1
|
Lee N, Choi JY, Ryu YH. The development status of PET radiotracers for evaluating neuroinflammation. Nucl Med Mol Imaging 2024; 58:160-176. [PMID: 38932754 PMCID: PMC11196502 DOI: 10.1007/s13139-023-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 06/28/2024] Open
Abstract
Neuroinflammation is associated with the pathophysiologies of neurodegenerative and psychiatric disorders. Evaluating neuroinflammation using positron emission tomography (PET) plays an important role in the early diagnosis and determination of proper treatment of brain diseases. To quantify neuroinflammatory responses in vivo, many PET tracers have been developed using translocator proteins, imidazole-2 binding site, cyclooxygenase, monoamine oxidase-B, adenosine, cannabinoid, purinergic P2X7, and CSF-1 receptors as biomarkers. In this review, we introduce the latest developments in PET tracers that can image neuroinflammation, focusing on clinical trials, and further consider their current implications.
Collapse
Affiliation(s)
- Namhun Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A 2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson's disease. Chin J Traumatol 2024; 27:125-133. [PMID: 37679245 PMCID: PMC11138351 DOI: 10.1016/j.cjtee.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have been clinically pursued for the last 2 decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
3
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Maeda T, Kimura T, Sugiyama K, Yamada K, Hiraiwa R, Nishi M, Hattori N. Randomized controlled trial of KW-6356 monotherapy in patients with early untreated Parkinson's disease. Parkinsonism Relat Disord 2023; 117:105907. [PMID: 37948832 DOI: 10.1016/j.parkreldis.2023.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION KW-6356 is a novel selective adenosine A2A receptor antagonist/inverse agonist. We evaluated the efficacy and safety of KW-6356 as monotherapy in patients with early, untreated Parkinson's disease (PD). METHODS This was a randomized, placebo-controlled, double-blind study conducted in Japan to investigate the efficacy and safety of once-daily KW-6356 (3 or 6 mg/day) orally administered as monotherapy for 12 weeks in patients with early PD (NCT02939391). The primary endpoint was the least squares means of change from baseline in the MDS-UPDRS Part III total score. RESULTS Overall, 168 patients were randomized and treated (KW-6356 3 mg/day n = 55; 6 mg/day n = 58, placebo n = 55); Week 12 completion rates were >90% per group. LS mean [95% CI] changes from baseline to Week 12 in MDS-UPDRS Part III total scores were -5.37 [-7.25, -3.48] for 3 mg/day, -4.76 [-6.55, -2.96] for 6 mg/day and -3.14 [-4.97, -1.30] for placebo. Changes from baseline were larger for both KW-6356 groups than for the placebo group at all time points. Secondary endpoints supported the primary findings with larger changes in MDS-UPDRS Part II, Parts II + III, and Total scores in the KW-6356 groups than in the placebo group. Treatment was well-tolerated; the most common treatment-emergent adverse events with KW-6356 were constipation (n = 4 [7.3%] and n = 6 [10.3%] in the 3 and 6 mg/day groups, respectively) followed by nasopharyngitis (n = 4 [7.3%] and n = 5 [8.6%] in the 3 and 6 mg/day groups, respectively). CONCLUSION KW-6356 monotherapy is well tolerated and more effective than placebo in patients with early, untreated PD.
Collapse
Affiliation(s)
- Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan.
| | - Takashi Kimura
- Department of Neurology, Asahikawa Medical Center, Hokkaido, Japan.
| | - Kenichiro Sugiyama
- Kyowa Kirin Co., Ltd, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
| | - Kana Yamada
- Kyowa Kirin Co., Ltd, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
| | - Ren Hiraiwa
- Kyowa Kirin Co., Ltd, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
| | - Masato Nishi
- Kyowa Kirin Co., Ltd, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
5
|
Takahashi M. Adenosine A 2A signals and dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:179-184. [PMID: 37741691 DOI: 10.1016/bs.irn.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent involuntary muscle contractions, which is also seen in an advanced stage of Parkinson's disease (PD) as camptocormia, torticollis, and Pisa syndrome. Istradefylline, an adenosine A2A receptor antagonist, can be used for the treatment of PD to reduce 'off'-time period, and several clinical studies demonstrated the improvement of camptocormia, which have many similar features to dopa-responsive/non-responsive dystonia. Many animal models of dystonia showed that adenosine A2A receptor colocalized with dopamine D2 positive spiny projection neurons in indirect pathway of basal ganglia circuit, and also in the cholinergic interneurons that affects the balance of indirect and direct pathway of basal ganglia. In this chapter, the potential effect of adenosine A2A antagonism on dystonia was discussed in view of clinical studies of PD with postural abnormalities and the findings of dystonia mouse models.
Collapse
Affiliation(s)
- Makio Takahashi
- Department of Neurodegenerative disorders, Kansai Medical University, Hirakata, Osaka, Japan.
| |
Collapse
|
6
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Neuroinflammation and Mitochondrial Dysfunction in Parkinson's Disease: Connecting Neuroimaging with Pathophysiology. Antioxidants (Basel) 2023; 12:1411. [PMID: 37507950 PMCID: PMC10375976 DOI: 10.3390/antiox12071411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
There is a pressing need for disease-modifying therapies in patients suffering from neurodegenerative diseases, including Parkinson's disease (PD). However, these disorders face unique challenges in clinical trial designs to assess the neuroprotective properties of potential drug candidates. One of these challenges relates to the often unknown individual disease mechanisms that would, however, be relevant for targeted treatment strategies. Neuroinflammation and mitochondrial dysfunction are two proposed pathophysiological hallmarks and are considered to be highly interconnected in PD. Innovative neuroimaging methods can potentially help to gain deeper insights into one's predominant disease mechanisms, can facilitate patient stratification in clinical trials, and could potentially map treatment responses. This review aims to highlight the role of neuroinflammation and mitochondrial dysfunction in patients with PD (PwPD). We will specifically introduce different neuroimaging modalities, their respective technical hurdles and challenges, and their implementation into clinical practice. We will gather preliminary evidence for their potential use in PD research and discuss opportunities for future clinical trials.
Collapse
Affiliation(s)
- Benjamin Matís Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
di Biase L, Pecoraro PM, Carbone SP, Caminiti ML, Di Lazzaro V. Levodopa-Induced Dyskinesias in Parkinson's Disease: An Overview on Pathophysiology, Clinical Manifestations, Therapy Management Strategies and Future Directions. J Clin Med 2023; 12:4427. [PMID: 37445461 DOI: 10.3390/jcm12134427] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Since its first introduction, levodopa has become the cornerstone for the treatment of Parkinson's disease and remains the leading therapeutic choice for motor control therapy so far. Unfortunately, the subsequent appearance of abnormal involuntary movements, known as dyskinesias, is a frequent drawback. Despite the deep knowledge of this complication, in terms of clinical phenomenology and the temporal relationship during a levodopa regimen, less is clear about the pathophysiological mechanisms underpinning it. As the disease progresses, specific oscillatory activities of both motor cortical and basal ganglia neurons and variation in levodopa metabolism, in terms of the dopamine receptor stimulation pattern and turnover rate, underlie dyskinesia onset. This review aims to provide a global overview on levodopa-induced dyskinesias, focusing on pathophysiology, clinical manifestations, therapy management strategies and future directions.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Paola Carbone
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Letizia Caminiti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
8
|
Jenner P, Kanda T, Mori A. How and why the adenosine A 2A receptor became a target for Parkinson's disease therapy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:73-104. [PMID: 37741697 DOI: 10.1016/bs.irn.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Dopaminergic therapy for Parkinson's disease has revolutionised the treatment of the motor symptoms of the illness. However, it does not alleviate all components of the motor deficits and has only limited effects on non-motor symptoms. For this reason, alternative non-dopaminergic approaches to treatment have been sought and the adenosine A2A receptor provided a novel target for symptomatic therapy both within the basal ganglia and elsewhere in the brain. Despite an impressive preclinical profile that would indicate a clear role for adenosine A2A antagonists in the treatment of Parkinson's disease, the road to clinical use has been long and full of difficulties. Some aspects of the drugs preclinical profile have not translated into clinical effectiveness and not all the clinical studies undertaken have had a positive outcome. The reasons for this will be explored and suggestions made for the further development of this drug class in the treatment of Parkinson's disease. However, one adenosine A2A antagonist, namely istradefylline has been introduced successfully for the treatment of late-stage Parkinson's disease in two major areas of the world and has become a commercial success through offering the first non-dopaminergic approach to the treatment of unmet need to be introduced in several decades.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, King's College London, London, United Kingdom.
| | - Tomoyuki Kanda
- Kyowa Kirin Co., Ltd., Otemachi. Chiyoda-ku, Tokyo, Japan
| | | |
Collapse
|
9
|
Franco R, Navarro G, Martínez-Pinilla E. The adenosine A 2A receptor in the basal ganglia: Expression, heteromerization, functional selectivity and signalling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:49-71. [PMID: 37741696 DOI: 10.1016/bs.irn.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine is a neuroregulatory nucleoside that acts through four G protein-coupled receptors (GPCRs), A1, A2A, A2B and A3, which are widely expressed in cells of the nervous system. The A2A receptor (A2AR), the GPCR with the highest expression in the striatum, has a similar role to that of receptors for dopamine, one of the main neurotransmitters. Neuronal and glial A2ARs participate in the modulation of dopaminergic transmission and act in almost any action in which the basal ganglia is involved. This chapter revisits the expression of the A2AR in the basal ganglia in health and disease, and describes the diversity of signalling depending on whether the receptors are expressed as monomer or as heteromer. The A2AR can interact with other receptors as adenosine A1, dopamine D2, or cannabinoid CB1 to form heteromers with relevant functions in the basal ganglia. Heteromerization, with these and other GPCRs, provides diversity to A2AR-mediated signalling and to the modulation of neurotransmission. Thus, selective A2AR antagonists have neuroprotective potential acting directly on neurons, but also through modulation of glial cell activation, for example, by decreasing neuroinflammatory events that accompany neurodegenerative diseases. In fact, A2AR antagonists are safe and their potential in the therapy of Parkinson's disease has already led to the approval of one of them, istradefylline, in Japan and United States. The receptor also has a key role in reward circuits and, again, heteromers with dopamine receptors, but also with cannabinoid CB1 receptors, participate in the events triggered by drugs of abuse.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Science Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| |
Collapse
|
10
|
Pinna A, Parekh P, Morelli M. Serotonin 5-HT 1A receptors and their interactions with adenosine A 2A receptors in Parkinson's disease and dyskinesia. Neuropharmacology 2023; 226:109411. [PMID: 36608814 DOI: 10.1016/j.neuropharm.2023.109411] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
The dopamine neuronal loss that characterizes Parkinson's Disease (PD) is associated to changes in neurotransmitters, such as serotonin and adenosine, which contribute to the symptomatology of PD and to the onset of dyskinetic movements associated to levodopa treatment. The present review describes the role played by serotonin 5-HT1A receptors and the adenosine A2A receptors on dyskinetic movements induced by chronic levodopa in PD. The focus is on preclinical and clinical results showing the interaction between serotonin 5-HT1A receptors and other receptors such as 5-HT1B receptors and adenosine A2A receptors. 5-HT1A/1B receptor agonists and A2A receptor antagonists, administered in combination, contrast dyskinetic movements induced by chronic levodopa without impairing motor behaviour, suggesting that this drug combination might be a useful therapeutic approach for counteracting the PD motor deficits and dyskinesia associated with chronic levodopa treatment. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| | - Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| |
Collapse
|
11
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
Kim J, Kim YK. Molecular Imaging of Neuroinflammation in Alzheimer's Disease and Mild Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:301-326. [PMID: 36949316 DOI: 10.1007/978-981-19-7376-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
13
|
Waggan I, Rissanen E, Tuisku J, Joutsa J, Helin S, Parkkola R, Rinne JO, Airas L. Adenosine A 2A receptor availability in patients with early- and moderate-stage Parkinson's disease. J Neurol 2023; 270:300-310. [PMID: 36053386 DOI: 10.1007/s00415-022-11342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Adenosine 2A (A2A) receptors co-localize with dopamine D2 receptors in striatopallidal medium spiny neurons of the indirect pathway. A2A receptor activation in the striatum or pallidum decreases D2 signaling. In contrast, A2A receptor antagonism may help potentiate it. Furthermore, previous PET studies have shown increased A2A receptor availability in striatum of late-stage PD patients with dyskinesia. However, human in vivo evidence for striatal A2A receptor availability in early-stage PD is limited. This study aimed to investigate possible differences in A2A receptor availability in the striatum and pallidum of early- and moderate-stage PD patients without dyskinesias. METHODS Brain MRI and PET with [11C]TMSX radioligand, targeting A2A receptors, was performed in 9 patients with early- and 9 with moderate-stage PD without dyskinesia and in 6 healthy controls. Distribution volume ratios (DVR) were calculated to assess specific [11C]TMSX binding in caudate, putamen and pallidum. RESULTS A2A receptor availability (DVR) was decreased in the bilateral caudate of early-stage PD patients when compared with healthy controls (P = 0.02). Conversely, DVR was increased bilaterally in the pallidum of moderate-stage PD patients compared to healthy controls (P = 0.03). Increased mean striatal DVR correlated with higher motor symptom severity ([Formula: see text] = 0.47, P = 0.02). CONCLUSION Our results imply regional and disease stage-dependent changes in A2A receptor signaling in PD pathophysiology and in response to dopaminergic medication.
Collapse
Affiliation(s)
- Imran Waggan
- Turku PET Centre, University of Turku, Itäinen Pitkäkatu 4A, 6th floor, 6007, 20520, Turku, Finland.
| | - Eero Rissanen
- Turku PET Centre, University of Turku, Itäinen Pitkäkatu 4A, 6th floor, 6007, 20520, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Itäinen Pitkäkatu 4A, 6th floor, 6007, 20520, Turku, Finland
| | - Juho Joutsa
- Turku PET Centre, University of Turku, Itäinen Pitkäkatu 4A, 6th floor, 6007, 20520, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Itäinen Pitkäkatu 4A, 6th floor, 6007, 20520, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Itäinen Pitkäkatu 4A, 6th floor, 6007, 20520, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, University of Turku, Itäinen Pitkäkatu 4A, 6th floor, 6007, 20520, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
14
|
Gündel D, Toussaint M, Lai TH, Deuther-Conrad W, Cumming P, Schröder S, Teodoro R, Moldovan RP, Pan-Montojo F, Sattler B, Kopka K, Sabri O, Brust P. Quantitation of the A2A Adenosine Receptor Density in the Striatum of Mice and Pigs with [18F]FLUDA by Positron Emission Tomography. Pharmaceuticals (Basel) 2022; 15:ph15050516. [PMID: 35631343 PMCID: PMC9146919 DOI: 10.3390/ph15050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
The cerebral expression of the A2A adenosine receptor (A2AAR) is altered in neurodegenerative diseases such as Parkinson’s (PD) and Huntington’s (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in the brain of our recently developed A2AAR–specific antagonist radiotracer [18F]FLUDA. For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone–treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of mouse brain time–activity curves to calculate the mean residence time (MRT) by non–compartmental analysis, and the binding potential (BPND) of [18F]FLUDA using the simplified reference tissue model (SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer distribution volume (VT) at baseline and under blocking conditions with tozadenant. The MRT of [18F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A2AAR antagonist istradefylline. Mouse results showed the highest BPND (3.9 to 5.9) in the striatum. SRTM analysis showed a 20% lower A2AAR availability in the rotenone–treated mice compared to the control–aged group. Tozadenant treatment significantly decreased the VT (14.6 vs. 8.5 mL · g−1) and BPND values (1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high BPND of [18F]FLUDA in the striatum. We conclude that [18F]FLUDA is a suitable tool for the non–invasive quantitation of altered A2AAR expression in neurodegenerative diseases such as PD and HD, by PET.
Collapse
Affiliation(s)
- Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Correspondence: ; Tel.: +49-341-234179-4615
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
| | - Thu Hang Lai
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany;
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane 4000, Australia
| | - Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany;
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Department of Research and Development, Life Molecular Imaging GmbH, 13353 Berlin, Germany
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
| | - Francisco Pan-Montojo
- Department of Psychiatry, University Hospital Munich, Ludwig–Maximilians–Universität (LMU) Munich, 80336 Munich, Germany;
- Department of Neurology, University Hospital Munich, Ludwig–Maximilians–Universität (LMU) Munich, 81377 Munich, Germany
| | - Bernhard Sattler
- Department for Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany; (B.S.); (O.S.)
| | - Klaus Kopka
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Osama Sabri
- Department for Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany; (B.S.); (O.S.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig–Holstein, 23562 Lübeck, Germany
| |
Collapse
|
15
|
Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The Pharmacological Potential of Adenosine A 2A Receptor Antagonists for Treating Parkinson's Disease. Molecules 2022; 27:2366. [PMID: 35408767 PMCID: PMC9000505 DOI: 10.3390/molecules27072366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine A2A receptor subtype is recognized as a non-dopaminergic pharmacological target for the treatment of neurodegenerative disorders, notably Parkinson's disease (PD). The selective A2A receptor antagonist istradefylline is approved in the US and Japan as an adjunctive treatment to levodopa/decarboxylase inhibitors in adults with PD experiencing OFF episodes or a wearing-off phenomenon; however, the full potential of this drug class remains to be explored. In this article, we review the pharmacology of adenosine A2A receptor antagonists from the perspective of the treatment of both motor and non-motor symptoms of PD and their potential for disease modification.
Collapse
Affiliation(s)
- Akihisa Mori
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou 325015, China;
| | - Shinichi Uchida
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | | | | | - Peter Jenner
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| |
Collapse
|
16
|
Takahashi M, Shimokawa T, Koh J, Takeshima T, Yamashita H, Kajimoto Y, Mori A, Ito H. Efficacy and safety of istradefylline in patients with Parkinson's disease presenting with postural abnormalities: Results from a multicenter, prospective, and open-label exploratory study in Japan. J Neurol Sci 2022; 432:120078. [PMID: 34923334 DOI: 10.1016/j.jns.2021.120078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Postural abnormalities in Parkinson's disease (PD) can devastatingly impair the quality of life, especially in patients with advanced disease, and are generally refractory to dopaminergic agents. The objective of this exploratory study was to investigate the efficacy and safety of istradefylline for the treatment of postural abnormalities in PD. In this open-label, 24-week, single-arm prospective trial, PD patients with postural abnormalities experiencing the wearing-off phenomenon on levodopa-containing therapies were enrolled and received a starting dose of 20 mg/day istradefylline orally for 4 weeks, which was then increased to 40 mg/day. The primary endpoint was the change from baseline to week 24 in the 14-item Unified Dystonia Rating Scale (UDRS) total score. Pivotal secondary endpoints were changes in the sub-items of UDRS, Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III, and adverse drug reactions (ADRs). Overall, 24/31 enrolled patients completed the study; mean (standard deviation) age and duration of motor complications were 73.3 (7.7) years and 3.2 (4.4) years, respectively. Mean (95% confidence interval [CI]) change in the UDRS total score was 4.84 (1.97, 7.71; P = 0.002), with significant improvements in the neck, right distal arm and hand, and trunk severity scores. Mean (95% CI) change in the MDS-UPDRS part III score was 7.84 (4.34, 11.34; P < 0.001). The most common ADRs were malaise, dyskinesia exacerbation, and visual hallucinations in 2 (6.5%) patients each. This exploratory study demonstrated that istradefylline could be efficacious for postural abnormalities and was generally well tolerated in patients with PD experiencing the wearing-off phenomenon with levodopa-containing therapies.
Collapse
Affiliation(s)
- Makio Takahashi
- Department of Neurology, Kitano Hospital, The Tazuke-Kofukai Medical Research Institute, Osaka, Japan.
| | - Toshio Shimokawa
- Clinical Study Support Center, Wakayama Medical University, Wakayama, Japan
| | - Jinsoo Koh
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | | | - Hirofumi Yamashita
- Department of Neurology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | | | - Akihisa Mori
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
17
|
Bidesi NSR, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson's disease. J Neurochem 2021; 159:660-689. [PMID: 34532856 PMCID: PMC9291628 DOI: 10.1111/jnc.15516] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.
Collapse
Affiliation(s)
- Natasha S R Bidesi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
18
|
Hauser RA, Hattori N, Fernandez H, Isaacson SH, Mochizuki H, Rascol O, Stocchi F, Li J, Mori A, Nakajima Y, Ristuccia R, LeWitt P. Efficacy of Istradefylline, an Adenosine A2A Receptor Antagonist, as Adjunctive Therapy to Levodopa in Parkinson's Disease: A Pooled Analysis of 8 Phase 2b/3 Trials. JOURNAL OF PARKINSONS DISEASE 2021; 11:1663-1675. [PMID: 34486986 PMCID: PMC8609697 DOI: 10.3233/jpd-212672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Istradefylline is a selective adenosine A2A receptor antagonist for the treatment of patients with Parkinson's disease (PD) experiencing OFF episodes while on levodopa/decarboxylase inhibitor. OBJECTIVE This pooled analysis of eight randomized, placebo-controlled, double-blind phase 2b/3 studies evaluated the efficacy and safety of istradefylline. METHODS Istradefylline was evaluated in PD patients receiving levodopa with carbidopa/benserazide and experiencing motor fluctuations. Eight 12- or 16-week trials were conducted (n = 3,245); four of these studies were the basis for istradefylline's FDA approval. Change in OFF time as assessed in patient-completed 24-h PD diaries at Week 12 was the primary endpoint. All studies were designed with common methodology, thereby permitting pooling of data. Pooled analysis results from once-daily oral istradefylline (20 and 40 mg/day) and placebo were evaluated using a mixed-model repeated-measures approach including study as a factor. RESULTS Among 2,719 patients (placebo, n = 992; 20 mg/day, n = 848; 40 mg/day, n = 879), OFF hours/day were reduced at Week 12 at istradefylline dosages of 20 mg/day (least-squares mean difference [LSMD] from placebo in reduction from baseline [95%CI], -0.38 h [-0.61, -0.15]) and 40 mg/day (-0.45 h [-0.68, -0.22], p < 0.0001); ON time without troublesome dyskinesia (ON-WoTD) significantly increased. Similar results were found in the four-study pool (OFF hours/day, 20 mg/day, -0.75 h [-1.10, -0.40]; 40 mg/day, -0.82 h [-1.17, -0.47]). Istradefylline was generally well-tolerated; the average study completion rate among istradefylline-treated patients across all studies was 89.2%. Dyskinesia was the most frequent adverse event (placebo, 9.6%; 20 mg/day, 16.1%; 40 mg/day, 17.7%). CONCLUSION In this pooled analysis, istradefylline significantly improved OFF time and ON-WoTD relative to placebo and was well-tolerated.
Collapse
Affiliation(s)
- Robert A Hauser
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hubert Fernandez
- Center for Neuro-Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Stuart H Isaacson
- Parkinson's Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Neurosciences and Clinical Pharmacology, Parkinson Expert Center, NS-Park/FCRIN Network and NeuroToul COEN Center, CHU de Toulouse, INSERM and University of Toulouse 3, Toulouse, France
| | | | - June Li
- Kyowa Kirin, Inc., Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
19
|
How Are Adenosine and Adenosine A 2A Receptors Involved in the Pathophysiology of Amyotrophic Lateral Sclerosis? Biomedicines 2021; 9:biomedicines9081027. [PMID: 34440231 PMCID: PMC8392384 DOI: 10.3390/biomedicines9081027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Adenosine is extensively distributed in the central and peripheral nervous systems, where it plays a key role as a neuromodulator. It has long been implicated in the pathogenesis of progressive neurogenerative disorders such as Parkinson’s disease, and there is now growing interest in its role in amyotrophic lateral sclerosis (ALS). The motor neurons affected in ALS are responsive to adenosine receptor function, and there is accumulating evidence for beneficial effects of adenosine A2A receptor antagonism. In this article, we focus on recent evidence from ALS clinical pathology and animal models that support dynamism of the adenosinergic system (including changes in adenosine levels and receptor changes) in ALS. We review the possible mechanisms of chronic neurodegeneration via the adenosinergic system, potential biomarkers and the acute symptomatic pharmacology, including respiratory motor neuron control, of A2A receptor antagonism to explore the potential of the A2A receptor as target for ALS therapy.
Collapse
|
20
|
Moreira-de-Sá A, Lourenço VS, Canas PM, Cunha RA. Adenosine A 2A Receptors as Biomarkers of Brain Diseases. Front Neurosci 2021; 15:702581. [PMID: 34335174 PMCID: PMC8322233 DOI: 10.3389/fnins.2021.702581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular adenosine is produced with increased metabolic activity or stress, acting as a paracrine signal of cellular effort. Adenosine receptors are most abundant in the brain, where adenosine acts through inhibitory A1 receptors to decrease activity/noise and through facilitatory A2A receptors (A2AR) to promote plastic changes in physiological conditions. By bolstering glutamate excitotoxicity and neuroinflammation, A2AR also contribute to synaptic and neuronal damage, as heralded by the neuroprotection afforded by the genetic or pharmacological blockade of A2AR in animal models of ischemia, traumatic brain injury, convulsions/epilepsy, repeated stress or Alzheimer's or Parkinson's diseases. A2AR overfunction is not only necessary for the expression of brain damage but is actually sufficient to trigger brain dysfunction in the absence of brain insults or other disease triggers. Furthermore, A2AR overfunction seems to be an early event in the demise of brain diseases, which involves an increased formation of ATP-derived adenosine and an up-regulation of A2AR. This prompts the novel hypothesis that the evaluation of A2AR density in afflicted brain circuits may become an important biomarker of susceptibility and evolution of brain diseases once faithful PET ligands are optimized. Additional relevant biomarkers would be measuring the extracellular ATP and/or adenosine levels with selective dyes, to identify stressed regions in the brain. A2AR display several polymorphisms in humans and preliminary studies have associated different A2AR polymorphisms with altered morphofunctional brain endpoints associated with neuropsychiatric diseases. This further prompts the interest in exploiting A2AR polymorphic analysis as an ancillary biomarker of susceptibility/evolution of brain diseases.
Collapse
Affiliation(s)
- Ana Moreira-de-Sá
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Vanessa S Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
22
|
Waggan I, Rissanen E, Tuisku J, Matilainen M, Helin S, Parkkola R, Rinne JO, Airas L. Effect of dopaminergic medication on adenosine 2A receptor availability in patients with Parkinson's disease. Parkinsonism Relat Disord 2021; 86:40-44. [PMID: 33831661 DOI: 10.1016/j.parkreldis.2021.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the necessity of withdrawing dopaminergic medication in Parkinson's disease (PD) patients for accurate estimation of adenosine 2A receptor (A2AR) availability using [11C]TMSX PET imaging. This was accomplished by studying the short-term effect of the cessation of dopaminergic medication on A2AR availability in non-dyskinetic patients with PD treated with dopaminergic medication. METHODS Eight PD patients (age 67.9 ± 5.6 years; 6 men, 2 women) without dyskinesia were enrolled in this study. A2AR availability was measured using PET imaging with a [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX) radioligand after a short term cessation of dopaminergic medication (12hrs for levodopa, 24hrs for dopamine agonists and MAO-B inhibitors). Repeated PET imaging was performed while the patients were back 'on' their regular dopaminergic medication (median 13 days after first imaging). Conventional MRI was acquired for anatomical reference. Specific binding of [11C]TMSX was quantified as distribution volume ratios (DVR) for caudate, pallidum and putamen using Logan graphical method with clustered gray matter reference region. RESULTS No significant differences were observed for the DVRs in all three striatal regions between 'on' and 'off' medication states. Strong correlations were also observed between the two states. Statistical equivalence was found in pallidum (TOST equivalence test, p = 0.045) and putamen (TOST equivalence test, p = 0.022), but not in caudate DVR (TOST equivalence test, p = 0.201) between the two medication states. CONCLUSIONS Our results show that dopaminergic medication has no significant short-term effect on the availability of A2A receptors in putamen and pallidum of patients with PD. However, relatively poor repeatability was demonstrated in the caudate.
Collapse
Affiliation(s)
- Imran Waggan
- Turku PET Centre, University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.
| | - Eero Rissanen
- Turku PET Centre, University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Semi Helin
- Turku PET Centre, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Turku PET Centre, University of Turku, Turku, Finland; Radiology Department, Division of Medical Imaging, Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Laura Airas
- Turku PET Centre, University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Yang X, Heitman LH, IJzerman AP, van der Es D. Molecular probes for the human adenosine receptors. Purinergic Signal 2021; 17:85-108. [PMID: 33313997 PMCID: PMC7954947 DOI: 10.1007/s11302-020-09753-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/01/2020] [Indexed: 11/29/2022] Open
Abstract
Adenosine receptors, G protein-coupled receptors (GPCRs) that are activated by the endogenous ligand adenosine, have been considered potential therapeutic targets in several disorders. To date however, only very few adenosine receptor modulators have made it to the market. Increased understanding of these receptors is required to improve the success rate of adenosine receptor drug discovery. To improve our understanding of receptor structure and function, over the past decades, a diverse array of molecular probes has been developed and applied. These probes, including radioactive or fluorescent moieties, have proven invaluable in GPCR research in general. Specifically for adenosine receptors, the development and application of covalent or reversible probes, whether radiolabeled or fluorescent, have been instrumental in the discovery of new chemical entities, the characterization and interrogation of adenosine receptor subtypes, and the study of adenosine receptor behavior in physiological and pathophysiological conditions. This review summarizes these applications, and also serves as an invitation to walk another mile to further improve probe characteristics and develop additional tags that allow the investigation of adenosine receptors and other GPCRs in even finer detail.
Collapse
Affiliation(s)
- Xue Yang
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daan van der Es
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
24
|
Ntetsika T, Papathoma PE, Markaki I. Novel targeted therapies for Parkinson's disease. Mol Med 2021; 27:17. [PMID: 33632120 PMCID: PMC7905684 DOI: 10.1186/s10020-021-00279-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the second more common neurodegenerative disease with increasing incidence worldwide associated to the population ageing. Despite increasing awareness and significant research advancements, treatment options comprise dopamine repleting, symptomatic therapies that have significantly increased quality of life and life expectancy, but no therapies that halt or reverse disease progression, which remain a great, unmet goal in PD research. Large biomarker development programs are undertaken to identify disease signatures that will improve patient selection and outcome measures in clinical trials. In this review, we summarize PD-related mechanisms that can serve as targets of therapeutic interventions aiming to slow or modify disease progression, as well as previous and ongoing clinical trials in each field, and discuss future perspectives.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden
| | - Paraskevi-Evita Papathoma
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Danderyd Hospital Stockholm, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden.
| |
Collapse
|
25
|
Jenner P, Mori A, Aradi SD, Hauser RA. Istradefylline - a first generation adenosine A 2A antagonist for the treatment of Parkinson's disease. Expert Rev Neurother 2021; 21:317-333. [PMID: 33507105 DOI: 10.1080/14737175.2021.1880896] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction It is now accepted that Parkinson's disease (PD) is not simply due to dopaminergic dysfunction, and there is interest in developing non-dopaminergic approaches to disease management. Adenosine A2A receptor antagonists represent a new way forward in the symptomatic treatment of PD.Areas covered In this narrative review, we summarize the literature supporting the utility of adenosine A2A antagonists in PD with a specific focus on istradefylline, the most studied and only adenosine A2A antagonist currently in clinical use.Expert opinion: At this time, the use of istradefylline in the treatment of PD is limited to the management of motor fluctuations as supported by the results of randomized clinical trials and evaluation by Japanese and USA regulatory authorities. The relatively complicated clinical development of istradefylline was based on classically designed studies conducted in PD patients with motor fluctuations on an optimized regimen of levodopa plus adjunctive dopaminergic medications. In animal models, there is consensus that a more robust effect of istradefylline in improving motor function is produced when combined with low or threshold doses of levodopa rather than with high doses that produce maximal dopaminergic improvement. Exploration of istradefylline as a 'levodopa sparing' strategy in earlier PD would seem warranted.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Kirin Co Ltd, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Stephen D Aradi
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
26
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
27
|
Schubert JJ, Veronese M, Fryer TD, Manavaki R, Kitzbichler MG, Nettis MA, Mondelli V, Pariante CM, Bullmore ET, Turkheimer FE. A Modest Increase in 11C-PK11195-Positron Emission Tomography TSPO Binding in Depression Is Not Associated With Serum C-Reactive Protein or Body Mass Index. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:716-724. [PMID: 33515765 PMCID: PMC8264953 DOI: 10.1016/j.bpsc.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Background Immune mechanisms have been implicated in the pathogenesis of depression. Translocator protein (TSPO)–targeted positron emission tomography (PET) has been used to assess neuroinflammation in major depressive disorder. We aimed to 1) test the hypothesis of significant case-control differences in TSPO binding in the anterior cingulate cortex, prefrontal cortex, and insula regions; and 2) explore the relationship between cerebral TSPO binding and peripheral blood C-reactive protein (CRP) concentration. Methods A total of 51 depressed subjects with Hamilton Depression Rating Scale score >13 (median 17; interquartile range, 16–22) and 25 healthy control subjects underwent dynamic brain 11C-PK11195 PET and peripheral blood immune marker characterization. Depressed subjects were divided into high CRP (>3 mg/L; n = 20) and low CRP (<3 mg/L; n = 31). Results Across the three regions, TSPO binding was significantly increased in depressed versus control subjects (η2p = .09; F1,71 = 6.97, p = .01), which was not influenced by body mass index. The case-control difference was greatest in the anterior cingulate cortex (d = 0.49; t74 = 2.00, p = .03) and not significant in the prefrontal cortex or insula (d = 0.27 and d = 0.36, respectively). Following CRP stratification, significantly higher TSPO binding was observed in low-CRP depression compared with controls (d = 0.53; t54 = 1.96, p = .03). These effect sizes are comparable to prior major depressive disorder case-control TSPO PET data. No significant correlations were observed between TSPO and CRP measures. Conclusions Consistent with previous findings, there is a modest increase in TSPO binding in depressed patients compared with healthy control subjects. The lack of a significant correlation between brain TSPO binding and blood CRP concentration or body mass index poses questions about the interactions between central and peripheral immune responses in the pathogenesis of depression.
Collapse
Affiliation(s)
- Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim D Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Manfred G Kitzbichler
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maria A Nettis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; National Institute for Health and Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; National Institute for Health and Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; National Institute for Health and Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
28
|
Do caffeine and more selective adenosine A 2A receptor antagonists protect against dopaminergic neurodegeneration in Parkinson's disease? Parkinsonism Relat Disord 2020; 80 Suppl 1:S45-S53. [PMID: 33349580 PMCID: PMC8102090 DOI: 10.1016/j.parkreldis.2020.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/26/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
The adenosine A2A receptor is a major target of caffeine, the most widely used psychoactive substance worldwide. Large epidemiological studies have long shown caffeine consumption is a strong inverse predictor of Parkinson’s disease (PD). In this review, we first examine the epidemiology of caffeine use vis-à-vis PD and follow this by looking at the evidence for adenosine A2A receptor antagonists as potential neuroprotective agents. There is a wealth of accumulating biological, epidemiological and clinical evidence to support the further investigation of selective adenosine A2A antagonists, as well as caffeine, as promising candidate therapeutics to fill the unmet need for disease modification of PD.
Collapse
|
29
|
Mori A. How do adenosine A 2A receptors regulate motor function? Parkinsonism Relat Disord 2020; 80 Suppl 1:S13-S20. [PMID: 33349575 DOI: 10.1016/j.parkreldis.2020.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/17/2023]
Abstract
Adenosine A2A receptor antagonism is a new therapeutic strategy in the symptomatic treatment of Parkinson's disease (PD). This review addresses how adenosine A2A receptors are involved with the control of motor function via the basal ganglia-thalamocortical circuit, and considers the anatomical localization and physiological function of the receptor, along with its ultrastructural localization in critical areas/neurons of the circuit. Based on this understanding of the functional significance of the adenosine A2A receptor in the basal ganglia, the mode of action of A2A receptor antagonists is explored in terms of the dynamic functioning of the basal ganglia and the activity of the internal circuits of the striatum in PD. Finally, the pathophysiological differences between the normal and PD states are examined to emphasize the importance of the adenosine A2A receptor.
Collapse
|
30
|
A 2AR Antagonists Upregulate Expression of GS and GLAST in Rat Hypoxia Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2054293. [PMID: 33195689 PMCID: PMC7641686 DOI: 10.1155/2020/2054293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022]
Abstract
Background The aim of this study was to research the effects of glutamine synthetase (GS) and glutamate aspartate transporter (GLAST) in rat Müller cells and the effects of an adenosine A2AR antagonist (SCH 442416) on GS and GLAST in hypoxia both in vivo and in vitro. Methods This study used RT-PCR and Western blotting to quantify the expressions of GS and GLAST under different hypoxic conditions as well as the expressions of GS and GLAST at different drug concentrations. A cell viability assay was used to assess drug toxicity. Results mRNA and protein expression of GS and GLAST in hypoxia Group 24 h was significantly increased. mRNA and protein expressions of GS and GLAST both increased in Group 1 μM SCH 442416 compared with other groups. One micromolar SCH 442416 could upregulate GS and GLAST's activity in hypoxia both in vivo and in vitro. Conclusions Hypoxia activates GS and GLAST in rat retinal Müller cells in a short time in vitro. (2) A2AR antagonists upregulate the activity of GS and GLAST in hypoxia both in vivo and in vitro.
Collapse
|
31
|
Delorme C, Giron C, Bendetowicz D, Méneret A, Mariani LL, Roze E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev Neurother 2020; 21:81-97. [PMID: 33089715 DOI: 10.1080/14737175.2021.1840978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Paroxysmal movement disorders mostly comprise paroxysmal dyskinesia and episodic ataxia, and can be the consequence of a genetic disorder or symptomatic of an acquired disease. AREAS COVERED In this review, the authors focused on certain hot-topic issues in the field: the respective contribution of the cerebellum and striatum to the generation of paroxysmal dyskinesia, the importance of striatal cAMP turnover in the pathogenesis of paroxysmal dyskinesia, the treatable causes of paroxysmal movement disorders not to be missed, with a special emphasis on the treatment strategy to bypass the glucose transport defect in paroxysmal movement disorders due to GLUT1 deficiency, and functional paroxysmal movement disorders. EXPERT OPINION Treatment of genetic causes of paroxysmal movement disorders is evolving towards precision medicine with targeted gene-specific therapy. Alteration of the cerebellar output and modulation of the striatal cAMP turnover offer new perspectives for experimental therapeutics, at least for paroxysmal movement disorders due to selected causes. Further characterization of cell-specific molecular pathways or network dysfunctions that are critically involved in the pathogenesis of paroxysmal movement disorders will likely result in the identification of new biomarkers and testing of innovative-targeted therapeutics.
Collapse
Affiliation(s)
- Cécile Delorme
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - Camille Giron
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - David Bendetowicz
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Aurélie Méneret
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Louise-Laure Mariani
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| |
Collapse
|
32
|
Glaser T, Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Bonfim Marques L, Ye Q, Ren WJ, Semyanov A, Illes P, Tang Y, Ulrich H. Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington's and Parkinson's Disease. Neurosci Bull 2020; 36:1299-1314. [PMID: 33026587 PMCID: PMC7674528 DOI: 10.1007/s12264-020-00582-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022] Open
Abstract
Huntington's (HD) and Parkinson's diseases (PD) are neurodegenerative disorders caused by the death of GABAergic and dopaminergic neurons in the basal ganglia leading to hyperkinetic and hypokinetic symptoms, respectively. We review here the participation of purinergic receptors through intracellular Ca2+ signaling in these neurodegenerative diseases. The adenosine A2A receptor stimulates striatopallidal GABAergic neurons, resulting in inhibitory actions on GABAergic neurons of the globus pallidus. A2A and dopamine D2 receptors form functional heteromeric complexes inducing allosteric inhibition, and A2A receptor activation results in motor inhibition. Furthermore, the A2A receptor physically and functionally interacts with glutamate receptors, mainly with the mGlu5 receptor subtype. This interaction facilitates glutamate release, resulting in NMDA glutamate receptor activation and an increase of Ca2+ influx. P2X7 receptor activation also promotes glutamate release and neuronal damage. Thus, modulation of purinergic receptor activity, such as A2A and P2X7 receptors, and subsequent aberrant Ca2+ signaling, might present interesting therapeutic potential for HD and PD.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Qing Ye
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
| | - Wen-Jing Ren
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
33
|
Tescarollo FC, Rombo DM, DeLiberto LK, Fedele DE, Alharfoush E, Tomé ÂR, Cunha RA, Sebastião AM, Boison D. Role of Adenosine in Epilepsy and Seizures. J Caffeine Adenosine Res 2020; 10:45-60. [PMID: 32566903 PMCID: PMC7301316 DOI: 10.1089/caff.2019.0022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an endogenous anticonvulsant and neuroprotectant of the brain. Seizure activity produces large quantities of adenosine, and it is this seizure-induced adenosine surge that normally stops a seizure. However, within the context of epilepsy, adenosine plays a wide spectrum of different roles. It not only controls seizures (ictogenesis), but also plays a major role in processes that turn a normal brain into an epileptic brain (epileptogenesis). It is involved in the control of abnormal synaptic plasticity and neurodegeneration and plays a major role in the expression of comorbid symptoms and complications of epilepsy, such as sudden unexpected death in epilepsy (SUDEP). Given the important role of adenosine in epilepsy, therapeutic strategies are in development with the goal to utilize adenosine augmentation not only for the suppression of seizures but also for disease modification and epilepsy prevention, as well as strategies to block adenosine A2A receptor overfunction associated with neurodegeneration. This review provides a comprehensive overview of the role of adenosine in epilepsy.
Collapse
Affiliation(s)
- Fabio C. Tescarollo
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Diogo M. Rombo
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, Lisbon, Portugal
- Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Lindsay K. DeLiberto
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Denise E. Fedele
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Enmar Alharfoush
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Ângelo R. Tomé
- Faculty of Science and Technology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, Lisbon, Portugal
- Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Detlev Boison
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
34
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
35
|
Tracers for non-invasive radionuclide imaging of immune checkpoint expression in cancer. EJNMMI Radiopharm Chem 2019; 4:29. [PMID: 31696402 PMCID: PMC6834817 DOI: 10.1186/s41181-019-0078-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract Immunotherapy with checkpoint inhibitors demonstrates impressive improvements in the treatment of several types of cancer. Unfortunately, not all patients respond to therapy while severe immune-related adverse effects are prevalent. Currently, patient stratification is based on immunotherapy marker expression through immunohistochemical analysis on biopsied material. However, expression can be heterogeneous within and between tumor lesions, amplifying the sampling limitations of biopsies. Analysis of immunotherapy target expression by non-invasive quantitative molecular imaging with PET or SPECT may overcome this issue. In this review, an overview of tracers that have been developed for preclinical and clinical imaging of key immunotherapy targets, such as programmed cell death-1, programmed cell death ligand-1, IDO1 and cytotoxic T lymphocyte-associated antigen-4 is presented. We discuss important aspects to consider when developing such tracers and outline the future perspectives of molecular imaging of immunotherapy markers. Graphical abstract Current techniques in immune checkpoint imaging and its potential for future applications ![]()
Collapse
|
36
|
Ray Chaudhuri K, Poewe W, Brooks D. Motor and Nonmotor Complications of Levodopa: Phenomenology, Risk Factors, and Imaging Features. Mov Disord 2019; 33:909-919. [PMID: 30134055 DOI: 10.1002/mds.27386] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Despite enormous advances in our current understanding of PD since James Parkinson described the "shaking palsy" 200 years ago, l-dopa, in clinical use since the 1960s, remains the gold standard of treatment. Virtually every patient with PD requires varying doses of l-dopa to manage motor and some nonmotor symptoms and retain an acceptable quality of life. However, after a period of treatment with l-dopa, a number of problems emerge; the key ones are motor and nonmotor fluctuations, a range of dyskinesias, and a combination of both. Nonmotor complications can range from behavioral problems to sensory, autonomic, and cognitive issues. Even with a wealth of data, both in animal models and in vivo imaging that address the pathophysiology of l-dopa-related motor and nonmotor complications, the treatment remains challenging and is an unmet need. Although refinement in types of dopamine replacement therapy and delivery systems have improved the management of l-dopa-related complications, the search for the ideal treatment continues. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- Institute of Psychiatry, Psychology & Neuroscience at King's College London and Parkinsons Foundation Centre of Excellence at King's College Hospital NHS Foundation Trust
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - David Brooks
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Mitkov J, Kasabova-Angelova A, Kondeva-Burdina M, Tzankova V, Tzankova D, Georgieva M, Zlatkov A. Design, Synthesis and Evaluation of 8-Thiosubstituted 1,3,7- Trimethylxanthine Hydrazones with In-vitro Neuroprotective and MAO-B Inhibitory Activities. Med Chem 2019; 16:326-339. [PMID: 31146671 DOI: 10.2174/1573406415666190531121927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/28/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The syntheses and biological activities of 8-thiosubstituted-1,3,7- trimethylxanthine derivatives bearing an aromatic hydrazide-hydrazone fragment in the side chain at C8 are described. METHODS The chemical structures of the synthesized compounds 6a-m were confirmed based on their MS, FTIR, 1H NMR and 13C NMR analyses. RESULTS The in vitro investigations of neuroprotective effects manifested on cellular (human neuroblastoma cell line SH-SY5Y) and sub-cellular (isolated rat brain synaptosomes) levels show that compounds 6g and 6i demonstrate statistically significant activity. The performed monoamine oxidase B (MAO-B) inhibition study in vitro show that compounds 6g and 6i possess a significant MAO-B inhibition activity close to L-deprenyl. CONCLUSION These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Alexandra Kasabova-Angelova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Virginia Tzankova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| |
Collapse
|
38
|
Torti M, Vacca L, Stocchi F. Istradefylline for the treatment of Parkinson’s disease: is it a promising strategy? Expert Opin Pharmacother 2018; 19:1821-1828. [DOI: 10.1080/14656566.2018.1524876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Margherita Torti
- Center for Parkinson’s Disease, IRCCS San Raffaele Pisana, Rome, Italy
- Neurology Department, San Raffaele Cassino, Cassino, Italy
| | - Laura Vacca
- Center for Parkinson’s Disease, IRCCS San Raffaele Pisana, Rome, Italy
- Neurology Department, Casa di Cura Privata Policlinico (CCPP), Milan, Italy
| | - Fabrizio Stocchi
- Center for Parkinson’s Disease, IRCCS San Raffaele Pisana, Rome, Italy
- Neurology Department, San Raffaele University, Rome, Italy
| |
Collapse
|
39
|
Occupancy of adenosine A 2A receptors by istradefylline in patients with Parkinson's disease using 11C-preladenant PET. Neuropharmacology 2018; 143:106-112. [PMID: 30253174 DOI: 10.1016/j.neuropharm.2018.09.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022]
Abstract
Istradefylline, an adenosine A2A receptor (A2AR) antagonist, is effective as an adjunct to levodopa and can alleviate "off" time and motor symptoms in patients with Parkinson's disease (PD). The present study aimed to calculate occupancy rates of A2ARs by administrating istradefylline 20 mg or 40 mg, which is the currently approved dose for PD in Japan. Additionally, A2AR availability was compared between patients with PD and healthy controls. Ten patients with PD under levodopa therapy and six age-matched healthy controls were included. The patients underwent a total of two 11C-preladenant positron emission tomography scans before and after the administration of istradefylline 20 mg or 40 mg (both n = 5). Binding potential (BPND) was calculated to estimate A2AR availability in the ventral striatum, caudate, and putamen. Maximal A2AR occupancy and ED50 were estimated by modeling the dose-occupancy curves. All patients were around the middle stage of PD, and their characteristics were clinically heterogeneous. Maximal A2AR occupancy and ED50 were 93.5% and 28.6 mg in the ventral striatum, 69.5% and 10.8 mg in the caudate, and 66.8% and 14.8 mg in the putamen, respectively. There were no significant differences in BPND values in the ventral striatum (P = 0.42), caudate (P = 0.72), and putamen (P = 0.43) between the PD and control groups. In conclusion, the present study shows that istradefylline binds to A2ARs dose-dependently. A sufficient occupancy of A2ARs could be obtained by administrating the approved dose of istradefylline.
Collapse
|
40
|
Lahesmaa M, Oikonen V, Helin S, Luoto P, U Din M, Pfeifer A, Nuutila P, Virtanen KA. Regulation of human brown adipose tissue by adenosine and A 2A receptors - studies with [ 15O]H 2O and [ 11C]TMSX PET/CT. Eur J Nucl Med Mol Imaging 2018; 46:743-750. [PMID: 30105585 PMCID: PMC6351510 DOI: 10.1007/s00259-018-4120-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Brown adipose tissue (BAT) has emerged as a potential target to combat obesity and diabetes, but novel strategies to activate BAT are needed. Adenosine and A2A receptor (A2AR) agonism activate BAT in rodents, and endogenous adenosine is released locally in BAT as a by-product of noradrenaline, but physiological data from humans is lacking. The purpose of this pilot study was to investigate the effects of exogenous adenosine on human BAT perfusion, and to determine the density of A2ARs in human BAT in vivo for the first time, using PET/CT imaging. METHODS Healthy, lean men (n = 10) participated in PET/CT imaging with two radioligands. Perfusion of BAT, white adipose tissue (WAT) and muscle was quantified with [15O]H2O at baseline, during cold exposure and during intravenous administration of adenosine. A2AR density of the tissues was quantified with [11C]TMSX at baseline and during cold exposure. RESULTS Adenosine increased the perfusion of BAT even more than cold exposure (baseline 8.3 ± 4.5, cold 19.6 ± 9.3, adenosine 28.6 ± 7.9 ml/100 g/min, p < 0.01). Distribution volume of [11C]TMSX in BAT was significantly lower during cold exposure compared to baseline. In cold, low [11C]TMSX binding coincided with high concentrations of noradrenaline. CONCLUSIONS Adenosine administration caused a maximal perfusion effect in human supraclavicular BAT, indicating increased oxidative metabolism. Cold exposure increased noradrenaline concentrations and decreased the density of A2AR available for radioligand binding in BAT, suggesting augmented release of endogenous adenosine. Our results show that adenosine and A2AR are relevant for activation of human BAT, and A2AR provides a future target for enhancing BAT metabolism.
Collapse
Affiliation(s)
- Minna Lahesmaa
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20520, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20520, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20520, Turku, Finland
| | - Pauliina Luoto
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20520, Turku, Finland
| | - Mueez U Din
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20520, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20520, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Kirsi A Virtanen
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20520, Turku, Finland.
- Turku PET Centre, Turku University Hospital, Turku, Finland.
| |
Collapse
|
41
|
Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018; 24:1399-1412. [DOI: 10.1177/1352458518791680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.
Collapse
Affiliation(s)
- Heidi Högel
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
42
|
Dupont AC, Largeau B, Guilloteau D, Santiago Ribeiro MJ, Arlicot N. The Place of PET to Assess New Therapeutic Effectiveness in Neurodegenerative Diseases. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:7043578. [PMID: 29887768 PMCID: PMC5985069 DOI: 10.1155/2018/7043578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/01/2018] [Indexed: 12/16/2022]
Abstract
In vivo exploration of neurodegenerative diseases by positron emission tomography (PET) imaging has matured over the last 20 years, using dedicated radiopharmaceuticals targeting cellular metabolism, neurotransmission, neuroinflammation, or abnormal protein aggregates (beta-amyloid and intracellular microtubule inclusions containing hyperphosphorylated tau). The ability of PET to characterize biological processes at the cellular and molecular levels enables early detection and identification of molecular mechanisms associated with disease progression, by providing accurate, reliable, and longitudinally reproducible quantitative biomarkers. Thus, PET imaging has become a relevant imaging method for monitoring response to therapy, approved as an outcome measure in bioclinical trials. The aim of this paper is to review and discuss the current inputs of PET in the assessment of therapeutic effectiveness in neurodegenerative diseases connected by common pathophysiological mechanisms, including Parkinson's disease, Huntington's disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. We also discuss opportunities for PET imaging to drive more personalized neuroprotective and therapeutic strategies, taking into account individual variability, within the growing framework of precision medicine.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
| | | | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vitro, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| | - Maria Joao Santiago Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vivo, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| |
Collapse
|
43
|
Nozaki T, Asakawa T, Sugiyama K, Koda Y, Shimoda A, Mizushima T, Sameshima T, Namba H. Effect of Subthalamic Deep Brain Stimulation on Upper Limb Dexterity in Patients with Parkinson Disease. World Neurosurg 2018; 115:e206-e217. [PMID: 29654953 DOI: 10.1016/j.wneu.2018.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN) on dexterity remains controversial despite its recognition as an effective strategy for Parkinson disease. The present study investigated the efficacy of STN-DBS for ameliorating bradykinesia and dexterity compared with dopaminergic medications. METHODS Part III of the Unified Parkinson's Disease Rating Scale was used for the evaluation of bradykinesia, whereas the Purdue Pegboard Test and the Box and Block test were selected for dexterity. RESULTS Our findings indicate that bradykinesia is significantly improved with both DBS and dopaminergic medication, whereas dexterity is improved only with DBS. Dopaminergic medication did not show a satisfactory efficacy on dexterity, and there was little synergistic effect of dopaminergic medication and STN-DBS for improving dexterity associated with Parkinson disease. CONCLUSIONS Our results suggest that DBS is potentially more effective than dopaminergic medications for improving dexterity. The disparities in efficacy for bradykinesia and dexterity between DBS and dopaminergic medication hint at the potential mechanisms of STN-DBS. We speculate that DBS follows at least 2 different mechanisms for improving parkinsonian symptoms: 1) the dopaminergic system, primarily for the improvement of bradykinesia and 2) the nondopaminergic system, for the improvement of dexterity. This hypothesis requires further verification and investigation.
Collapse
Affiliation(s)
- Takao Nozaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | - Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | - Kenji Sugiyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuki Koda
- Department of Rehabilitation, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ayumi Shimoda
- Department of Rehabilitation, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takashi Mizushima
- Department of Rehabilitation, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tetsuro Sameshima
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
44
|
Identification of metabolite biomarkers for L-DOPA-induced dyskinesia in a rat model of Parkinson's disease by metabolomic technology. Behav Brain Res 2018; 347:175-183. [PMID: 29551735 DOI: 10.1016/j.bbr.2018.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
L-DOPA-induced dyskinesia (LID) is a frequent complication of chronic L-DOPA therapy in the clinical treatment of Parkinson's disease (PD). The pathogenesis of LID involves complex molecular mechanisms in the striatum. Metabolomics can shed light on striatal metabolic alterations in LID. In the present study, we compared metabolomics profiles of striatum tissue from Parkinsonian rats with or without dyskinetic symptoms after chronic L-DOPA administration. A liquid chromatography-mass spectrometry based global metabolomics method combined with multivariate statistical analyses were used to detect candidate metabolites associated with LID. 36 dysregulated metabolites in the striatum of LID rats, including anandamide, 2-arachidonoylglycerol, adenosine, glutamate and sphingosine1-phosphate were identified. Furthermore, IMPaLA metabolite set analysis software was used to identify differentially regulated metabolic pathways. The results showed that the metabolic pathways of "Retrograde endocannabinoid signaling", "Phospholipase D signaling pathway", "Glycerophospholipid metabolism" and "Sphingolipid signaling", etc. were dysregulated in LID rats compared to non-LID controls. Moreover, integrated pathway analysis based on results from the present metabolomics and our previous gene expression data in LID rats further demonstrates that aberrant "Retrograde endocannabinoid signaling" pathway might be involved in the development of LID. The present results provide a new profile for the understanding of the pathological mechanism of LID.
Collapse
|
45
|
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and Treatment Response in Parkinson's Disease: An Update on Pharmacogenetic Studies. Neuromolecular Med 2018; 20:1-17. [PMID: 29305687 DOI: 10.1007/s12017-017-8473-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients' quality of life.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
46
|
In Vivo PET Imaging of Adenosine 2A Receptors in Neuroinflammatory and Neurodegenerative Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6975841. [PMID: 29348737 PMCID: PMC5733838 DOI: 10.1155/2017/6975841] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023]
Abstract
Adenosine receptors are G-protein coupled P1 purinergic receptors that are broadly expressed in the peripheral immune system, vasculature, and the central nervous system (CNS). Within the immune system, adenosine 2A (A2A) receptor-mediated signaling exerts a suppressive effect on ongoing inflammation. In healthy CNS, A2A receptors are expressed mainly within the neurons of the basal ganglia. Alterations in A2A receptor function and expression have been noted in movement disorders, and in Parkinson's disease pharmacological A2A receptor antagonism leads to diminished motor symptoms. Although A2A receptors are expressed only at a low level in the healthy CNS outside striatum, pathological challenge or inflammation has been shown to lead to upregulation of A2A receptors in extrastriatal CNS tissue, and this has been successfully quantitated using in vivo positron emission tomography (PET) imaging and A2A receptor-binding radioligands. Several radioligands for PET imaging of A2A receptors have been developed in recent years, and A2A receptor-targeting PET imaging may thus provide a potential additional tool to evaluate various aspects of neuroinflammation in vivo. This review article provides a brief overview of A2A receptors in healthy brain and in a selection of most important neurological diseases and describes the recent advances in A2A receptor-targeting PET imaging studies.
Collapse
|
47
|
Yuan XS, Wang L, Dong H, Qu WM, Yang SR, Cherasse Y, Lazarus M, Schiffmann SN, d'Exaerde ADK, Li RX, Huang ZL. Striatal adenosine A 2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. eLife 2017; 6:29055. [PMID: 29022877 PMCID: PMC5655138 DOI: 10.7554/elife.29055] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Dysfunction of the striatum is frequently associated with sleep disturbances. However, its role in sleep-wake regulation has been paid little attention even though the striatum densely expresses adenosine A2A receptors (A2ARs), which are essential for adenosine-induced sleep. Here we showed that chemogenetic activation of A2AR neurons in specific subregions of the striatum induced a remarkable increase in non-rapid eye movement (NREM) sleep. Anatomical mapping and immunoelectron microscopy revealed that striatal A2AR neurons innervated the external globus pallidus (GPe) in a topographically organized manner and preferentially formed inhibitory synapses with GPe parvalbumin (PV) neurons. Moreover, lesions of GPe PV neurons abolished the sleep-promoting effect of striatal A2AR neurons. In addition, chemogenetic inhibition of striatal A2AR neurons led to a significant decrease of NREM sleep at active period, but not inactive period of mice. These findings reveal a prominent contribution of striatal A2AR neuron/GPe PV neuron circuit in sleep control.
Collapse
Affiliation(s)
- Xiang-Shan Yuan
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Hui Dong
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Su-Rong Yang
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Rui-Xi Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
49
|
Mach RH. Small Molecule Receptor Ligands for PET Studies of the Central Nervous System-Focus on G Protein Coupled Receptors. Semin Nucl Med 2017; 47:524-535. [PMID: 28826524 DOI: 10.1053/j.semnuclmed.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPRCs) are a class of proteins that are expressed in high abundance and are responsible for numerous signal transduction pathways in the central nervous system. Consequently, alterations in GPRC function have been associated with a wide variety of neurologic and neuropsychiatric disorders. The development of PET probes for imaging GPRCs has served as a major emphasis of PET radiotracer development and PET imaging studies over the past 30 years. In this review, a basic description of the biology of G proteins and GPRCs is provided. This includes recent evidence of the existence of dimeric and multimeric species of GPRCs that have been termed "receptor mosaics," with an emphasis on the different GPRCs that form complexes with the dopamine D2 receptor. An overview of the different PET radiotracers for imaging the component GPRC within these different multimeric complexes of the D2 receptor is also provided.
Collapse
Affiliation(s)
- Robert H Mach
- Department of Radiology, Perelman School Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
50
|
Altered adenosine 2A and dopamine D2 receptor availability in the 6-hydroxydopamine-treated rats with and without levodopa-induced dyskinesia. Neuroimage 2017; 157:209-218. [PMID: 28583881 DOI: 10.1016/j.neuroimage.2017.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/22/2022] Open
Abstract
Several lines of evidence imply alterations in adenosine signaling in Parkinson's disease (PD). Here, we investigated cerebral changes in adenosine 2A receptor (A2AR) availability in 6-hydroxydopamine (6-OHDA)-lesioned rats with and without levodopa-induced dyskinesia (LID) using positron-emission tomography (PET) with [11C]preladenant. In parallel dopamine type 2 receptor (D2R) imaging with [11C]raclopride PET and behavioral tests for motor and cognitive function were performed. METHODS Parametric A2AR and D2R binding potential (BPND) images were reconstructed using reference tissue models with midbrain and cerebellum as reference tissue, respectively. All images were anatomically standardized to Paxinos space and analyzed using volume-of-interest (VOI) and voxel-based approaches. The behavioral alternations were assessed with the open field test, Y-maze, novel object recognition test, cylinder test, and abnormal involuntary movement (AIM) score. In total, 28 female Wistar rats were included. RESULTS On the behavioral level, 6-OHDA-lesioned rats showed asymmetry in forepaw use and deficits in spatial memory and explorative behavior as compared to the sham-operated animals. 15-Days of levodopa (L-DOPA) treatment induced dyskinesia but did not alleviate motor deficits in PD rats. Intranigral 6-OHDA injection significantly increased D2R binding in the lesioned striatum (BPND: 2.69 ± 0.40 6-OHDA vs. 2.31 ± 0.18 sham, + 16.6%; p = 0.03), whereas L-DOPA treatment did not affect the D2R binding in the ipsilateral striatum of the PD rats. In addition, intranigral 6-OHDA injection tended to decrease the A2AR availability in the lesioned striatum. The decrease became significant when data were normalized to the non-affected side (BPND: 4.32 ± 0.41 6-OHDA vs. 4.58 ± 0.89 sham; NS, ratio: 0.94 ± 0.03 6-OHDA vs. 1.00 ± 0.02 sham; - 6.1%; p = 0.01). L-DOPA treatment significantly increased A2AR binding in the affected striatum (BPND: 6.02 ± 0.91 L-DOPA vs. 4.90 ± 0.76 saline; + 23.4%; p = 0.02). In PD rats with LID, positive correlations were found between D2R and A2AR BPND values in the ipsilateral striatum (r = 0.88, ppeak = 8.56.10-4 uncorr), and between AIM score and the D2R BPND in the contralateral striatum (r = 0.98; ppeak = 9.55.10-5 uncorr). CONCLUSION A2AR availability changed in drug-naïve and in L-DOPA-treated PD rats. The observed correlations of striatal D2R availability with A2AR availability and with AIM score may provide new knowledge on striatal physiology and new possibilities to further unravel the functions of these targets in the pathophysiology of PD.
Collapse
|