1
|
Budassi J, Cho N, Del Valle A, Sokolov J. Microfluidic delivery of cutting enzymes for fragmentation of surface-adsorbed DNA molecules. PLoS One 2023; 18:e0250054. [PMID: 37672538 PMCID: PMC10482287 DOI: 10.1371/journal.pone.0250054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
We describe a method for fragmenting, in-situ, surface-adsorbed and immobilized DNAs on polymethylmethacrylate(PMMA)-coated silicon substrates using microfluidic delivery of the cutting enzyme DNase I. Soft lithography is used to produce silicone elastomer (Sylgard 184) gratings which form microfluidic channels for delivery of the enzyme. Bovine serum albumin (BSA) is used to reduce DNase I adsorption to the walls of the microchannels and enable diffusion of the cutting enzyme to a distance of 10mm. Due to the DNAs being immobilized, the fragment order is maintained on the surface. Possible methods of preserving the order for application to sequencing are discussed.
Collapse
Affiliation(s)
- Julia Budassi
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - NaHyun Cho
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Anthony Del Valle
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, United States of America
| | - Jonathan Sokolov
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
2
|
Rittschof D, Orihuela B, Genzer J, Efimenko K. PDMS networks meet barnacles: a complex and often toxic relationship. BIOFOULING 2022; 38:876-888. [PMID: 36503292 DOI: 10.1080/08927014.2022.2145471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
The biological impact of chemical formulations used in various coating applications is essential in guiding the development of new materials that directly contact living organisms. To illustrate this point, an investigation addressing the impact of chemical compositions of polydimethylsiloxane networks on a common platform for foul-release biofouling management coatings was conducted. The acute toxicity of network components to barnacle larvae, the impacts of aqueous extracts of crosslinker, silicones and organometallic catalyst on trypsin enzymatic activity, and the impact of assembled networks on barnacle adhesion was evaluated. The outcomes of the study indicate that all components used in the formulation of the silicone network alter trypsin enzymatic activity and have a range of acute toxicity to barnacle larvae. Also, the adhesion strength of barnacles attached to PDMS networks correlates to the network formulation protocol. This information can be used to assess action mechanisms and risk-benefit analysis of PDMS networks.
Collapse
Affiliation(s)
- Daniel Rittschof
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Beatriz Orihuela
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Kirill Efimenko
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Porous silicone substrates inhibit permanent barnacle attachment under natural conditions. Biointerphases 2020; 15:061013. [PMID: 33339459 DOI: 10.1116/6.0000608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Barnacles are able to effectively adhere to most surfaces underwater. Dewetting of the corresponding surface prior to the release of their permanent adhesive plays an important role in the attachment process. Possibly, a surface that is able to interfere with this process may have exceptional fouling repellence and fouling release abilities. Therefore, open-pored foams made from polydimethylsiloxane (PDMS) were tested together with flat PDMS samples as controls in a 13-week-long field experiment in the Baltic Sea. On a weekly basis, both settlement and fouling density development of the bay barnacle Balanus (=Amphibalanus) improvisus were monitored. The overall settlement was close to zero on PDMS foams and the few attached barnacles were not able to stay on the PDMS foams longer than 1 week after initial settlement. Changes in the stiffness of the PDMS foams did not affect these results. Open-pored PDMS foam systems may be a promising tool in the development of new, innovative antifouling strategies.
Collapse
|
4
|
Waltz GT, Hunsucker KZ, Swain G, Wendt DE. Using encrusting bryozoan adhesion to evaluate the efficacy of fouling-release marine coatings. BIOFOULING 2020; 36:1149-1158. [PMID: 33342296 DOI: 10.1080/08927014.2020.1857742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Biofouling communities are spatiotemporally diverse, underscoring the need to assess fouling-release (FR) coating performance against common biofouling taxa at multiple field sites. Adhesion strength assessments of FR coatings incorporate few taxa into standardized protocols. This study tested the feasibility of incorporating existing ASTM barnacle protocols on tubeworms and encrusting bryozoans (EB). Additionally, trends in adhesion strength among these taxa were compared at two field sites. EB adhesion at both field sites showed consistent results and adhesion strength followed the same trend: tubeworms > barnacles >EB. Testing EB adhesion was feasible and enhanced assessments of FR coatings by increasing the diversity of assessed taxa.
Collapse
Affiliation(s)
- G T Waltz
- Center for Coastal Marine Sciences, Cal Poly, San Luis Obispo, USA
| | - K Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, USA
| | - G Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, USA
| | - D E Wendt
- Center for Coastal Marine Sciences, Cal Poly, San Luis Obispo, USA
| |
Collapse
|
5
|
Schultzhaus JN, Dean SN, Leary DH, Hervey WJ, Fears KP, Wahl KJ, Spillmann CM. Pressure cycling technology for challenging proteomic sample processing: application to barnacle adhesive. Integr Biol (Camb) 2019; 11:235-247. [DOI: 10.1093/intbio/zyz020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/23/2022]
Abstract
AbstractSuccessful proteomic characterization of biological material depends on the development of robust sample processing methods. The acorn barnacle Amphibalanus amphitrite is a biofouling model for adhesive processes, but the identification of causative proteins involved has been hindered by their insoluble nature. Although effective, existing sample processing methods are labor and time intensive, slowing progress in this field. Here, a more efficient sample processing method is described which exploits pressure cycling technology (PCT) in combination with protein solvents. PCT aids in protein extraction and digestion for proteomics analysis. Barnacle adhesive proteins can be extracted and digested in the same tube using PCT, minimizing sample loss, increasing throughput to 16 concurrently processed samples, and decreasing sample processing time to under 8 hours. PCT methods produced similar proteomes in comparison to previous methods. Two solvents which were ineffective at extracting proteins from the adhesive at ambient pressure (urea and methanol) produced more protein identifications under pressure than highly polar hexafluoroisopropanol, leading to the identification and description of >40 novel proteins at the interface. Some of these have homology to proteins with elastomeric properties or domains involved with protein-protein interactions, while many have no sequence similarity to proteins in publicly available databases, highlighting the unique adherent processes evolved by barnacles. The methods described here can not only be used to further characterize barnacle adhesive to combat fouling, but may also be applied to other recalcitrant biological samples, including aggregative or fibrillar protein matrices produced during disease, where a lack of efficient sample processing methods has impeded advancement. Data are available via ProteomeXchange with identifier PXD012730.
Collapse
Affiliation(s)
- Janna N Schultzhaus
- National Research Council Research Associateship Programs Fellow, Washington, D.C., USA
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| | - Scott N Dean
- National Research Council Research Associateship Programs Fellow, Washington, D.C., USA
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| | - Dagmar H Leary
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| | - W Judson Hervey
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| | - Kenan P Fears
- Chemistry Division, Naval Research Laboratory, Washington, D.C., USA
| | - Kathryn J Wahl
- Chemistry Division, Naval Research Laboratory, Washington, D.C., USA
| | - Christopher M Spillmann
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
| |
Collapse
|
6
|
Arnold AM, Crytzer KR, Holt BD, Sydlik SA. Functional Graphenic Materials That Seal Condenser Tube Leaks in Situ. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20881-20887. [PMID: 31117460 DOI: 10.1021/acsami.9b05313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Undesirable condenser tube leaks frequently occur in power plants, resulting in reduced power output, increased burden on downstream systems, and substantial revenue losses. Current techniques such as wood flour provide temporary in situ remediation but lack adhesive properties to form stable seals. Here, we report the development of in situ sealants for long-term defect repair. The carboxylic acids on graphene oxides and Claisen graphene were used as chemical handles to covalently install a bio-inspired, adhesive catechol, generating a class of functional graphenic material (FGM) sealants. FGM sealants outperformed unfunctionalized scaffolds with enhanced antimicrobial activity to prevent fouling (up to 55% reduction) and superior cohesive properties to promote stable seals. Further, FGM sealants were adhesive, effectively sealing defects in a model experiment, whereas unfunctionalized scaffolds did not display any sealant capacity.
Collapse
Affiliation(s)
| | - Kurtis R Crytzer
- Electric Power Research Institute , Palo Alto , California 94304 , United States
| | | | | |
Collapse
|
7
|
Il’ina MA, Mashlyakovskii LN, Drinberg AS, Khomko EV, Garabadzhiu AV. Silicon-Containing Epoxy Composites and Their Use in Marine Coatings Technology. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s1070427219040098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rittschof D. Off the Shelf Fouling Management. Mar Drugs 2017; 15:md15060176. [PMID: 28613232 PMCID: PMC5484126 DOI: 10.3390/md15060176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/31/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022] Open
Abstract
This chapter tells the story of a research thread that identified and modified a pharmaceutical that could be a component of environmentally benign fouling management coatings. First, I present the background context of biofouling and how fouling is managed. The major target of the research is disrupting transduction of a complex process in all macrofouling organisms: metamorphosis. Using a bioassay directed approach we first identified a pharmaceutical candidate. Then, based on structure function studies coupled with laboratory and field bioassays, we simplified the molecule, eliminating halogens and aromatic rings to a pharmacophore that could be readily broken down by bacteria. Next, we did further structure function studies coupled to lab and field bioassays of modifications that enabled delivery of the molecule in a variety of coatings. The outcome is a different way of thinking about managing fouling and concepts in which molecules are designed to perform a function and then degrade. This work is discussed in the context of existing fouling management approaches and business models which use long-lived broad-spectrum biocides which have consequences for human, environmental health, and food security.
Collapse
Affiliation(s)
- Daniel Rittschof
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Tan W, Du W, Barrios AC, Armendariz R, Zuverza-Mena N, Ji Z, Chang CH, Zink JI, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. Surface coating changes the physiological and biochemical impacts of nano-TiO 2 in basil (Ocimum basilicum) plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:64-72. [PMID: 28069370 DOI: 10.1016/j.envpol.2017.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/22/2016] [Accepted: 01/01/2017] [Indexed: 05/19/2023]
Abstract
Little is known about the effects of surface coating on the interaction of engineered nanoparticles (ENPs) with plants. In this study, basil (Ocimum basilicum) was cultivated for 65 days in soil amended with unmodified, hydrophobic (coated with aluminum oxide and dimethicone), and hydrophilic (coated with aluminum oxide and glycerol) titanium dioxide nanoparticles (nano-TiO2) at 125, 250, 500, and 750 mg nano-TiO2 kg-1 soil. ICP-OES/MS, SPAD meter, and UV/Vis spectrometry were used to determine Ti and essential elements in tissues, relative chlorophyll content, carbohydrates, and antioxidant response, respectively. Compared with control, hydrophobic and hydrophilic nano-TiO2 significantly reduced seed germination by 41% and 59%, respectively, while unmodified and hydrophobic nano-TiO2 significantly decreased shoot biomass by 31% and 37%, respectively (p ≤ 0.05). Roots exposed to hydrophobic particles at 750 mg kg-1 had 87% and 40% more Ti than the pristine and hydrophilic nano-TiO2; however, no differences were found in shoots. The three types of particles affected the homeostasis of essential elements: at 500 mg kg-1, unmodified particles increased Cu (104%) and Fe (90%); hydrophilic increased Fe (90%); while hydrophobic increased Mn (339%) but reduced Ca (71%), Cu (58%), and P (40%). However, only hydrophobic particles significantly reduced root elongation by 53%. Unmodified, hydrophobic, and hydrophilic particles significantly reduced total sugar by 39%, 38%, and 66%, respectively, compared with control. Moreover, unmodified particles significantly decreased reducing sugar (34%), while hydrophobic particles significantly reduced starch (35%). Although the three particles affected basil plants, coated particles impacted the most its nutritional quality, since they altered more essential elements, starch, and reducing sugars.
Collapse
Affiliation(s)
- Wenjuan Tan
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Wenchao Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Ana C Barrios
- Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Raul Armendariz
- Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Nubia Zuverza-Mena
- Metallurgical and Materials Engineering Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Zhaoxia Ji
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, United States
| | - Chong Hyun Chang
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, United States
| | - Jeffrey I Zink
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, United States
| | - Jose A Hernandez-Viezcas
- Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Jose R Peralta-Videa
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States.
| |
Collapse
|
10
|
Li HX, Orihuela B, Zhu M, Rittschof D. Recyclable plastics as substrata for settlement and growth of bryozoans Bugula neritina and barnacles Amphibalanus amphitrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:973-980. [PMID: 27569057 DOI: 10.1016/j.envpol.2016.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/17/2016] [Accepted: 08/20/2016] [Indexed: 05/20/2023]
Abstract
Plastics are common and pervasive anthropogenic debris in marine environments. Floating plastics provide opportunities to alter the abundance, distribution and invasion potential of sessile organisms that colonize them. We selected plastics from seven recycle categories and quantified settlement of (i) bryozoans Bugula neritina (Linnaeus, 1758) in the lab and in the field, and of (ii) barnacles Amphibalanus (= Balanus) amphitrite (Darwin, 1854) in the field. In the laboratory we cultured barnacles on the plastics for 8 weeks and quantified growth, mortality, and breaking strength of the side plates. In the field all recyclable plastics were settlement substrata for bryozoans and barnacles. Settlement depended on the type of plastic. Fewer barnacles settled on plastic surfaces compared to glass. In the lab and in the field, bryozoan settlement was higher on plastics than on glass. In static laboratory rearing, barnacles growing on plastics were initially significantly smaller than on glass. This suggested juvenile barnacles were adversely impacted by materials leaching from the plastics. Barnacle mortality was not significantly different between plastic and glass surfaces, but breaking strength of side plates of barnacles on polyvinyl chloride (PVC) and polycarbonate (PC) were significantly lower than breakage strength on glass. Plastics impact marine ecosystems directly by providing new surfaces for colonization with fouling organisms and by contaminants shown previously to leach out of plastics and impact biological processes.
Collapse
Affiliation(s)
- Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - Beatriz Orihuela
- Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - Mei Zhu
- Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - Daniel Rittschof
- Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA.
| |
Collapse
|
11
|
Shivapooja P, Cao C, Orihuela B, Levering V, Zhao X, Rittschof D, López GP. Incorporation of silicone oil into elastomers enhances barnacle detachment by active surface strain. BIOFOULING 2016; 32:1017-1028. [PMID: 27560712 DOI: 10.1080/08927014.2016.1209186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Silicone-oil additives are often used in fouling-release silicone coatings to reduce the adhesion strength of barnacles and other biofouling organisms. This study follows on from a recently reported active approach to detach barnacles, which was based on the surface strain of elastomeric materials, by investigating a new, dual-action approach to barnacle detachment using Ecoflex®-based elastomers incorporated with poly(dimethylsiloxane)-based oil additives. The experimental results support the hypothesis that silicone-oil additives reduce the amount of substratum strain required to detach barnacles. The study also de-coupled the two effects of silicone oils (ie surface-activity and alteration of the bulk modulus) and examined their contributions in reducing barnacle adhesion strength. Further, a finite element model based on fracture mechanics was employed to qualitatively understand the effects of surface strain and substratum modulus on barnacle adhesion strength. The study demonstrates that dynamic substratum deformation of elastomers with silicone-oil additives provides a bifunctional approach towards management of biofouling by barnacles.
Collapse
Affiliation(s)
| | - Changyong Cao
- b Department of Mechanical Engineering and Materials Science , Duke University , Durham , NC , USA
| | - Beatriz Orihuela
- c Duke University Marine Laboratory , Nicholas School of the Environment , Beaufort , NC , USA
| | - Vrad Levering
- a Department of Biomedical Engineering , Duke University , Durham , NC , USA
| | - Xuanhe Zhao
- b Department of Mechanical Engineering and Materials Science , Duke University , Durham , NC , USA
- d Research Triangle Material Research Science & Engineering Center, Duke University , Durham , NC , USA
- e Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Daniel Rittschof
- c Duke University Marine Laboratory , Nicholas School of the Environment , Beaufort , NC , USA
| | - Gabriel P López
- a Department of Biomedical Engineering , Duke University , Durham , NC , USA
- b Department of Mechanical Engineering and Materials Science , Duke University , Durham , NC , USA
- d Research Triangle Material Research Science & Engineering Center, Duke University , Durham , NC , USA
- f Center for Biomedical Engineering, Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , NM , USA
| |
Collapse
|
12
|
Dickinson GH, Yang X, Wu F, Orihuela B, Rittschof D, Beniash E. Localization of Phosphoproteins within the Barnacle Adhesive Interface. THE BIOLOGICAL BULLETIN 2016; 230:233-42. [PMID: 27365418 PMCID: PMC6377941 DOI: 10.1086/bblv230n3p233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Barnacles permanently adhere to nearly any inert substrate using proteinaceous glue. The glue consists of at least ten major proteins, some of which have been isolated and sequenced. Questions still remain about the chemical mechanisms involved in adhesion and the potential of the glue to serve as a platform for mineralization of the calcified base plate. We tested the hypothesis that barnacle glue contains phosphoproteins, which have the potential to play a role in both adhesion and mineralization. Using a combination of phosphoprotein-specific gel staining and Western blotting with anti-phosphoserine antibody, we identified multiple phosphorylated proteins in uncured glue secretions from the barnacle Amphibalanus amphitrite The protein composition of the glue and the quantity and abundance of phosphoproteins varied distinctly among individual barnacles, possibly due to cyclical changes in the glue secretion over time. We assessed the location of the phosphoproteins within the barnacle glue layer using decalcified barnacle base plates and residual glue deposited by reattached barnacles. Phosphoproteins were found throughout the organic matrix of the base plate and within the residual glue. Staining within the residual glue appeared most intensely in regions where capillary glue ducts, which are involved in cyclical release of glue, had been laid down. Lastly, mineralization studies of glue proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that proteins identified as phosphorylated possibly induce mineralization of calcium carbonate (CaCO3). These results contribute to our understanding of the protein composition of barnacle glue, and provide new insights into the potential roles of phosphoproteins in underwater bioadhesives.
Collapse
Affiliation(s)
- Gary H Dickinson
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213; Department of Biology, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628; and
| | - Xu Yang
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213
| | - Fanghui Wu
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213
| | - Beatriz Orihuela
- Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, North Carolina 28516
| | - Dan Rittschof
- Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, North Carolina 28516
| | - Elia Beniash
- Department of Oral Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 505 SALKP, 335 Sutherland Drive, Pittsburgh, Pennsylvania 15213;
| |
Collapse
|
13
|
Shivapooja P, Yu Q, Orihuela B, Mays R, Rittschof D, Genzer J, López GP. Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25586-25591. [PMID: 26554418 DOI: 10.1021/acsami.5b09199] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.
Collapse
Affiliation(s)
| | - Qian Yu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University , Suzhou 215123, China
| | - Beatriz Orihuela
- Marine Science and Conservation, Duke University Marine Laboratory , Beaufort, North Carolina 28516, United States
| | - Robin Mays
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Daniel Rittschof
- Marine Science and Conservation, Duke University Marine Laboratory , Beaufort, North Carolina 28516, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
14
|
Stafslien SJ, Christianson D, Daniels J, VanderWal L, Chernykh A, Chisholm BJ. Combinatorial materials research applied to the development of new surface coatings XVI: fouling-release properties of amphiphilic polysiloxane coatings. BIOFOULING 2015; 31:135-149. [PMID: 25647177 DOI: 10.1080/08927014.2014.1003295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane (TMS-PEG), methyltriacetoxysilane and hexamethyldisilazane-treated fumed silica. The variables investigated were the concentration of TMS-PEG and the concentration of CF3-PDMS. In general, it was found that the TMS-PEG and the CF3-PDMS had a synergist effect on FR properties with these properties being enhanced by combining both compounds into the coating formulations. In addition, reattached adult barnacles removed from coatings possessing both TMS-PEG and relatively high levels of CF3-PDMS displayed atypical base-plate morphologies. The majority of the barnacles removed from these coatings exhibited a cupped or domed base-plate as compared to the flat base-plate observed for the control coating that did not contain TMS-PEG or CF3-PDMS. Coating surface analysis using water contact angle measurements indicated that the presence of CF3-PDMS facilitated migration of TMS-PEG to the coating/air interface during the film formation/curing process. In general, coatings containing both TMS-PEG and relatively high levels of CF3-PDMS possessed excellent FR properties.
Collapse
Affiliation(s)
- Shane J Stafslien
- a Center for Nanoscale Science and Engineering , North Dakota State University , Fargo , USA
| | | | | | | | | | | |
Collapse
|
15
|
Shivapooja P, Wang Q, Szott LM, Orihuela B, Rittschof D, Zhao X, López GP. Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation. BIOFOULING 2015; 31:265-274. [PMID: 25917206 DOI: 10.1080/08927014.2015.1035651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.
Collapse
|
16
|
Puniredd SR, Jańczewski D, Go DP, Zhu X, Guo S, Ming Teo SL, Chen Lee SS, Vancso GJ. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling. Chem Sci 2015; 6:372-383. [PMID: 28966763 PMCID: PMC5586206 DOI: 10.1039/c4sc02367f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/26/2014] [Indexed: 01/30/2023] Open
Abstract
Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross-linking were used in the fabrication process. Two methods of LbL film formation have been investigated using alternate polyelectrolyte deposition namely non-imprinted LbLA, and imprinted LbLB. Both LbL films were cross linked at mild temperature to yield covalent bridging of the layers for improved stability in a sea water environment. A comparative study of the non-imprinted LbLA films and imprinted LbLB films for Cu2+ ion binding capacity, leaching rate and stability of the films was performed. The results reveal that the imprinted films possess enhanced affinity to retain metal ions due to the preorganization of imidazole bearing histidine receptors. As a result the binding capacity of the films for Cu2+ could be improved by seven fold. Antifouling properties of the resulting materials in a marine environment have been demonstrated against the settlement of barnacle larvae, indicating that controlled release of Cu ions was achieved.
Collapse
Affiliation(s)
- Sreenivasa Reddy Puniredd
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Dominik Jańczewski
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Dewi Pitrasari Go
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Xiaoying Zhu
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Shifeng Guo
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research) , 3 Research Link , 117602 , Singapore . ; ; Tel: +65 6874 5443
| | - Serena Lay Ming Teo
- Tropical Marine Science Institute , National University of Singapore , 18 Kent Ridge Road , 119227 , Singapore
| | - Serina Siew Chen Lee
- Tropical Marine Science Institute , National University of Singapore , 18 Kent Ridge Road , 119227 , Singapore
| | - G Julius Vancso
- Institute of Chemical and Engineering Sciences , ASTAR , 1, Pesek Road , Jurong Island , 627833 , Singapore . ; ; Tel: +31 53 489 2974
- MESA+ Institute for Nanotechnology , Materials Science and Technology of Polymers , University of Twente , P.O. Box 217 , 7500 AE Enschede , The Netherlands
| |
Collapse
|
17
|
|
18
|
Guo S, Khoo BC, Teo SLM, Zhong S, Lim CT, Lee HP. Effect of ultrasound on cyprid footprint and juvenile barnacle adhesion on a fouling release material. Colloids Surf B Biointerfaces 2014; 115:118-24. [DOI: 10.1016/j.colsurfb.2013.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 11/27/2022]
|
19
|
Kato S, Matsukawa T, Koriyama Y, Sugitani K, Ogai K. A molecular mechanism of optic nerve regeneration in fish: the retinoid signaling pathway. Prog Retin Eye Res 2013; 37:13-30. [PMID: 23994437 DOI: 10.1016/j.preteyeres.2013.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/20/2022]
Abstract
The fish optic nerve regeneration process takes more than 100 days after axotomy and comprises four stages: neurite sprouting (1-4 days), axonal elongation (5-30 days), synaptic refinement (35-80 days) and functional recovery (100-120 days). We screened genes specifically upregulated in each stage from axotomized fish retina. The mRNAs for heat shock protein 70 and insulin-like growth factor-1 rapidly increased in the retinal ganglion cells soon after axotomy and function as cell-survival factors. Purpurin mRNA rapidly and transiently increased in the photoreceptors and purpurin protein diffusely increased in all nuclear layers at 1-4 days after injury. The purpurin gene has an active retinol-binding site and a signal peptide. Purpurin with retinol functions as a sprouting factor for thin neurites. This neurite-sprouting effect was closely mimicked by retinoic acid and blocked by its inhibitor. We propose that purpurin works as a retinol transporter to supply retinoic acid to damaged RGCs which in turn activates target genes. We also searched for genes involved in the second stage of regeneration. The mRNA of retinoid-signaling molecules increased in retinal ganglion cells at 7-14 days after injury and tissue transglutaminase and neuronal nitric oxide synthase mRNAs, RA-target genes, increased in retinal ganglion cells at 10-30 days after injury. They function as factors for the outgrowth of thick, long neurites. Here we present a retinoid-signaling hypothesis to explain molecular events during the early stages of optic nerve regeneration in fish.
Collapse
Affiliation(s)
- Satoru Kato
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan.
| | | | | | | | | |
Collapse
|
20
|
Gittens JE, Smith TJ, Suleiman R, Akid R. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnol Adv 2013; 31:1738-53. [PMID: 24051087 DOI: 10.1016/j.biotechadv.2013.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 01/25/2023]
Abstract
Following the ban in 2003 on the use of tributyl-tin compounds in antifouling coatings, the search for an environmentally-friendly alternative has accelerated. Biocidal TBT alternatives, such as diuron and Irgarol 1051®, have proved to be environmentally damaging to marine organisms. The issue regarding the use of biocides is that concerning the half-life of the compounds which allow a perpetuation of the toxic effects into the marine food chain, and initiate changes in the early stages of the organisms' life-cycle. In addition, the break-down of biocides can result in metabolites with greater toxicity and longevity than the parent compound. Functionalized coatings have been designed to repel the settlement and permanent attachment of fouling organisms via modification of either or both surface topography and surface chemistry, or by interfering with the natural mechanisms via which fouling organisms settle upon and adhere to surfaces. A large number of technologies are being developed towards producing new coatings that will be able to resist biofouling over a period of years and thus truly replace biocides as antifouling systems. In addition urgent research is directed towards the exploitation of mechanisms used by living organisms designed to repel the settlement of fouling organisms. These biomimetic strategies include the production of antifouling enzymes and novel surface topography that are incompatible with permanent attachment, for example, by mimicking the microstructure of shark skin. Other research seeks to exploit chemical signals and antimicrobial agents produced by diverse living organisms in the environment to prevent settlement and growth of fouling organisms on vulnerable surfaces. Novel polymer-based technologies may prevent fouling by means of unfavourable surface chemical and physical properties or by concentrating antifouling compounds around surfaces.
Collapse
Affiliation(s)
- Jeanette E Gittens
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | | | | | | |
Collapse
|
21
|
Lane AC, Mukherjee J, Chan VBS, Thiyagarajan V. Decreased pH does not alter metamorphosis but compromises juvenile calcification of the tube worm Hydroides elegans. MARINE BIOLOGY 2013; 160:1983-1993. [PMID: 24391287 PMCID: PMC3873059 DOI: 10.1007/s00227-012-2056-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 08/23/2012] [Indexed: 05/06/2023]
Abstract
Using CO2 perturbation experiments, we examined the pre- and post-settlement growth responses of a dominant biofouling tubeworm (Hydroides elegans) to a range of pH. In three different experiments, embryos were reared to, or past, metamorphosis in seawater equilibrated to CO2 values of about 480 (control), 980, 1,480, and 2,300 μatm resulting in pH values of around 8.1 (control), 7.9, 7.7, and 7.5, respectively. These three decreased pH conditions did not affect either embryo or larval development, but both larval calcification at the time of metamorphosis and early juvenile growth were adversely affected. During the 24-h settlement assay experiment, half of the metamorphosed larvae were unable to calcify tubes at pH 7.9 while almost no tubes were calcified at pH 7.7. Decreased ability to calcify at decreased pH may indicate that these calcifying tubeworms may be one of the highly threatened species in the future ocean.
Collapse
Affiliation(s)
- Ackley C. Lane
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Joy Mukherjee
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Vera B. S. Chan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| |
Collapse
|
22
|
Lejars M, Margaillan A, Bressy C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem Rev 2012; 112:4347-90. [DOI: 10.1021/cr200350v] [Citation(s) in RCA: 786] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marlène Lejars
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - André Margaillan
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - Christine Bressy
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| |
Collapse
|
23
|
Abstract
Biofouling, the attachment and growth of organisms on submerged, man-made surfaces, has plagued ship operators for at least 2500 years. Accumulation of biofouling, including barnacles and other sessile marine invertebrates, increases the frictional resistance of ships' hulls, resulting in an increase in power and in fuel consumption required to make speed. Scientists and engineers recognized over 100 years ago that in order to solve the biofouling problem, a deeper understanding of the biology of the organisms involved, particularly with regard to larval settlement and metamorphosis and adhesives and adhesion, would be required. Barnacles have served as an important tool in pursuing this research. Over the past 20 years, the pace of these studies has accelerated, likely driven by the introduction of environmental regulations banning the most effective biofouling control products from the market. Research has largely focused on larval settlement and metamorphosis, the development of new biocides, and materials/surface science. Increased research has so far, however, failed to result in commercial applications. Two recent successes (medetomidine/Selektope(®), surface-bound noradrenaline) build on our improving understanding of the role of the larval nervous system in mediating settlement and metamorphosis. New findings with regard to the curing of barnacle adhesives may pave the way to additional successes. Although the development of most current biofouling control technologies remains largely uninfluenced by basic research on, for example, the ability of settling larvae to perceive surface cues, or the nature of the interaction between organismal adhesives and the substrate, newly-developed materials can serve as useful probes to further our understanding of these processes.
Collapse
Affiliation(s)
- Eric R Holm
- Naval Surface Warfare Center, Carderock Division, Code 614, West Bethesda, MD 20817, USA.
| |
Collapse
|
24
|
Feng D, Rittschof D, Orihuela B, Kwok KWH, Stafslien S, Chisholm B. The effects of model polysiloxane and fouling-release coatings on embryonic development of a sea urchin (Arbacia punctulata) and a fish (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:162-169. [PMID: 22326653 DOI: 10.1016/j.aquatox.2012.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
In recent decades attention has focused on the development of non-toxic fouling-release coatings based on silicone polymers as an alternative to toxic antifouling coatings. As fouling-release coatings gain market share, they will contribute to environmental contamination by silicones. We report effects of eight model polysiloxane and three commercial foul-release coatings on embryonic development of sea urchins and fish, Japanese medaka. We used model coatings because they have known composition and commercially available components and molecules leaching from these coatings have been partially characterized. The commercial fouling-release coatings are purported to be non-toxic and components are proprietary. Our goal was to expose embryos of well studied model animals to the coatings to determine if the complex mixtures leaching from the coatings impact development. Urchins were chosen because development is rapid and embryos can enter the non-slip layer over surfaces. Medaka was chosen because the female deposits the sticky eggs onto the anal fin and then scrapes them off onto surfaces. Embryos were confined in water over coatings in 24 well plates. Fresh model coatings had no effect on urchin development while commercial fouling-release coatings inhibited development. Fish embryos had delayed hatching, increased mortality of hatchlings and dramatically decreased ability of hatchlings to inflate the swim bladder and reduced hatching success on all coatings. After one-month immersion of coatings in running seawater to simulate initial application in the marine environment, sea urchin embryos died when placed over model silicones. Effects of the commercial coatings were reduced but included retarded development. Effects on fish embryos over leached coating were reduced compared to those of fresh coating and included decreased hatching success, decreased hatchling survival and inability to inflate the swim bladder for commercial coatings. These findings suggest, similar to medical conclusions, compounds leaching from silicone coatings can impact development and the topic deserves study.
Collapse
Affiliation(s)
- Danqing Feng
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, United States
| | | | | | | | | | | |
Collapse
|
25
|
Brubaker CE, Messersmith PB. The present and future of biologically inspired adhesive interfaces and materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2200-2205. [PMID: 22224862 DOI: 10.1021/la300044v] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The natural world provides many examples of robust, permanent adhesive platforms. Synthetic adhesive interfaces and materials inspired by mussels of genus Mytulis have been extensively applied, and it is expected that characterization and adaptation of several other biological adhesive strategies will follow the Mytilus edulis model. These candidate species will be introduced, along with a discussion of the adhesive behaviors that make them attractive for synthetic adaptation. While significant progress has been made in the development of biologically inspired adhesive interfaces and materials, persistent questions, current challenges, and emergent areas of research will be also be discussed.
Collapse
Affiliation(s)
- Carrie E Brubaker
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|