1
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Atri N. Cyanobacterial Proteomics: Diversity and Dynamics. J Proteome Res 2024; 23:2680-2699. [PMID: 38470568 DOI: 10.1021/acs.jproteome.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Cyanobacteria (oxygenic photoautrophs) comprise a diverse group holding significance both environmentally and for biotechnological applications. The utilization of proteomic techniques has significantly influenced investigations concerning cyanobacteria. Application of proteomics allows for large-scale analysis of protein expression and function within cyanobacterial systems. The cyanobacterial proteome exhibits tremendous functional, spatial, and temporal diversity regulated by multiple factors that continuously modify protein abundance, post-translational modifications, interactions, localization, and activity to meet the dynamic needs of these tiny blue greens. Modern mass spectrometry-based proteomics techniques enable system-wide examination of proteome complexity through global identification and high-throughput quantification of proteins. These powerful approaches have revolutionized our understanding of proteome dynamics and promise to provide novel insights into integrated cellular behavior at an unprecedented scale. In this Review, we present modern methods and cutting-edge technologies employed for unraveling the spatiotemporal diversity and dynamics of cyanobacterial proteomics with a specific focus on the methods used to analyze post-translational modifications (PTMs) and examples of dynamic changes in the cyanobacterial proteome investigated by proteomic approaches.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Panda P, Giri SJ, Sherman L, Kihara D, Aryal UK. Proteomic analysis of unicellular cyanobacterium Crocosphaera subtropica ATCC 51142 under extended light or dark growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605499. [PMID: 39131394 PMCID: PMC11312443 DOI: 10.1101/2024.07.29.605499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The daily light-dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium Crocosphaera subtropica ATCC 51142. We quantified 2287 proteins, of which 603 proteins were significantly different between the two growth conditions. These proteins represent several biological processes, including photosynthetic electron transport, carbon fixation, stress responses, translation, and protein degradation. One significant observation is the regulation of over two dozen proteases, including ATP dependent Clp-proteases (endopeptidases) and metalloproteases, the majority of which were upregulated in LL compared to DD. This suggests that proteases play a crucial role in the regulation and maintenance of photosynthesis, especially the PSI and PSII components. The higher protease activity in LL indicates a need for more frequent degradation and repair of certain photosynthetic components, highlighting the dynamic nature of protein turnover and quality control mechanisms in response to prolonged light exposure. The results enhance our understanding of how Crocosphaera subtropica ATCC51142 adjusts its molecular machinery in response to extended light or dark growth conditions.
Collapse
Affiliation(s)
- Punyatoya Panda
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Swagarika J. Giri
- Department of Computer Science, Purdue University, West Lafayette, IN 47907
| | - Louis Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
3
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
4
|
Acién JM, Cañizares E, Candela H, González-Guzmán M, Arbona V. From Classical to Modern Computational Approaches to Identify Key Genetic Regulatory Components in Plant Biology. Int J Mol Sci 2023; 24:ijms24032526. [PMID: 36768850 PMCID: PMC9916757 DOI: 10.3390/ijms24032526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The selection of plant genotypes with improved productivity and tolerance to environmental constraints has always been a major concern in plant breeding. Classical approaches based on the generation of variability and selection of better phenotypes from large variant collections have improved their efficacy and processivity due to the implementation of molecular biology techniques, particularly genomics, Next Generation Sequencing and other omics such as proteomics and metabolomics. In this regard, the identification of interesting variants before they develop the phenotype trait of interest with molecular markers has advanced the breeding process of new varieties. Moreover, the correlation of phenotype or biochemical traits with gene expression or protein abundance has boosted the identification of potential new regulators of the traits of interest, using a relatively low number of variants. These important breakthrough technologies, built on top of classical approaches, will be improved in the future by including the spatial variable, allowing the identification of gene(s) involved in key processes at the tissue and cell levels.
Collapse
Affiliation(s)
- Juan Manuel Acién
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Eva Cañizares
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Miguel González-Guzmán
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
- Correspondence: (M.G.-G.); (V.A.); Tel.: +34-964-72-9415 (M.G.-G.); +34-964-72-9401 (V.A.)
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
- Correspondence: (M.G.-G.); (V.A.); Tel.: +34-964-72-9415 (M.G.-G.); +34-964-72-9401 (V.A.)
| |
Collapse
|
5
|
Photosynthetic modulation during the diurnal cycle in a unicellular diazotrophic cyanobacterium grown under nitrogen-replete and nitrogen-fixing conditions. Sci Rep 2022; 12:18939. [PMID: 36344535 PMCID: PMC9640542 DOI: 10.1038/s41598-022-21829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Cyanobacteria are the only oxygenic photosynthetic organisms that can fix nitrogen. In diazotrophic cyanobacteria, the regulation of photosynthesis during the diurnal cycle is hypothesized to be linked with nitrogen fixation and involve the D1 protein isoform PsbA4. The amount of bioavailable nitrogen has a major impact on productivity in aqueous environments. In contrast to low- or nitrogen-fixing (-N) conditions, little data on photosynthetic regulation under nitrogen-replete (+ N) conditions are available. We compared the regulation of photosynthesis under -N and + N conditions during the diurnal cycle in wild type and a psbA4 deletion strain of the unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. We observed common changes to light harvesting and photosynthetic electron transport during the dark in + N and -N conditions and found that these modifications occur in both diazotrophic and non-diazotrophic cyanobacteria. Nitrogen availability increased PSII titer when cells transitioned from dark to light and promoted growth. Under -N conditions, deletion of PsbA4 modified charge recombination in dark and regulation of PSII titer during dark to light transition. We conclude that darkness impacts the acceptor-side modifications to PSII and photosynthetic electron transport in cyanobacteria independently of the nitrogen-fixing status and the presence of PsbA4.
Collapse
|
6
|
Grim SL, Voorhies AA, Biddanda BA, Jain S, Nold SC, Green R, Dick GJ. Omics-Inferred Partitioning and Expression of Diverse Biogeochemical Functions in a Low-O 2 Cyanobacterial Mat Community. mSystems 2021; 6:e0104221. [PMID: 34874776 PMCID: PMC8651085 DOI: 10.1128/msystems.01042-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial mats profoundly influenced Earth's biological and geochemical evolution and still play important ecological roles in the modern world. However, the biogeochemical functioning of cyanobacterial mats under persistent low-O2 conditions, which dominated their evolutionary history, is not well understood. To investigate how different metabolic and biogeochemical functions are partitioned among community members, we conducted metagenomics and metatranscriptomics on cyanobacterial mats in the low-O2, sulfidic Middle Island sinkhole (MIS) in Lake Huron. Metagenomic assembly and binning yielded 144 draft metagenome assembled genomes, including 61 of medium quality or better, and the dominant cyanobacteria and numerous Proteobacteria involved in sulfur cycling. Strains of a Phormidium autumnale-like cyanobacterium dominated the metagenome and metatranscriptome. Transcripts for the photosynthetic reaction core genes psaA and psbA were abundant in both day and night. Multiple types of psbA genes were expressed from each cyanobacterium, and the dominant psbA transcripts were from an atypical microaerobic type of D1 protein from Phormidium. Further, cyanobacterial transcripts for photosystem I genes were more abundant than those for photosystem II, and two types of Phormidium sulfide quinone reductase were recovered, consistent with anoxygenic photosynthesis via photosystem I in the presence of sulfide. Transcripts indicate active sulfur oxidation and reduction within the cyanobacterial mat, predominately by Gammaproteobacteria and Deltaproteobacteria, respectively. Overall, these genomic and transcriptomic results link specific microbial groups to metabolic processes that underpin primary production and biogeochemical cycling in a low-O2 cyanobacterial mat and suggest mechanisms for tightly coupled cycling of oxygen and sulfur compounds in the mat ecosystem. IMPORTANCE Cyanobacterial mats are dense communities of microorganisms that contain photosynthetic cyanobacteria along with a host of other bacterial species that play important yet still poorly understood roles in this ecosystem. Although such cyanobacterial mats were critical agents of Earth's biological and chemical evolution through geological time, little is known about how they function under the low-oxygen conditions that characterized most of their natural history. Here, we performed sequencing of the DNA and RNA of modern cyanobacterial mat communities under low-oxygen and sulfur-rich conditions from the Middle Island sinkhole in Lake Huron. The results reveal the organisms and metabolic pathways that are responsible for both oxygen-producing and non-oxygen-producing photosynthesis as well as interconversions of sulfur that likely shape how much O2 is produced in such ecosystems. These findings indicate tight metabolic reactions between community members that help to explain the limited the amount of O2 produced in cyanobacterial mat ecosystems.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander A. Voorhies
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Bopaiah A. Biddanda
- Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen C. Nold
- Biology Department, University of Wisconsin—Stout, Menomonie, Wisconsin, USA
| | - Russ Green
- Thunder Bay National Marine Sanctuary, National Oceanic and Atmospheric Administration, Alpena, Michigan, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Cross-Activation of Two Nitrogenase Gene Clusters by CnfR1 or CnfR2 in the Cyanobacterium Anabaena variabilis. Microbiol Spectr 2021; 9:e0106021. [PMID: 34612667 PMCID: PMC8510180 DOI: 10.1128/spectrum.01060-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Anabaena variabilis, the nif1 genes, which are activated by CnfR1, produce a Mo-nitrogenase that is expressed only in heterocysts. Similarly, the nif2 genes, which are activated by CnfR2, make a Mo-nitrogenase that is expressed only in anaerobic vegetative cells. However, CnfR1, when it was expressed in anaerobic vegetative cells under the control of the cnfR2 promoter or from the Co2+-inducible coaT promoter, activated the expression of both nifB1 and nifB2. Activation of nifB2, but not nifB1, by CnfR1 required NtcA. Thus, expression of the nif1 system requires no heterocyst-specific factor other than CnfR1. In contrast, CnfR2, when it was expressed in heterocysts under the control of the cnfR1 promoter or from the coaT promoter, did not activate the expression of nifB1 or nifB2. Thus, activation of the nif2 system in anaerobic vegetative cells by CnfR2 requires additional factors absent in heterocysts. CnfR2 made from the coaT promoter activated nifB2 expression in anaerobic vegetative cells grown with fixed nitrogen; however, oxygen inhibited CnfR2 activation of nifB2 expression. In contrast, activation of nifB1 and nifB2 by CnfR1 was unaffected by oxygen. CnfR1, which does not activate the nifB2 promoter in heterocysts, activated the expression of the entire nif2 gene cluster from a nifB2::nifB1::nifB2 hybrid promoter in heterocysts, producing functional Nif2 nitrogenase in heterocysts. However, activity was poor compared to the normal Nif1 nitrogenase. Expression of the nif2 cluster in anaerobic vegetative cells of Nostoc sp. PCC 7120, a strain lacking the nif2 nitrogenase, resulted in expression of the nif2 genes but weak nitrogenase activity. IMPORTANCE Cyanobacterial nitrogen fixation is important in the global nitrogen cycle, in oceanic productivity, and in many plant and fungal symbioses. While the proteins that mediate nitrogen fixation have been well characterized, the regulation of this complex and expensive process is poorly understood in cyanobacteria. Using a genetic approach, we have characterized unique and overlapping functions for two homologous transcriptional activators CnfR1 and CnfR2 that activate two distinct nitrogenases in a single organism. We found that CnfR1 is promiscuous in its ability to activate both nitrogenase systems, whereas CnfR2 depends on additional cellular factors; thus, it activates only one nitrogenase system.
Collapse
|
8
|
Karlsen J, Asplund-Samuelsson J, Jahn M, Vitay D, Hudson EP. Slow Protein Turnover Explains Limited Protein-Level Response to Diurnal Transcriptional Oscillations in Cyanobacteria. Front Microbiol 2021; 12:657379. [PMID: 34194405 PMCID: PMC8237939 DOI: 10.3389/fmicb.2021.657379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Metabolically engineered cyanobacteria have the potential to mitigate anthropogenic CO2 emissions by converting CO2 into renewable fuels and chemicals. Yet, better understanding of metabolic regulation in cyanobacteria is required to develop more productive strains that can make industrial scale-up economically feasible. The aim of this study was to find the cause for the previously reported inconsistency between oscillating transcription and constant protein levels under day-night growth conditions. To determine whether translational regulation counteracts transcriptional changes, Synechocystis sp. PCC 6803 was cultivated in an artificial day-night setting and the level of transcription, translation and protein was measured across the genome at different time points using mRNA sequencing, ribosome profiling and quantitative proteomics. Furthermore, the effect of protein turnover on the amplitude of protein oscillations was investigated through in silico simulations using a protein mass balance model. Our experimental analysis revealed that protein oscillations were not dampened by translational regulation, as evidenced by high correlation between translational and transcriptional oscillations (r = 0.88) and unchanged protein levels. Instead, model simulations showed that these observations can be attributed to a slow protein turnover, which reduces the effect of protein synthesis oscillations on the protein level. In conclusion, these results suggest that cyanobacteria have evolved to govern diurnal metabolic shifts through allosteric regulatory mechanisms in order to avoid the energy burden of replacing the proteome on a daily basis. Identification and manipulation of such mechanisms could be part of a metabolic engineering strategy for overproduction of chemicals.
Collapse
Affiliation(s)
- Jan Karlsen
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Johannes Asplund-Samuelsson
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Michael Jahn
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Dóra Vitay
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden.,Biosyntia ApS, Copenhagen, Denmark
| | - Elton P Hudson
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
9
|
Disentangling the Impact of Sulfur Limitation on Exopolysaccharide and Functionality of Alr2882 by In Silico Approaches in Anabaena sp. PCC 7120. Appl Biochem Biotechnol 2021; 193:1447-1468. [PMID: 33484449 DOI: 10.1007/s12010-021-03501-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023]
Abstract
The wide applications, uniqueness, and high quality of cyanobacterial exopolysaccharides (EPSs) have attracted many biotechnologists. Despite it, the inducers and molecular determinants of EPS biosynthesis in cyanobacteria are lesser known. Although, studies revealed that environmental cues especially C/N ratio as the prime modulator, the factors like light, temperature, moisture, and nutrient availability, etc. have been overlooked. Due to this, the possibilities to modify cyanobacterial system for achieving higher quantity of EPS either by modifying growth medium or metabolic engineering are restricted to few optimisations. Therefore, the present work describes the impact of sulfate limitations on the EPS production and compositions in the cyanobacterium Anabaena sp. PCC 7120. Increased EPS production with enhanced expression of alr2882 was observed in lower sulfate supplementations; however, FTIR analysis depicted an altered composition of supramolecule. Furthermore, in silico analysis of Alr2882 depicted the presence of ExoD domain and three transmembrane regions, thereby indicating its membrane localisation and role in the EPS production. Additionally, the phylogeny and multiple sequence alignment showed vertical inheritance of exoD and conservation among cyanobacteria. The meta-threading template-based modelling and ab initio full atomic relaxation by LOMET and ModRefiner servers, respectively, also exhibited helical topology of Alr2882, with nine α-helices arranged antiparallel to the preceding one. Moreover, post-translational modifications predicted in Alr2882 indicated high order of molecular regulation underlining EPS production in Anabaena sp. PCC 7120. This study provides a foundation for understanding the EPS biosynthesis mechanism under sulfur limitation and the possible role of ExoD in cyanobacteria.
Collapse
|
10
|
Thiel T. Organization and regulation of cyanobacterial nif gene clusters: implications for nitrogenase expression in plant cells. FEMS Microbiol Lett 2020; 366:5470946. [PMID: 31062027 DOI: 10.1093/femsle/fnz077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
For over 50 years scientists have considered the possibility of engineering a plant with nitrogen fixation capability, freeing farmers from their dependence on nitrogen fertilizers. With the development of the tools of synthetic biology, more progress has been made toward this goal in the last 5 years than in the previous five decades. Most of the effort has focused on nitrogenase genes from Klebsiella oxytoca, which has complex gene regulation. There may be advantages in using nitrogenase genes from cyanobacteria, which comprise large polycistronic gene clusters that may be easier to manipulate and eventually express in a plant. The fact that some diatoms have a cyanobacterial nitrogen fixing organelle further supports the idea that a cyanobacterial nitrogenase gene cluster may function in a newly-engineered, cyanobacterial-based plant organelle, a nitroplast. This review describes recent attempts to express the nif genes from Anabaena variabilis ATCC 29413, Leptolyngbya boryana dg5 and Cyanothece sp. ATCC 51142 in heterologous cyanobacteria in the context of the organization of the nitrogenase genes and their regulation by the transcription factor CnfR via its highly conserved binding sites.
Collapse
Affiliation(s)
- Teresa Thiel
- Department of Biology, University of Missouri-St. Louis, One University Blvd., St. Louis, MO 63121, USA
| |
Collapse
|
11
|
Bowazolo C, Tse SPK, Beauchemin M, Lo SCL, Rivoal J, Morse D. Label-free MS/MS analyses of the dinoflagellate Lingulodinium identifies rhythmic proteins facilitating adaptation to a diurnal LD cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135430. [PMID: 31818571 DOI: 10.1016/j.scitotenv.2019.135430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Protein levels were assessed in the dinoflagellate Lingulodinium polyedra over the course of a diurnal cycle using a label-free LC-MS/MS approach. Roughly 1700 proteins were quantitated in a triplicate dataset over a daily period, and 13 were found to show significant rhythmic changes. Included among the proteins found to be most abundant at night were the two bioluminescence proteins, luciferase and luciferin binding protein, as well as a proliferating cell nuclear protein involved in the nightly DNA replication. Aconitase and a pyrophosphate fructose-6-phosphate-1-phosphotransferase were also found to be more abundant at night, suggestive of an increased ability to generate ATP by glucose catabolism when photosynthesis does not occur. Among the proteins more abundant during the day were found a 2-epi-5-epi-valiolone synthase, potentially involved in synthesis of mycosporin-like amino acids that can act as a "microbial sunscreen", and an enzyme synthesizing vitamin B6 which is known to protect against oxidative stress. A lactate oxidoreductase was also found to be more abundant during the day, perhaps to counteract the pH changes due to carbon fixation by facilitating conversion of pyruvate to lactate. This unbiased proteomic approach reveals novel insights into the daily metabolic changes of this dinoflagellate. Furthermore, the observation that only a limited number of proteins vary support a model where metabolic flux through pathways can be controlled by variations in a select few, possibly rate limiting, steps. Data are available via ProteomeXchange with identifier PXD006994.
Collapse
Affiliation(s)
- Carl Bowazolo
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mathieu Beauchemin
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Samuel C-L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jean Rivoal
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| |
Collapse
|
12
|
Enhanced Nitrogen Fixation in a glgX-Deficient Strain of Cyanothece sp. Strain ATCC 51142, a Unicellular Nitrogen-Fixing Cyanobacterium. Appl Environ Microbiol 2019; 85:AEM.02887-18. [PMID: 30709817 DOI: 10.1128/aem.02887-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 01/15/2023] Open
Abstract
Cyanobacteria are oxygenic photosynthetic prokaryotes with important roles in the global carbon and nitrogen cycles. Unicellular nitrogen-fixing cyanobacteria are known to be ubiquitous, contributing to the nitrogen budget in diverse ecosystems. In the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142, carbon assimilation and carbohydrate storage are crucial processes that occur as part of a robust diurnal cycle of photosynthesis and nitrogen fixation. During the light period, cells accumulate fixed carbon in glycogen granules to use as stored energy to power nitrogen fixation in the dark. These processes have not been thoroughly investigated, due to the lack of a genetic modification system in this organism. In bacterial glycogen metabolism, the glgX gene encodes a debranching enzyme that functions in storage polysaccharide catabolism. To probe the consequences of modifying the cycle of glycogen accumulation and subsequent mobilization, we engineered a strain of Cyanothece 51142 in which the glgX gene was genetically disrupted. We found that the ΔglgX strain exhibited a higher growth rate than the wild-type strain and displayed a higher rate of nitrogen fixation. Glycogen accumulated to higher levels at the end of the light period in the ΔglgX strain, compared to the wild-type strain. These data suggest that the larger glycogen pool maintained by the ΔglgX mutant is able to fuel greater growth and nitrogen fixation ability.IMPORTANCE Cyanobacteria are oxygenic photosynthetic bacteria that are found in a wide variety of ecological environments, where they are important contributors to global carbon and nitrogen cycles. Genetic manipulation systems have been developed in a number of cyanobacterial strains, allowing both the interruption of endogenous genes and the introduction of new genes and entire pathways. However, unicellular diazotrophic cyanobacteria have been generally recalcitrant to genetic transformation. These cyanobacteria are becoming important model systems to study diurnally regulated processes. Strains of the Cyanothece genus have been characterized as displaying robust growth and high rates of nitrogen fixation. The significance of our study is in the establishment of a genetic modification system in a unicellular diazotrophic cyanobacterium, the demonstration of the interruption of the glgX gene in Cyanothece sp. strain ATCC 51142, and the characterization of the increased nitrogen-fixing ability of this strain.
Collapse
|
13
|
Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD. A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Comput Biol 2019; 15:e1006692. [PMID: 30677028 PMCID: PMC6364703 DOI: 10.1371/journal.pcbi.1006692] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/05/2019] [Accepted: 12/03/2018] [Indexed: 11/26/2022] Open
Abstract
Phototrophic organisms such as cyanobacteria utilize the sun's energy to convert atmospheric carbon dioxide into organic carbon, resulting in diurnal variations in the cell's metabolism. Flux balance analysis is a widely accepted constraint-based optimization tool for analyzing growth and metabolism, but it is generally used in a time-invariant manner with no provisions for sequestering different biomass components at different time periods. Here we present CycleSyn, a periodic model of Synechocystis sp. PCC 6803 metabolism that spans a 12-hr light/12-hr dark cycle by segmenting it into 12 Time Point Models (TPMs) with a uniform duration of two hours. The developed framework allows for the flow of metabolites across TPMs while inventorying metabolite levels and only allowing for the utilization of currently or previously produced compounds. The 12 TPMs allow for the incorporation of time-dependent constraints that capture the cyclic nature of cellular processes. Imposing bounds on reactions informed by temporally-segmented transcriptomic data enables simulation of phototrophic growth as a single linear programming (LP) problem. The solution provides the time varying reaction fluxes over a 24-hour cycle and the accumulation/consumption of metabolites. The diurnal rhythm of metabolic gene expression driven by the circadian clock and its metabolic consequences is explored. Predicted flux and metabolite pools are in line with published studies regarding the temporal organization of phototrophic growth in Synechocystis PCC 6803 paving the way for constructing time-resolved genome-scale models (GSMs) for organisms with a circadian clock. In addition, the metabolic reorganization that would be required to enable Synechocystis PCC 6803 to temporally separate photosynthesis from oxygen-sensitive nitrogen fixation is also explored using the developed model formalism.
Collapse
Affiliation(s)
- Debolina Sarkar
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Thomas J. Mueller
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Himadri B. Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| |
Collapse
|
14
|
Zhang CC, Zhou CZ, Burnap RL, Peng L. Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria. TRENDS IN PLANT SCIENCE 2018; 23:1116-1130. [PMID: 30292707 DOI: 10.1016/j.tplants.2018.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Carbon and nitrogen are the two most abundant nutrient elements for all living organisms, and their metabolism is tightly coupled. What are the signaling mechanisms that cells use to sense and control the carbon/nitrogen (C/N) metabolic balance following environmental changes? Based on studies in cyanobacteria, it was found that 2-phosphoglycolate derived from the oxygenase activity of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and 2-oxoglutarate from the Krebs cycle act as the carbon- and nitrogen-starvation signals, respectively, and their concentration ratio likely reflects the status of the C/N metabolic balance. We will present and discuss the regulatory principles underlying the signaling mechanisms, which are likely to be conserved in other photosynthetic organisms. These concepts may also contribute to developments in the field of biofuel engineering or improvements in crop productivity.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; Aix-Marseille Université, CNRS, LCB, France.
| | - Cong-Zhao Zhou
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisée Ligue Contre le Cancer, CINaM UMR 7325, 13288 Marseille, France
| |
Collapse
|
15
|
Battchikova N, Muth-Pawlak D, Aro EM. Proteomics of cyanobacteria: current horizons. Curr Opin Biotechnol 2018; 54:65-71. [DOI: 10.1016/j.copbio.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/01/2022]
|
16
|
Aryal UK, Ding Z, Hedrick V, Sobreira TJP, Kihara D, Sherman LA. Analysis of Protein Complexes in the Unicellular Cyanobacterium Cyanothece ATCC 51142. J Proteome Res 2018; 17:3628-3643. [PMID: 30216071 DOI: 10.1021/acs.jproteome.8b00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The unicellular cyanobacterium Cyanothece ATCC 51142 is capable of oxygenic photosynthesis and biological N2 fixation (BNF), a process highly sensitive to oxygen. Previous work has focused on determining protein expression levels under different growth conditions. A major gap of our knowledge is an understanding on how these expressed proteins are assembled into complexes and organized into metabolic pathways, an area that has not been thoroughly investigated. Here, we combined size-exclusion chromatography (SEC) with label-free quantitative mass spectrometry (MS) and bioinformatics to characterize many protein complexes from Cyanothece 51142 cells grown under a 12 h light-dark cycle. We identified 1386 proteins in duplicate biological replicates, and 64% of those proteins were identified as putative complexes. Pairwise computational prediction of protein-protein interaction (PPI) identified 74 822 putative interactions, of which 2337 interactions were highly correlated with published protein coexpressions. Many sequential glycolytic and TCA cycle enzymes were identified as putative complexes. We also identified many membrane complexes that contain cytoplasmic domains. Subunits of NDH-1 complex eluted in a fraction with an approximate mass of ∼669 kDa, and subunits composition revealed coexistence of distinct forms of NDH-1 complex subunits responsible for respiration, electron flow, and CO2 uptake. The complex form of the phycocyanin beta subunit was nonphosphorylated, and the monomer form was phosphorylated at Ser20, suggesting phosphorylation-dependent deoligomerization of the phycocyanin beta subunit. This study provides an analytical platform for future studies to reveal how these complexes assemble and disassemble as a function of diurnal and circadian rhythms.
Collapse
|
17
|
Bečková M, Gardian Z, Yu J, Konik P, Nixon PJ, Komenda J. Association of Psb28 and Psb27 Proteins with PSII-PSI Supercomplexes upon Exposure of Synechocystis sp. PCC 6803 to High Light. MOLECULAR PLANT 2017; 10:62-72. [PMID: 27530366 DOI: 10.1016/j.molp.2016.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/29/2016] [Accepted: 08/04/2016] [Indexed: 05/23/2023]
Abstract
Formation of the multi-subunit oxygen-evolving photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the localization and possible function of two homologous PSII assembly factors, Psb28-1 and Psb28-2, from the cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that FLAG-tagged Psb28-2 is present in both the monomeric PSII core complex and a PSII core complex lacking the inner antenna CP43 (RC47), whereas Psb28-1 preferentially binds to RC47. When cells are exposed to increased irradiance, both tagged Psb28 proteins additionally associate with oligomeric forms of PSII and with PSII-PSI supercomplexes composed of trimeric photosystem I (PSI) and two PSII monomers as deduced from electron microscopy. The presence of the Psb27 accessory protein in these complexes suggests the involvement of PSI in PSII biogenesis, possibly by photoprotecting PSII through energy spillover. Under standard culture conditions, the distribution of PSII complexes is similar in the wild type and in each of the single psb28 null mutants except for loss of RC47 in the absence of Psb28-1. In comparison with the wild type, growth of mutants lacking Psb28-1 and Psb27, but not Psb28-2, was retarded under high-light conditions and, especially, intermittent high-light/dark conditions, emphasizing the physiological importance of PSII assembly factors for light acclimation.
Collapse
Affiliation(s)
- Martina Bečková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Konik
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
18
|
Westermark S, Steuer R. Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach. Front Bioeng Biotechnol 2016; 4:95. [PMID: 28083530 PMCID: PMC5183639 DOI: 10.3389/fbioe.2016.00095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/09/2016] [Indexed: 11/29/2022] Open
Abstract
Oxygenic photosynthesis dominates global primary productivity ever since its evolution more than three billion years ago. While many aspects of phototrophic growth are well understood, it remains a considerable challenge to elucidate the manifold dependencies and interconnections between the diverse cellular processes that together facilitate the synthesis of new cells. Phototrophic growth involves the coordinated action of several layers of cellular functioning, ranging from the photosynthetic light reactions and the electron transport chain, to carbon-concentrating mechanisms and the assimilation of inorganic carbon. It requires the synthesis of new building blocks by cellular metabolism, protection against excessive light, as well as diurnal regulation by a circadian clock and the orchestration of gene expression and cell division. Computational modeling allows us to quantitatively describe these cellular functions and processes relevant for phototrophic growth. As yet, however, computational models are mostly confined to the inner workings of individual cellular processes, rather than describing the manifold interactions between them in the context of a living cell. Using cyanobacteria as model organisms, this contribution seeks to summarize existing computational models that are relevant to describe phototrophic growth and seeks to outline their interactions and dependencies. Our ultimate aim is to understand cellular functioning and growth as the outcome of a coordinated operation of diverse yet interconnected cellular processes.
Collapse
Affiliation(s)
- Stefanie Westermark
- Fachinstitut für Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Ralf Steuer
- Fachinstitut für Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| |
Collapse
|
19
|
Na S, Payne SH, Bandeira N. Multi-species Identification of Polymorphic Peptide Variants via Propagation in Spectral Networks. Mol Cell Proteomics 2016; 15:3501-3512. [PMID: 27609420 PMCID: PMC5098046 DOI: 10.1074/mcp.o116.060913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
Peptide and protein identification remains challenging in organisms with poorly annotated or rapidly evolving genomes, as are commonly encountered in environmental or biofuels research. Such limitations render tandem mass spectrometry (MS/MS) database search algorithms ineffective as they lack corresponding sequences required for peptide-spectrum matching. We address this challenge with the spectral networks approach to (1) match spectra of orthologous peptides across multiple related species and then (2) propagate peptide annotations from identified to unidentified spectra. We here present algorithms to assess the statistical significance of spectral alignments (Align-GF), reduce the impurity in spectral networks, and accurately estimate the error rate in propagated identifications. Analyzing three related Cyanothece species, a model organism for biohydrogen production, spectral networks identified peptides from highly divergent sequences from networks with dozens of variant peptides, including thousands of peptides in species lacking a sequenced genome. Our analysis further detected the presence of many novel putative peptides even in genomically characterized species, thus suggesting the possibility of gaps in our understanding of their proteomic and genomic expression. A web-based pipeline for spectral networks analysis is available at http://proteomics.ucsd.edu/software.
Collapse
Affiliation(s)
- Seungjin Na
- From the ‡Dept. of Computer Science and Engineering, University of California, San Diego, La Jolla, California, 92093.,§Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, California, 92093
| | - Samuel H Payne
- ¶Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Nuno Bandeira
- From the ‡Dept. of Computer Science and Engineering, University of California, San Diego, La Jolla, California, 92093; .,§Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, California, 92093.,‖Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
20
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
21
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|
22
|
The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc Natl Acad Sci U S A 2015; 112:E1916-25. [PMID: 25825710 DOI: 10.1073/pnas.1504576112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synechococcus elongatus PCC 7942 is a genetically tractable model cyanobacterium that has been engineered to produce industrially relevant biomolecules and is the best-studied model for a prokaryotic circadian clock. However, the organism is commonly grown in continuous light in the laboratory, and data on metabolic processes under diurnal conditions are lacking. Moreover, the influence of the circadian clock on diurnal metabolism has been investigated only briefly. Here, we demonstrate that the circadian oscillator influences rhythms of metabolism during diurnal growth, even though light-dark cycles can drive metabolic rhythms independently. Moreover, the phenotype associated with loss of the core oscillator protein, KaiC, is distinct from that caused by absence of the circadian output transcriptional regulator, RpaA (regulator of phycobilisome-associated A). Although RpaA activity is important for carbon degradation at night, KaiC is dispensable for those processes. Untargeted metabolomics analysis and glycogen kinetics suggest that functional KaiC is important for metabolite partitioning in the morning. Additionally, output from the oscillator functions to inhibit RpaA activity in the morning, and kaiC-null strains expressing a mutant KaiC phosphomimetic, KaiC-pST, in which the oscillator is locked in the most active output state, phenocopies a ΔrpaA strain. Inhibition of RpaA by the oscillator in the morning suppresses metabolic processes that normally are active at night, and kaiC-null strains show indications of oxidative pentose phosphate pathway activation as well as increased abundance of primary metabolites. Inhibitory clock output may serve to allow secondary metabolite biosynthesis in the morning, and some metabolites resulting from these processes may feed back to reinforce clock timing.
Collapse
|
23
|
Welkie D, Zhang X, Markillie ML, Taylor R, Orr G, Jacobs J, Bhide K, Thimmapuram J, Gritsenko M, Mitchell H, Smith RD, Sherman LA. Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light-dark cycle. BMC Genomics 2014; 15:1185. [PMID: 25547186 PMCID: PMC4320622 DOI: 10.1186/1471-2164-15-1185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/16/2014] [Indexed: 12/26/2022] Open
Abstract
Background Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light–dark cycle. Utilizing transcriptomic and proteomic methods, we quantified the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions. Results By combining mass-spectrometry based proteomics and RNA-sequencing transcriptomics, we quantitatively measured a total of 6766 mRNAs and 1322 proteins at four time points across a 24 hour light–dark cycle. Photosynthesis, nitrogen fixation, and carbon storage relevant genes were expressed during the preceding light or dark period, concurrent with measured nitrogenase activity in the late light period. We describe many instances of disparity in peak mRNA and protein abundances, and strong correlation of light dependent expression of both antisense and CRISPR-related gene expression. The proteins for nitrogenase and the pentose phosphate pathway were highest in the dark, whereas those for glycolysis and the TCA cycle were more prominent in the light. Interestingly, one copy of the psbA gene encoding the photosystem II (PSII) reaction center protein D1 (psbA4) was highly upregulated only in the dark. This protein likely cannot catalyze O2 evolution and so may be used by the cell to keep PSII intact during N2 fixation. The CRISPR elements were found exclusively at the ends of the large plasmid and we speculate that their presence is crucial to the maintenance of this plasmid. Conclusions This investigation of parallel transcriptional and translational activity within Cyanothece sp. PCC 7822 provided quantitative information on expression levels of metabolic pathways relevant to engineering efforts. The identification of expression patterns for both mRNA and protein affords a basis for improving biofuel production in this strain and for further genetic manipulations. Expression analysis of the genes encoded on the 6 plasmids provided insight into the possible acquisition and maintenance of some of these extra-chromosomal elements. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1185) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Louis A Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
24
|
Wegener KM, Nagarajan A, Pakrasi HB. An atypical psbA gene encodes a sentinel D1 protein to form a physiologically relevant inactive photosystem II complex in cyanobacteria. J Biol Chem 2014; 290:3764-74. [PMID: 25525275 DOI: 10.1074/jbc.m114.604124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II, a large membrane-bound enzyme complex in cyanobacteria and chloroplasts, mediates light-induced oxidation of water to molecular oxygen. The D1 protein of PSII, encoded by the psbA gene, provides multiple ligands for cofactors crucial to this enzymatic reaction. Cyanobacteria contain multiple psbA genes that respond to various physiological cues and environmental factors. Certain unicellular cyanobacterial cells, such as Cyanothece sp. ATCC 51142, are capable of nitrogen fixation, a highly oxygen-sensitive process, by separating oxygen evolution from nitrogen fixation using a day-night cycle. We have shown that c-psbA4, one of the five psbA orthologs in this cyanobacterium, is exclusively expressed during nighttime. Remarkably, the corresponding D1 isoform has replacements of a number of amino acids that are essential ligands for the catalytic Mn4CaO5 metal center for water oxidation by PSII. At least 30 cyanobacterial strains, most of which are known to have nitrogen fixing abilities, have similar psbA orthologs. We expressed the c-psbA4 gene from Cyanothece 51142 in a 4E-3 mutant strain of the model non-nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803, which lacks any psbA gene. The resultant strain could not grow photoautotrophically. Moreover, these Synechocystis 6803 cells were incapable of PSII-mediated oxygen evolution. Based on our findings, we have named this physiologically relevant, unusual D1 isoform sentinel D1. Sentinel D1 represents a new class of D1 protein that, when incorporated in a PSII complex, ensures that PSII cannot mediate water oxidation, thus allowing oxygen-sensitive processes such as nitrogen fixation to occur in cyanobacterial cells.
Collapse
Affiliation(s)
- Kimberly M Wegener
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Aparna Nagarajan
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Himadri B Pakrasi
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
25
|
Podobed P, Pyle WG, Ackloo S, Alibhai FJ, Tsimakouridze EV, Ratcliffe WF, Mackay A, Simpson J, Wright DC, Kirby GM, Young ME, Martino TA. The day/night proteome in the murine heart. Am J Physiol Regul Integr Comp Physiol 2014; 307:R121-37. [PMID: 24789993 DOI: 10.1152/ajpregu.00011.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function.
Collapse
|
26
|
Guo J, Nguyen AY, Dai Z, Su D, Gaffrey MJ, Moore RJ, Jacobs JM, Monroe ME, Smith RD, Koppenaal DW, Pakrasi HB, Qian WJ. Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics. Mol Cell Proteomics 2014; 13:3270-85. [PMID: 25118246 DOI: 10.1074/mcp.m114.041160] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms.
Collapse
Affiliation(s)
- Jia Guo
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Amelia Y Nguyen
- ¶Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Ziyu Dai
- ‖Energy and Efficiency Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Dian Su
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Matthew J Gaffrey
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Ronald J Moore
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Jon M Jacobs
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Matthew E Monroe
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Richard D Smith
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352; ‡‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - David W Koppenaal
- ‡‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Himadri B Pakrasi
- ¶Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Wei-Jun Qian
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352;
| |
Collapse
|
27
|
Hernández-Prieto MA, Semeniuk TA, Futschik ME. Toward a systems-level understanding of gene regulatory, protein interaction, and metabolic networks in cyanobacteria. Front Genet 2014; 5:191. [PMID: 25071821 PMCID: PMC4079066 DOI: 10.3389/fgene.2014.00191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria are essential primary producers in marine ecosystems, playing an important role in both carbon and nitrogen cycles. In the last decade, various genome sequencing and metagenomic projects have generated large amounts of genetic data for cyanobacteria. This wealth of data provides researchers with a new basis for the study of molecular adaptation, ecology and evolution of cyanobacteria, as well as for developing biotechnological applications. It also facilitates the use of multiplex techniques, i.e., expression profiling by high-throughput technologies such as microarrays, RNA-seq, and proteomics. However, exploration and analysis of these data is challenging, and often requires advanced computational methods. Also, they need to be integrated into our existing framework of knowledge to use them to draw reliable biological conclusions. Here, systems biology provides important tools. Especially, the construction and analysis of molecular networks has emerged as a powerful systems-level framework, with which to integrate such data, and to better understand biological relevant processes in these organisms. In this review, we provide an overview of the advances and experimental approaches undertaken using multiplex data from genomic, transcriptomic, proteomic, and metabolomic studies in cyanobacteria. Furthermore, we summarize currently available web-based tools dedicated to cyanobacteria, i.e., CyanoBase, CyanoEXpress, ProPortal, Cyanorak, CyanoBIKE, and CINPER. Finally, we present a case study for the freshwater model cyanobacteria, Synechocystis sp. PCC6803, to show the power of meta-analysis, and the potential to extrapolate acquired knowledge to the ecologically important marine cyanobacteria genus, Prochlorococcus.
Collapse
Affiliation(s)
| | - Trudi A Semeniuk
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve Faro, Portugal
| | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve Faro, Portugal ; Centre of Marine Sciences, University of Algarve Faro, Portugal
| |
Collapse
|
28
|
Aryal UK, Callister SJ, McMahon BH, McCue LA, Brown J, Stöckel J, Liberton M, Mishra S, Zhang X, Nicora CD, Angel TE, Koppenaal DW, Smith RD, Pakrasi HB, Sherman LA. Proteomic Profiles of Five Strains of Oxygenic Photosynthetic Cyanobacteria of the Genus Cyanothece. J Proteome Res 2014; 13:3262-76. [DOI: 10.1021/pr5000889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Uma K. Aryal
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Stephen J. Callister
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Lee-Ann McCue
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joseph Brown
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jana Stöckel
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
- MOgene Green Chemicals LC, St. Louis, Missouri 63132, United States
| | - Michelle Liberton
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Sujata Mishra
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaohui Zhang
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas E. Angel
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Kinemed, Inc., Horton Street, Emeryville, California 94608, United States
| | - David W. Koppenaal
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Himadri B. Pakrasi
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Louis A. Sherman
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Guerreiro ACL, Benevento M, Lehmann R, van Breukelen B, Post H, Giansanti P, Maarten Altelaar AF, Axmann IM, Heck AJR. Daily rhythms in the cyanobacterium synechococcus elongatus probed by high-resolution mass spectrometry-based proteomics reveals a small defined set of cyclic proteins. Mol Cell Proteomics 2014; 13:2042-55. [PMID: 24677030 DOI: 10.1074/mcp.m113.035840] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circadian rhythms are self-sustained and adjustable cycles, typically entrained with light/dark and/or temperature cycles. These rhythms are present in animals, plants, fungi, and several bacteria. The central mechanism behind these "pacemakers" and the connection to the circadian regulated pathways are still poorly understood. The circadian rhythm of the cyanobacterium Synechococcus elongatus PCC 7942 (S. elongatus) is highly robust and controlled by only three proteins, KaiA, KaiB, and KaiC. This central clock system has been extensively studied functionally and structurally and can be reconstituted in vitro. These characteristics, together with a relatively small genome (2.7 Mbp), make S. elongatus an ideal model system for the study of circadian rhythms. Different approaches have been used to reveal the influence of the central S. elongatus clock on rhythmic gene expression, rhythmic mRNA abundance, rhythmic DNA topology changes, and cell division. However, a global analysis of its proteome dynamics has not been reported yet. To uncover the variation in protein abundances during 48 h under light and dark cycles (12:12 h), we used quantitative proteomics, with TMT 6-plex isobaric labeling. We queried the S. elongatus proteome at 10 different time points spanning a single 24-h period, leading to 20 time points over the full 48-h period. Employing multidimensional separation and high-resolution mass spectrometry, we were able to find evidence for a total of 82% of the S. elongatus proteome. Of the 1537 proteins quantified over the time course of the experiment, only 77 underwent significant cyclic variations. Interestingly, our data provide evidence for in- and out-of-phase correlation between mRNA and protein levels for a set of specific genes and proteins. As a range of cyclic proteins are functionally not well annotated, this work provides a resource for further studies to explore the role of these proteins in the cyanobacterial circadian rhythm.
Collapse
Affiliation(s)
- Ana C L Guerreiro
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marco Benevento
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Robert Lehmann
- ¶Institute for Theoretical Biology (ITB), Humboldt-Universitaet zu Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany
| | - Bas van Breukelen
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Harm Post
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Piero Giansanti
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - A F Maarten Altelaar
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Ilka M Axmann
- ¶Institute for Theoretical Biology (ITB), Humboldt-Universitaet zu Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany; **Institute for Synthetic Microbiology, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany
| | - Albert J R Heck
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| |
Collapse
|
30
|
Diversity of KaiC-based timing systems in marine Cyanobacteria. Mar Genomics 2014; 14:3-16. [PMID: 24388874 DOI: 10.1016/j.margen.2013.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/19/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
The coordination of biological activities into daily cycles provides an important advantage for the fitness of diverse organisms. Most eukaryotes possess an internal clock ticking with a periodicity of about one day to anticipate sunrise and sunset. The 24-hour period of the free-running rhythm is highly robust against many changes in the natural environment. Among prokaryotes, only Cyanobacteria are known to harbor such a circadian clock. Its core oscillator consists of just three proteins, KaiA, KaiB, and KaiC that produce 24-hour oscillations of KaiC phosphorylation, even in vitro. This unique three-protein oscillator is well documented for the freshwater cyanobacterium Synechococcus elongatus PCC 7942. Several physiological studies demonstrate a circadian clock also for other Cyanobacteria including marine species. Genes for the core clock components are present in nearly all marine cyanobacterial species, though there are large differences in the specific composition of these genes. In the first section of this review we summarize data on the model circadian clock from S. elongatus PCC 7942 and compare it to the reduced clock system of the marine cyanobacterium Prochlorococcus marinus MED4. In the second part we discuss the diversity of timing mechanisms in other marine Cyanobacteria with regard to the presence or absence of different components of the clock.
Collapse
|
31
|
Mueller TJ, Berla BM, Pakrasi HB, Maranas CD. Rapid construction of metabolic models for a family of Cyanobacteria using a multiple source annotation workflow. BMC SYSTEMS BIOLOGY 2013; 7:142. [PMID: 24369854 PMCID: PMC3880981 DOI: 10.1186/1752-0509-7-142] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/19/2013] [Indexed: 12/02/2022]
Abstract
Background Cyanobacteria are photoautotrophic prokaryotes that exhibit robust growth under diverse environmental conditions with minimal nutritional requirements. They can use solar energy to convert CO2 and other reduced carbon sources into biofuels and chemical products. The genus Cyanothece includes unicellular nitrogen-fixing cyanobacteria that have been shown to offer high levels of hydrogen production and nitrogen fixation. The reconstruction of quality genome-scale metabolic models for organisms with limited annotation resources remains a challenging task. Results Here we reconstruct and subsequently analyze and compare the metabolism of five Cyanothece strains, namely Cyanothece sp. PCC 7424, 7425, 7822, 8801 and 8802, as the genome-scale metabolic reconstructions iCyc792, iCyn731, iCyj826, iCyp752, and iCyh755 respectively. We compare these phylogenetically related Cyanothece strains to assess their bio-production potential. A systematic workflow is introduced for integrating and prioritizing annotation information from the Universal Protein Resource (Uniprot), NCBI Protein Clusters, and the Rapid Annotations using Subsystems Technology (RAST) method. The genome-scale metabolic models include fully traced photosynthesis reactions and respiratory chains, as well as balanced reactions and GPR associations. Metabolic differences between the organisms are highlighted such as the non-fermentative pathway for alcohol production found in only Cyanothece 7424, 8801, and 8802. Conclusions Our development workflow provides a path for constructing models using information from curated models of related organisms and reviewed gene annotations. This effort lays the foundation for the expedient construction of curated metabolic models for organisms that, while not being the target of comprehensive research, have a sequenced genome and are related to an organism with a curated metabolic model. Organism-specific models, such as the five presented in this paper, can be used to identify optimal genetic manipulations for targeted metabolite overproduction as well as to investigate the biology of diverse organisms.
Collapse
Affiliation(s)
| | | | | | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
32
|
Qian H, Wei Y, Bao G, Huang B, Fu Z. Atrazine affects the circadian rhythm of Microcystis aeruginosa. Chronobiol Int 2013; 31:17-26. [PMID: 24028538 DOI: 10.3109/07420528.2013.817414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study provides original data regarding the effects of atrazine (Atr) on the circadian rhythm of the cyanobacterium Microcystis aeruginosa. The results reveal that the circadian rhythms of the central circadian oscillator genes reached their peaks from 1 to 2.5 h after the light was switched on, and the circadian rhythms of physiologically related genes were highly synchronized with the central circadian oscillator genes. These circadian rhythms were consistent with cell growth at the physiological level. The circadian rhythms of the central circadian oscillator genes were altered, and their peaks disappeared or were delayed by the Atr treatment. Therefore, the rhythms of the physiologically related genes in this study also changed to synchronize the new circadian rhythms. And the physiological parameters were tightly correlated with the gene circadian rhythm in the Atr treatment, suggesting that Atr affects M. aeruginosa growth by possibly altering the circadian expression patterns of the clock. Furthermore, this influence is related to the exposure time point of Atr. Thus, chemicals treated in the suitable exposure time point can exert their fullest effects against cell growth.
Collapse
Affiliation(s)
- Haifeng Qian
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou , People's Republic of China and
| | | | | | | | | |
Collapse
|
33
|
Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 2013; 4:246. [PMID: 24009604 PMCID: PMC3755261 DOI: 10.3389/fmicb.2013.00246] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022] Open
Abstract
Photosynthetic organisms, and especially cyanobacteria, hold great promise as sources of renewably-produced fuels, bulk and specialty chemicals, and nutritional products. Synthetic biology tools can help unlock cyanobacteria's potential for these functions, but unfortunately tool development for these organisms has lagged behind that for S. cerevisiae and E. coli. While these organisms may in many cases be more difficult to work with as “chassis” strains for synthetic biology than certain heterotrophs, the unique advantages of autotrophs in biotechnology applications as well as the scientific importance of improved understanding of photosynthesis warrant the development of these systems into something akin to a “green E. coli.” In this review, we highlight unique challenges and opportunities for development of synthetic biology approaches in cyanobacteria. We review classical and recently developed methods for constructing targeted mutants in various cyanobacterial strains, and offer perspective on what genetic tools might most greatly expand the ability to engineer new functions in such strains. Similarly, we review what genetic parts are most needed for the development of cyanobacterial synthetic biology. Finally, we highlight recent methods to construct genome-scale models of cyanobacterial metabolism and to use those models to measure properties of autotrophic metabolism. Throughout this paper, we discuss some of the unique challenges of a diurnal, autotrophic lifestyle along with how the development of synthetic biology and biotechnology in cyanobacteria must fit within those constraints.
Collapse
Affiliation(s)
- Bertram M Berla
- Department of Energy, Environmental, and Chemical Engineering, Washington University St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
34
|
Knoop H, Gründel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R. Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 2013; 9:e1003081. [PMID: 23843751 PMCID: PMC3699288 DOI: 10.1371/journal.pcbi.1003081] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 04/15/2013] [Indexed: 12/18/2022] Open
Abstract
Cyanobacteria are versatile unicellular phototrophic microorganisms that are highly abundant in many environments. Owing to their capability to utilize solar energy and atmospheric carbon dioxide for growth, cyanobacteria are increasingly recognized as a prolific resource for the synthesis of valuable chemicals and various biofuels. To fully harness the metabolic capabilities of cyanobacteria necessitates an in-depth understanding of the metabolic interconversions taking place during phototrophic growth, as provided by genome-scale reconstructions of microbial organisms. Here we present an extended reconstruction and analysis of the metabolic network of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Building upon several recent reconstructions of cyanobacterial metabolism, unclear reaction steps are experimentally validated and the functional consequences of unknown or dissenting pathway topologies are discussed. The updated model integrates novel results with respect to the cyanobacterial TCA cycle, an alleged glyoxylate shunt, and the role of photorespiration in cellular growth. Going beyond conventional flux-balance analysis, we extend the computational analysis to diurnal light/dark cycles of cyanobacterial metabolism.
Collapse
Affiliation(s)
- Henning Knoop
- Humboldt-Universität zu Berlin, Institut für Theoretische Biologie, Berlin, Germany
- * E-mail: (HK); (RS)
| | - Marianne Gründel
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| | - Yvonne Zilliges
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| | - Robert Lehmann
- Humboldt-Universität zu Berlin, Institut für Theoretische Biologie, Berlin, Germany
| | - Sabrina Hoffmann
- Humboldt-Universität zu Berlin, Institut für Theoretische Biologie, Berlin, Germany
| | - Wolfgang Lockau
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| | - Ralf Steuer
- Humboldt-Universität zu Berlin, Institut für Theoretische Biologie, Berlin, Germany
- CzechGlobe - Global Change Research Center, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- * E-mail: (HK); (RS)
| |
Collapse
|
35
|
Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142. PLoS One 2013; 8:e56887. [PMID: 23457634 PMCID: PMC3574086 DOI: 10.1371/journal.pone.0056887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/17/2013] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.
Collapse
|
36
|
Proteome analyses of strains ATCC 51142 and PCC 7822 of the diazotrophic cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H₂ production. Appl Environ Microbiol 2012. [PMID: 23204418 DOI: 10.1128/aem.02864-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N(2)-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes, and we performed quantitative proteome analysis of Cyanothece sp. strains ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N(2)-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher levels of respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H(2)-producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H(2) production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822 and allow an in-depth comparative analysis of major physiological and biochemical processes that influence H(2) production in both strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large-scale H(2) production.
Collapse
|
37
|
Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD. Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS One 2012; 7:e48285. [PMID: 23133581 PMCID: PMC3487460 DOI: 10.1371/journal.pone.0048285] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/21/2012] [Indexed: 12/02/2022] Open
Abstract
Cyanobacteria are an important group of photoautotrophic organisms that can synthesize valuable bio-products by harnessing solar energy. They are endowed with high photosynthetic efficiencies and diverse metabolic capabilities that confer the ability to convert solar energy into a variety of biofuels and their precursors. However, less well studied are the similarities and differences in metabolism of different species of cyanobacteria as they pertain to their suitability as microbial production chassis. Here we assemble, update and compare genome-scale models (iCyt773 and iSyn731) for two phylogenetically related cyanobacterial species, namely Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. All reactions are elementally and charge balanced and localized into four different intracellular compartments (i.e., periplasm, cytosol, carboxysome and thylakoid lumen) and biomass descriptions are derived based on experimental measurements. Newly added reactions absent in earlier models (266 and 322, respectively) span most metabolic pathways with an emphasis on lipid biosynthesis. All thermodynamically infeasible loops are identified and eliminated from both models. Comparisons of model predictions against gene essentiality data reveal a specificity of 0.94 (94/100) and a sensitivity of 1 (19/19) for the Synechocystis iSyn731 model. The diurnal rhythm of Cyanothece 51142 metabolism is modeled by constructing separate (light/dark) biomass equations and introducing regulatory restrictions over light and dark phases. Specific metabolic pathway differences between the two cyanobacteria alluding to different bio-production potentials are reflected in both models.
Collapse
Affiliation(s)
- Rajib Saha
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alex T. Verseput
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bertram M. Berla
- Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Thomas J. Mueller
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Himadri B. Pakrasi
- Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Coelho SM, Simon N, Ahmed S, Cock JM, Partensky F. Ecological and evolutionary genomics of marine photosynthetic organisms. Mol Ecol 2012; 22:867-907. [PMID: 22989289 DOI: 10.1111/mec.12000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023]
Abstract
Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms.
Collapse
Affiliation(s)
- Susana M Coelho
- UPMC-Université Paris 06, Station Biologique de Roscoff, Roscoff, France.
| | | | | | | | | |
Collapse
|
39
|
Waldbauer JR, Rodrigue S, Coleman ML, Chisholm SW. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle. PLoS One 2012; 7:e43432. [PMID: 22952681 PMCID: PMC3430701 DOI: 10.1371/journal.pone.0043432] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/20/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Growth of the ocean's most abundant primary producer, the cyanobacterium Prochlorococcus, is tightly synchronized to the natural 24-hour light-dark cycle. We sought to quantify the relationship between transcriptome and proteome dynamics that underlie this obligate photoautotroph's highly choreographed response to the daily oscillation in energy supply. METHODOLOGY/PRINCIPAL FINDINGS Using RNA-sequencing transcriptomics and mass spectrometry-based quantitative proteomics, we measured timecourses of paired mRNA-protein abundances for 312 genes every 2 hours over a light-dark cycle. These temporal expression patterns reveal strong oscillations in transcript abundance that are broadly damped at the protein level, with mRNA levels varying on average 2.3 times more than the corresponding protein. The single strongest observed protein-level oscillation is in a ribonucleotide reductase, which may reflect a defense strategy against phage infection. The peak in abundance of most proteins also lags that of their transcript by 2-8 hours, and the two are completely antiphase for some genes. While abundant antisense RNA was detected, it apparently does not account for the observed divergences between expression levels. The redirection of flux through central carbon metabolism from daytime carbon fixation to nighttime respiration is associated with quite small changes in relative enzyme abundances. CONCLUSIONS/SIGNIFICANCE Our results indicate that expression responses to periodic stimuli that are common in natural ecosystems (such as the diel cycle) can diverge significantly between the mRNA and protein levels. Protein expression patterns that are distinct from those of cognate mRNA have implications for the interpretation of transcriptome and metatranscriptome data in terms of cellular metabolism and its biogeochemical impact.
Collapse
Affiliation(s)
- Jacob R. Waldbauer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Joint Program in Chemical Oceanography, Woods Hole Oceanographic Institution and Massachusetts Institute of Technology, Cambridge Massachusetts, United States of America
| | - Sébastien Rodrigue
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Maureen L. Coleman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts, United States of America
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts, United States of America
| |
Collapse
|
40
|
Vu TT, Stolyar SM, Pinchuk GE, Hill EA, Kucek LA, Brown RN, Lipton MS, Osterman A, Fredrickson JK, Konopka AE, Beliaev AS, Reed JL. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. PLoS Comput Biol 2012; 8:e1002460. [PMID: 22529767 PMCID: PMC3329150 DOI: 10.1371/journal.pcbi.1002460] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/20/2012] [Indexed: 11/22/2022] Open
Abstract
Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values. Cyanobacteria have been promoted as platforms for biofuel production due to their useful physiological properties such as photosynthesis, relatively rapid growth rates, ability to accumulate high amounts of intracellular compounds and tolerance to extreme environments. However, development of a computational model is an important step to synthesize biochemical, physiological and regulatory understanding of photoautotrophic metabolism (either qualitatively or quantitatively) at a systems level, to make metabolic engineering of these organisms tractable. When integrated with other genome-scale data (e.g., expression data), numerical simulations can provide experimentally testable predictions of carbon fluxes and reductant partitioning to different biosynthetic pathways and macromolecular synthesis. This work is the first to computationally explore the interactions between components of photosynthetic and respiratory systems in detail. In silico predictions obtained from model analysis provided insights into the effects of light quantity and quality upon fluxes through electron transport pathways, alternative pathways for reductant consumption and carbon metabolism. The model will not only serve as a platform to develop genome-scale metabolic models for other cyanobacteria, but also as an engineering tool for manipulation of photosynthetic microorganisms to improve biofuel production.
Collapse
Affiliation(s)
- Trang T. Vu
- Department of Chemical and Biological Engineering, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sergey M. Stolyar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Grigoriy E. Pinchuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Eric A. Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Leo A. Kucek
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Roslyn N. Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S. Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Andrei Osterman
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Jim K. Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Allan E. Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Alexander S. Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail: (ASB); (JLR)
| | - Jennifer L. Reed
- Department of Chemical and Biological Engineering, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- * E-mail: (ASB); (JLR)
| |
Collapse
|
41
|
Steuer R, Knoop H, Machné R. Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2259-74. [PMID: 22450165 DOI: 10.1093/jxb/ers018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cyanobacteria are phototrophic microorganisms of global importance and have recently attracted increasing attention due to their capability to convert sunlight and atmospheric CO(2) directly into organic compounds, including carbon-based biofuels. The utilization of cyanobacteria as a biological chassis to generate third-generation biofuels would greatly benefit from an increased understanding of cyanobacterial metabolism and its interplay with other cellular processes. In this respect, metabolic modelling has been proposed as a way to overcome the traditional trial and error methodology that is often employed to introduce novel pathways. In particular, flux balance analysis and related methods have proved to be powerful tools to investigate the organization of large-scale metabolic networks-with the prospect of predicting modifications that are likely to increase the yield of a desired product and thereby to streamline the experimental progress and avoid futile avenues. This contribution seeks to describe the utilization of metabolic modelling as a research tool to understand the metabolism and phototrophic growth of cyanobacteria. The focus of the contribution is on a mathematical description of the metabolic network of Synechocystis sp. PCC 6803 and its analysis using constraint-based methods. A particular challenge is to integrate the description of the metabolic network with other cellular processes, such as the circadian clock, the photosynthetic light reactions, carbon concentration mechanism, and transcriptional regulation-aiming at a predictive model of a cyanobacterium in silico.
Collapse
Affiliation(s)
- Ralf Steuer
- Institute of Theoretical Biology, Humboldt-University Berlin, Invalidenstr. 43, D-10115 Berlin, Germany.
| | | | | |
Collapse
|
42
|
Aryal UK, Stöckel J, Welsh EA, Gritsenko MA, Nicora CD, Koppenaal DW, Smith RD, Pakrasi HB, Jacobs JM. Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light. J Proteome Res 2011; 11:609-19. [PMID: 22060561 DOI: 10.1021/pr200959x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a (13)C(15)N-l-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen-sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 414 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly, and degradation showed higher levels of isotope incorporation, suggesting that these biochemical pathways are important for growth under continuous light. Calculation of relative isotope abundances (RIA) values allowed the measurement of actual active protein synthesis over time for different biochemical pathways under high light exposure. Overall results demonstrated the utility of "non-steady state" pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.
Collapse
Affiliation(s)
- Uma K Aryal
- Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aryal UK, Stöckel J, Krovvidi RK, Gritsenko MA, Monroe ME, Moore RJ, Koppenaal DW, Smith RD, Pakrasi HB, Jacobs JM. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles. BMC SYSTEMS BIOLOGY 2011; 5:194. [PMID: 22133144 PMCID: PMC3261843 DOI: 10.1186/1752-0509-5-194] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/01/2011] [Indexed: 01/22/2023]
Abstract
Background Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions. Results To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. Conclusion This study provides a deeper systems level insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.
Collapse
Affiliation(s)
- Uma K Aryal
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tang KH, Tang YJ, Blankenship RE. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2011; 2:165. [PMID: 21866228 PMCID: PMC3149686 DOI: 10.3389/fmicb.2011.00165] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022] Open
Abstract
Photosynthesis is the biological process that converts solar energy to biomass, bio-products, and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and (13)C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO(2) assimilation pathways, acetate assimilation, carbohydrate catabolism, the tricarboxylic acid cycle and some key, and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Yinjie J. Tang
- Department of Energy, Environment, and Chemical Engineering, Washington University in St. LouisSt. Louis, MO, USA
| | - Robert Eugene Blankenship
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|