DOI: 10.3389/fonc.2020.573789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
With the rapid development of biotechnology, long noncoding RNAs (lncRNAs) have exhibited good application prospects in the treatment of cancer, and they may become new treatment targets for cancer. This study aimed to explore lncRNAs in clear cell renal cell carcinoma (ccRCC). Differentially expressed lncRNAs in 54 pairs of ccRCC tissues and para-carcinoma tissues were analyzed in The Cancer Genome Atlas (TCGA), and the most significant lncRNAs were selected and verified in ccRCC tissues. We found that lncRNA LINC02747 was highly expressed in ccRCC (P < 0.001) and was closely related to high TNM stage (P = 0.006) and histological grade (P = 0.004) and poor prognosis of patients (P < 0.001). In vivo and in vitro experiments confirmed that LINC02747 could promote the proliferation of ccRCC cells. We also found that LINC02747 regulated the proliferation of RCC cells by adsorbing miR-608. Subsequent mechanistic research showed that miR-608 is downregulated in ccRCC (P < 0.001), and overexpression of miR-608 inbibited the proliferation of RCC cells. Moreover, we found that TFE3 is a direct target gene of miR-608. MiR-608 regulated the proliferation of RCC cells by inhibiting TFE3. In conclusion, LINC02747 upregulates the expression of TFE3 by adsorbing miR-608, ultimately promoting the proliferation of ccRCC cells. The above findings indicate that LINC02747 acts as an oncogene in ccRCC and may be developed as a molecular marker for the diagnosis and prognosis of ccRCC. The LINC02747/miR-608/TFE3 pathway may become a new therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Xiang Ju
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yangyang Sun
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Feng Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaohui Wei
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhenguo Wang
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urinary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
47
|
Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Nat Commun 2020; 11:6314. [PMID: 33298956 PMCID: PMC7725783 DOI: 10.1038/s41467-020-20156-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
Blood and lymphatic vessels structurally bear a strong resemblance but never share a lumen, thus maintaining their distinct functions. Although lymphatic vessels initially arise from embryonic veins, the molecular mechanism that maintains separation of these two systems has not been elucidated. Here, we show that genetic deficiency of Folliculin, a tumor suppressor, leads to misconnection of blood and lymphatic vessels in mice and humans. Absence of Folliculin results in the appearance of lymphatic-biased venous endothelial cells caused by ectopic expression of Prox1, a master transcription factor for lymphatic specification. Mechanistically, this phenotype is ascribed to nuclear translocation of the basic helix-loop-helix transcription factor Transcription Factor E3 (TFE3), binding to a regulatory element of Prox1, thereby enhancing its venous expression. Overall, these data demonstrate that Folliculin acts as a gatekeeper that maintains separation of blood and lymphatic vessels by limiting the plasticity of committed endothelial cells. Blood and lymphatic vessels bear a strong resemblance but do not share a lumen, thus maintaining their distinct functions. Here, the authors describe that Folliculin, a tumor suppressor, prevents the fusion of these vessels during development by limiting the plasticity of venous and lymphatic endothelial cells.
Collapse
|
48
|
Fromm SA, Lawrence RE, Hurley JH. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat Struct Mol Biol 2020; 27:1017-1023. [PMID: 32868926 PMCID: PMC7644641 DOI: 10.1038/s41594-020-0490-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
The Rag GTPases (Rags) recruit mTORC1 to the lysosomal membrane in response to nutrients, where it is then activated in response to energy and growth factor availability. The lysosomal folliculin (FLCN) complex (LFC) consists of the inactive Rag dimer, the pentameric scaffold Ragulator, and the FLCN:FNIP2 (FLCN-interacting protein 2) GTPase activating protein (GAP) complex, and prevents Rag dimer activation during amino acid starvation. How the LFC is disassembled upon amino acid refeeding is an outstanding question. Here we show that the cytoplasmic tail of the human lysosomal solute carrier family 38 member 9 (SLC38A9) destabilizes the LFC and thereby triggers GAP activity of FLCN:FNIP2 toward RagC. We present the cryo-EM structures of Rags in complex with their lysosomal anchor complex Ragulator and the cytoplasmic tail of SLC38A9 in the pre- and post-GTP hydrolysis state of RagC, which explain how SLC38A9 destabilizes the LFC and so promotes Rag dimer activation.
Collapse
Affiliation(s)
- Simon A Fromm
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Rosalie E Lawrence
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
49
|
Clausen L, Stein A, Grønbæk-Thygesen M, Nygaard L, Søltoft CL, Nielsen SV, Lisby M, Ravid T, Lindorff-Larsen K, Hartmann-Petersen R. Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation. PLoS Genet 2020; 16:e1009187. [PMID: 33137092 PMCID: PMC7660926 DOI: 10.1371/journal.pgen.1009187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/12/2020] [Accepted: 10/10/2020] [Indexed: 01/24/2023] Open
Abstract
Germline mutations in the folliculin (FLCN) tumor suppressor gene are linked to Birt-Hogg-Dubé (BHD) syndrome, a dominantly inherited genetic disease characterized by predisposition to fibrofolliculomas, lung cysts, and renal cancer. Most BHD-linked FLCN variants include large deletions and splice site aberrations predicted to cause loss of function. The mechanisms by which missense variants and short in-frame deletions in FLCN trigger disease are unknown. Here, we present an integrated computational and experimental study that reveals that the majority of such disease-causing FLCN variants cause loss of function due to proteasomal degradation of the encoded FLCN protein, rather than directly ablating FLCN function. Accordingly, several different single-site FLCN variants are present at strongly reduced levels in cells. In line with our finding that FLCN variants are protein quality control targets, several are also highly insoluble and fail to associate with the FLCN-binding partners FNIP1 and FNIP2. The lack of FLCN binding leads to rapid proteasomal degradation of FNIP1 and FNIP2. Half of the tested FLCN variants are mislocalized in cells, and one variant (ΔE510) forms perinuclear protein aggregates. A yeast-based stability screen revealed that the deubiquitylating enzyme Ubp15/USP7 and molecular chaperones regulate the turnover of the FLCN variants. Lowering the temperature led to a stabilization of two FLCN missense proteins, and for one (R362C), function was re-established at low temperature. In conclusion, we propose that most BHD-linked FLCN missense variants and small in-frame deletions operate by causing misfolding and degradation of the FLCN protein, and that stabilization and resulting restoration of function may hold therapeutic potential of certain disease-linked variants. Our computational saturation scan encompassing both missense variants and single site deletions in FLCN may allow classification of rare FLCN variants of uncertain clinical significance.
Collapse
Affiliation(s)
- Lene Clausen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Nygaard
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie L. Søltoft
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie V. Nielsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lisby
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Lymphoplasmacytic lymphoma in a patient with Birt-Hogg-Dubé syndrome. Int J Hematol 2020; 112:864-870. [PMID: 32789566 DOI: 10.1007/s12185-020-02970-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disease characterized by benign skin hamartomas, pulmonary cysts leading to spontaneous pneumothorax, and an increased risk of renal cancer. BHD syndrome is caused by germline mutations in the folliculin (FLCN) gene, a putative tumor suppressor, which result in loss of function of the folliculin protein and may cause cancer predisposition. In a 45-year-old woman with anemia, lymphadenopathy, and a history of recurrent spontaneous pneumothorax, 18F-FDG PET/CT detected diffuse and slight 18F-FDG accumulation in the bone marrow, enlarged spleen, and systemic multiple enlarged lymph nodes. Genetic examination identified a germline nonsense mutation [c.998C > G (p.Ser333*)] on exon 9 of FLCN. Pathological examination of the lymph node revealed a diffuse neoplastic proliferation of plasmacytoid lymphocytes. The neoplastic lymphoid cells were positive for CD20, CD138, and light chain kappa as per immunohistochemistry and mRNA in situ hybridization, and a MYD88 gene mutation [c.755T > C (p.L252P)] was identified. Accordingly, she was diagnosed with lymphoplasmacytic lymphoma concomitant with BHD syndrome. To the best of our knowledge, this is the first report describing the development of hematological malignancy in a patient with BHD syndrome. The FLCN mutation might contribute lymphomagenesis as an additional mutation cooperating with the MYD88 mutation.
Collapse
|