1
|
Ruinelli M, Blom J, Smits THM, Pothier JF. Comparative Genomics of Prunus-Associated Members of the Pseudomonas syringae Species Complex Reveals Traits Supporting Co-evolution and Host Adaptation. Front Microbiol 2022; 13:804681. [PMID: 35592008 PMCID: PMC9111521 DOI: 10.3389/fmicb.2022.804681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the Pseudomonas syringae species complex cause symptoms that are ranging from leaf spots to cankers on a multitude of plant species, including some of the genus Prunus. To date, a total of two species of the P. syringae species complex and six different pathovars have been associated with diseases on Prunus spp., which were shown to belong to different phylogenetic units (phylogroups, PG) based on sequence similarity of housekeeping genes or whole genomes, suggesting that virulence to Prunus spp. may be the result of convergent pathoadaptation. In this study, a comparative genomics approach was used to determine genes significantly associated with strains isolated from Prunus spp. across a phylogeny of 97 strains belonging to the P. syringae species complex. Our study revealed the presence of a set of orthologous proteins which were significantly associated with strains isolated from Prunus spp. than in strains isolated from other hosts or from non-agricultural environments. Among them, the type III effector HopAY predicted to encode for a C58 cysteine protease was found to be highly associated with strains isolated from Prunus spp. and revealed patterns supporting co-evolution and host adaptation.
Collapse
Affiliation(s)
- Michela Ruinelli
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
2
|
Tarakanov RI, Lukianova AA, Evseev PV, Toshchakov SV, Kulikov EE, Ignatov AN, Miroshnikov KA, Dzhalilov FSU. Bacteriophage Control of Pseudomonas savastanoi pv. glycinea in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:938. [PMID: 35406917 PMCID: PMC9003214 DOI: 10.3390/plants11070938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Bacterial viruses (bacteriophages) have been considered as potential agents for the biological control of bacterial phytopathogens due to their safety and host specificity. Pseudomonas savastanoi pv. glycinea (Psg) is a causative agent of the bacterial spotting of soybean (Glycine max Willd). The harm caused by this bacterium to crop production and the development of antibiotic resistance in Psg and other pathogenic microorganisms has led to the pursuit of alternative management strategies. In this study, three Psg-specific lytic bacteriophages were isolated from soybean field soil in geographically distant regions of Russia, and their potential for protective action on plants was assessed. Sequencing of phage genomes has revealed their close relatedness and attribution to the genus Ghunavirus, subfamily Studiervirinae, family Autographiviridae. Extensive testing of the biological properties of P421, the representative of the isolated phage group, has demonstrated a relatively broad host range covering closely related Pseudomonas species and stability over wide temperature (4-40 °C) and pH (pH 4-7) ranges, as well as stability under ultraviolet irradiation for 30 min. Application of the phages to prevent, and treat, Psg infection of soybean plants confirms that they are promising as biocontrol agents.
Collapse
Affiliation(s)
- Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
| | - Anna A. Lukianova
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia;
| | - Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia;
| | - Stepan V. Toshchakov
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123098 Moscow, Russia;
| | - Eugene E. Kulikov
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-letia Oktyabrya 7-2, 117312 Moscow, Russia;
| | - Alexander N. Ignatov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
- Agrobiotechnology Department, Agrarian and Technological Institute, Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Konstantin A. Miroshnikov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia;
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
| |
Collapse
|
3
|
Klimov PB, Chetverikov PE, Dodueva IE, Vishnyakov AE, Bolton SJ, Paponova SS, Lutova LA, Tolstikov AV. Symbiotic bacteria of the gall-inducing mite Fragariocoptes setiger (Eriophyoidea) and phylogenomic resolution of the eriophyoid position among Acari. Sci Rep 2022; 12:3811. [PMID: 35264574 PMCID: PMC8907322 DOI: 10.1038/s41598-022-07535-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Eriophyoid mites represent a hyperdiverse, phytophagous lineage with an unclear phylogenetic position. These mites have succeeded in colonizing nearly every seed plant species, and this evolutionary success was in part due to the mites' ability to induce galls in plants. A gall is a unique niche that provides the inducer of this modification with vital resources. The exact mechanism of gall formation is still not understood, even as to whether it is endogenic (mites directly cause galls) or exogenic (symbiotic microorganisms are involved). Here we (i) investigate the phylogenetic affinities of eriophyoids and (ii) use comparative metagenomics to test the hypothesis that the endosymbionts of eriophyoid mites are involved in gall formation. Our phylogenomic analysis robustly inferred eriophyoids as closely related to Nematalycidae, a group of deep-soil mites belonging to Endeostigmata. Our comparative metagenomics, fluorescence in situ hybridization, and electron microscopy experiments identified two candidate endosymbiotic bacteria shared across samples, however, it is unlikely that they are gall inducers (morphotype1: novel Wolbachia, morphotype2: possibly Agrobacterium tumefaciens). We also detected an array of plant pathogens associated with galls that may be vectored by the mites, and we determined a mite pathogenic virus (Betabaculovirus) that could be tested for using in biocontrol of agricultural pest mites.
Collapse
Affiliation(s)
- Pavel B Klimov
- X-BIO Institute, Tyumen State University, Tyumen, Russia, 625003.
| | | | - Irina E Dodueva
- Saint-Petersburg State University, St. Petersburg, Russia, 199034
| | | | - Samuel J Bolton
- Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
| | | | | | | |
Collapse
|
4
|
Nguyen VT, Sakata N, Usuki G, Ishiga T, Hashimoto Y, Ishiga Y. Multiple virulence factors regulated by AlgU contribute to the pathogenicity of Pseudomonas savastanoi pv. glycinea in soybean. PeerJ 2021; 9:e12405. [PMID: 34760389 PMCID: PMC8559602 DOI: 10.7717/peerj.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas savastanoi pv. glycinea (Psg) causes bacterial blight of soybean. To identify candidate virulence factors, transposon-mediated mutational analysis of Psg was carried out. We syringe-inoculated soybean leaves with Psg transposon mutants and identified 28 mutants which showed reduced virulence from 1,000 mutants screened. Next, we spray-inoculated soybean leaves with these mutants and demonstrated that the algU mutant showed significantly reduced virulence together with reduced bacterial populations in planta. Expression profiles comparison between the Psg wild-type (WT) and algU mutant in HSC broth revealed that expression of coronatine (COR)-related genes (including cmaA and corR) were down-regulated in the algU mutant compared with Psg WT. Moreover, we also showed that COR production were reduced in the algU mutant compared with WT. We also demonstrated that algD, which is related to alginate biosynthesis, showed reduced expression and biofilm formation was significantly suppressed in the algU mutant. Furthermore, hrpL also showed less expression in the algU mutant. These results indicate that AlgU plays a critical role in promoting Psg pathogenesis by regulating multiple virulence factors.
Collapse
Affiliation(s)
- Viet Tru Nguyen
- Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot, Daklak, Vietnam.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Giyu Usuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiteru Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Wang X, Li D, Gao P, Gu W, He X, Yang W, Tang W. Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110655. [PMID: 32361136 DOI: 10.1016/j.ecoenv.2020.110655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Microbial treatment of heavy metal-polluted sites is considered an environmentally friendly bioremediation technology with high potential. This study shows that Pseudomonas chengduensis strain MBR, a bacterium that can potentially be applied in the treatment of heavy metal pollution, is most affected by Cd(II) stress at the beginning of its growth. Up to 100% of total Cd(II) adsorption occurs in the first 48 h after treatment of stationary phase cells with Cd(II). A biofilm forms on the cell surface, Cd(II) adsorbs, and is reduced to Cd (0) in the form of nanoscale particles. The genome of strain MBR was sequenced, annotated and analyzed. We identified various genes potentially related to cadmium resistance, transport and metabolism. Analysis of the strain MBR genome is helpful to explore the mechanism of Cd(II) resistance, and can provide new ideas for cadmium pollution control.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ping Gao
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenzhi Gu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong He
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China
| | - Wenyi Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenzhong Tang
- State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| |
Collapse
|
6
|
Díaz-Cruz GA, Smith CM, Wiebe KF, Villanueva SM, Klonowski AR, Cassone BJ. Applications of Next-Generation Sequencing for Large-Scale Pathogen Diagnoses in Soybean. PLANT DISEASE 2019; 103:1075-1083. [PMID: 31009362 DOI: 10.1094/pdis-05-18-0905-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Soybean (Glycine max) has become an important crop in Manitoba, Canada, with a 10-fold increase in dedicated acreage over the past decade. Given the rapid increase in production, scarce information about foliar diseases present in the province has been recorded. In order to describe the foliar pathogens affecting this legume, we harnessed next-generation sequencing (NGS) to carry out a comprehensive survey across Manitoba in 2016. Fields were sampled during the V2/3 (33 fields) and R6 (70 fields) growth stages, with at least three symptomatic leaves per field collected and subjected to RNA sequencing. We successfully detected several bacteria, fungi, and viruses known to infect soybean, including Pseudomonas savastanoi pv. glycinea, Septoria glycines, and Peronospora manshurica, as well as pathogens not previously identified in the province (e.g., Pseudomonas syringae pv. tabaci, Cercospora sojina, and Bean yellow mosaic virus). For some microorganisms, we were able to disentangle the different pathovars present and/or assemble their genome sequence. Since NGS generates data on the entire flora and fauna occupying a leaf sample, we also identified residual pathogens (i.e., pathogens of crops other than soybean) and multiple species of arthropod pests. Finally, the sequence information produced by NGS allowed for the development of polymerase chain reaction-based diagnostics for some of the most widespread and important pathogens. Although there are many benefits of using NGS for large-scale plant pathogen diagnoses, we also discuss some of the limitations of this technology.
Collapse
Affiliation(s)
- Gustavo A Díaz-Cruz
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Charlotte M Smith
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Kiana F Wiebe
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Sachi M Villanueva
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Adam R Klonowski
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| | - Bryan J Cassone
- Department of Biology, Brandon University, Brandon, Manitoba R78 6A9, Canada
| |
Collapse
|
7
|
Degrassi G, Mortato V, Devescovi G, Hoshino R, Chatnaparat T, Kojic M, Carpentieri-Pipolo V, Zhao Y, Venturi V. Many plant pathogenic Pseudomonas savastanoi pv glycinea isolates possess an inactive quorum sensing ahlR gene via a point mutation. FEMS Microbiol Lett 2019; 366:fnz149. [PMID: 31271427 DOI: 10.1093/femsle/fnz149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/03/2019] [Indexed: 01/14/2023] Open
Abstract
Many plant bacterial pathogens monitor their group behaviour and their population density via production of N-acyl homoserine lactone signals which regulate the expression of several genes via the LuxI/R homologs. This regulatory network, termed quorum sensing (QS), is present in the soybean bacterial pathogen Pseudomonas savastanoi pv glycinea (Psg). The sequenced genomes of two strains of Psg, race 4 and B076, contain an N-acyl homoserine lactone (AHL) based LuxI/R QS system named AhlI/R. While studying the QS system of Psg strains race 4 and B076 isolated in USA, LMG5066 in New Zealand and IBSBF355 in Brazil, we found that B076, LMG5066 and IBSBF355 possess a point mutation in the ahlR gene that causes a frameshift resulting in a truncated AhlR protein. Psg race 4 does not possess the mutation in ahlR and the QS system is functional. The same mutation in the ahlR gene was found to be also present in 9 of 19 Psg strains isolated from diseased soybean in Illinois. Phenotypic analysis of strains showed that swarming motility is repressed whereas phosphate solubilisation was activated by QS in Psg. Analysing the secretome, we also found that four proteins were under QS regulation.
Collapse
Affiliation(s)
- Giuliano Degrassi
- Industrial Biotechnology Group, IBioBA-ICGEB, Godoy Cruz 2390, Buenos Aires, Argentina
| | - Valentina Mortato
- Industrial Biotechnology Group, IBioBA-ICGEB, Godoy Cruz 2390, Buenos Aires, Argentina
| | - Giulia Devescovi
- Bacteriology Group, ICGEB, Padriciano 99, I-34149 Trieste, Italy
| | - Rodrigo Hoshino
- Agronomy Department, Londrina State University, Londrina 10.011, Parana, Brasil
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, 288 E R Madigan Laboratory, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | - Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), V. Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | | | - Youfu Zhao
- Department of Crop Sciences, 288 E R Madigan Laboratory, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | - Vittorio Venturi
- Bacteriology Group, ICGEB, Padriciano 99, I-34149 Trieste, Italy
| |
Collapse
|
8
|
Hulin MT, Armitage AD, Vicente JG, Holub EB, Baxter L, Bates HJ, Mansfield JW, Jackson RW, Harrison RJ. Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium). THE NEW PHYTOLOGIST 2018; 219:672-696. [PMID: 29726587 DOI: 10.1111/nph.15182] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 05/12/2023]
Abstract
Genome-wide analyses of the effector- and toxin-encoding genes were used to examine the phylogenetics and evolution of pathogenicity amongst diverse strains of Pseudomonas syringae causing bacterial canker of cherry (Prunus avium), including pathovars P. syringae pv morsprunorum (Psm) races 1 and 2, P. syringae pv syringae (Pss) and P. syringae pv avii. Phylogenetic analyses revealed Psm races and P. syringae pv avii clades were distinct and were each monophyletic, whereas cherry-pathogenic strains of Pss were interspersed amongst strains from other host species. A maximum likelihood approach was used to predict effectors associated with pathogenicity on cherry. Pss possesses a smaller repertoire of type III effectors but has more toxin biosynthesis clusters than Psm and P. syringae pv avii. Evolution of cherry pathogenicity was correlated with gain of genes such as hopAR1 and hopBB1 through putative phage transfer and horizontal transfer respectively. By contrast, loss of the avrPto/hopAB redundant effector group was observed in cherry-pathogenic clades. Ectopic expression of hopAB and hopC1 triggered the hypersensitive reaction in cherry leaves, confirming computational predictions. Cherry canker provides a fascinating example of convergent evolution of pathogenicity that is explained by the mix of effector and toxin repertoires acting on a common host.
Collapse
Affiliation(s)
- Michelle T Hulin
- NIAB EMR, New Road, East Malling, ME19 6BJ, UK
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| | | | - Joana G Vicente
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Laura Baxter
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | | | - John W Mansfield
- Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| | - Richard J Harrison
- NIAB EMR, New Road, East Malling, ME19 6BJ, UK
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| |
Collapse
|
9
|
Bignell DRD, Cheng Z, Bown L. The coronafacoyl phytotoxins: structure, biosynthesis, regulation and biological activities. Antonie van Leeuwenhoek 2018; 111:649-666. [PMID: 29307013 DOI: 10.1007/s10482-017-1009-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Phytotoxins are secondary metabolites that contribute to the development and/or severity of diseases caused by various plant pathogenic microorganisms. The coronafacoyl phytotoxins are an important family of plant toxins that are known or suspected to be produced by several phylogenetically distinct plant pathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabies. At least seven different family members have been identified, of which coronatine was the first to be described and is the best-characterized. Though nonessential for disease development, coronafacoyl phytotoxins appear to enhance the severity of disease symptoms induced by pathogenic microbes during host infection. In addition, the identification of coronafacoyl phytotoxin biosynthetic genes in organisms not known to be plant pathogens suggests that these metabolites may have additional roles other than as virulence factors. This review focuses on our current understanding of the structures, biosynthesis, regulation, biological activities and evolution of coronafacoyl phytotoxins as well as the different methods that are used to detect these metabolites and the organisms that produce them.
Collapse
Affiliation(s)
- Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | - Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Luke Bown
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
10
|
Coronafacoyl Phytotoxin Biosynthesis and Evolution in the Common Scab Pathogen Streptomyces scabiei. Appl Environ Microbiol 2017; 83:AEM.01169-17. [PMID: 28754703 DOI: 10.1128/aem.01169-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023] Open
Abstract
Coronafacoyl phytotoxins are an important family of plant toxins that are produced by several different phytopathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabiei (formerly Streptomyces scabies). The phytotoxins consist of coronafacic acid (CFA) linked via an amide bond to different amino acids or amino acid derivatives. Previous work suggested that S. scabiei and P. syringae use distinct biosynthetic pathways for producing CFA, which is subsequently linked to its amino acid partner to form the complete phytotoxin. Here, we provide further evidence that the S. scabiei CFA biosynthetic pathway is novel by characterizing the role of CYP107AK1, a predicted cytochrome P450 that has no homologue in P. syringae Deletion of the CYP107AK1 gene abolished production of coronafacoyl-isoleucine (CFA-Ile), the primary coronafacoyl phytotoxin produced by S. scabiei Structural elucidation of accumulated biosynthetic intermediates in the ΔCYP107AK1 mutant indicated that CYP107AK1 is required for introducing the oxygen atom that ultimately forms the carbonyl group in the CFA backbone. The CYP107AK1 gene along with two additional genes involved in CFA-Ile biosynthesis in S. scabiei were found to be associated with putative CFA biosynthetic genes in other actinobacteria but not in other organisms. Analysis of the overall genetic content and organization of known and putative CFA biosynthetic gene clusters, together with phylogenetic analysis of the core biosynthetic genes, indicates that horizontal gene transfer has played an important role in the dissemination of the gene cluster and that rearrangement, insertion, and/or deletion events have likely contributed to the divergent biosynthetic evolution of coronafacoyl phytotoxins in bacteria.IMPORTANCE The ability of plants to defend themselves against invading pathogens relies on complex signaling pathways that are controlled by key phytohormones such as jasmonic acid (JA). Some phytopathogenic bacteria have evolved the ability to manipulate JA signaling in order to overcome host defenses by producing coronatine (COR), which functions as a potent JA mimic. COR and COR-like molecules, collectively referred to as coronafacoyl phytotoxins, are produced by several different plant-pathogenic bacteria, and this study provides supporting evidence that different biosynthetic pathways are utilized by different bacteria for production of these phytotoxins. In addition, our study provides a greater understanding of how coronafacoyl phytotoxin biosynthesis may have evolved in phylogenetically distinct bacteria, and we demonstrate that production of these compounds may be more widespread than previously recognized and that their role for the producing organism may not be limited to host-pathogen interactions.
Collapse
|
11
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A, Sundin GW. Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics 2017; 18:365. [PMID: 28486968 PMCID: PMC5424326 DOI: 10.1186/s12864-017-3763-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pPT23A family of plasmids appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. pPT23A-family plasmids (PFPs) are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. The occurrence of repeated sequences including duplicated insertion sequences on PFPs has made obtaining closed plasmid genome sequences difficult. Therefore, our objective was to obtain complete genome sequences from PFPs from divergent P. syringae pathovars and also from strains of P. syringae pv. syringae isolated from different hosts. RESULTS The eight plasmids sequenced ranged in length from 61.6 to 73.8 kb and encoded from 65 to 83 annotated orfs. Virulence genes including type III secretion system effectors were encoded on two plasmids, and one of these, pPt0893-29 from P. syringae pv. tabaci, encoded a wide variety of putative virulence determinants. The PFPs from P. syringae pv. syringae mostly encoded genes of importance to ecological fitness including the rulAB determinant conferring tolerance to ultraviolet radiation. Heavy metal resistance genes encoding resistance to copper and arsenic were also present in a few plasmids. The discovery of part of the chromosomal genomic island GI6 from P. syringae pv. syringae B728a in two PFPs from two P. syringae pv. syringae hosts is further evidence of past intergenetic transfers between plasmid and chromosomal DNA. Phylogenetic analyses also revealed new subgroups of the pPT23A plasmid family and confirmed that plasmid phylogeny is incongruent with P. syringae pathovar or host of isolation. In addition, conserved genes among seven sequenced plasmids within the same phylogenetic group were limited to plasmid-specific functions including maintenance and transfer functions. CONCLUSIONS Our sequence analysis further revealed that PFPs from P. syringae encode suites of accessory genes that are selected at species (universal distribution), pathovar (interpathovar distribution), and population levels (intrapathovar distribution). The conservation of type IV secretion systems encoding conjugation functions also presumably contributes to the distribution of these plasmids within P. syringae populations.
Collapse
Affiliation(s)
- José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
12
|
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1371-1385. [PMID: 28069779 PMCID: PMC6075518 DOI: 10.1093/jxb/erw478] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Feng Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, MI 49503
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
13
|
Caballo-Ponce E, van Dillewijn P, Wittich RM, Ramos C. WHOP, a Genomic Region Associated With Woody Hosts in the Pseudomonas syringae Complex Contributes to the Virulence and Fitness of Pseudomonas savastanoi pv. savastanoi in Olive Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:113-126. [PMID: 28027024 DOI: 10.1094/mpmi-11-16-0233-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacteria from the Pseudomonas syringae complex belonging to phylogroups 1 and 3 (PG1 and PG3, respectively) isolated from woody hosts share a genomic region herein referred to as WHOP (from woody host and Pseudomonas spp.), which is absent in strains infecting herbaceous organs. In this work, we show that this region is also encoded in P. syringae pv. actinidifoliorum (PG1) and six additional members of PG3, namely, Pseudomonas savastanoi pv. retacarpa, three P. syringae pathovars, Pseudomonas meliae, and Pseudomonas amygdali. Partial conservation of the WHOP occurs in only a few PG2 strains. In P. savastanoi pv. savastanoi NCPPB 3335, the WHOP region is organized into four operons and three independently transcribed genes. While the antABC and catBCA operons mediate the catabolism of anthranilate and catechol, respectively, the ipoABC operon confers oxygenase activity to aromatic compounds. The deletion of antABC, catBCA, or ipoABC in NCPPB 3335 caused reduced virulence in woody olive plants without affecting knot formation in nonwoody plants; catBCA, dhoAB, and PSA3335_3206 (encoding a putative aerotaxis receptor) were also required for the full fitness of this strain exclusively in woody olive plants. Overall, this study sheds light on the evolution and adaptation of bacteria from the P. syringae complex to woody hosts and highlights the enzymatic activities encoded within the WHOP region that are essential for this process.
Collapse
Affiliation(s)
- Eloy Caballo-Ponce
- 1 Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos s/n, E-29010 Málaga, Spain and
| | - Pieter van Dillewijn
- 2 Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, 1. E-18008, Granada, Spain
| | - Regina Michaela Wittich
- 2 Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, 1. E-18008, Granada, Spain
| | - Cayo Ramos
- 1 Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos s/n, E-29010 Málaga, Spain and
| |
Collapse
|
14
|
Nowell RW, Laue BE, Sharp PM, Green S. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae. MOLECULAR PLANT PATHOLOGY 2016; 17:1409-1424. [PMID: 27145446 PMCID: PMC5132102 DOI: 10.1111/mpp.12423] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae.
Collapse
Affiliation(s)
- Reuben W Nowell
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| | - Bridget E Laue
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah Green
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| |
Collapse
|
15
|
Complete Sequences of IncU Plasmids Harboring Quinolone Resistance Genes qnrS2 and aac(6')-Ib-cr in Aeromonas spp. from Ornamental Fish. Antimicrob Agents Chemother 2015; 60:653-7. [PMID: 26525788 DOI: 10.1128/aac.01773-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/25/2015] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences of three IncU plasmids from Aeromonas spp. isolated from ornamental fish are described. They had a typical IncU backbone for plasmid replication and maintenance functions, but conjugative transfer modules were disrupted. The gene qnrS2 was inserted into mpR as a mobile insertion cassette. Novel Tn3 family transposons carrying putative toxin-antitoxin and plasmid stability genes were identified. The study demonstrates high plasticity of IncU plasmids from aquatic environments.
Collapse
|
16
|
Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. Proc Natl Acad Sci U S A 2015; 112:14354-9. [PMID: 26578782 DOI: 10.1073/pnas.1510745112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. Here, we show that host target modification could be a promising new approach to "protect" the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae, for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens.
Collapse
|
17
|
Oliva MDLM, Carezzano ME, Giuliano M, Daghero J, Zygadlo J, Bogino P, Giordano W, Demo M. Antimicrobial activity of essential oils of Thymus vulgaris and Origanum vulgare on phytopathogenic strains isolated from soybean. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:758-65. [PMID: 25359697 DOI: 10.1111/plb.12282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
The aim of this work was to study the antimicrobial activity of essential oils obtained from Thymus vulgaris (thyme) and Origanum vulgare (oregano) on phytopathogenic Pseudomonas species isolated from soybean. Strains with characteristics of P. syringae were isolated from leaves of soybean plants with blight symptoms. Ten of these could be identified in Group Ia of LOPAT as P. syringae. Six of these were confirmed as P. syringae using 16S rRNA, indicating the presence of these phytopathogenic bacteria in east and central Argentina. All the phytopathogenic bacteria were re-isolated and identified from the infected plants. MIC values for thyme were 11.5 and 5.7 mg·ml(-1) on P. syringae strains, while oregano showed variability in the inhibitory activity. Both essential oils inhibited all P. syringae strains, with better inhibitory activity than the antibiotic streptomycin. The oils were not bactericidal for all pseudomonads. Both oils contained high carvacrol (29.5% and 19.7%, respectively) and low thymol (1.5%). Natural products obtained from aromatic plants represent potential sources of molecules with biological activity that could be used as new alternatives for the treatment of phytopathogenic bacteria infections.
Collapse
Affiliation(s)
- M de las M Oliva
- Departamento de Microbiologia e Inmunologia, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The plant growth-promoting bacteria Azospirillum amazonense: genomic versatility and phytohormone pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:898592. [PMID: 25866821 PMCID: PMC4383252 DOI: 10.1155/2015/898592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 11/17/2022]
Abstract
The rhizosphere bacterium Azospirillum amazonense associates with plant roots to promote plant growth. Variation in replicon numbers and rearrangements is common among Azospirillum strains, and characterization of these naturally occurring differences can improve our understanding of genome evolution. We performed an in silico comparative genomic analysis to understand the genomic plasticity of A. amazonense. The number of A. amazonense-specific coding sequences was similar when compared with the six closely related bacteria regarding belonging or not to the Azospirillum genus. Our results suggest that the versatile gene repertoire found in A. amazonense genome could have been acquired from distantly related bacteria from horizontal transfer. Furthermore, the identification of coding sequence related to phytohormone production, such as flavin-monooxygenase and aldehyde oxidase, is likely to represent the tryptophan-dependent TAM pathway for auxin production in this bacterium. Moreover, the presence of the coding sequence for nitrilase indicates the presence of the alternative route that uses IAN as an intermediate for auxin synthesis, but it remains to be established whether the IAN pathway is the Trp-independent route. Future investigations are necessary to support the hypothesis that its genomic structure has evolved to meet the requirement for adaptation to the rhizosphere and interaction with host plants.
Collapse
|
19
|
Dudnik A, Dudler R. Virulence determinants of Pseudomonas syringae strains isolated from grasses in the context of a small type III effector repertoire. BMC Microbiol 2014; 14:304. [PMID: 25472590 PMCID: PMC4262972 DOI: 10.1186/s12866-014-0304-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Pseudomonas syringae is pathogenic to a large number of plant species. For host colonization and disease progression, strains of this bacterium utilize an array of type III-secreted effectors and other virulence factors, including small secreted molecules such as syringolin A, a peptide derivative that inhibits the eukaryotic proteasome. In strains colonizing dicotyledonous plants, the compound was demonstrated to suppress the salicylic-acid-dependent defense pathway. Here, we analyze virulence factors of three strains colonizing wheat (Triticum aestivum): P. syringae pathovar syringae (Psy) strains B64 and SM, as well as P. syringae BRIP34876. These strains have a relatively small repertoire of only seven to eleven type III secreted effectors (T3Es) and differ in their capacity to produce syringolin A. The aim of this study was to analyze the contribution of various known virulence factors in the context of a small T3E repertoire. Results We demonstrate that syringolin A production enhances disease symptom development upon direct infiltration of strains into wheat leaves. However, it is not universally required for colonization, as Psy SM, which lacks syringolin biosynthesis genes, reaches cell densities comparable to syringolin A producer P. syringae BRIP34876. Next, we show that despite the small set of T3E-encoding genes, the type III secretion system remains the key pathogenicity determinant in these strains, and that phenotypic effects of deleting T3E-coding genes become apparent only when multiple effectors are removed. Conclusions Whereas production of syringolin A is not required for successful colonization of wheat leaves by P. syringae strains, its production results in increased lesion formation. Despite the small number of known T3Es encoded by the analyzed strains, the type III secretion system is essential for endophytic growth of these strains. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0304-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey Dudnik
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland. .,Present address: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 4, Hørsholm, 2970, Denmark.
| | - Robert Dudler
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.
| |
Collapse
|
20
|
The Evolution of Ethylene Signaling in Plant Chemical Ecology. J Chem Ecol 2014; 40:700-16. [DOI: 10.1007/s10886-014-0474-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 01/10/2023]
|
21
|
Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 2014; 38:523-68. [PMID: 24923764 DOI: 10.1111/1574-6976.12079] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Members of the Pseudomonas genus produce diverse secondary metabolites affecting other bacteria, fungi or predating nematodes and protozoa but are also equipped with the capacity to secrete different types of ribosomally encoded toxic peptides and proteins, ranging from small microcins to large tailocins. Studies with the human pathogen Pseudomonas aeruginosa have revealed that effector proteins of type VI secretion systems are part of the antibacterial armamentarium deployed by pseudomonads. A novel class of antibacterial proteins with structural similarity to plant lectins was discovered by studying antagonism among plant-associated Pseudomonas strains. A genomic perspective on pseudomonad bacteriocinogeny shows that the modular architecture of S pyocins of P. aeruginosa is retained in a large diversified group of bacteriocins, most of which target DNA or RNA. Similar modularity is present in as yet poorly characterized Rhs (recombination hot spot) proteins and CDI (contact-dependent inhibition) proteins. Well-delimited domains for receptor recognition or cytotoxicity enable the design of chimeric toxins with novel functionalities, which has been applied successfully for S and R pyocins. Little is known regarding how these antibacterials are released and ultimately reach their targets. Other remaining issues concern the identification of environmental triggers activating these systems and assessment of their ecological impact in niches populated by pseudomonads.
Collapse
|
22
|
Nowell RW, Green S, Laue BE, Sharp PM. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol Evol 2014; 6:1514-29. [PMID: 24923323 PMCID: PMC4079204 DOI: 10.1093/gbe/evu123] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2014] [Indexed: 01/03/2023] Open
Abstract
Horizontal gene transfer (HGT) and gene loss are key processes in bacterial evolution. However, the role of gene gain and loss in the emergence and maintenance of ecologically differentiated bacterial populations remains an open question. Here, we use whole-genome sequence data to quantify gene gain and loss for 27 lineages of the plant-associated bacterium Pseudomonas syringae. We apply an extensive error-control procedure that accounts for errors in draft genome data and greatly improves the accuracy of patterns of gene occurrence among these genomes. We demonstrate a history of extensive genome fluctuation for this species and show that individual lineages could have acquired thousands of genes in the same period in which a 1% amino acid divergence accrues in the core genome. Elucidating the dynamics of genome fluctuation reveals the rapid turnover of gained genes, such that the majority of recently gained genes are quickly lost. Despite high observed rates of fluctuation, a phylogeny inferred from patterns of gene occurrence is similar to a phylogeny based on amino acid replacements within the core genome. Furthermore, the core genome phylogeny suggests that P. syringae should be considered a number of distinct species, with levels of divergence at least equivalent to those between recognized bacterial species. Gained genes are transferred from a variety of sources, reflecting the depth and diversity of the potential gene pool available via HGT. Overall, our results provide further insights into the evolutionary dynamics of genome fluctuation and implicate HGT as a major factor contributing to the diversification of P. syringae lineages.
Collapse
Affiliation(s)
- Reuben W Nowell
- Institute of Evolutionary Biology, University of Edinburgh, United KingdomForest Research, Centre for Ecosystems, Society and Biosecurity, Roslin, Midlothian, United Kingdom
| | - Sarah Green
- Forest Research, Centre for Ecosystems, Society and Biosecurity, Roslin, Midlothian, United Kingdom
| | - Bridget E Laue
- Forest Research, Centre for Ecosystems, Society and Biosecurity, Roslin, Midlothian, United Kingdom
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, United KingdomCentre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom
| |
Collapse
|
23
|
Khandekar S, Srivastava A, Pletzer D, Stahl A, Ullrich MS. The conserved upstream region of lscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae. BMC Microbiol 2014; 14:79. [PMID: 24670199 PMCID: PMC3973379 DOI: 10.1186/1471-2180-14-79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/19/2014] [Indexed: 01/07/2023] Open
Abstract
Background Pseudomonas syringae pv. glycinea PG4180 is an opportunistic plant pathogen which causes bacterial blight of soybean plants. It produces the exopolysaccharide levan by the enzyme levansucrase. Levansucrase has three gene copies in PG4180, two of which, lscB and lscC, are expressed while the third, lscA, is cryptic. Previously, nucleotide sequence alignments of lscB/C variants in various P. syringae showed that a ~450-bp phage-associated promoter element (PAPE) including the first 48 nucleotides of the ORF is absent in lscA. Results Herein, we tested whether this upstream region is responsible for the expression of lscB/C and lscA. Initially, the transcriptional start site for lscB/C was determined. A fusion of the PAPE with the ORF of lscA (lscBUpNA) was generated and introduced to a levan-negative mutant of PG4180. Additionally, fusions comprising of the non-coding part of the upstream region of lscB with lscA (lscBUpA) or the upstream region of lscA with lscB (lscAUpB) were generated. Transformants harboring the lscBUpNA or the lscBUpA fusion, respectively, showed levan formation while the transformant carrying lscAUpB did not. qRT-PCR and Western blot analyses showed that lscBUpNA had an expression similar to lscB while lscBUpA had a lower expression. Accuracy of protein fusions was confirmed by MALDI-TOF peptide fingerprinting. Conclusions Our data suggested that the upstream sequence of lscB is essential for expression of levansucrase while the N-terminus of LscB mediates an enhanced expression. In contrast, the upstream region of lscA does not lead to expression of lscB. We propose that lscA might be an ancestral levansucrase variant upstream of which the PAPE got inserted by potentially phage-mediated transposition events leading to expression of levansucrase in P. syringae.
Collapse
Affiliation(s)
- Shaunak Khandekar
- Molecular Life Sciences Research Center, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany.
| | | | | | | | | |
Collapse
|
24
|
Dudnik A, Dudler R. Genomics-Based Exploration of Virulence Determinants and Host-Specific Adaptations of Pseudomonas syringae Strains Isolated from Grasses. Pathogens 2014; 3:121-48. [PMID: 25437611 PMCID: PMC4235733 DOI: 10.3390/pathogens3010121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Abstract
The Pseudomonas syringae species complex has recently been named the number one plant pathogen, due to its economic and environmental impacts, as well as for its role in scientific research. The bacterium has been repeatedly reported to cause outbreaks on bean, cucumber, stone fruit, kiwi and olive tree, as well as on other crop and non-crop plants. It also serves as a model organism for research on the Type III secretion system (T3SS) and plant-pathogen interactions. While most of the current work on this pathogen is either carried out on one of three model strains found on dicot plants with completely sequenced genomes or on isolates obtained from recent outbreaks, not much is known about strains isolated from grasses (Poaceae). Here, we use comparative genomics in order to identify putative virulence-associated genes and other Poaceae-specific adaptations in several newly available genome sequences of strains isolated from grass species. All strains possess only a small number of known Type III effectors, therefore pointing to the importance of non-Type III secreted virulence factors. The implications of this finding are discussed.
Collapse
Affiliation(s)
- Alexey Dudnik
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | - Robert Dudler
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
25
|
Tampakaki AP. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. FRONTIERS IN PLANT SCIENCE 2014; 5:114. [PMID: 24723933 PMCID: PMC3973906 DOI: 10.3389/fpls.2014.00114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/11/2014] [Indexed: 05/19/2023]
Abstract
Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secretion systems (T3SSs) in mediating animal- and plant-pathogen interactions was discovered in the mid-80's and is now recognized as a multiprotein nanomachine dedicated to trans-kingdom movement of effector proteins. The discovery of T3SS in bacteria with symbiotic lifestyles broadened its role beyond virulence. In most T3SS-positive bacterial pathogens, virulence is largely dependent on functional T3SSs, while in rhizobia the system is dispensable for nodulation and can affect positively or negatively the mutualistic associations with their hosts. This review focuses on recent comparative genome analyses in plant pathogens and rhizobia that uncovered similarities and variations among T3SSs in their genetic organization, regulatory networks and type III secreted proteins and discusses the evolutionary adaptations of T3SSs and type III secreted proteins that might account for the distinguishable phenotypes and host range characteristics of plant pathogens and symbionts.
Collapse
Affiliation(s)
- Anastasia P. Tampakaki
- *Correspondence: Anastasia P. Tampakaki, Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece e-mail:
| |
Collapse
|
26
|
Jutkina J, Hansen LH, Li L, Heinaru E, Vedler E, Jõesaar M, Heinaru A. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids. Plasmid 2013; 70:393-405. [PMID: 24095800 DOI: 10.1016/j.plasmid.2013.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/27/2013] [Accepted: 09/20/2013] [Indexed: 01/21/2023]
Abstract
In the present study we report the complete nucleotide sequence of the toluene catabolic plasmid pD2RT of Pseudomonas migulae strain D2RT isolated from Baltic Sea water. The pD2RT is 129,894 base pairs in size with an average G+C content of 53.75%. A total of 135 open reading frames (ORFs) were predicted to encode proteins, among them genes for catabolism of toluene, plasmid replication, maintenance and conjugative transfer. ORFs encoding proteins with putative functions in stress response, transposition and site-specific recombination were also predicted. Analysis of the organization and nucleotide sequence of pD2RT backbone region revealed high degree of similarity to the draft genome sequence data of the plant-pathogenic pseudomonad Pseudomonas syringae pv. glycinea strain B076, exhibiting relatedness to pPT23A plasmid family. The pD2RT backbone is also closely related to that of pGRT1 of Pseudomonas putida strain DOT-T1E and pBVIE04 of Burkholderia vietnamiensis strain G4, both plasmids are associated with resistance to toluene. The ability of pD2RT to self-transfer by conjugation to P. putida recipient strain PaW340 was experimentally determined. Genetic organization of toluene-degrading (xyl) genes and flanking DNA segments resembles the structure of Tn1721-related class II transposon Tn4656 of TOL plasmid pWW53 of P. putida strain MT53. The complete sequence of the plasmid pD2RT extends the known range of xyl genes carriers, being the first completely sequenced TOL plasmid, which is not related to well-studied IncP plasmid groups. We also verified the functionality of the catabolic route encoded by pD2RT by monitoring the expression of the xylE gene in pD2RT bearing hosts along with bacterial strains containing TOL plasmid of IncP-9 group. The growth kinetics of plasmid-bearing strains was found to be affected by particular TOL plasmid.
Collapse
Affiliation(s)
- Jekaterina Jutkina
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23a, 51010 Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Dudnik A, Dudler R. Non contiguous-finished genome sequence of Pseudomonas syringae pathovar syringae strain B64 isolated from wheat. Stand Genomic Sci 2013; 8:420-9. [PMID: 24501627 PMCID: PMC3910705 DOI: 10.4056/sigs.3997732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Gram-negative gammaproteobacterium Pseudomonas syringae is one of the most wide-spread plant pathogens and has been repeatedly reported to cause significant damage to crop plantations. Research on this pathogen is very intensive, but most of it is done on isolates that are pathogenic to Arabidopsis, tomato, and bean. Here, we announce a high-quality draft genome sequence of Pseudomonas syringae pv. syringae B64 which is the first published genome of a P. syringae strain isolated from wheat up to date. The genome sequence will assist in gaining insights into basic virulence mechanisms of this pathogen which has a relatively small complement of type III effectors.
Collapse
Affiliation(s)
- Alexey Dudnik
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Robert Dudler
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action. J Bacteriol 2013; 195:4129-37. [PMID: 23852863 DOI: 10.1128/jb.00665-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli microcin B (Ec-McB) is a posttranslationally modified antibacterial peptide containing multiple oxazole and thiazole heterocycles and targeting the DNA gyrase. We have found operons homologous to the Ec-McB biosynthesis-immunity operon mcb in recently sequenced genomes of several pathovars of the plant pathogen Pseudomonas syringae, and we produced two variants of P. syringae microcin B (Ps-McB) in E. coli by heterologous expression. Like Ec-McB, both versions of Ps-McB target the DNA gyrase, but unlike Ec-McB, they are active against various species of the Pseudomonas genus, including human pathogen P. aeruginosa. Through analysis of Ec-McB/Ps-McB chimeras, we demonstrate that three centrally located unmodified amino acids of Ps-McB are sufficient to determine activity against Pseudomonas, likely by allowing specific recognition by a transport system that remains to be identified. The results open the way for construction of McB-based antibacterial molecules with extended spectra of biological activity.
Collapse
|
29
|
Smirnov SV, Sokolov PM, Kotlyarova VA, Samsonova NN, Kodera T, Sugiyama M, Torii T, Hibi M, Shimizu S, Yokozeki K, Ogawa J. A novel l-isoleucine-4'-dioxygenase and l-isoleucine dihydroxylation cascade in Pantoea ananatis. Microbiologyopen 2013; 2:471-81. [PMID: 23554367 PMCID: PMC3684760 DOI: 10.1002/mbo3.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/24/2013] [Accepted: 03/06/2013] [Indexed: 01/18/2023] Open
Abstract
A unique operon structure has been identified in the genomes of several plant- and insect-associated bacteria. The distinguishing feature of this operon is the presence of tandem hilA and hilB genes encoding dioxygenases belonging to the PF13640 and PF10014 (BsmA) Pfam families, respectively. The genes encoding HilA and HilB from Pantoea ananatis AJ13355 were cloned and expressed in Escherichia coli. The culturing of E. coli cells expressing hilA (E. coli-HilA) or both hilA and hilB (E. coli-HilAB) in the presence of l-isoleucine resulted in the conversion of l-isoleucine into two novel biogenic compounds: l-4′-isoleucine and l-4,4′-dihydroxyisoleucine, respectively. In parallel, two novel enzymatic activities were detected in the crude cell lysates of the E. coli-HilA and E. coli-HilAB strains: l-isoleucine, 2-oxoglutarate: oxygen oxidoreductase (4′-hydroxylating) (HilA) and l-4′-hydroxyisoleucine, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating) (HilB), respectively. Two hypotheses regarding the physiological significance of C-4(4′)-hydroxylation of l-isoleucine in bacteria are also discussed. According to first hypothesis, the l-isoleucine dihydroxylation cascade is involved in synthesis of dipeptide antibiotic in P. ananatis. Another unifying hypothesis is that the C-4(4′)-hydroxylation of l-isoleucine in bacteria could result in the synthesis of signal molecules belonging to two classes: 2(5H)-furanones and analogs of N-acyl homoserine lactone.
Collapse
Affiliation(s)
- Sergey V Smirnov
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr. 1, Moscow, 113545, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sarris PF, Trantas EA, Baltrus DA, Bull CT, Wechter WP, Yan S, Ververidis F, Almeida NF, Jones CD, Dangl JL, Panopoulos NJ, Vinatzer BA, Goumas DE. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots. PLoS One 2013; 8:e59366. [PMID: 23555661 PMCID: PMC3610874 DOI: 10.1371/journal.pone.0059366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/13/2013] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity.
Collapse
Affiliation(s)
- Panagiotis F Sarris
- Department of Plant Sciences, School of Agricultural Technology, Technological Educational Institute of Crete, Heraklion, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Worley JN, Russell AB, Wexler AG, Bronstein PA, Kvitko BH, Krasnoff SB, Munkvold KR, Swingle B, Gibson DM, Collmer A. Pseudomonas syringae pv. tomato DC3000 CmaL (PSPTO4723), a DUF1330 family member, is needed to produce L-allo-isoleucine, a precursor for the phytotoxin coronatine. J Bacteriol 2013; 195:287-96. [PMID: 23144243 PMCID: PMC3553850 DOI: 10.1128/jb.01352-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/30/2012] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 produces the phytotoxin coronatine, a major determinant of the leaf chlorosis associated with DC3000 pathogenesis. The DC3000 PSPTO4723 (cmaL) gene is located in a genomic region encoding type III effectors; however, it promotes chlorosis in the model plant Nicotiana benthamiana in a manner independent of type III secretion. Coronatine is produced by the ligation of two moieties, coronafacic acid (CFA) and coronamic acid (CMA), which are produced by biosynthetic pathways encoded in separate operons. Cross-feeding experiments, performed in N. benthamiana with cfa, cma, and cmaL mutants, implicate CmaL in CMA production. Furthermore, analysis of bacterial supernatants under coronatine-inducing conditions revealed that mutants lacking either the cma operon or cmaL accumulate CFA rather than coronatine, supporting a role for CmaL in the regulation or biosynthesis of CMA. CmaL does not appear to regulate CMA production, since the expression of proteins with known roles in CMA production is unaltered in cmaL mutants. Rather, CmaL is needed for the first step in CMA synthesis, as evidenced by the fact that wild-type levels of coronatine production are restored to a ΔcmaL mutant when it is supplemented with 50 μg/ml l-allo-isoleucine, the starting unit for CMA production. cmaL is found in all other sequenced P. syringae strains with coronatine biosynthesis genes. This characterization of CmaL identifies a critical missing factor in coronatine production and provides a foundation for further investigation of a member of the widespread DUF1330 protein family.
Collapse
Affiliation(s)
- Jay N. Worley
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Alistair B. Russell
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Aaron G. Wexler
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Philip A. Bronstein
- U.S. Department of Agriculture, Agricultural Research Service, Ithaca, New York, USA
| | - Brian H. Kvitko
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Stuart B. Krasnoff
- U.S. Department of Agriculture, Agricultural Research Service, Ithaca, New York, USA
| | - Kathy R. Munkvold
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Bryan Swingle
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
- U.S. Department of Agriculture, Agricultural Research Service, Ithaca, New York, USA
| | - Donna M. Gibson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
- U.S. Department of Agriculture, Agricultural Research Service, Ithaca, New York, USA
| | - Alan Collmer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
32
|
Matas IM, Lambertsen L, Rodríguez-Moreno L, Ramos C. Identification of novel virulence genes and metabolic pathways required for full fitness of Pseudomonas savastanoi pv. savastanoi in olive (Olea europaea) knots. THE NEW PHYTOLOGIST 2012; 196:1182-1196. [PMID: 23088618 DOI: 10.1111/j.1469-8137.2012.04357.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/17/2012] [Indexed: 05/20/2023]
Abstract
Comparative genomics and functional analysis of Pseudomonas syringae and related pathogens have mainly focused on diseases of herbaceous plants; however, there is a general lack of knowledge about the virulence and pathogenicity determinants required for infection of woody plants. Here, we applied signature-tagged mutagenesis (STM) to Pseudomonas savastanoi pv. savastanoi during colonization of olive (Olea europaea) knots, with the goal of identifying the range of genes linked to growth and symptom production in its plant host. A total of 58 different genes were identified, and most mutations resulted in hypovirulence in woody olive plants. Sequence analysis of STM mutations allowed us to identify metabolic pathways required for full fitness of P. savastanoi in olive and revealed novel mechanisms involved in the virulence of this pathogen, some of which are essential for full colonization of olive knots by the pathogen and for the lysis of host cells. This first application of STM to a P. syringae-like pathogen provides confirmation of functional capabilities long believed to play a role in the survival and virulence of this group of pathogens but not adequately tested before, and unravels novel factors not correlated previously with the virulence of other plant or animal bacterial pathogens.
Collapse
Affiliation(s)
- Isabel M Matas
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, E-29010, Málaga, Spain
| | - Lotte Lambertsen
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, E-29010, Málaga, Spain
| | - Luis Rodríguez-Moreno
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, E-29010, Málaga, Spain
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, E-29010, Málaga, Spain
| |
Collapse
|
33
|
Gazi AD, Sarris PF, Fadouloglou VE, Charova SN, Mathioudakis N, Panopoulos NJ, Kokkinidis M. Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol 2012; 12:188. [PMID: 22937899 PMCID: PMC3574062 DOI: 10.1186/1471-2180-12-188] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022] Open
Abstract
Background The central role of Type III secretion systems (T3SS) in bacteria-plant interactions is well established, yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T3SS-2) in addition to the well characterized Hrc1 T3SS which is associated with disease lesions in host plants and with the triggering of hypersensitive response in non-host plants. The aim of this study is to perform an in silico analysis of T3SS-2, and to compare it with other known T3SSs. Results Based on phylogenetic analysis and gene organization comparisons, the T3SS-2 cluster of the P. syringae pv. phaseolicola strain is grouped with a second T3SS found in the pNGR234b plasmid of Rhizobium sp. These additional T3SS gene clusters define a subgroup within the Rhizobium T3SS family. Although, T3SS-2 is not distributed as widely as the Hrc1 T3SS in P. syringae strains, it was found to be constitutively expressed in P. syringae pv phaseolicola through RT-PCR experiments. Conclusions The relatedness of the P. syringae T3SS-2 to a second T3SS from the pNGR234b plasmid of Rhizobium sp., member of subgroup II of the rhizobial T3SS family, indicates common ancestry and/or possible horizontal transfer events between these species. Functional analysis and genome sequencing of more rhizobia and P. syringae pathovars may shed light into why these bacteria maintain a second T3SS gene cluster in their genome.
Collapse
Affiliation(s)
- Anastasia D Gazi
- Department of Biology, University of Crete, Vasilika Vouton, P,O, Box 2208, Heraklion, Crete GR 71409, Greece
| | | | | | | | | | | | | |
Collapse
|
34
|
O’Brien HE, Thakur S, Gong Y, Fung P, Zhang J, Yuan L, Wang PW, Yong C, Scortichini M, Guttman DS. Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut. BMC Microbiol 2012; 12:141. [PMID: 22800299 PMCID: PMC3411506 DOI: 10.1186/1471-2180-12-141] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/16/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hazelnut (Corylus avellana) decline disease in Greece and Italy is caused by the convergent evolution of two distantly related lineages of Pseudomonas syringae pv. avellanae (Pav). We sequenced the genomes of three Pav isolates to determine if their convergent virulence phenotype had a common genetic basis due to either genetic exchange between lineages or parallel evolution. RESULTS We found little evidence for horizontal transfer (recombination) of genes between Pav lineages, but two large genomic islands (GIs) have been recently acquired by one of the lineages. Evolutionary analyses of the genes encoding type III secreted effectors (T3SEs) that are translocated into host cells and are important for both suppressing and eliciting defense responses show that the two Pav lineages have dramatically different T3SE profiles, with only two shared putatively functional T3SEs. One Pav lineage has undergone unprecedented secretome remodeling, including the acquisition of eleven new T3SEs and the loss or pseudogenization of 15, including five of the six core T3SE families that are present in the other Pav lineage. Molecular dating indicates that divergence within both of the Pav lineages predates their observation in the field. This suggest that both Pav lineages have been cryptically infecting hazelnut trees or wild relatives for many years, and that the emergence of hazelnut decline in the 1970s may have been due to changes in agricultural practice. CONCLUSIONS These data show that divergent lineages of P. syringae can converge on identical disease etiology on the same host plant using different virulence mechanisms and that dramatic shifts in the arsenal of T3SEs can accompany disease emergence.
Collapse
Affiliation(s)
- Heath E O’Brien
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Shalabh Thakur
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Yunchen Gong
- Center for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Pauline Fung
- Center for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Jianfeng Zhang
- Center for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Lijie Yuan
- Center for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Pauline W Wang
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Choseung Yong
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Marco Scortichini
- C.R.A.- Fruit Crops Research Centre, Via di Fioranello, 52; I-00134, Rome, Italy
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
35
|
Baltrus DA, Nishimura MT, Dougherty KM, Biswas S, Mukhtar MS, Vicente J, Holub EB, Dangl JL. The molecular basis of host specialization in bean pathovars of Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:877-88. [PMID: 22414441 DOI: 10.1094/mpmi-08-11-0218] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Biotrophic phytopathogens are typically limited to their adapted host range. In recent decades, investigations have teased apart the general molecular basis of intraspecific variation for innate immunity of plants, typically involving receptor proteins that enable perception of pathogen-associated molecular patterns or avirulence elicitors from the pathogen as triggers for defense induction. However, general consensus concerning evolutionary and molecular factors that alter host range across closely related phytopathogen isolates has been more elusive. Here, through genome comparisons and genetic manipulations, we investigate the underlying mechanisms that structure host range across closely related strains of Pseudomonas syringae isolated from different legume hosts. Although type III secretion-independent virulence factors are conserved across these three strains, we find that the presence of two genes encoding type III effectors (hopC1 and hopM1) and the absence of another (avrB2) potentially contribute to host range differences between pathovars glycinea and phaseolicola. These findings reinforce the idea that a complex genetic basis underlies host range evolution in plant pathogens. This complexity is present even in host-microbe interactions featuring relatively little divergence among both hosts and their adapted pathogens.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721-0036, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Srivastava A, Al-Karablieh N, Khandekar S, Sharmin A, Weingart H, Ullrich MS. Genomic Distribution and Divergence of Levansucrase-Coding Genes in Pseudomonas syringae. Genes (Basel) 2012; 3:115-37. [PMID: 24704846 PMCID: PMC3899960 DOI: 10.3390/genes3010115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/19/2012] [Accepted: 02/03/2012] [Indexed: 11/30/2022] Open
Abstract
In the plant pathogenic bacterium, Pseudomonas syringae, the exopolysaccharide levan is synthesized by extracellular levansucrase (Lsc), which is encoded by two conserved 1,296-bp genes termed lscB and lscC in P. syringae strain PG4180. A third gene, lscA, is homologous to the 1,248-bp lsc gene of the bacterium Erwinia amylovora, causing fire blight. However, lscA is not expressed in P. syringae strain PG4180. Herein, PG4180 lscA was shown to be expressed from its native promoter in the Lsc-deficient E. amylovora mutant, Ea7/74-LS6, suggesting that lscA might be closely related to the E. amylovora lsc gene. Nucleotide sequence analysis revealed that lscB and lscC homologs in several P. syringae strains are part of a highly conserved 1.8-kb region containing the ORF, flanked by 450-452-bp and 49-51-bp up- and downstream sequences, respectively. Interestingly, the 450-452-bp upstream sequence, along with the initial 48-bp ORF sequence encoding for the N-terminal 16 amino acid residues of Lsc, were found to be highly similar to the respective sequence of a putatively prophage-borne glycosyl hydrolase-encoding gene in several P. syringae genomes. Minimal promoter regions of lscB and lscC were mapped in PG4180 by deletion analysis and were found to be located in similar positions upstream of lsc genes in three P. syringae genomes. Thus, a putative 498-500-bp promoter element was identified, which possesses the prophage-associated com gene and DNA encoding common N-terminal sequences of all 1,296-bp Lsc and two glycosyl hydrolases. Since the gene product of the non-expressed 1,248-bp lscA is lacking this conserved N-terminal region but is otherwise highly homologous to those of lscB and lscC, it was concluded that lscA might have been the ancestral lsc gene in E. amylovora and P. syringae. Our data indicated that its highly expressed paralogs in P. syringae are probably derived from subsequent recombination events initiated by insertion of the 498-500-bp promoter element, described herein, containing a translational start site.
Collapse
Affiliation(s)
- Abhishek Srivastava
- School of Engineering and Science, Jacobs University Bremen, Bremen 28759, Germany.
| | - Nehaya Al-Karablieh
- School of Engineering and Science, Jacobs University Bremen, Bremen 28759, Germany.
| | - Shaunak Khandekar
- School of Engineering and Science, Jacobs University Bremen, Bremen 28759, Germany.
| | - Arifa Sharmin
- School of Engineering and Science, Jacobs University Bremen, Bremen 28759, Germany.
| | - Helge Weingart
- School of Engineering and Science, Jacobs University Bremen, Bremen 28759, Germany.
| | - Matthias S Ullrich
- School of Engineering and Science, Jacobs University Bremen, Bremen 28759, Germany.
| |
Collapse
|
37
|
Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLoS One 2011; 6:e27297. [PMID: 22132095 PMCID: PMC3223175 DOI: 10.1371/journal.pone.0027297] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/13/2011] [Indexed: 12/22/2022] Open
Abstract
A recent re-emerging bacterial canker disease incited by Pseudomonas syringae pv. actinidiae (Psa) is causing severe economic losses to Actinidia chinensis and A. deliciosa cultivations in southern Europe, New Zealand, Chile and South Korea. Little is known about the genetic features of this pathovar. We generated genome-wide Illumina sequence data from two Psa strains causing outbreaks of bacterial canker on the A. deliciosa cv. Hayward in Japan (J-Psa, type-strain of the pathovar) and in Italy (I-Psa) in 1984 and 1992, respectively as well as from a Psa strain (I2-Psa) isolated at the beginning of the recent epidemic on A. chinensis cv. Hort16A in Italy. All strains were isolated from typical leaf spot symptoms. The phylogenetic relationships revealed that Psa is more closely related to P. s. pv. theae than to P. avellanae within genomospecies 8. Comparative genomic analyses revealed both relevant intrapathovar variations and putative pathovar-specific genomic regions in Psa. The genomic sequences of J-Psa and I-Psa were very similar. Conversely, the I2-Psa genome encodes four additional effector protein genes, lacks a 50 kb plasmid and the phaseolotoxin gene cluster, argK-tox but has acquired a 160 kb plasmid and putative prophage sequences. Several lines of evidence from the analysis of the genome sequences support the hypothesis that this strain did not evolve from the Psa population that caused the epidemics in 1984-1992 in Japan and Italy but rather is the product of a recent independent evolution of the pathovar actinidiae for infecting Actinidia spp. All Psa strains share the genetic potential for copper resistance, antibiotic detoxification, high affinity iron acquisition and detoxification of nitric oxide of plant origin. Similar to other sequenced phytopathogenic pseudomonads associated with woody plant species, the Psa strains isolated from leaves also display a set of genes involved in the catabolism of plant-derived aromatic compounds.
Collapse
|
38
|
O'Brien HE, Gong Y, Fung P, Wang PW, Guttman DS. Use of low-coverage, large-insert, short-read data for rapid and accurate generation of enhanced-quality draft Pseudomonas genome sequences. PLoS One 2011; 6:e27199. [PMID: 22073286 PMCID: PMC3206934 DOI: 10.1371/journal.pone.0027199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/12/2011] [Indexed: 11/24/2022] Open
Abstract
Next-generation genomic technology has both greatly accelerated the pace of genome research as well as increased our reliance on draft genome sequences. While groups such as the Genomics Standards Consortium have made strong efforts to promote genome standards there is a still a general lack of uniformity among published draft genomes, leading to challenges for downstream comparative analyses. This lack of uniformity is a particular problem when using standard draft genomes that frequently have large numbers of low-quality sequencing tracts. Here we present a proposal for an “enhanced-quality draft” genome that identifies at least 95% of the coding sequences, thereby effectively providing a full accounting of the genic component of the genome. Enhanced-quality draft genomes are easily attainable through a combination of small- and large-insert next-generation, paired-end sequencing. We illustrate the generation of an enhanced-quality draft genome by re-sequencing the plant pathogenic bacterium Pseudomonas syringae pv. phaseolicola 1448A (Pph 1448A), which has a published, closed genome sequence of 5.93 Mbp. We use a combination of Illumina paired-end and mate-pair sequencing, and surprisingly find that de novo assemblies with 100x paired-end coverage and mate-pair sequencing with as low as low as 2–5x coverage are substantially better than assemblies based on higher coverage. The rapid and low-cost generation of large numbers of enhanced-quality draft genome sequences will be of particular value for microbial diagnostics and biosecurity, which rely on precise discrimination of potentially dangerous clones from closely related benign strains.
Collapse
Affiliation(s)
- Heath E O'Brien
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
39
|
Lindeberg M. Information Management of Genome Enabled Data Streams for Pseudomonas syringae on the Pseudomonas-Plant Interaction (PPI) Website. Genes (Basel) 2011; 2:841-52. [PMID: 24710295 PMCID: PMC3927588 DOI: 10.3390/genes2040841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/27/2022] Open
Abstract
Genome enabled research has led to a large and ever-growing body of data on Pseudomonas syringae genome variation and characteristics, though systematic capture of this information to maximize access by the research community remains a significant challenge. Major P. syringae data streams include genome sequence data, newly identified type III effectors, biological characterization data for type III effectors, and regulatory feature characterization. To maximize data access, the Pseudomonas-Plant Interaction (PPI) website [1] is primarily focused on categorization of type III effectors and curation of effector functional data represented in the Hop database and Pseudomonas-Plant Interaction Resource, respectively. The PPI website further serves as a conduit for incorporation of new genome characterization data into the annotation records at NCBI and other data repositories, and clearinghouse for additional data sets and updates in response to the evolving needs of the research community.
Collapse
Affiliation(s)
- Magdalen Lindeberg
- Department of Plant Pathology and Plant Microbe Biology, 302 Plant Science Building, Cornell University, Ithaca NY 14853, USA.
| |
Collapse
|
40
|
Yamamoto M, Ohnishi-Kameyama M, Nguyen CL, Taguchi F, Chiku K, Ishii T, Ono H, Yoshida M, Ichinose Y. Identification of Genes Involved in the Glycosylation of Modified Viosamine of Flagellins in Pseudomonas syringae by Mass Spectrometry. Genes (Basel) 2011; 2:788-803. [PMID: 24710292 PMCID: PMC3927599 DOI: 10.3390/genes2040788] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/16/2022] Open
Abstract
Previously we revealed that flagellin proteins in Pseudomonas syringae pv. tabaci 6605 (Pta 6605) were glycosylated with a trisaccharide, modified viosamine (mVio)-rhamnose-rhamnose and that glycosylation was required for virulence. We further identified some glycosylation-related genes, including vioA, vioB, vioT, fgt1, and fgt2. In this study, we newly identified vioR and vioM in a so-called viosamine island as biosynthetic genes for glycosylation of mVio in Pta 6605 by the mass spectrometry (MS) of flagellin glycan in the respective mutants. Furthermore, characterization of the mVio-related genes and MS analyses of flagellin glycans in other pathovars of P. syringae revealed that mVio-related genes were essential for mVio biosynthesis in flagellin glycans, and that P. syringae pv. syringae B728a, which does not possess a viosamine island, has a different structure of glycan in its flagellin protein.
Collapse
Affiliation(s)
- Masanobu Yamamoto
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | | | - Chi L Nguyen
- The Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan.
| | - Fumiko Taguchi
- The Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan.
| | - Kazuhiro Chiku
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Tadashi Ishii
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Hiroshi Ono
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Mitsuru Yoshida
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Yuki Ichinose
- The Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan.
| |
Collapse
|
41
|
Bardaji L, Pérez-Martínez I, Rodríguez-Moreno L, Rodríguez-Palenzuela P, Sundin GW, Ramos C, Murillo J. Sequence and role in virulence of the three plasmid complement of the model tumor-inducing bacterium Pseudomonas savastanoi pv. savastanoi NCPPB 3335. PLoS One 2011; 6:e25705. [PMID: 22022435 PMCID: PMC3191145 DOI: 10.1371/journal.pone.0025705] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/08/2011] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas savastanoi pv. savastanoi NCPPB 3335 is a model for the study of the molecular basis of disease production and tumor formation in woody hosts, and its draft genome sequence has been recently obtained. Here we closed the sequence of the plasmid complement of this strain, composed of three circular molecules of 78,357 nt (pPsv48A), 45,220 nt (pPsv48B), and 42,103 nt (pPsv48C), all belonging to the pPT23A-like family of plasmids widely distributed in the P. syringae complex. A total of 152 coding sequences were predicted in the plasmid complement, of which 38 are hypothetical proteins and seven correspond to putative virulence genes. Plasmid pPsv48A contains an incomplete Type IVB secretion system, the type III secretion system (T3SS) effector gene hopAF1, gene ptz, involved in cytokinin biosynthesis, and three copies of a gene highly conserved in plant-associated proteobacteria, which is preceded by a hrp box motif. A complete Type IVA secretion system, a well conserved origin of transfer (oriT), and a homolog of the T3SS effector gene hopAO1 are present in pPsv48B, while pPsv48C contains a gene with significant homology to isopentenyl-diphosphate delta-isomerase, type 1. Several potential mobile elements were found on the three plasmids, including three types of MITE, a derivative of IS801, and a new transposon effector, ISPsy30. Although the replication regions of these three plasmids are phylogenetically closely related, their structure is diverse, suggesting that the plasmid architecture results from an active exchange of sequences. Artificial inoculations of olive plants with mutants cured of plasmids pPsv48A and pPsv48B showed that pPsv48A is necessary for full virulence and for the development of mature xylem vessels within the knots; we were unable to obtain mutants cured of pPsv48C, which contains five putative toxin-antitoxin genes.
Collapse
Affiliation(s)
- Leire Bardaji
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
| | - Isabel Pérez-Martínez
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Málaga, Spain
| | - Luis Rodríguez-Moreno
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Málaga, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - George W. Sundin
- Department of Plant Pathology and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Málaga, Spain
| | - Jesús Murillo
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
42
|
Studholme DJ. Application of high-throughput genome sequencing to intrapathovar variation in Pseudomonas syringae. MOLECULAR PLANT PATHOLOGY 2011; 12:829-38. [PMID: 21726380 PMCID: PMC6640474 DOI: 10.1111/j.1364-3703.2011.00713.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One reason for the success of Pseudomonas syringae as a model pathogen has been the availability of three complete genome sequences since 2005. Now, at the beginning of 2011, more than 25 strains of P. syringae have been sequenced and many more will soon be released. To date, published analyses of P. syringae have been largely descriptive, focusing on catalogues of genetic differences among strains and between species. Numerous powerful statistical tools are now available that have yet to be applied to P. syringae genomic data for robust and quantitative reconstruction of evolutionary events. The aim of this review is to provide a snapshot of the current status of P. syringae genome sequence data resources, including very recent and unpublished studies, and thereby demonstrate the richness of resources available for this species. Furthermore, certain specific opportunities and challenges in making the best use of these data resources are highlighted.
Collapse
Affiliation(s)
- David J Studholme
- Geoffrey Pope Building, Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
43
|
Zhao Y, Qi M. Comparative Genomics of Erwinia amylovora and Related Erwinia Species-What do We Learn? Genes (Basel) 2011; 2:627-39. [PMID: 24710213 PMCID: PMC3927617 DOI: 10.3390/genes2030627] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 08/30/2011] [Accepted: 09/08/2011] [Indexed: 01/26/2023] Open
Abstract
Erwinia amylovora, the causal agent of fire blight disease of apples and pears, is one of the most important plant bacterial pathogens with worldwide economic significance. Recent reports on the complete or draft genome sequences of four species in the genus Erwinia, including E. amylovora, E. pyrifoliae, E. tasmaniensis, and E. billingiae, have provided us near complete genetic information about this pathogen and its closely-related species. This review describes in silico subtractive hybridization-based comparative genomic analyses of eight genomes currently available, and highlights what we have learned from these comparative analyses, as well as genetic and functional genomic studies. Sequence analyses reinforce the assumption that E. amylovora is a relatively homogeneous species and support the current classification scheme of E. amylovora and its related species. The potential evolutionary origin of these Erwinia species is also proposed. The current understanding of the pathogen, its virulence mechanism and host specificity from genome sequencing data is summarized. Future research directions are also suggested.
Collapse
Affiliation(s)
- Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA.
| | - Mingsheng Qi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA.
| |
Collapse
|
44
|
Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog 2011; 7:e1002132. [PMID: 21799664 PMCID: PMC3136466 DOI: 10.1371/journal.ppat.1002132] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022] Open
Abstract
Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. Breakthroughs in genomics have unleashed a new suite of tools for studying the genetic bases of phenotypic differences across diverse bacterial isolates. Here, we analyze 19 genomes of P. syringae, a pathogen of many crop species, to reveal the genetic changes underlying differences in virulence across host plants ranging from rice to maple trees. Surprisingly, a pair of strains diverged dramatically via the acquisition of a 1 Mb megaplasmid, which constitutes roughly 14% of the genome. Novel plasmids and horizontal genetic exchange have contributed extensively to species-wide diversification. Type III effector proteins are essential for pathogenicity, exhibit wide diversity between strains and are present in distinct higher-level patterns across the species. Furthermore, we use sequence comparisons within an evolutionary context to identify functional changes in multiple virulence genes. Overall, our data provide a unique overview of evolutionary pressures within P. syringae and an important resource for the phytopathogen research community.
Collapse
Affiliation(s)
- David A. Baltrus
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marc T. Nishimura
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Artur Romanchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff H. Chang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Shahid Mukhtar
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Karen Cherkis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff Roach
- Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah R. Grant
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (CDJ, computational queries); (JLD, biological queries)
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (CDJ, computational queries); (JLD, biological queries)
| |
Collapse
|
45
|
Nelson OW, Garrity GM. Genome sequences published outside of Standards in Genomic Sciences, January – June 2011. Stand Genomic Sci 2011. [DOI: 10.4056/sigs.2044675] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Oranmiyan W. Nelson
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| | - George M. Garrity
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|