1
|
Dohr KA, Tokic S, Gastager-Ehgartner M, Stojakovic T, Dumic M, Plecko B, Dumic KK. Two Single Nucleotide Deletions in the ABCD1 Gene Causing Distinct Phenotypes of X-Linked Adrenoleukodystrophy. Int J Mol Sci 2023; 24:ijms24065957. [PMID: 36983033 PMCID: PMC10051867 DOI: 10.3390/ijms24065957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a rare inborn error of the peroxisomal metabolism caused by pathologic variants in the ATP-binding cassette transporter type D, member 1 (ABCD1) gene located on the X-chromosome. ABCD1 protein, also known as adrenoleukodystrophy protein, is responsible for transport of the very long chain fatty acids (VLCFA) from cytoplasm into the peroxisomes. Therefore, altered function or lack of the ABCD1 protein leads to accumulation of VLCFA in various tissues and blood plasma leading to either rapidly progressive leukodystrophy (cerebral ALD), progressive adrenomyeloneuropathy (AMN), or isolated primary adrenal insufficiency (Addison's disease). We report two distinct single nucleotide deletions in the ABCD1 gene, c.253delC [p.Arg85Glyfs*18] in exon 1, leading to both cerebral ALD and to AMN phenotype in one family, and c.1275delA [p.Phe426Leufs*15] in exon 4, leading to AMN and primary adrenal insufficiency in a second family. For the latter variant, we demonstrate reduced mRNA expression and a complete absence of the ABCD1 protein in PBMC. Distinct mRNA and protein expression in the index patient and heterozygous carriers does not associate with VLCFA concentration in plasma, which is in line with the absence of genotype-phenotype correlation in X-ALD.
Collapse
Affiliation(s)
- Katrin A Dohr
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Magdalena Gastager-Ehgartner
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, 8036 Graz, Austria
| | - Miroslav Dumic
- Department of Paediatric Endocrinology and Diabetes, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Barbara Plecko
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Katja K Dumic
- Department of Paediatric Endocrinology and Diabetes, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Doleschall M, Darvasi O, Herold Z, Doleschall Z, Nyirő G, Somogyi A, Igaz P, Patócs A. Quantitative PCR from human genomic DNA: The determination of gene copy numbers for congenital adrenal hyperplasia and RCCX copy number variation. PLoS One 2022; 17:e0277299. [PMID: 36454796 PMCID: PMC9714944 DOI: 10.1371/journal.pone.0277299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022] Open
Abstract
Quantitative PCR (qPCR) is used for the determination of gene copy number (GCN). GCNs contribute to human disorders, and characterize copy number variation (CNV). The single laboratory method validations of duplex qPCR assays with hydrolysis probes on CYP21A1P and CYP21A2 genes, residing a CNV (RCCX CNV) and related to congenital adrenal hyperplasia, were performed using 46 human genomic DNA samples. We also performed the verifications on 5 qPCR assays for the genetic elements of RCCX CNV; C4A, C4B, CNV breakpoint, HERV-K(C4) CNV deletion and insertion alleles. Precision of each qPCR assay was under 1.01 CV%. Accuracy (relative error) ranged from 4.96±4.08% to 9.91±8.93%. Accuracy was not tightly linked to precision, but was significantly correlated with the efficiency of normalization using the RPPH1 internal reference gene (Spearman's ρ: 0.793-0.940, p>0.0001), ambiguity (ρ = 0.671, p = 0.029) and misclassification (ρ = 0.769, p = 0.009). A strong genomic matrix effect was observed, and target-singleplex (one target gene in one assay) qPCR was able to appropriately differentiate 2 GCN from 3 GCN at best. The analysis of all GCNs from the 7 qPCR assays using a multiplex approach increased the resolution of differentiation, and produced 98% of GCNs unambiguously, and all of which were in 100% concordance with GCNs measured by Southern blot, MLPA and aCGH. We conclude that the use of an internal (in one assay with the target gene) reference gene, the use of allele-specific primers or probes, and the multiplex approach (in one assay or different assays) are crucial for GCN determination using qPCR or other methods.
Collapse
Affiliation(s)
- Márton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
- * E-mail:
| | - Ottó Darvasi
- Hereditary Tumours Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
| | - Zoltán Herold
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Doleschall
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - Gábor Nyirő
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Igaz
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Hereditary Tumours Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Hematology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
3
|
Algady W, Weyell E, Mateja D, Garcia A, Courtin D, Hollox EJ. Genotyping complex structural variation at the malaria-associated human glycophorin locus using a PCR-based strategy. Ann Hum Genet 2020; 85:7-17. [PMID: 32895931 DOI: 10.1111/ahg.12405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/23/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
Structural variation in the human genome can affect risk of disease. An example is a complex structural variant of the human glycophorin gene cluster, called DUP4, which is associated with a clinically significant level of protection against severe malaria. The human glycophorin gene cluster harbours at least 23 distinct structural variants, and accurate genotyping of this complex structural variation remains a challenge. Here, we use a polymerase chain reaction-based strategy to genotype structural variation at the human glycophorin gene cluster, including the alleles responsible for the U- blood group. We validate our approach, based on a triplex paralogue ratio test, on publically available samples from the 1000 Genomes project. We then genotype 574 individuals from a longitudinal birth cohort (Tori-Bossito cohort) using small amounts of DNA at low cost. Our approach readily identifies known deletions and duplications, and can potentially identify novel variants for further analysis. It will allow exploration of genetic variation at the glycophorin locus, and investigation of its relationship with malaria, in large sample sets at minimal cost, using standard molecular biology equipment.
Collapse
Affiliation(s)
- Walid Algady
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Eleanor Weyell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Daria Mateja
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - André Garcia
- UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Université de Paris, Paris, France
| | - David Courtin
- UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Université de Paris, Paris, France
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
4
|
Abujaber R, Shea PR, McLaren PJ, Lakhi S, Gilmour J, Allen S, Fellay J, Hollox EJ. No Evidence for Association of β-Defensin Genomic Copy Number with HIV Susceptibility, HIV Load during Clinical Latency, or Progression to AIDS. Ann Hum Genet 2017; 81:27-34. [PMID: 28084001 DOI: 10.1111/ahg.12182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/30/2016] [Indexed: 11/28/2022]
Abstract
Common single-nucleotide variation in the host accounts for 25% of the variability in the plasma levels of HIV during the clinical latency stage (viral load set point). However, the role of rare variants and copy number variants remains relatively unexplored. Previous work has suggested copy number variation of a cluster of β-defensin genes affects HIV load in treatment-naïve sub-Saharan Africans and rate of response to antiretroviral treatment. Here we analyse a total of 1827 individuals from two cohorts of HIV-infected individuals from Europe and sub-Saharan Africa to investigate the role of β-defensin copy number variation on HIV load at set point. We find no evidence for association of copy number with viral load. We also compare distribution of β-defensin copy number between European cases and controls and find no differences, arguing against a role of β-defensin copy number in HIV acquisition. Taken together, our data argue against an effect of copy number variation of the β-defensin region in the spontaneous control of HIV infection.
Collapse
Affiliation(s)
- Razan Abujaber
- Department of Genetics, University of Leicester, Leicester, UK
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Paul J McLaren
- National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Shabir Lakhi
- International AIDS Vaccine Initiative (IAVI), New York, New York, USA.,Zambia-Emory HIV Research Project, Lusaka and Copperbelt, Zambia
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), New York, New York, USA.,IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Susan Allen
- International AIDS Vaccine Initiative (IAVI), New York, New York, USA.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Edward J Hollox
- Department of Genetics, University of Leicester, Leicester, UK
| | -
- Department of Genetics, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Abstract
Copy number variation (CNV), where a segment of DNA differs in copy number between different individuals, is an extensive and often underappreciated source of genetic variation within species. However, reliably determining copy number of a particular DNA sequence for a large number of samples can be challenging. Here, I describe and review the paralogue ratio test (PRT) in detail. PRT was developed to robustly type the CNV of the beta-defensin locus using small amounts of genomic DNA in a high-throughput manner, and has been applied successfully at many other loci. I discuss the strategies for designing successful PRT assays using both manual and bioinformatics methods, how to optimize experimental conditions, and approaches for analyzing the data. I discuss strengths and weaknesses of the approach, and how to troubleshoot results, as well as the range of problems to which PRT can be a potential solution.
Collapse
|
6
|
Ai Z, Li M, Liu W, Foo JN, Mansouri O, Yin P, Zhou Q, Tang X, Dong X, Feng S, Xu R, Zhong Z, Chen J, Wan J, Lou T, Yu J, Zhou Q, Fan J, Mao H, Gale D, Barratt J, Armour JAL, Liu J, Yu X. Low α-defensin gene copy number increases the risk for IgA nephropathy and renal dysfunction. Sci Transl Med 2016; 8:345ra88. [PMID: 27358498 DOI: 10.1126/scitranslmed.aaf2106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022]
Abstract
Although a major source of genetic variation, copy number variations (CNVs) and their involvement in disease development have not been well studied. Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. We performed association analysis of the DEFA1A3 CNV locus in two independent IgAN cohorts of southern Chinese Han (total of 1189 cases and 1187 controls). We discovered three independent copy number associations within the locus: DEFA1A3 [P = 3.99 × 10−9; odds ratio (OR), 0.88], DEFA3 (P = 6.55 × 10−5; OR, 0.82), and a noncoding deletion variant (211bp) (P = 3.50 × 10−16; OR, 0.75) (OR per copy, fixed-effects meta-analysis). While showing strong association with an increased risk for IgAN (P = 9.56 × 10−20), low total copy numbers of the three variants also showed significant association with renal dysfunction in patients with IgAN (P = 0.03; hazards ratio, 3.69; after controlling for the effects of known prognostic factors) and also with increased serum IgA1 (P = 0.02) and galactose-deficient IgA1 (P = 0.03). For replication, we confirmed the associations of DEFA1A3 (P = 4.42 × 10−4; OR, 0.82) and DEFA3 copy numbers (P = 4.30 × 10−3; OR, 0.74) with IgAN in a Caucasian cohort (531 cases and 198 controls) and found the 211bp variant to be much rarer in Caucasians. We also observed an association of the 211bp copy number with membranous nephropathy (P = 1.11 × 10−7; OR, 0.74; in 493 Chinese cases and 500 matched controls), but not with diabetic kidney disease (in 806 Chinese cases and 786 matched controls). By explaining 4.96% of disease risk and influencing renal dysfunction in patients with IgAN, the DEFA1A3 CNV locus may be a potential therapeutic target for developing treatments for this disease.
Collapse
Affiliation(s)
- Zhen Ai
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Ming Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Wenting Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Jia-Nee Foo
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Omniah Mansouri
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peiran Yin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Qian Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Xueqing Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Xiuqing Dong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Shaozhen Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Ricong Xu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Jian Chen
- Department of Nephrology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian 350025, China
| | - Jianxin Wan
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Tanqi Lou
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China
| | - Daniel Gale
- University College London Centre for Nephrology, Royal Free Hospital, London NW3 2PF, UK
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - John A L Armour
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore. School of Biological Sciences, Anhui Medical University, Hefei, Anhui 230032, China. Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore.
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China. Key Laboratory of Nephrology, Ministry of Health and Guangdong Province, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
7
|
Copy number variation of scavenger-receptor cysteine-rich domains within DMBT1 and Crohn's disease. Eur J Hum Genet 2016; 24:1294-300. [PMID: 26813944 PMCID: PMC4851238 DOI: 10.1038/ejhg.2015.280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
Previous work has shown that the gene DMBT1, which encodes a large secreted epithelial glycoprotein known as salivary agglutinin, gp340, hensin or muclin, is an innate immune defence protein that binds bacteria. A deletion variant of DMBT1 has been previously associated with Crohn's disease, and a DMBT1−/− knockout mouse has increased levels of colitis induced by dextran sulphate. DMBT1 has a complex copy number variable structure, with two, independent, rapidly mutating copy number variable regions, called CNV1 and CNV2. Because the copy number variable regions are predicted to affect the number of bacteria-binding domains, different alleles may alter host–microbe interactions in the gut. Our aim was to investigate the role of this complex variation in susceptibility to Crohn's disease by assessing the previously reported association. We analysed the association of both copy number variable regions with presence of Crohn's disease, and its severity, on three case–control cohorts. We also reanalysed array comparative genomic hybridisation data (aCGH) from a large case–control cohort study for both copy number variable regions. We found no association with a linear increase in copy number, nor when the CNV1 is regarded as presence or absence of a deletion allele. Taken together, we show that the DMBT1 CNV does not affect susceptibility to Crohn's disease, at least in Northern Europeans.
Collapse
|
8
|
Translating Lung Function Genome-Wide Association Study (GWAS) Findings. ADVANCES IN GENETICS 2016; 93:57-145. [DOI: 10.1016/bs.adgen.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Marino RB, Kingsley LA, Hussain SK, Bream JH, Penogonda S, Duggal P, Martinson JJ. Lipid levels in HIV-positive men receiving anti-retroviral therapy are not associated with copy number variation of reverse cholesterol transport pathway genes. BMC Res Notes 2015; 8:697. [PMID: 26590594 PMCID: PMC4654814 DOI: 10.1186/s13104-015-1665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The exacerbation of HIV-1 associated dyslipidemia seen in a subset of patients receiving anti-retroviral therapy suggests that genetic factors put these individuals at greater risk of cardiovascular disease. Single nucleotide polymorphisms (SNPs) within genes of and influencing the reverse cholesterol transport (RCT) pathway are associated with lipid levels but little is known regarding their copy number variation (CNV). This form of quantitative genetic variation has the potential to alter the amount of gene product made, thereby also influencing lipid metabolism. RESULTS To examine if CNV in RCT pathway genes was associated with altered serum lipid profiles in HIV-positive individuals receiving therapy, we designed a custom multiplex ligation-dependent probe amplification assay to screen 16 RCT genes within a subset of individuals from the Multicenter AIDS Cohort Study who show extreme lipid phenotypes. Verification of CNV was performed using a custom NanoString assay, and the Illumina HT-12 mRNA expression microarray was used to determine the influence of copy number on gene expression. Among the RCT genes, CNV was observed to be extremely rare. The only CNV seen was in the CETP gene, which showed a loss of copy in 1 of the 320 samples (0.3%) in our study. The genes in our study showed little variation in expression between individuals, and the variation seen was not related to any detected CNV. CONCLUSIONS Whole gene CNV is uncommon in RCT pathway genes, and not a major factor in the development of highly active antiretroviral therapy (HAART) associated dyslipidemia.
Collapse
Affiliation(s)
- Rebecca B Marino
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
| | - Lawrence A Kingsley
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
| | - Shehnaz K Hussain
- Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Jay H Bream
- Bloomberg School of Public Health, Johns Hopkins University, 615 Wolfe St, Baltimore, MD, 21205, USA.
| | - Sudhir Penogonda
- Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Chicago, IL, 60611, USA.
| | - Priya Duggal
- Bloomberg School of Public Health, Johns Hopkins University, 615 Wolfe St, Baltimore, MD, 21205, USA.
| | - Jeremy J Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
10
|
Forni D, Martin D, Abujaber R, Sharp AJ, Sironi M, Hollox EJ. Determining multiallelic complex copy number and sequence variation from high coverage exome sequencing data. BMC Genomics 2015; 16:891. [PMID: 26526070 PMCID: PMC4630827 DOI: 10.1186/s12864-015-2123-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number variation (CNV) is a major component of genomic variation, yet methods to accurately type genomic CNV lag behind methods that type single nucleotide variation. High-throughput sequencing can contribute to these methods by using sequence read depth, which takes the number of reads that map to a given part of the reference genome as a proxy for copy number of that region, and compares across samples. Furthermore, high-throughput sequencing also provides information on the sequence differences between copies within and between individuals. METHODS In this study we use high-coverage phase 3 exome sequences of the 1000 Genomes project to infer diploid copy number of the beta-defensin genomic region, a well-studied CNV that carries several beta-defensin genes involved in the antimicrobial response, signalling, and fertility. We also use these data to call sequence variants, a particular challenge given the multicopy nature of the region. RESULTS We confidently call copy number and sequence variation of the beta-defensin genes on 1285 samples from 26 global populations, validate copy number using Nanostring nCounter and triplex paralogue ratio test data. We use the copy number calls to verify the genomic extent of the CNV and validate sequence calls using analysis of cloned PCR products. We identify novel variation, mostly individually rare, predicted to alter amino-acid sequence in the beta-defensin genes. Such novel variants may alter antimicrobial properties or have off-target receptor interactions, and may contribute to individuality in immunological response and fertility. CONCLUSIONS Given that 81% of identified sequence variants were not previously in dbSNP, we show that sequence variation in multiallelic CNVs represent an unappreciated source of genomic diversity.
Collapse
Affiliation(s)
- Diego Forni
- Department of Genetics, University of Leicester, Leicester, UK.,Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio, Parini, Italy
| | - Diana Martin
- Department of Genetics, University of Leicester, Leicester, UK
| | - Razan Abujaber
- Department of Genetics, University of Leicester, Leicester, UK
| | - Andrew J Sharp
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio, Parini, Italy
| | - Edward J Hollox
- Department of Genetics, University of Leicester, Leicester, UK.
| |
Collapse
|
11
|
Genotyping of common SIRPB1 copy number variant using Paralogue Ratio Test coupled to MALDI-MS quantification. Mol Cell Probes 2015; 29:517-521. [PMID: 26239731 DOI: 10.1016/j.mcp.2015.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022]
Abstract
Copy number variant (CNV) regions have been proven to have a significant impact on gene expression. Some of them have been also found to be associated to different human diseases. CNV genotyping is often prone to error and cross-validation with independent methods is frequently required. The platform of choice depends on whether it is a genome-wide discovery screening or a candidate CNV study, the cohort size and the number of CNVs included in the assay and, finally, the budget available. Here we illustrate a affordable approach to determine the CNV genotype using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and based on the quantitative determination of single nucleotide duplicated mismatches (SNDM) mapping the CNV region and a paralogue genomic region that is used as a two-copy reference. We have genotyped nsv436327, a common CNV mapping SIRPB1 intron 1 that has been associated to human personality behavior. SIRP cluster region was subjected to several ancestral duplication events what makes SIRPB1 CNV genotyping technically challenging. We designed three sets of primer pairs that amplified paralogue regions inside and outside the CNV, containing three SNDMs. Post-PCR extension analyses of sequencing oligonucleotides mapping immediately upstream each SNDM allowed us to quantify using MALDI-MS the proportion of PCR products derived from the CNV region versus the external reference. In contrast to other approaches, setting up this genotyping method requires an affordable investment.
Collapse
|
12
|
Abstract
Hundreds of copy number variants are complex and multi-allelic, in that they have many structural alleles and have rearranged multiple times in the ancestors who contributed chromosomes to current humans. Not only are the relationships of these multi-allelic CNVs (mCNVs) to phenotypes generally unknown, but many mCNVs have not yet been described at the basic levels—alleles, allele frequencies, structural features—that support genetic investigation. To date, most reported disease associations to these variants have been ascertained through candidate gene studies. However, only a few associations have reached the level of acceptance defined by durable replications in many cohorts. This likely stems from longstanding challenges in making precise molecular measurements of the alleles individuals have at these loci. However, approaches for mCNV analysis are improving quickly, and some of the unique characteristics of mCNVs may assist future association studies. Their various structural alleles are likely to have different magnitudes of effect, creating a natural allelic series of growing phenotypic impact and giving investigators a set of natural predictions and testable hypotheses about the extent to which each allele of an mCNV predisposes to a phenotype. Also, mCNVs’ low-to-modest correlation to individual single-nucleotide polymorphisms (SNPs) may make it easier to distinguish between mCNVs and nearby SNPs as the drivers of an association signal, and perhaps, make it possible to preliminarily screen candidate loci, or the entire genome, for the many mCNV–disease relationships that remain to be discovered.
Collapse
|
13
|
Haridan US, Mokhtar U, Machado LR, Abdul Aziz AT, Shueb RH, Zaid M, Sim B, Mustafa M, Nik Yusof NK, Lee CKC, Abu Bakar S, AbuBakar S, Hollox EJ, Boon Peng H. A comparison of assays for accurate copy number measurement of the low-affinity Fc gamma receptor genes FCGR3A and FCGR3B. PLoS One 2015; 10:e0116791. [PMID: 25594501 PMCID: PMC4297192 DOI: 10.1371/journal.pone.0116791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/16/2014] [Indexed: 11/18/2022] Open
Abstract
The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (PRT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method’s performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs.
Collapse
Affiliation(s)
- Umi Shakina Haridan
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Umairah Mokhtar
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Lee R. Machado
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Abu Thalhah Abdul Aziz
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Rafidah Hanim Shueb
- Department of Microbiology and Parasitology, School of Medical Science, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Masliza Zaid
- Department of Medicine, Hospital Sungai Buloh, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Benedict Sim
- Department of Medicine, Hospital Sungai Buloh, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Mahiran Mustafa
- Hospital Raja Perempuan Zainab II, Kota Bharu, Kelantan, Malaysia
| | | | - Christopher K. C. Lee
- Department of Medicine, Hospital Sungai Buloh, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Suhaili Abu Bakar
- Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Tropical Infectious Disease Research and Education Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Edward J. Hollox
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Hoh Boon Peng
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
14
|
Brahmachary M, Guilmatre A, Quilez J, Hasson D, Borel C, Warburton P, Sharp AJ. Digital genotyping of macrosatellites and multicopy genes reveals novel biological functions associated with copy number variation of large tandem repeats. PLoS Genet 2014; 10:e1004418. [PMID: 24945355 PMCID: PMC4063668 DOI: 10.1371/journal.pgen.1004418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 04/22/2014] [Indexed: 11/30/2022] Open
Abstract
Tandem repeats are common in eukaryotic genomes, but due to difficulties in assaying them remain poorly studied. Here, we demonstrate the utility of Nanostring technology as a targeted approach to perform accurate measurement of tandem repeats even at extremely high copy number, and apply this technology to genotype 165 HapMap samples from three different populations and five species of non-human primates. We observed extreme variability in copy number of tandemly repeated genes, with many loci showing 5–10 fold variation in copy number among humans. Many of these loci show hallmarks of genome assembly errors, and the true copy number of many large tandem repeats is significantly under-represented even in the high quality ‘finished’ human reference assembly. Importantly, we demonstrate that most large tandem repeat variations are not tagged by nearby SNPs, and are therefore essentially invisible to SNP-based GWAS approaches. Using association analysis we identify many cis correlations of large tandem repeat variants with nearby gene expression and DNA methylation levels, indicating that variations of tandem repeat length are associated with functional effects on the local genomic environment. This includes an example where expansion of a macrosatellite repeat is associated with increased DNA methylation and suppression of nearby gene expression, suggesting a mechanism termed “repeat induced gene silencing”, which has previously been observed only in transgenic organisms. We also observed multiple signatures consistent with altered selective pressures at tandemly repeated loci, suggesting important biological functions. Our studies show that tandemly repeated loci represent a highly variable fraction of the genome that have been systematically ignored by most previous studies, copy number variation of which can exert functionally significant effects. We suggest that future studies of tandem repeat loci will lead to many novel insights into their role in modulating both genomic and phenotypic diversity. Here we utilize Nanostring digital assays and show their utility for estimating copy number of 186 multicopy genes and tandem repeats. By analyzing patterns of single nucleotide variation around these variants, we show that copy number variation at the vast majority of tandem repeat variations is not effectively tagged by nearby SNPs, and thus standard genome-wide association studies that focus on SNPs provide little or no information about such variants. By comparing patterns of tandem repeat copy number with variation in local gene expression and DNA methylation, we also identify extensive functional effects on local genome function. This includes an example of a non-coding macrosatellite repeat, expansion of which exerts a repressive effect on a nearby gene accompanied by accumulations of local DNA methylation. Finally, comparison of diverse human populations with a number of primate genomes shows that many of these sequences have undergone extreme changes in copy number during recent human and primate evolution, and show signatures that suggest possible selective effects. Overall, we conclude that multicopy genes and macrosatellites represent a highly variable fraction of the genome with important functional effects that has been systematically ignored by previous studies.
Collapse
Affiliation(s)
- Manisha Brahmachary
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Audrey Guilmatre
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Javier Quilez
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Dan Hasson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christelle Borel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Peter Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Marcinkowska-Swojak M, Klonowska K, Figlerowicz M, Kozlowski P. An MLPA-based approach for high-resolution genotyping of disease-related multi-allelic CNVs. Gene 2014; 546:257-62. [PMID: 24942243 DOI: 10.1016/j.gene.2014.05.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/31/2014] [Indexed: 12/24/2022]
Abstract
Copy number variation has recently been recognized as an important type of genetic variation that modifies human phenotypes. Copy number variants (CNVs) are being increasingly associated with various human phenotypes and diseases. However, the lack of an appropriate method that allows fast, inexpensive and, most importantly, accurate CNVs genotyping significantly hampers CNV analysis. This limitation especially affects the analysis of multi-allelic CNVs that frequently modify various phenotypes. Recently, we developed a multiplex ligation-dependent probe amplification (MLPA)-based strategy for multiplex copy number genotyping and the validation of candidate CNV-miRNAs. Here we present the adaptation and optimization of this recently developed method for high-resolution genotyping of individual disease-related multi-allelic CNVs. We developed appropriate assays for three well-known and extensively studied CNVs: CNV-CCL3L1, CNV-DEFB, and CNV-UGT2B17, which have been associated with various human phenotypes including inflammation-related and infectious diseases. With the use of these assays we identified several general factors that allow to increase the resolution of the copy number genotyping. Performed experiments confirmed the high reproducibility and accuracy of the obtained genotyping results. The reliability of the results and relatively low per-genotype cost makes this strategy an attractive method for large-scale experiments such as genotype-phenotype association studies.
Collapse
Affiliation(s)
- Malgorzata Marcinkowska-Swojak
- European Centre of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Katarzyna Klonowska
- European Centre of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Marek Figlerowicz
- European Centre of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; Poznan University of Technology, Pl. Marii Sklodowskiej-Curie 5, 60-965 Poznan, Poland.
| | - Piotr Kozlowski
- European Centre of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; Poznan University of Technology, Pl. Marii Sklodowskiej-Curie 5, 60-965 Poznan, Poland.
| |
Collapse
|
16
|
Jones EA, Kananurak A, Bevins CL, Hollox EJ, Bakaletz LO. Copy number variation of the beta defensin gene cluster on chromosome 8p influences the bacterial microbiota within the nasopharynx of otitis-prone children. PLoS One 2014; 9:e98269. [PMID: 24867293 PMCID: PMC4035277 DOI: 10.1371/journal.pone.0098269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022] Open
Abstract
As there is increasing evidence that aberrant defensin expression is related to susceptibility for infectious disease and inflammatory disorders, we sought to determine if copy number of the beta-defensin gene cluster located on chromosome 8p23.1 (DEFB107, 106, 105, 104, 103, DEFB4 and SPAG11), that shows copy number variation as a block, was associated with susceptibility to otitis media (OM). The gene DEFB103 within this complex encodes human beta defensin-3 (hBD-3), an antimicrobial peptide (AP) expressed by epithelial cells that line the mammalian airway, important for defense of mucosal surfaces and previously shown to have bactericidal activity in vitro against multiple human pathogens, including the three that predominate in OM. To this end, we conducted a retrospective case-control study of 113 OM prone children and 267 controls aged five to sixty months. We identified the copy number of the above defined beta-defensin gene cluster (DEFB-CN) in each study subject by paralogue ratio assays. The mean DEFB-CN was indistinguishable between subjects classified as OM prone based on a recent history of multiple episodes of OM and control subjects who had no history of OM (4.4 ± 0.96 versus 4.4 ± 1.08, respectively: Odds Ratio [OR]: 1.16 (95% CI: 0.61, 2.20). Despite a lack of direct association, we observed a statistically significant correlation between DEFB-CN and nasopharyngeal bacterial colonization patterns. Collectively, our findings suggested that susceptibility to OM might be mediated by genetic variation among individuals, wherein a DEFB-CN less than 4 exerts a marked influence on the microbiota of the nasopharynx, specifically with regard to colonization by the three predominant bacterial pathogens of OM.
Collapse
Affiliation(s)
- Eric A. Jones
- Center for Microbial Pathogenesis, Department of Pediatrics, College of Medicine, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Anchasa Kananurak
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Edward J. Hollox
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Lauren O. Bakaletz
- Center for Microbial Pathogenesis, Department of Pediatrics, College of Medicine, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
17
|
Cantsilieris S, Western PS, Baird PN, White SJ. Technical considerations for genotyping multi-allelic copy number variation (CNV), in regions of segmental duplication. BMC Genomics 2014; 15:329. [PMID: 24885186 PMCID: PMC4035060 DOI: 10.1186/1471-2164-15-329] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrachromosomal segmental duplications provide the substrate for non-allelic homologous recombination, facilitating extensive copy number variation in the human genome. Many multi-copy gene families are embedded within genomic regions with high levels of sequence identity (>95%) and therefore pose considerable analytical challenges. In some cases, the complexity involved in analyzing such regions is largely underestimated. Rapid, cost effective analysis of multi-copy gene regions have typically implemented quantitative approaches, however quantitative data are not an absolute means of certainty. Therefore any technique prone to degrees of measurement error can produce ambiguous results that may lead to spurious associations with complex disease. RESULTS In this study we have focused on testing the accuracy and reproducibility of quantitative analysis techniques. With reference to the C-C Chemokine Ligand-3-like-1 (CCL3L1) gene, we performed analysis using real-time Quantitative PCR (QPCR), Multiplex Ligation-dependent Probe Amplification (MLPA) and Paralogue Ratio Test (PRT). After controlling for potential outside variables on assay performance, including DNA concentration, quality, preparation and storage conditions, we find that real-time QPCR produces data that does not cluster tightly around copy number integer values, with variation substantially greater than that of the MLPA or PRT systems. We find that the method of rounding real-time QPCR measurements can potentially lead to mis-scoring of copy number genotypes and suggest caution should be exercised in interpreting QPCR data. CONCLUSIONS We conclude that real-time QPCR is inherently prone to measurement error, even under conditions that would seem favorable for association studies. Our results indicate that potential variability in the physicochemical properties of the DNA samples cannot solely explain the poor performance exhibited by the real-time QPCR systems. We recommend that more robust approaches such as PRT or MLPA should be used to genotype multi-allelic copy number variation in disease association studies and suggest several approaches which can be implemented to ensure the quality of the copy number typing using quantitative methods.
Collapse
Affiliation(s)
- Stuart Cantsilieris
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Victoria, Australia.
| | | | | | | |
Collapse
|
18
|
Taudien S, Huse K, Groth M, Platzer M. Narrowing down the distal border of the copy number variable beta-defensin gene cluster on human 8p23. BMC Res Notes 2014; 7:93. [PMID: 24552181 PMCID: PMC3942070 DOI: 10.1186/1756-0500-7-93] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/18/2022] Open
Abstract
Background Copy number variation (CNV) in the range from 2 to 12 per diploid genome is an outstanding feature of the beta-defensin gene (DEFB) cluster on human chromosome 8p23.1 numerously demonstrated by different methods. So far, CNV was proven for a 115 kb region between DEFB4 and 21 kb proximal of DEFB107 but the borders for the entire CNV repeat unit are still unknown. Our study aimed to narrow down the distal border of the DEFB cluster. Results We established tests for length polymorphisms based on amplification and capillary electrophoresis with laser-induced fluorescence (CE-LIF) analysis of seven insertion/deletion (indel) containing regions spread over the entire cluster. The tests were carried out with 25 genomic DNAs with different previously determined cluster copy numbers. CNV was demonstrated for six indels between ~1 kb distal of DEFB108P and 10 kb proximal of DEFB107. In contrast, the most distal indel is not affected by CNV. Conclusion Our analysis fixes the minimal length of proven CNV to 157 kb including DEFB108P but excluding DEFB109P. The distal border between CNV and non-CNV part of the DEF cluster is located in the 59 kb interval chr8:7,171,082-7,230,128.
Collapse
Affiliation(s)
- Stefan Taudien
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr, 11, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
19
|
Zhang X, Müller S, Möller M, Huse K, Taudien S, Book M, Stuber F, Platzer M, Groth M. 8p23 beta-defensin copy number determination by single-locus pseudogene-based paralog ratio tests risk bias due to low-frequency sequence variations. BMC Genomics 2014; 15:64. [PMID: 24460793 PMCID: PMC3937106 DOI: 10.1186/1471-2164-15-64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/22/2014] [Indexed: 11/16/2022] Open
Abstract
Background The copy number variation (CNV) in beta-defensin genes (DEFB) on human chromosome 8p23 has been proposed to contribute to the phenotypic differences in inflammatory diseases. However, determination of exact DEFB CN is a major challenge in association studies. Quantitative real-time PCR (qPCR), paralog ratio tests (PRT) and multiplex ligation-dependent probe amplification (MLPA) have been extensively used to determine DEFB CN in different laboratories, but inter-method inconsistencies were observed frequently. In this study we asked which one is superior among the three methods for DEFB CN determination. Results We developed a clustering approach for MLPA and PRT to statistically correlate data from a single experiment. Then we compared qPCR, a newly designed PRT and MLPA for DEFB CN determination in 285 DNA samples. We found MLPA had the best convergence and clustering results of the raw data and the highest call rate. In addition, the concordance rates between MLPA or PRT and qPCR (32.12% and 37.99%, respectively) were unacceptably low with underestimated CN by qPCR. Concordance rate between MLPA and PRT (90.52%) was high but PRT systematically underestimated CN by one in a subset of samples. In these samples a sequence variant which caused complete PCR dropout of the respective DEFB cluster copies was found in one primer binding site of one of the targeted paralogous pseudogenes. Conclusion MLPA is superior to PRT and even more to qPCR for DEFB CN determination. Although the applied PRT provides in most cases reliable results, such a test is particularly sensitive to low-frequency sequence variations preferably accumulating in loci like pseudogenes which are most likely not under selective pressure. In the light of the superior performance of multiplex assays, the drawbacks of such single PRTs could be overcome by combining more test markers.
Collapse
Affiliation(s)
- Xianghong Zhang
- University Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, Bern, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wain LV, Odenthal-Hesse L, Abujaber R, Sayers I, Beardsmore C, Gaillard EA, Chappell S, Dogaru CM, McKeever T, Guetta-Baranes T, Kalsheker N, Kuehni CE, Hall IP, Tobin MD, Hollox EJ. Copy number variation of the beta-defensin genes in europeans: no supporting evidence for association with lung function, chronic obstructive pulmonary disease or asthma. PLoS One 2014; 9:e84192. [PMID: 24404154 PMCID: PMC3880289 DOI: 10.1371/journal.pone.0084192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/13/2013] [Indexed: 12/23/2022] Open
Abstract
Lung function measures are heritable, predict mortality and are relevant in diagnosis of chronic obstructive pulmonary disease (COPD). COPD and asthma are diseases of the airways with major public health impacts and each have a heritable component. Genome-wide association studies of SNPs have revealed novel genetic associations with both diseases but only account for a small proportion of the heritability. Complex copy number variation may account for some of the missing heritability. A well-characterised genomic region of complex copy number variation contains beta-defensin genes (DEFB103, DEFB104 and DEFB4), which have a role in the innate immune response. Previous studies have implicated these and related genes as being associated with asthma or COPD. We hypothesised that copy number variation of these genes may play a role in lung function in the general population and in COPD and asthma risk. We undertook copy number typing of this locus in 1149 adult and 689 children using a paralogue ratio test and investigated association with COPD, asthma and lung function. Replication of findings was assessed in a larger independent sample of COPD cases and smoking controls. We found evidence for an association of beta-defensin copy number with COPD in the adult cohort (OR = 1.4, 95%CI:1.02-1.92, P = 0.039) but this finding, and findings from a previous study, were not replicated in a larger follow-up sample(OR = 0.89, 95%CI:0.72-1.07, P = 0.217). No robust evidence of association with asthma in children was observed. We found no evidence for association between beta-defensin copy number and lung function in the general populations. Our findings suggest that previous reports of association of beta-defensin copy number with COPD should be viewed with caution. Suboptimal measurement of copy number can lead to spurious associations. Further beta-defensin copy number measurement in larger sample sizes of COPD cases and children with asthma are needed.
Collapse
Affiliation(s)
- Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Razan Abujaber
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Caroline Beardsmore
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Institute for Lung Health, National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Erol A. Gaillard
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Institute for Lung Health, National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Sally Chappell
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Cristian M. Dogaru
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Tricia McKeever
- School of Community Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Noor Kalsheker
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Claudia E. Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ian P. Hall
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- Department of Genetics, University of Leicester, Leicester, United Kingdom
- Institute for Lung Health, National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Edward J. Hollox
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
21
|
Veal CD, Reekie KE, Lorentzen JC, Gregersen PK, Padyukov L, Brookes AJ. A 129-kb deletion on chromosome 12 confers substantial protection against rheumatoid arthritis, implicating the gene SLC2A3. Hum Mutat 2013; 35:248-56. [PMID: 24178905 PMCID: PMC3995011 DOI: 10.1002/humu.22471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 10/22/2013] [Indexed: 12/29/2022]
Abstract
We describe a copy-number variant (CNV) for which deletion alleles confer a protective affect against rheumatoid arthritis (RA). This CNV reflects net unit deletions and expansions to a normal two-unit tandem duplication located on human chr12p13.31, a region with conserved synteny to the rat RA susceptibility quantitative trait loci Oia2. Genotyping, using the paralogue ratio test and SNP intensity data, in Swedish samples (2,403 cases, 1,269 controls) showed that the frequency of deletion variants is significantly lower in cases (P = 0.0012, OR = 0.442 [95%CI 0.258–0.755]). Reduced frequencies of deletion variants were also seen in replication materials comprising 9,201 UK samples (1,846 cases, 7,355 controls) and 2,963 US samples (906 controls, 1,967 cases) (Mantel–Haenszel P = 0.036, OR = 0.559 [95%CI 0.323–0.966]). Combining the three datasets produces a Mantel–Haenszel OR of 0.497 (P < 0.0002). The deletion variant lacks 129-kb of DNA containing SLC2A3, NANOGP1, and SLC2A14. SLC2A3 encodes a high-affinity glucose transporter important in the immune response and chondrocyte metabolism, both key aspects of RA pathogenesis. The large effect size of this association, its potential relevance to other diseases in which SLC2A3 is implicated, and the possibility of targeting drugs to inhibit SLC2A3, argue for further examination of the genetics and the biology of this CNV.
Collapse
Affiliation(s)
- Colin D Veal
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|
22
|
Khan FF, Carpenter D, Mitchell L, Mansouri O, Black HA, Tyson J, Armour JAL. Accurate measurement of gene copy number for human alpha-defensin DEFA1A3. BMC Genomics 2013; 14:719. [PMID: 24138543 PMCID: PMC4046698 DOI: 10.1186/1471-2164-14-719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023] Open
Abstract
Background Multi-allelic copy number variants include examples of extensive variation between individuals in the copy number of important genes, most notably genes involved in immune function. The definition of this variation, and analysis of its impact on function, has been hampered by the technical difficulty of large-scale but accurate typing of genomic copy number. The copy-variable alpha-defensin locus DEFA1A3 on human chromosome 8 commonly varies between 4 and 10 copies per diploid genome, and presents considerable challenges for accurate high-throughput typing. Results In this study, we developed two paralogue ratio tests and three allelic ratio measurements that, in combination, provide an accurate and scalable method for measurement of DEFA1A3 gene number. We combined information from different measurements in a maximum-likelihood framework which suggests that most samples can be assigned to an integer copy number with high confidence, and applied it to typing 589 unrelated European DNA samples. Typing the members of three-generation pedigrees provided further reassurance that correct integer copy numbers had been assigned. Our results have allowed us to discover that the SNP rs4300027 is strongly associated with DEFA1A3 gene copy number in European samples. Conclusions We have developed an accurate and robust method for measurement of DEFA1A3 copy number. Interrogation of rs4300027 and associated SNPs in Genome-Wide Association Study SNP data provides no evidence that alpha-defensin copy number is a strong risk factor for phenotypes such as Crohn’s disease, type I diabetes, HIV progression and multiple sclerosis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-719) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John A L Armour
- School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
23
|
Veal CD, Xu H, Reekie K, Free R, Hardwick RJ, McVey D, Brookes AJ, Hollox EJ, Talbot CJ. Automated design of paralogue ratio test assays for the accurate and rapid typing of copy number variation. ACTA ACUST UNITED AC 2013; 29:1997-2003. [PMID: 23742985 PMCID: PMC3722521 DOI: 10.1093/bioinformatics/btt330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Motivation: Genomic copy number variation (CNV) can influence susceptibility to common diseases. High-throughput measurement of gene copy number on large numbers of samples is a challenging, yet critical, stage in confirming observations from sequencing or array Comparative Genome Hybridization (CGH). The paralogue ratio test (PRT) is a simple, cost-effective method of accurately determining copy number by quantifying the amplification ratio between a target and reference amplicon. PRT has been successfully applied to several studies analyzing common CNV. However, its use has not been widespread because of difficulties in assay design. Results: We present PRTPrimer (www.prtprimer.org) software for automated PRT assay design. In addition to stand-alone software, the web site includes a database of pre-designed assays for the human genome at an average spacing of 6 kb and a web interface for custom assay design. Other reference genomes can also be analyzed through local installation of the software. The usefulness of PRTPrimer was tested within known CNV, and showed reproducible quantification. This software and database provide assays that can rapidly genotype CNV, cost-effectively, on a large number of samples and will enable the widespread adoption of PRT. Availability: PRTPrimer is available in two forms: a Perl script (version 5.14 and higher) that can be run from the command line on Linux systems and as a service on the PRTPrimer web site (www.prtprimer.org). Contact:cjt14@le.ac.uk Supplementary Information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Colin D Veal
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vittori A, Orth M, Roos RAC, Outeiro TF, Giorgini F, Hollox EJ. β-Defensin Genomic Copy Number Does Not Influence the Age of Onset in Huntington's Disease. J Huntingtons Dis 2013; 2:107-124. [PMID: 24587836 DOI: 10.3233/jhd-130047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the abnormal expansion of a CAG triplet repeat tract in the huntingtin gene. While the length of this CAG expansion is the major determinant of the age of onset (AO), other genetic factors have also been shown to play a modulatory role. Recent evidence suggests that neuroinflammation is a pivotal factor in the pathogenesis of HD, and that targeting this process may have important therapeutic ramifications. The human β-defensin 2 (hBD2) - encoded by DEFB4 - is an antimicrobial peptide that exhibits inducible expression in astrocytes during inflammation and is an important regulator of innate and adaptive immune response. Therefore, DEFB4 may contribute to the neuroinflammatory processes observed in HD. OBJECTIVE In this study we tested the hypothesis that copy number variation (CNV) of the β-defensin region, including DEFB4, modifies the AO in HD. METHODS AND RESULTS We genotyped β-defensin CNV in 490 HD individuals using the paralogue ratio test and found no association between β-defensin CNV and onset of HD. CONCLUSIONS We conclude that it is unlikely that DEFB4 plays a role in HD pathogenesis.
Collapse
Affiliation(s)
- Angelica Vittori
- Department of Genetics, University of Leicester, Leicester, UK ; Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Lisboa, Portugal
| | - Michael Orth
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Raymund A C Roos
- Leiden University Medical Center, Department of Neurology, The Netherlands
| | - Tiago F Outeiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Lisboa, Portugal ; Faculdade de Medicina da Universidade de Lisboa, Instituto de Fisiologia, Lisboa, Portugal ; University Medical Center Göttingen, Department of NeuroDegeneration and Restorative Research, Göttingen, Germany
| | | | - Edward J Hollox
- Department of Genetics, University of Leicester, Leicester, UK
| | | |
Collapse
|
25
|
Marcinkowska-Swojak M, Uszczynska B, Figlerowicz M, Kozlowski P. An MLPA-Based Strategy for Discrete CNV Genotyping: CNV-miRNAs as an Example. Hum Mutat 2013; 34:763-73. [DOI: 10.1002/humu.22288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/24/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Malgorzata Marcinkowska-Swojak
- European Centre for Bioinformatics and Genomics; Institute of Bioorganic Chemistry, Polish Academy of Sciences; Poznan; Poland
| | - Barbara Uszczynska
- European Centre for Bioinformatics and Genomics; Institute of Bioorganic Chemistry, Polish Academy of Sciences; Poznan; Poland
| | - Marek Figlerowicz
- European Centre for Bioinformatics and Genomics; Institute of Bioorganic Chemistry, Polish Academy of Sciences; Poznan; Poland
| | - Piotr Kozlowski
- European Centre for Bioinformatics and Genomics; Institute of Bioorganic Chemistry, Polish Academy of Sciences; Poznan; Poland
| |
Collapse
|
26
|
Boonpeng H, Yusoff K. The utility of copy number variation (CNV) in studies of hypertension-related left ventricular hypertrophy (LVH): rationale, potential and challenges. Mol Cytogenet 2013; 6:8. [PMID: 23448375 PMCID: PMC3599593 DOI: 10.1186/1755-8166-6-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/03/2013] [Indexed: 01/08/2023] Open
Abstract
The ultimate goal of human genetics is to understand the role of genome variation in elucidating human traits and diseases. Besides single nucleotide polymorphism (SNP), copy number variation (CNV), defined as gains or losses of a DNA segment larger than 1 kb, has recently emerged as an important tool in understanding heritable source of human genomic differences. It has been shown to contribute to genetic susceptibility of various common and complex diseases. Despite a handful of publications, its role in cardiovascular diseases remains largely unknown. Here, we deliberate on the currently available technologies for CNV detection. The possible utility and the potential roles of CNV in exploring the mechanisms of cardiac remodeling in hypertension will also be addressed. Finally, we discuss the challenges for investigations of CNV in cardiovascular diseases and its possible implications in diagnosis of hypertension-related left ventricular hypertrophy (LVH).
Collapse
Affiliation(s)
- Hoh Boonpeng
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai, Buloh, 47000, Malaysia.
| | | |
Collapse
|
27
|
Barber JCK, Hall V, Maloney VK, Huang S, Roberts AM, Brady AF, Foulds N, Bewes B, Volleth M, Liehr T, Mehnert K, Bateman M, White H. 16p11.2-p12.2 duplication syndrome; a genomic condition differentiated from euchromatic variation of 16p11.2. Eur J Hum Genet 2013; 21:182-9. [PMID: 22828807 PMCID: PMC3548261 DOI: 10.1038/ejhg.2012.144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/08/2022] Open
Abstract
Chromosome 16 contains multiple copy number variations (CNVs) that predispose to genomic disorders. Here, we differentiate pathogenic duplications of 16p11.2-p12.2 from microscopically similar euchromatic variants of 16p11.2. Patient 1 was a girl of 18 with autism, moderate intellectual disability, behavioural difficulties, dysmorphic features and a 7.71-Mb (megabase pair) duplication (16:21 521 005-29 233 146). Patient 2 had a 7.81-Mb duplication (16:21 382 561-29 191 527), speech delay and obsessional behaviour as a boy and, as an adult, short stature, macrocephaly and mild dysmorphism. The duplications contain 65 coding genes of which Polo-like kinase 1 (PLK1) has the highest likelihood of being haploinsufficient and, by implication, a triplosensitive gene. An additional 1.11-Mb CNV of 10q11.21 in Patient 1 was a possible modifier containing the G-protein-regulated inducer of neurite growth 2 (GPRIN2) gene. In contrast, the euchromatic variants in Patients 3 and 4 were amplifications from a 945-kb region containing non-functional immunoglobulin heavy chain (IGHV), hect domain pseudogene (HERC2P4) and TP53-inducible target gene 3 (TP53TG3) loci in proximal 16p11.2 (16:31 953 353-32 898 635). Paralogous pyrosequencing gave a total copy number of 3-8 in controls and 8 to >10 in Patients 3 and 4. The 16p11.2-p12.2 duplication syndrome is a recurrent genomic disorder with a variable phenotype including developmental delay, dysmorphic features, mild to severe intellectual disability, autism, obsessive or stereotyped behaviour, short stature and anomalies of the hands and fingers. It is important to differentiate pathogenic 16p11.2-p12.2 duplications from harmless, microscopically similar euchromatic variants of proximal 16p11.2, especially at prenatal diagnosis.
Collapse
Affiliation(s)
- John C K Barber
- Department of Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, Hampshire, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cantsilieris S, Baird PN, White SJ. Molecular methods for genotyping complex copy number polymorphisms. Genomics 2013; 101:86-93. [DOI: 10.1016/j.ygeno.2012.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
|
29
|
Barber JCK, Rosenfeld JA, Foulds N, Laird S, Bateman MS, Thomas NS, Baker S, Maloney VK, Anilkumar A, Smith WE, Banks V, Ellingwood S, Kharbutli Y, Mehta L, Eddleman KA, Marble M, Zambrano R, Crolla JA, Lamb AN. 8p23.1 duplication syndrome; common, confirmed, and novel features in six further patients. Am J Med Genet A 2013; 161A:487-500. [PMID: 23345203 DOI: 10.1002/ajmg.a.35767] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/14/2012] [Indexed: 01/07/2023]
Abstract
The 8p23.1 duplication syndrome is a relatively rare genomic condition that has been confirmed with molecular cytogenetic methods in only 11 probands and five family members. Here, we describe another prenatal and five postnatal patients with de novo 8p23.1 duplications analyzed with oligonucleotide array comparative genomic hybridization (oaCGH). Of the common features, mild or moderate developmental delays and/or learning difficulties have been found in 11/12 postnatal probands, a variable degree of mild dysmorphism in 8/12 and congenital heart disease (CHD) in 4/5 prenatal and 3/12 postnatal probands. Behavioral problems, cleft lip and/or palate, macrocephaly, and seizures were confirmed as additional features among the new patients, and novel features included neonatal respiratory distress, attention deficit hyperactivity disorder (ADHD), ocular anomalies, balance problems, hypotonia, and hydrocele. The core duplication of 3.68 Mb contains 31 genes and microRNAs of which only GATA4, TNKS, SOX7, and XKR6 are likely to be dosage sensitive genes and MIR124-1 and MIR598 have been implicated in neurocognitive phenotypes. A combination of the duplication of GATA4, SOX7, and related genes may account for the variable penetrance of CHD. Two of the duplications were maternal and intrachromosomal in origin with maternal heterozygosity for the common inversion between the repeats in 8p23.1. These additional patients and the absence of the 8p23.1 duplications in published controls, indicate that the 8p23.1 duplication syndrome may now be considered a pathogenic copy number variation (pCNV) with an estimated population prevalence of 1 in 58,000.
Collapse
Affiliation(s)
- John C K Barber
- Faculty of Medicine, Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mehlotra RK, Zimmerman PA, Weinberg A, Jurevic RJ. Variation in human β-defensin genes: new insights from a multi-population study. Int J Immunogenet 2012. [PMID: 23194186 DOI: 10.1111/iji.12021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human β-defensin 2 (hBD-2) and hBD-3, encoded by DEFB4 and DEFB103A, respectively, have shown anti-HIV activity, and both genes exhibit copy number variation (CNV). Although the role of hBD-1, encoded by DEFB1, in HIV-1 infection is less clear, single nucleotide polymorphisms (SNPs) in DEFB1 may influence viral loads and disease progression. We examined the distribution of DEFB1 SNPs and DEFB4/103A CNV, and the relationship between DEFB1 SNPs and DEFB4/103A CNV using samples from two HIV/AIDS cohorts from the United States (n = 150) and five diverse populations from the Coriell Cell Repositories (n = 46). We determined the frequencies of 10 SNPs in DEFB1 using a post-PCR, oligonucleotide ligation detection reaction-fluorescent microsphere assay, and CNV in DEFB4/103A by real-time quantitative PCR. There were noticeable differences in the frequencies of DEFB1 SNP alleles and haplotypes among various racial/ethnic groups. The DEFB4/103A copy numbers varied from 2 to 8 (median, 4), and there was a significant difference between the copy numbers of self-identified whites and blacks in the US cohorts (Mann-Whitney U-test P = 0.04). A significant difference was observed in the distribution of DEFB4/103A CNV among DEFB1 -52G/A and -390T/A genotypes (Kruskal-Wallis P = 0.017 and 0.026, respectively), while not in the distribution of DEFB4/103A CNV among -52G/A_-44C/G_-20G/A diplotypes. These observations provide additional insights for further investigating the complex interplay between β-defensin genetic polymorphisms and susceptibility to, or the progression or severity of, HIV infection/disease.
Collapse
Affiliation(s)
- R K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | |
Collapse
|
31
|
Cantsilieris S, White SJ. Correlating multiallelic copy number polymorphisms with disease susceptibility. Hum Mutat 2012; 34:1-13. [PMID: 22837109 DOI: 10.1002/humu.22172] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/13/2012] [Indexed: 01/20/2023]
Abstract
The human genome contains a significant amount of sequence variation, from single nucleotide polymorphisms to large stretches of DNA that may be present in a range of different copies between individuals. Several such regions are variable in >1% of the population (referred to as copy number polymorphisms or CNPs), and many studies have looked for associations between the copy number of genes within multiallelic CNPs and disease susceptibility. Associations have indeed been described for several genes, including the β-defensins (DEFB4, DEFB103, DEFB104), chemokine ligand 3 like 1 (CCL3L1), Fc gamma receptor 3B (FCGR3B), and complement component C4 (C4). However, follow-up replication in independent cohorts has failed to reproduce a number of these associations. It is clear that replicated associations such as those between C4 and systemic lupus erythematosus, and β-defensin and psoriasis, have used robust genotyping methodologies. Technical issues associated with genotyping sequences of high identity may therefore account for failure to replicate other associations. Here, we compare and contrast the most popular approaches that have been used to genotype CNPs, describe how they have been applied in different situations, and discuss potential reasons for the difficulty in reproducibly linking multiallelic CNPs to complex diseases.
Collapse
Affiliation(s)
- Stuart Cantsilieris
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
32
|
Hardwick RJ, Amogne W, Mugusi S, Yimer G, Ngaimisi E, Habtewold A, Minzi O, Makonnen E, Janabi M, Machado LR, Viskaduraki M, Mugusi F, Aderaye G, Lindquist L, Hollox EJ, Aklillu E. β-defensin genomic copy number is associated with HIV load and immune reconstitution in sub-saharan Africans. J Infect Dis 2012; 206:1012-9. [PMID: 22837491 DOI: 10.1093/infdis/jis448] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIDS, caused by the retrovirus human immunodeficiency virus (HIV), is the leading cause of death of economically active people (age, 15-59 years) in sub-Saharan Africa. The host genetic variability of immune response to HIV and immune reconstitution following initiation of highly active antiretroviral therapy (HAART) is poorly understood. Here we focused on copy number variation of the β-defensin genes, which have been shown to have anti-HIV activity, and are important chemoattractants for Th17 lymphocytes via the chemokine receptor CCR6. We determined β-defensin gene copy number for 1002 Ethiopian and Tanzanian patients. We show that higher β-defensin copy number variation is associated with increased HIV load prior to HAART (P=.005) and poor immune reconstitution following initiation of HAART (P=.003). We suggest a model where variable amounts of β-defensin expression by mucosal cells, due to gene copy number variation, alters the efficacy of recruitment of Th17 lymphocytes to the site of infection, altering the dynamics of infection.
Collapse
|
33
|
Association analysis of the CCL3L1 copy number locus by paralogue ratio test in Norwegian rheumatoid arthritis patients and healthy controls. Genes Immun 2012; 13:579-82. [PMID: 22785612 DOI: 10.1038/gene.2012.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Genotyping of multiallelic copy number variants (CNVs) is technically difficult and can lead to inaccurate conclusions. This is reflected by inconsistent results published for the CNV C-C chemokine ligand 3-like 1 (CCL3L1) and its contribution to rheumatoid arthritis (RA) susceptibility. In order to draw robust conclusions about CCL3L1 involvement in RA, we have performed association analysis (CNVtools) using genotyping by the paralogue ratio test of a Norwegian RA case-control material (N=1877). We also analyzed the associations after stratification for anti-citrullinated peptide antibody (ACPA) status. Clear clusters representing specific copy number classes were evident, but significant differential bias was observed resulting in a systematic trend toward slightly higher apparent copy number for cases relative to controls. Controlling for bias revealed no significant differences in copy number distribution either between all patients and controls, or after ACPA stratification. Our results do not support involvement of the CCL3L1 CNV in RA susceptibility.
Collapse
|
34
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
35
|
Genetic variability in beta-defensins is not associated with susceptibility to Staphylococcus aureus bacteremia. PLoS One 2012; 7:e32315. [PMID: 22384213 PMCID: PMC3285211 DOI: 10.1371/journal.pone.0032315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/26/2012] [Indexed: 11/22/2022] Open
Abstract
Introduction Human beta-defensins are key components of human innate immunity to a variety of pathogens, including Staphylococcus aureus. The aim of the present study was to investigate a potential association between gene variations in DEFB1 and DEFB103/DEFB4 and the development of S. aureus bacteremia (SAB) employing a case-control design. Methods Cases were unique patients with documented SAB, identified with the National S. aureus Bacteremia Register, a comprehensive dataset of all episodes of community associated-SABs (CA-SAB) occurring in children (≤20 yrs) in Denmark from 1990 to 2006. Controls were age-matched healthy individuals with no history of SAB. DNA obtained from cases and controls using the Danish Newborn Screening Biobank were genotyped for functional polymorphisms of DEFB1 by Sanger sequencing and copy number variation of the DEFB103 and DEFB4 genes using Pyrosequencing-based Paralogue Ratio Test (P-PRT). Results 193 ethnic Danish SAB cases with 382 age-matched controls were used for this study. S. aureus isolates represented a variety of bacterial (i.e., different spa types) types similar to SAB isolates in general. DEFB1 minor allele frequencies of rs11362 (cases vs. controls 0.47/0.44), rs1800972 (0.21/0.24), and rs1799946 (0.32/0.33) were not significantly different in cases compared with controls. Also, DEFB4/DEFB103 gene copy numbers (means 4.83/4.92) were not significantly different in cases compared with controls. Conclusions Using a large, unique cohort of pediatric CA-SAB, we found no significant association between DEFB1 genetic variation or DEFB4/DEFB103 gene copy number and susceptibility for SAB.
Collapse
|
36
|
Zhou XJ, Cheng FJ, Lv JC, Luo H, Yu F, Chen M, Zhao MH, Zhang H. Higher DEFB4 genomic copy number in SLE and ANCA-associated small vasculitis. Rheumatology (Oxford) 2012; 51:992-5. [PMID: 22302058 DOI: 10.1093/rheumatology/ker419] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Evidence shows that defensins are involved in the pathogenesis of SLE and ANCA-associated small vasculitis (AASV). The copy number variation of DEFB4 has been proposed to be susceptible to inflammatory disorders. This study aims to investigate whether the DEFB4 genomic copy number variations associate with the susceptibility to these two autoimmune diseases. METHODS A total of 1178 Chinese people were enrolled, including panel 1 comprising 240 SLE patients and 275 matched controls, panel 2 comprising 303 SLE patients and 248 matched controls and panel 3 with 112 AASV patients. The DEFB4 copy number was typed by a paralogue ratio test (PRT), and all the subjects in panel 1 were also typed using the restriction enzyme digest variant ratio (REDVR) for validation. RESULTS The results from PRT and REDVR were highly concordant (R = 0.911, P = 3.85 × 10(-199)) and allowed copy numbers to be assigned into integer classes with high confidence. Comparison of mean DEFB4 copy number revealed a small increase in cases with SLE both in Panel 1 (P = 0.063) and Panel 2 (P = 0.017). When pooling panels 1 and 2 together, the association was reinforced (P = 0.002) in SLE. Such association was also observed in AASV (P = 0.009). CONCLUSION We found that a higher DEFB4 gene copy number was associated with both SLE and AASV.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fernandez-Jimenez N, Castellanos-Rubio A, Plaza-Izurieta L, Gutierrez G, Irastorza I, Castaño L, Vitoria JC, Bilbao JR. Accuracy in copy number calling by qPCR and PRT: a matter of DNA. PLoS One 2011; 6:e28910. [PMID: 22174923 PMCID: PMC3236783 DOI: 10.1371/journal.pone.0028910] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/17/2011] [Indexed: 02/01/2023] Open
Abstract
The possible implication of copy number variation (CNV) in the genetic susceptibility to human disease needs to be assessed using robust methods that can be applied at a population scale. In this report, we analyze the performance of the two major techniques, quantitative PCR (qPCR) and paralog ratio test (PRT), and investigate the influence of input DNA amount and template integrity on the reliability of both methods. Analysis of three genes (PRELID1, SYNPO and DEFB4) in a large sample set showed that both methods are prone to false copy number assignments if sufficient attention is not paid to DNA concentration and quality. Accurate normalization of samples is essential for reproducible qPCR because it avoids the effect of differential amplification efficiencies between target and control assays, whereas PRT is generally more sensitive to template degradation due to the fact that longer amplicons are usually needed to optimize sensitivity and specificity of paralog sequence PCR. The use of normalized, high quality genomic DNA yields comparable results with both methods.
Collapse
Affiliation(s)
- Nora Fernandez-Jimenez
- Immunogenetics Research Laboratory, Cruces University Hospital, Barakaldo, Basque Country, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Basque Country, Spain
| | - Ainara Castellanos-Rubio
- Immunogenetics Research Laboratory, Cruces University Hospital, Barakaldo, Basque Country, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Basque Country, Spain
| | - Leticia Plaza-Izurieta
- Immunogenetics Research Laboratory, Cruces University Hospital, Barakaldo, Basque Country, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Basque Country, Spain
| | - Galder Gutierrez
- Immunogenetics Research Laboratory, Cruces University Hospital, Barakaldo, Basque Country, Spain
| | - Iñaki Irastorza
- Immunogenetics Research Laboratory, Cruces University Hospital, Barakaldo, Basque Country, Spain
- Department of Pediatrics, University of the Basque Country, Bilbao, Basque Country, Spain
| | - Luis Castaño
- Immunogenetics Research Laboratory, Cruces University Hospital, Barakaldo, Basque Country, Spain
- Department of Pediatrics, University of the Basque Country, Bilbao, Basque Country, Spain
| | - Juan Carlos Vitoria
- Immunogenetics Research Laboratory, Cruces University Hospital, Barakaldo, Basque Country, Spain
- Department of Pediatrics, University of the Basque Country, Bilbao, Basque Country, Spain
| | - Jose Ramon Bilbao
- Immunogenetics Research Laboratory, Cruces University Hospital, Barakaldo, Basque Country, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Basque Country, Spain
- * E-mail:
| |
Collapse
|