1
|
Breedveld A, Groot Kormelink T, van Egmond M, de Jong EC. Granulocytes as modulators of dendritic cell function. J Leukoc Biol 2017. [DOI: 10.1189/jlb.4mr0217-048rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
2
|
Zhou W, Zhang J, Goleniewska K, Dulek DE, Toki S, Newcomb DC, Cephus JY, Collins RD, Wu P, Boothby MR, Peebles RS. Prostaglandin I2 Suppresses Proinflammatory Chemokine Expression, CD4 T Cell Activation, and STAT6-Independent Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1577-86. [PMID: 27456482 DOI: 10.4049/jimmunol.1501063] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Allergic airway diseases are immune disorders associated with heightened type 2 immune responses and IL-5 and IL-13 production at the site of inflammation. We have previously reported that cyclooxygenase (COX) inhibition by indomethacin augmented allergic airway inflammation in a STAT6-independent manner. However, the key COX product(s) responsible for restraining indomethacin-mediated STAT6-independent allergic inflammation is unknown. In this study, using the mouse model of OVA-induced allergic airway inflammation, we identified that PGI2 receptor (IP) signaling was critical for indomethacin-induced, STAT6-independent proallergic effects. We demonstrated that IP deficiency increased inflammatory cell infiltration, eosinophilia, and IL-5 and IL-13 expression in the lung in a STAT6-independent manner. The augmented STAT6-independent allergic inflammation correlated with enhanced primary immune responses to allergic sensitization and elevated production of multiple inflammatory chemokines (CCL11, CCL17, CCL22, and CXCL12) in the lung after allergen challenge. We also showed that the PGI2 analogue cicaprost inhibited CD4 T cell proliferation and IL-5 and IL-13 expression in vitro, and IP deficiency diminished the stimulatory effect of indomethacin on STAT6-independent IL-5 and IL-13 responses in vivo. The inhibitory effects of PGI2 and the IP signaling pathway on CD4 T cell activation, inflammatory chemokine production, and allergic sensitization and airway inflammation suggest that PGI2 and its analogue iloprost, both Food and Drug Administration-approved drugs, may be useful in treating allergic diseases and asthma. In addition, inhibiting PGI2 signaling by drugs that either block PGI2 production or restrain IP signaling may augment STAT6-independent pathways of allergic inflammation.
Collapse
Affiliation(s)
- Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Daniel E Dulek
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Jacqueline Y Cephus
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Robert D Collins
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Pingsheng Wu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Mark R Boothby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
3
|
Manners S, Alam R, Schwartz DA, Gorska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol 2014; 134:63-72. [PMID: 24365139 PMCID: PMC4065237 DOI: 10.1016/j.jaci.2013.10.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/30/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most asthma begins in the first years of life. This early onset cannot be attributed merely to genetic factors because the prevalence of asthma is increasing. Epidemiologic studies have indicated roles for prenatal and early childhood exposures, including exposure to diesel exhaust. However, little is known about the mechanisms. This is largely due to a paucity of animal models. OBJECTIVE We aimed to develop a mouse model of asthma susceptibility through prenatal exposure to diesel exhaust. METHODS Pregnant C57BL/6 female mice were given repeated intranasal applications of diesel exhaust particles (DEPs) or PBS. Offspring underwent suboptimal immunization and challenge with ovalbumin (OVA) or received PBS. Pups were examined for features of asthma; lung and liver tissues were analyzed for transcription of DEP-regulated genes. RESULTS Offspring of mice exposed to DEPs were hypersensitive to OVA, as indicated by airway inflammation and hyperresponsiveness, increased serum OVA-specific IgE levels, and increased pulmonary and systemic TH2 and TH17 cytokine levels. These cytokines were primarily produced by natural killer (NK) cells. Antibody-mediated depletion of NK cells prevented airway inflammation. Asthma susceptibility was associated with increased transcription of genes known to be specifically regulated by the aryl hydrocarbon receptor and oxidative stress. Features of asthma were either marginal or absent in OVA-treated pups of PBS-exposed mice. CONCLUSION We created a mouse model that linked maternal exposure to DEPs with asthma susceptibility in offspring. Development of asthma was dependent on NK cells and associated with increased transcription from aryl hydrocarbon receptor- and oxidative stress-regulated genes.
Collapse
Affiliation(s)
- Sarah Manners
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo
| | - Rafeul Alam
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colo
| | - Magdalena M Gorska
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo.
| |
Collapse
|
4
|
Caramori G, Casolari P, Adcock I. Role of transcription factors in the pathogenesis of asthma and COPD. ACTA ACUST UNITED AC 2013; 20:21-40. [PMID: 23472830 DOI: 10.3109/15419061.2013.775257] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inflammation is a central feature of asthma and chronic obstructive pulmonary disease (COPD). Despite recent advances in the knowledge of the pathogenesis of asthma and COPD, much more research on the molecular mechanisms of asthma and COPD are needed to aid the logical development of new therapies for these common and important diseases, particularly in COPD where no effective treatments currently exist. In the future the role of the activation/repression of different transcription factors and the genetic regulation of their expression in asthma and COPD may be an increasingly important aspect of research, as this may be one of the critical mechanisms regulating the expression of different clinical phenotypes and their responsiveness to therapy, particularly to anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate CEMICEF; formerly named Centro di Ricerca su Asma e BPCO, Sezione di Malattie dell'Apparato Respiratorio, Università di Ferrara, Ferrara, Italy.
| | | | | |
Collapse
|
5
|
Pericolini E, Alunno A, Gabrielli E, Bartoloni E, Cenci E, Chow SK, Bistoni G, Casadevall A, Gerli R, Vecchiarelli A. The microbial capsular polysaccharide galactoxylomannan inhibits IL-17A production in circulating T cells from rheumatoid arthritis patients. PLoS One 2013; 8:e53336. [PMID: 23308194 PMCID: PMC3540098 DOI: 10.1371/journal.pone.0053336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
The persistence of activated T cells in rheumatoid arthritis (RA) synovium may be attributable to increased homing, increased retention or a possible imbalance between cell proliferation and programmed cell death. Induction of apoptosis may represent a potential therapeutic approach. Galactoxylomannan (GalXM) from the opportunistic fungus Cryptococcus neoformans can interact with T cells and induce T-cell apoptosis through the inhibition of CD45 phosphatase activity. The aim of this study was to determine the effect of GalXM on circulating T cells from patients with RA and the underlying mechanisms. GalXM immunomodulating effect on apoptosis and signal transduction pathway involved in IL-17A production was evaluated on T cells. RA T-cell apoptosis, higher than that of control T cells, was further increased by GalXM through induction of caspase-3 activation. Activated T cells expressing the CD45RO molecule and producing IL-17A were the main target of GalXM-induced apoptosis. GalXM induced consistent impairment of IL-17A production and inhibition of STAT3, which was hyperactivated in RA. In conclusion, GalXM triggered apoptosis of activated memory T cells and interfered with IL-17A production in RA. These data suggest therapeutic targeting of deleterious Th17 cells in RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Eva Pericolini
- Microbiology Section, Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Alessia Alunno
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Microbiology Section, Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Elena Bartoloni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Elio Cenci
- Microbiology Section, Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Giovanni Bistoni
- Department of Plastic and Reconstructive Surgery, “La Sapienza” Medical School, University of Rome, Rome, Italy
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Roberto Gerli
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
- * E-mail:
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Hansbro PM, Scott GV, Essilfie AT, Kim RY, Starkey MR, Nguyen DH, Allen PD, Kaiko GE, Yang M, Horvat JC, Foster PS. Th2 cytokine antagonists: potential treatments for severe asthma. Expert Opin Investig Drugs 2012; 22:49-69. [PMID: 23126660 DOI: 10.1517/13543784.2013.732997] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Asthma is a major disease burden worldwide. Treatment with steroids and long acting β-agonists effectively manage symptoms in many patients but do not treat the underlying cause of disease and have serious side effects when used long term and in children. Therapies targeting the underlying causes of asthma are urgently needed. T helper type 2 (Th2) cells and the cytokines they release are clinically linked to the presentation of all forms of asthma. They are the primary drivers of mild to moderate and allergic asthma. They also play a pathogenetic role in exacerbations and more severe asthma though other factors are also involved. Much effort using animal models and human studies has been dedicated to the identification of the pathogenetic roles of these cells and cytokines and whether inhibition of their activity has therapeutic benefit in asthma. AREAS COVERED We discuss the current status of Th2 cytokine antagonists for the treatment of asthma. We also discuss the potential for targeting Th2-inducing cytokines, Th2 cell receptors and signaling as well as the use of Th2 cell antagonists, small interfering oligonucleotides, microRNAs, and combination therapies. EXPERT OPINION Th2 antagonists may be most effective in particular asthma subtypes/endotypes where specific cytokines are known to be active through the analysis of biomarkers. Targeting common receptors and pathways used by these cytokines may have additional benefit. Animal models have been valuable in identifying therapeutic targets in asthma, however the results from such studies need to be carefully interpreted and applied to appropriately stratified patient cohorts in well-designed clinical studies and trials.
Collapse
Affiliation(s)
- Philip M Hansbro
- The University of Newcastle, Priority Research Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, Level 2, Kookaburra Circuit, New Lambton Heights, Newcastle, New South Wales, 2305, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vieira GC, De Lima JF, De Figueiredo RCBQ, Mascarenhas SR, Bezerra-Santos CR, Piuvezam MR. Inhaled Cissampelos sympodialis down-regulates airway allergic reaction by reducing lung CD3+ T cells. Phytother Res 2012; 27:916-25. [PMID: 22933368 DOI: 10.1002/ptr.4791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/05/2012] [Accepted: 07/15/2012] [Indexed: 11/07/2022]
Abstract
Cissampelos sympodialis Eichl. (Menispermaceae) root infusion is used in Northeast Brazil to treat allergic asthma. We have previously shown that oral use of the plant extract reduces eosinophil infiltration into the lung of ovalbumin (OVA)- sensitized mice. However, drugs taken by inhalation route to treat asthma achieve better outcomes. Thereby, in this study, we evaluated the inhaled C. sympodialis alcoholic extract as a therapeutic treatment in OVA-sensitized BALB/c mice. The parameters which were analyzed consisted of leukocyte recruitment to the airway cavity, tissue remodeling and cell profile. The inhaled extract inhibited mainly eosinophil recruitment to the pleural cavity, bronchoalveolar lavage and peripheral blood. This treatment reduced the OVA-specific IgE serum titer and leukocyte infiltration in the peribronchiolar and pulmonary perivascular areas as well as mucus production. In addition, we also tested isolated alkaloids from the plant extract. The flow cytometric analysis showed that methylwarifteine (MW) and, mainly, the inhaled extract reduced the number of CD3+T cells and eosinophil-like cells. Therefore, inhaled C. sympodialis extract and MW lead to down-regulation of inflammatory cell infiltration with remarkable decrease in the number of T cells in an experimental model of respiratory allergy, suggesting that the plant can be delivered via inhalation route to treat allergic asthma.
Collapse
Affiliation(s)
- Giciane C Vieira
- Laboratory of Immunopharmacology, Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Molecular mechanisms of IgE mediated food allergy. Int Immunopharmacol 2012; 13:432-9. [PMID: 22668720 DOI: 10.1016/j.intimp.2012.05.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/10/2012] [Accepted: 05/23/2012] [Indexed: 12/22/2022]
Abstract
The purpose of this review is to collate current knowledge and recent advances in molecular mechanism behind the immediate type hypersensitivity of foods. Food allergy is a growing concern of human health in developed as well as developing countries now days. Food allergic reactions are mostly IgE mediated and also known as immediate type hypersensitivity or type I reaction. This review encompasses a wide range of molecular events during IgE mediated reactions like primary exposure of allergens, processing of allergens by antigen presenting cells, role of transcription factors like GATA-3, STAT-6, NF-AT, c-maf, c-kit and NF-κB, Treg cells, toll like receptors, cytokines and chemokines, class switch to IgE, FcεR1 receptor, priming of IgE on mast cells or basophils, signaling events followed by secondary exposure of allergens, degranulation and release of mediators like leukotrienes, histamines, prostaglandins, β-hexosaminidase and ultimately anaphylaxis. This review may be helpful to beginners as well as experts working in the field of allergy and immunology because of the stepwise explanations of molecular mechanisms involved in IgE mediated reactions.
Collapse
|
9
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|