1
|
Li H, E W, Zhao D, Liu H, Pei J, Du B, Liu K, Zhu X, Wang C. Response of Paenibacillus polymyxa SC2 to the stress of polymyxin B and a key ABC transporter YwjA involved. Appl Microbiol Biotechnol 2024; 108:17. [PMID: 38170316 DOI: 10.1007/s00253-023-12916-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 01/05/2024]
Abstract
Polymyxins are cationic peptide antibiotics and regarded as the "final line of defense" against multidrug-resistant bacterial infections. Meanwhile, some polymyxin-resistant strains and the corresponding resistance mechanisms have also been reported. However, the response of the polymyxin-producing strain Paenibacillus polymyxa to polymyxin stress remains unclear. The purpose of this study was to investigate the stress response of gram-positive P. polymyxa SC2 to polymyxin B and to identify functional genes involved in the stress response process. Polymyxin B treatment upregulated the expression of genes related to basal metabolism, transcriptional regulation, transport, and flagella formation and increased intracellular ROS levels, flagellar motility, and biofilm formation in P. polymyxa SC2. Adding magnesium, calcium, and iron alleviated the stress of polymyxin B on P. polymyxa SC2, furthermore, magnesium and calcium could improve the resistance of P. polymyxa SC2 to polymyxin B by promoting biofilm formation. Meanwhile, functional identification of differentially expressed genes indicated that an ABC superfamily transporter YwjA was involved in the stress response to polymyxin B of P. polymyxa SC2. This study provides an important reference for improving the resistance of P. polymyxa to polymyxins and increasing the yield of polymyxins. KEY POINTS: • Phenotypic responses of P. polymyxa to polymyxin B was performed and indicated by RNA-seq • Forming biofilm was a key strategy of P. polymyxa to alleviate polymyxin stress • ABC transporter YwjA was involved in the stress resistance of P. polymyxa to polymyxin B.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenhui E
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Dongying Zhao
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haiyang Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian Pei
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Binghai Du
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
2
|
Hogan AM, Motnenko A, Rahman ASMZ, Cardona ST. Cell envelope structural and functional contributions to antibiotic resistance in Burkholderia cenocepacia. J Bacteriol 2024; 206:e0044123. [PMID: 38501654 PMCID: PMC11025338 DOI: 10.1128/jb.00441-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple β-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and β-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.
Collapse
Affiliation(s)
- Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
4
|
Buroni S, Samy RP. Editorial: Burkholderia spp.-transmission, pathogenesis, host-pathogen interaction, prevention and treatment. Front Microbiol 2023; 14:1226865. [PMID: 37346750 PMCID: PMC10280153 DOI: 10.3389/fmicb.2023.1226865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Ramar Perumal Samy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Aguiar ALR, Silva BND, Fiallos NDM, Pereira LMG, Silva ML, Souza PFSMD, Portela FVM, Sidrim JJC, Rocha MFG, Castelo-Branco DSCM, Cordeiro RDA. Promethazine inhibits efflux, enhances antifungal susceptibility and disrupts biofilm structure and functioning in Trichosporon. BIOFOULING 2023; 39:218-230. [PMID: 37122169 DOI: 10.1080/08927014.2023.2202315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Trichosporon spp. are emerging opportunistic fungi associated with invasive infections, especially in patients with haematological malignancies. The present study investigated the in vitro inhibition of efflux pumps by promethazine (PMZ) as a strategy to control T. asahii and T. inkin. Planktonic cells were evaluated for antifungal susceptibility to PMZ, as well as inhibition of efflux. The effect of PMZ was also studied in Trichosporon biofilms. PMZ inhibited T. asahii and T. inkin planktonic cells at concentrations ranging from 32 to 256 μg ml-1. Subinhibitory concentrations of PMZ inhibited efflux activity in Trichosporon. Biofilms were completely eradicated by PMZ. PMZ potentiated the action of antifungals, affected the morphology, changed the amount of carbohydrates and proteins and reduced the amount of persister cells inside biofilms. The results showed indirect evidences of the occurrence of efflux pumps in Trichosporon and opens a perspective for the use of this target in the control of trichosporonosis.
Collapse
Affiliation(s)
| | | | | | | | - Maria Laína Silva
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Fiallos NDM, Aguiar ALR, Nascimento da Silva B, Rocha MFG, Sidrim JJC, Castelo Branco de Souza Collares Maia D, Cordeiro RDA. Enterococcus faecalis and Candida albicans dual-species biofilm: establishment of an in vitro protocol and characterization. BIOFOULING 2022; 38:401-413. [PMID: 35655421 DOI: 10.1080/08927014.2022.2084612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Enterococcus faecalis is the most important agent of persistent apical periodontitis, and recently, Candida albicans has also been implicated in periapical infections. This study aimed to optimize an in vitro E. faecalis and C. albicans dual-species biofilm protocol for endodontic research. Different physicochemical conditions for biofilm formation were tested. Susceptibility assays to antimicrobials, biochemical composition and an ultra-morphological structure analyses were performed. Reproducible dual-species biofilms were established in BHI medium at 35 °C, for 48 h and in a microaerophilic atmosphere. An increase in biomass and chitin content was detected after vancomycin treatment. Structural analysis revealed that the dual-species biofilm was formed by both microorganisms adhered to the substrate. The proposed protocol could be useful for the study of interkingdom relationships and help to find new strategies against periapical infections.
Collapse
|
7
|
Evaluation of Antimicrobial Susceptibility Testing Methods for Burkholderia cenocepacia and Burkholderia multivorans Isolates from Cystic Fibrosis Patients. J Clin Microbiol 2021; 59:e0144721. [PMID: 34524889 DOI: 10.1128/jcm.01447-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia cepacia complex (BCC) is known for causing serious lung infections in people with cystic fibrosis (CF). These infections can require lung transplantation, eligibility for which may be guided by antimicrobial susceptibility testing (AST). While the Clinical and Laboratory Standards Institute recommends AST for BCC, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) does not, due to poor method performance and correlation with clinical outcomes. Furthermore, limited data exist on the performance of automated AST methods for BCC. To address these issues, reproducibility and accuracy were evaluated for disk diffusion (DD), broth microdilution (BMD), and MicroScan WalkAway using 50 B. cenocepacia and 50 B. multivorans isolates collected from people with CF. The following drugs were evaluated in triplicate: chloramphenicol (CAM), ceftazidime (CAZ), meropenem (MEM), trimethoprim-sulfamethoxazole (TMP-SMX), minocycline (MIN), levofloxacin (LVX), ciprofloxacin (CIP), and piperacillin-tazobactam (PIP-TAZ). BMD reproducibility was ≥ 95% for MEM and MIN only, and MicroScan WalkAway reproducibility was similar to BMD. DD reproducibility was < 90% for all drugs tested when a 3 mm cut-off was applied. When comparing the accuracy of DD to BMD, only MEM met all acceptance criteria. TMP-SMX and LVX had high minor errors, CAZ had unacceptable very major errors (VME), and MIN, PIP-TAZ, and CIP had both unacceptable minor errors and VMEs. For MicroScan WalkAway, no drugs met acceptance criteria. Analyses also showed that errors were not attributed to one species. In general, our data agree with EUCAST recommendations.
Collapse
|
8
|
Conservation of Resistance-Nodulation-Cell Division Efflux Pump-Mediated Antibiotic Resistance in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Species. Antimicrob Agents Chemother 2021; 65:e0092021. [PMID: 34181473 DOI: 10.1128/aac.00920-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) and Burkholderia pseudomallei complex (Bpc) species include pathogens that are typically multidrug resistant. Dominant intrinsic and acquired multidrug resistance mechanisms are efflux mediated by pumps of the resistance-nodulation-cell division (RND) family. From comparative bioinformatic and, in many instances, functional studies, we infer that RND pump-based resistance mechanisms are conserved in Burkholderia. We propose to use these findings as a foundation for adoption of a uniform RND efflux pump nomenclature.
Collapse
|
9
|
Antibiotic Cycling Reverts Extensive Drug Resistance in Burkholderia multivorans. Antimicrob Agents Chemother 2021; 65:e0061121. [PMID: 34097494 DOI: 10.1128/aac.00611-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic collateral sensitivity, in which acquired resistance to one drug leads to decreased resistance to a different drug, occurs in Burkholderia multivorans. Here, we observed that treatment of extensively drug-resistant variants evolved from a cystic fibrosis (CF) sputum sample isolate with either meropenem or sulfamethoxazole-trimethoprim, depending on past resistance phenotypes, resulted in increased sensitivity to five different classes of antibiotics. We further identified mutations, including putative resistance-nodulation-division efflux pump regulators and uncharacterized pumps, that may be involved in this phenotype in B. multivorans.
Collapse
|
10
|
Scoffone VC, Trespidi G, Barbieri G, Irudal S, Perrin E, Buroni S. Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics (Basel) 2021; 10:863. [PMID: 34356783 PMCID: PMC8300704 DOI: 10.3390/antibiotics10070863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Drug resistance represents a great concern among people with cystic fibrosis (CF), due to the recurrent and prolonged antibiotic therapy they should often undergo. Among Multi Drug Resistance (MDR) determinants, Resistance-Nodulation-cell Division (RND) efflux pumps have been reported as the main contributors, due to their ability to extrude a wide variety of molecules out of the bacterial cell. In this review, we summarize the principal RND efflux pump families described in CF pathogens, focusing on the main Gram-negative bacterial species (Pseudomonas aeruginosa, Burkholderia cenocepacia, Achromobacter xylosoxidans, Stenotrophomonas maltophilia) for which a predominant role of RND pumps has been associated to MDR phenotypes.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Elena Perrin
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| |
Collapse
|
11
|
Lauman P, Dennis JJ. Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex. Viruses 2021; 13:1331. [PMID: 34372537 PMCID: PMC8310193 DOI: 10.3390/v13071331] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy-the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.
Collapse
Affiliation(s)
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
12
|
Sousa SA, Seixas AMM, Marques JMM, Leitão JH. Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia cepacia Complex Infections. Vaccines (Basel) 2021; 9:vaccines9060670. [PMID: 34207253 PMCID: PMC8234409 DOI: 10.3390/vaccines9060670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Human infections caused by the opportunist pathogens Burkholderia cepacia complex and Pseudomonas aeruginosa are of particular concern due to their severity, their multiple antibiotic resistance, and the limited eradication efficiency of the current available treatments. New therapeutic options have been pursued, being vaccination strategies to prevent or limit these infections as a rational approach to tackle these infections. In this review, immunization and immunotherapy approaches currently available and under study against these bacterial pathogens is reviewed. Ongoing active and passive immunization clinical trials against P. aeruginosa infections is also reviewed. Novel identified bacterial targets and their possible exploitation for the development of immunization and immunotherapy strategies against P. aeruginosa and B. cepacia complex and infections are also presented and discussed.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joana M. M. Marques
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
13
|
Zhong H, Wang Y, Shi Z, Zhang L, Ren H, He W, Zhang Z, Zhu A, Zhao J, Xiao F, Yang F, Liang T, Ye F, Zhong B, Ruan S, Gan M, Zhu J, Li F, Li F, Wang D, Li J, Ren P, Zhu S, Yang H, Wang J, Kristiansen K, Tun HM, Chen W, Zhong N, Xu X, Li YM, Li J, Zhao J. Characterization of respiratory microbial dysbiosis in hospitalized COVID-19 patients. Cell Discov 2021; 7:23. [PMID: 33850111 PMCID: PMC8043102 DOI: 10.1038/s41421-021-00257-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, the microbial composition of the respiratory tract and other infected tissues as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Between 27 January and 26 February 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients in Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. We identified distinct signatures of microbial dysbiosis among severely ill COVID-19 patients on broad spectrum antimicrobial therapy. Co-detection of other human respiratory viruses (including human alphaherpesvirus 1, rhinovirus B, and human orthopneumovirus) was demonstrated in 30.8% (4/13) of the severely ill patients, but not in any of the mildly affected patients. Notably, the predominant respiratory microbial taxa of severely ill patients were Burkholderia cepacia complex (BCC), Staphylococcus epidermidis, or Mycoplasma spp. (including M. hominis and M. orale). The presence of the former two bacterial taxa was also confirmed by clinical cultures of respiratory specimens (expectorated sputum or nasal secretions) in 23.1% (3/13) of the severe cases. Finally, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes was demonstrated in one severely ill patient, which might accelerate his disease deterioration and death occurring one month after ICU admission. Our findings point to SARS-CoV-2-related microbial dysbiosis and various antibiotic-resistant respiratory microbes/pathogens in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking strategies are needed to prevent the spread of antimicrobial resistance, improve the treatment regimen and clinical outcomes of hospitalized, severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Huanzi Zhong
- BGI-Shenzhen, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Zhun Shi
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Lu Zhang
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
- Guangzhou Customs District Technology Center, Guangzhou, 510700, China
| | - Huahui Ren
- BGI-Shenzhen, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Weiqun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Fei Xiao
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Fangming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianzhu Liang
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Bei Zhong
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Shicong Ruan
- Yangjiang People's Hospital, Yangjiang, Guangdong, China
| | - Mian Gan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Jiahui Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Fuqiang Li
- BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Daxi Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiandong Li
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Peidi Ren
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Science, Hangzhou, 310008, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Science, Hangzhou, 310008, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Hein Min Tun
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weijun Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI PathoGenesis Pharmaceutical Technology Co., Ltd., BGI-Shenzhen, Shenzhen, 518083, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Yi-Min Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China.
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
14
|
Shropshire H, Jones RA, Aguilo-Ferretjans MM, Scanlan DJ, Chen Y. Proteomics insights into the Burkholderia cenocepacia phosphorus stress response. Environ Microbiol 2021; 23:5069-5086. [PMID: 33684254 DOI: 10.1111/1462-2920.15451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
The Burkholderia cepacia complex is a group of Burkholderia species that are opportunistic pathogens causing high mortality rates in patients with cystic fibrosis. An environmental stress often encountered by these soil-dwelling and pathogenic bacteria is phosphorus limitation, an essential element for cellular processes. Here, we describe cellular and extracellular proteins differentially regulated between phosphate-deplete (0 mM, no added phosphate) and phosphate-replete (1 mM) growth conditions using a comparative proteomics (LC-MS/MS) approach. We observed a total of 128 and 65 unique proteins were downregulated and upregulated respectively, in the B. cenocepacia proteome. Of those downregulated proteins, many have functions in amino acid transport/metabolism. We have identified 24 upregulated proteins that are directly/indirectly involved in inorganic phosphate or organic phosphorus acquisition. Also, proteins involved in virulence and antimicrobial resistance were differentially regulated, suggesting B. cenocepacia experiences a dramatic shift in metabolism under these stress conditions. Overall, this study provides a baseline for further research into the biology of Burkholderia in response to phosphorus stress.
Collapse
Affiliation(s)
- Holly Shropshire
- BBSRC Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, CV4 7AL, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Rebekah A Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
15
|
Gautam V, Kumar S, Patil PP, Meletiadis J, Patil PB, Mouton JW, Sharma M, Daswal A, Singhal L, Ray P, Singh M. Exploring the Interplay of Resistance Nodulation Division Efflux Pumps, AmpC and OprD in Antimicrobial Resistance of Burkholderia cepacia Complex in Clinical Isolates. Microb Drug Resist 2020; 26:1144-1152. [PMID: 32354297 DOI: 10.1089/mdr.2019.0102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: This study aimed at investigating the association of gene expression of multidrug efflux pumps (MexA, MexC, MexE, and MexX), the outer membrane porin OprD, and the β-lactamase AmpC with the antimicrobial susceptibility among 44 clinical isolates of Burkholderia cepacia complex (Bcc). Results: Increased expression of ampC gene showed significant association with reduced susceptibility to chloramphenicol. In fact, reduced susceptibility to chloramphenicol was correlated with overexpression of most genes (ampC, mexC, mexE, and mexX) studied here in majority (>95%) of the Bcc isolates. Increased mexA expression showed significant association with reduced susceptibility to β-lactam antimicrobials (ceftazidime, piperacillin-tazobactam, and meropenem) and co-trimoxazole. Reduced susceptibility to meropenem also showed significant correlation with overexpression of mexC and mexX, whereas reduced susceptibility to ceftazidime was also associated with mexE overexpression. Reduced susceptibility to levofloxacin was significantly associated with overexpression of mexX. The involvement of the efflux pumps in levofloxacin and ceftazidime resistance was further inferred from the finding that the efflux pump inhibitor, carbonyl cyanide m-chlorophenylhydrazone reduced minimum inhibitory concentrations for both the antimicrobials. Conclusions: To conclude, this study explored the high-level expression of mexC, mexE, and mexX efflux pumps genes and ampC in the clinical isolates of Bcc, which can be targeted at treating infections caused by Bcc.
Collapse
Affiliation(s)
- Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Kumar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant P Patil
- Laboratory of Bacterial Genomics and Evolution, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Prabhu B Patil
- Laboratory of Bacterial Genomics and Evolution, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Johan W Mouton
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Megha Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anmol Daswal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Lipika Singhal
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenu Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
16
|
Nunvar J, Hogan AM, Buroni S, Savina S, Makarov V, Cardona ST, Drevinek P. The Effect of 2-Thiocyanatopyridine Derivative 11026103 on Burkholderia Cenocepacia: Resistance Mechanisms and Systemic Impact. Antibiotics (Basel) 2019; 8:antibiotics8040159. [PMID: 31546596 PMCID: PMC6963507 DOI: 10.3390/antibiotics8040159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) are associated with significant decline of lung functions in cystic fibrosis patients. Bcc infections are virtually impossible to eradicate due to their irresponsiveness to antibiotics. The 2-thiocyanatopyridine derivative 11026103 is a novel, synthetic compound active against Burkholderia cenocepacia. To characterize mechanisms of resistance to 11026103, B. cenocepacia was subjected to chemical mutagenesis, followed by whole genome sequencing. Parallel mutations in resistant isolates were localized in a regulatory protein of the efflux system Resistance-Nodulation-Division (RND)-9 (BCAM1948), RNA polymerase sigma factor (BCAL2462) and its cognate putative anti-sigma factor (BCAL2461). Transcriptomic analysis identified positive regulation of a major facilitator superfamily (MFS) efflux system BCAL1510-1512 by BCAL2462. Artificial overexpression of both efflux systems increased resistance to the compound. The effect of 11026103 on B. cenocepacia was analyzed by RNA-Seq and a competitive fitness assay utilizing an essential gene knockdown mutant library. 11026103 exerted a pleiotropic effect on transcription including profound downregulation of cluster of orthologous groups (COG) category “Translation, ribosomal structure, and biogenesis”. The competitive fitness assay identified many genes which modulated susceptibility to 11026103. In summary, 11026103 exerts a pleiotropic cellular response in B. cenocepacia which can be prevented by efflux system-mediated export.
Collapse
Affiliation(s)
- Jaroslav Nunvar
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 15400 Prague, Czech Republic.
| | - Andrew M Hogan
- Department of Microbiology, Faculty of Science, University of Manitoba, 213 Buller Building, Winnipeg, MB R3T 2N2, Canada.
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| | - Svetlana Savina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Silvia T Cardona
- Department of Microbiology, Faculty of Science, University of Manitoba, 213 Buller Building, Winnipeg, MB R3T 2N2, Canada.
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermot Avenue, Winnipeg, MB R3E 3P5, Canada.
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 15400 Prague, Czech Republic.
| |
Collapse
|
17
|
Sousa SA, Soares-Castro P, Seixas AMM, Feliciano JR, Balugas B, Barreto C, Pereira L, Santos PM, Leitão JH. New insights into the immunoproteome of B. cenocepacia J2315 using serum samples from cystic fibrosis patients. N Biotechnol 2019; 54:62-70. [PMID: 31465856 DOI: 10.1016/j.nbt.2019.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/09/2019] [Accepted: 08/24/2019] [Indexed: 11/26/2022]
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) are ubiquitous multidrug resistant organisms and opportunistic pathogens capable of causing life threatening lung infections among cystic fibrosis (CF) patients. No effective therapies are currently available to eradicate Bcc bacteria from CF patients, as these organisms are inherently resistant to the majority of clinically available antimicrobials. An immunoproteomics approach was used to identify Bcc proteins that stimulate the humoral immune response of the CF host, using bacterial cells grown under conditions mimicking the CF lung environment and serum samples from CF patients with a clinical record of Bcc infection. 24 proteins of the Bcc strain B. cenocepacia J2315 were identified as immunoreactive, 19 here reported as immunogenic for the first time. Ten proteins were predicted as extracytoplasmic, 9 of them being conserved in Bcc genomes. The immunogenic Bcc extracytoplasmic proteins are potential targets for development of novel therapeutic strategies and diagnostic tools to protect patients against the onset of chronic Bcc lung infections.
Collapse
Affiliation(s)
- Sílvia A Sousa
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| | - Pedro Soares-Castro
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - António M M Seixas
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Joana R Feliciano
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Bernardo Balugas
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Celeste Barreto
- Cystic Fibrosis Center, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Luísa Pereira
- Cystic Fibrosis Center, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Pedro M Santos
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
18
|
Cordeiro RDA, Evangelista AJDJ, Serpa R, de Andrade ARC, Mendes PBL, de Oliveira JS, de Alencar LP, Pereira VS, Lima-Neto RG, Brilhante RN, Sidrim JJC, Maia DCBSC, Rocha MFG. Cefepime and Amoxicillin Increase Metabolism and Enhance Caspofungin Tolerance of Candida albicans Biofilms. Front Microbiol 2019; 10:1337. [PMID: 31316472 PMCID: PMC6609871 DOI: 10.3389/fmicb.2019.01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
It is well known that prolonged antibiotic therapy alters the mucosal microbiota composition, increasing the risk of invasive fungal infection (IFI) in immunocompromised patients. The present study investigated the direct effect of β-lactam antibiotics cefepime (CEF) and amoxicillin (AMOX) on biofilm production by Candida albicans ATCC 10231. Antibacterials at the peak plasmatic concentration of each drug were tested against biofilms grown on polystyrene surfaces. Biofilms were evaluated for biomass production, metabolic activity, carbohydrate and protein contents, proteolytic activity, ultrastructure, and tolerance to antifungals. CEF and AMOX enhanced biofilm production by C. albicans ATCC 10231, stimulating biomass production, metabolic activity, viable cell counts, and proteolytic activity, as well as increased biovolume and thickness of these structures. Nevertheless, AMOX induced more significant changes in C. albicans biofilms than CEF. In addition, it was shown that AMOX increased the amount of chitin in these biofilms, making them more tolerant to caspofungin. Finally, it was seen that, in response to AMOX, C. albicans biofilms produce Hsp70 - a protein with chaperone function related to stressful conditions. These results may have a direct impact on the pathophysiology of opportunistic IFIs in patients at risk.
Collapse
Affiliation(s)
| | | | - Rosana Serpa
- Medical Mycology Specialized Center, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | | | - Marcos Fábio Gadelha Rocha
- Medical Mycology Specialized Center, Federal University of Ceará, Fortaleza, Brazil.,Post Graduate Program in Veterinary Sciences, College of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| |
Collapse
|
19
|
Blanco P, Corona F, Martínez JL. Involvement of the RND efflux pump transporter SmeH in the acquisition of resistance to ceftazidime in Stenotrophomonas maltophilia. Sci Rep 2019; 9:4917. [PMID: 30894628 PMCID: PMC6426872 DOI: 10.1038/s41598-019-41308-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/19/2019] [Indexed: 01/19/2023] Open
Abstract
The emergence of antibiotic resistant Gram-negative bacteria has become a serious global health issue. In this study, we have employed the intrinsically resistant opportunistic pathogen Stenotrophomonas maltophilia as a model to study the mechanisms involved in the acquisition of mutation-driven resistance to antibiotics. To this aim, laboratory experimental evolution studies, followed by whole-genome sequencing, were performed in the presence of the third-generation cephalosporin ceftazidime. Using this approach, we determined that exposure to increasing concentrations of ceftazidime selects high-level resistance in S. maltophilia through a novel mechanism: amino acid substitutions in SmeH, the transporter protein of the SmeGH RND efflux pump. The recreation of these mutants in a wild-type background demonstrated that, in addition to ceftazidime, the existence of these substitutions provides bacteria with cross-resistance to other beta-lactam drugs. This acquired resistance does not impose relevant fitness costs when bacteria grow in the absence of antibiotics. Structural prediction of both amino acid residues points that the observed resistance phenotype could be driven by changes in substrate access and recognition.
Collapse
Affiliation(s)
- Paula Blanco
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | - Fernando Corona
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | | |
Collapse
|
20
|
Devanga Ragupathi NK, Veeraraghavan B. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Ann Clin Microbiol Antimicrob 2019; 18:7. [PMID: 30717798 PMCID: PMC6360774 DOI: 10.1186/s12941-019-0306-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are among the most important pathogens isolated from cystic fibrosis (CF) patients and in hospital acquired infections (HAI). Accurate identification of Bcc is questionable by conventional biochemical methods. Clonal typing of Burkholderia is also limited due to the problem with identification. Phenotypic identification methods such as VITEK2, protein signature identification methods like VITEK MS, Bruker Biotyper, and molecular targets such as 16S rRNA, recA, hisA and rpsU were reported with varying level of discrimination to identify Bcc. rpsU and/or 16S rRNA sequencing, VITEK2, VITEK MS and Bruker Biotyper could discriminate between Burkholderia spp. and non-Burkholderia spp. Whereas, Bcc complex level identification can be given by VITEK MS, Bruker Biotyper, and 16S rRNA/rpsU/recA/hisA sequencing. For species level identification within Bcc hisA or recA sequencing are reliable. Identification of Bcc is indispensable in CF patients and HAI to ensure appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
21
|
Sfeir MM. Burkholderia cepacia complex infections: More complex than the bacterium name suggest. J Infect 2018; 77:166-170. [DOI: 10.1016/j.jinf.2018.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 01/23/2023]
|
22
|
The Mla Pathway Plays an Essential Role in the Intrinsic Resistance of Burkholderia cepacia Complex Species to Antimicrobials and Host Innate Components. J Bacteriol 2018; 200:JB.00156-18. [PMID: 29986943 DOI: 10.1128/jb.00156-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a threat to our modern society, and new strategies leading to the identification of new molecules or targets to combat multidrug-resistant pathogens are needed. Species of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc), Burkholderia pseudomallei, and Burkholderia mallei, can be highly pathogenic and are intrinsically resistant to multiple classes of antibiotics. Bcc species are nonetheless sensitive to extracellular products released by Pseudomonas aeruginosa in interspecies competition. We screened for Burkholderia transposon mutants with increased sensitivity to P. aeruginosa spent medium and identified multiple mutants in genes sharing homology with the Mla pathway. Insertional mutants in representative genes of the Bcc Mla pathway had a compromised cell membrane and were more sensitive to various extracellular stresses, including antibiotics and human serum. More precisely, mla mutants in the Bcc species Burkholderia cenocepacia and Burkholderia dolosa were more susceptible to Gram-positive antibiotics (i.e., macrolides and rifampin), fluoroquinolones, tetracyclines, and chloramphenicol. Genetic complementation of mlaC insertional mutants restored cell permeability and resistance to Gram-positive antibiotics. Importantly, Bcc mla mutants were not universally weaker strains since their susceptibilities to other classes of antibiotics were unaffected. Although cell permeability of homologous mla mutants in Escherichia coli or P. aeruginosa was also impaired, they were not more sensitive to Gram-positive antibiotics or other antimicrobials as was observed in Bcc mla mutants. Together, the data suggest that the Mla pathway in Burkholderia may play a different biological role, which could potentially represent a Burkholderia-specific drug target in combination therapy with antibiotic adjuvants.IMPORTANCE The outer membrane of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore compromising this structure could increase sensitivity to currently available antibiotics. In this study, we show that the Mla pathway, a system involved in maintaining the integrity of the outer membrane, is genetically and functionally different in Burkholderia cepacia complex species compared to that in other proteobacteria. Mutants in mla genes of Burkholderia cenocepacia or Burkholderia dolosa were sensitive to Gram-positive antibiotics, while this effect was not observed in Escherichia coli or Pseudomonas aeruginosa The Mla pathway in Burkholderia species may represent an ideal genus-specific target to address their intrinsic antimicrobial resistances.
Collapse
|
23
|
Bodilis J, Denet E, Brothier E, Graindorge A, Favre-Bonté S, Nazaret S. Comparative Genomics of Environmental and Clinical Burkholderia cenocepacia Strains Closely Related to the Highly Transmissible Epidemic ET12 Lineage. Front Microbiol 2018; 9:383. [PMID: 29559964 PMCID: PMC5845691 DOI: 10.3389/fmicb.2018.00383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/20/2018] [Indexed: 01/14/2023] Open
Abstract
The Burkholderia cenocepacia epidemic ET12 lineage belongs to the genomovar IIIA including the reference strain J2315, a highly transmissible epidemic B. cenocepacia lineage. Members of this lineage are able to cause lung infections in immunocompromised and cystic fibrosis patients. In this study, we describe the genome of F01, an environmental B. cenocepacia strain isolated from soil in Burkina Faso that is, to our knowledge, the most closely related strain to this epidemic lineage. A comparative genomic analysis was performed on this new isolate, in association with five clinical and one environmental B. cenocepacia strains whose genomes were previously sequenced. Antibiotic resistances, virulence phenotype, and genomic contents were compared and discussed with an emphasis on virulent and antibiotic determinants. Surprisingly, no significant differences in antibiotic resistance and virulence were found between clinical and environmental strains, while the most important genomic differences were related to the number of prophages identified in their genomes. The ET12 lineage strains showed a noticeable greater number of prophages (partial or full-length), especially compared to the phylogenetically related environmental F01 strain (i.e., 5–6 and 3 prophages, respectively). Data obtained suggest possible involvements of prophages in the clinical success of opportunistic pathogens.
Collapse
Affiliation(s)
- Josselin Bodilis
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France.,EA 4312 Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Mont-Saint-Aignan, France
| | - Elodie Denet
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Elisabeth Brothier
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Arnault Graindorge
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Sabine Favre-Bonté
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Sylvie Nazaret
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| |
Collapse
|
24
|
Perrin E, Maggini V, Maida I, Gallo E, Lombardo K, Madarena MP, Buroni S, Scoffone VC, Firenzuoli F, Mengoni A, Fani R. Antimicrobial activity of six essential oils against Burkholderia cepacia complex: insights into mechanism(s) of action. Future Microbiol 2018; 13:59-67. [DOI: 10.2217/fmb-2017-0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the activity and mechanisms of action of six essential oils (EOs) against Burkholderia cepacia complex, opportunistic human pathogens highly resistant to antibiotics. Materials & methods: Minimal inhibitory concentration of EOs alone, plus antibiotics or efflux pump inhibitors was determined. Results: Origanum vulgare, Thymus vulgaris and Eugenia caryophyllata EOs resulted to be more active than the other EOs. EOs did not enhance antibiotic activity against the model strain B. cenocepacia J2315. EOs resulted more active in the presence of an efflux pump inhibitor acting on Resistance-Nodulation Cell Division efflux pumps and against B. cenocepacia J2315 Resistance-Nodulation Cell Division knocked-out mutants. Conclusion: EOs showed intracellular mechanisms of action and, thus, the efflux pumps inhibitor addition could boost their activity.
Collapse
Affiliation(s)
- Elena Perrin
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Valentina Maggini
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
- Department of Experimental & Clinical Medicine, University of Florence, I-50134, Florence, Italy
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Isabel Maida
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Eugenia Gallo
- Department of Experimental & Clinical Medicine, University of Florence, I-50134, Florence, Italy
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Katia Lombardo
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Maria Pia Madarena
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Silvia Buroni
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 1, I-27100, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 1, I-27100, Pavia, Italy
| | - Fabio Firenzuoli
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| |
Collapse
|
25
|
Perrin E, Fondi M, Bosi E, Mengoni A, Buroni S, Scoffone VC, Valvano M, Fani R. Subfunctionalization influences the expansion of bacterial multidrug antibiotic resistance. BMC Genomics 2017; 18:834. [PMID: 29084524 PMCID: PMC5663151 DOI: 10.1186/s12864-017-4222-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/17/2017] [Indexed: 01/09/2023] Open
Abstract
Background Antibiotic resistance is a major problem for human health. Multidrug resistance efflux pumps, especially those of the Resistance-Nodulation-Cell Division (RND) family, are major contributors to high-level antibiotic resistance in Gram-negative bacteria. Most bacterial genomes contain several copies of the different classes of multidrug resistance efflux pumps. Gene duplication and gain of function by the duplicate copies of multidrug resistance efflux pump genes plays a key role in the expansion and diversification of drug-resistance mechanisms. Results We used two members of the Burkholderia RND superfamily as models to understand how duplication events affect the antibiotic resistance of these strains. First, we analyzed the conservation and distribution of these two RND systems and their regulators across the Burkholderia genus. Through genetic manipulations, we identified both the exact substrate range of these transporters and their eventual interchangeability. We also performed a directed evolution experiment, combined with next generation sequencing, to evaluate the role of antibiotics in the activation of the expression of these systems. Together, our results indicate that the first step to diversify the functions of these pumps arises from changes in their regulation (subfunctionalization) instead of functional mutations. Further, these pumps could rewire their regulation to respond to antibiotics, thus maintaining high genomic plasticity. Conclusions Studying the regulatory network that controls the expression of the RND pumps will help understand and eventually control the development and expansion of drug resistance. Electronic supplementary material The online version of this article (10.1186/s12864-017-4222-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Emanuele Bosi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Miguel Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, UK
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
26
|
Scoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front Microbiol 2017; 8:1592. [PMID: 28878751 PMCID: PMC5572248 DOI: 10.3389/fmicb.2017.01592] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen particularly dangerous for cystic fibrosis (CF) patients. It can cause a severe decline in CF lung function possibly developing into a life-threatening systemic infection known as cepacia syndrome. Antibiotic resistance and presence of numerous virulence determinants in the genome make B. cenocepacia extremely difficult to treat. Better understanding of its resistance profiles and mechanisms is crucial to improve management of these infections. Here, we present the clinical distribution of B. cenocepacia described in the last 6 years and methods for identification and classification of epidemic strains. We also detail new antibiotics, clinical trials, and alternative approaches reported in the literature in the last 5 years to tackle B. cenocepacia resistance issue. All together these findings point out the urgent need of new and alternative therapies to improve CF patients’ life expectancy.
Collapse
Affiliation(s)
- Viola C Scoffone
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | | | - Gabriele Trespidi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Massimo Mentasti
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health EnglandLondon, United Kingdom.,Department of Microbiology, Royal Cornwall HospitalTruro, United Kingdom
| | - Giovanna Riccardi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| |
Collapse
|
27
|
Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes (Basel) 2017; 8:genes8010043. [PMID: 28106859 PMCID: PMC5295037 DOI: 10.3390/genes8010043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.
Collapse
|
28
|
Ahn Y, Kim JM, Kweon O, Kim SJ, Jones RC, Woodling K, Gamboa da Costa G, LiPuma JJ, Hussong D, Marasa BS, Cerniglia CE. Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride. mBio 2016; 7:e01716-16. [PMID: 27879334 PMCID: PMC5120141 DOI: 10.1128/mbio.01716-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Pharmaceutical products that are contaminated with Burkholderia cepacia complex (BCC) bacteria may pose serious consequences to vulnerable patients. Benzyldimethylalkylammonium chloride (BZK) cationic surfactants are extensively used in medical applications and have been implicated in the coselection of antimicrobial resistance. The ability of BCC to degrade BZK, tetradecyldimethylbenzylammonium chloride (C14BDMA-Cl), dodecyldimethylbenzylammonium chloride (C12BDMA-Cl), decyldimethylbenzylammonium chloride (C10BDMA-Cl), hexyldimethylbenzylammonium chloride, and benzyltrimethylammonium chloride was determined by incubation in 1/10-diluted tryptic soy broth (TSB) to determine if BCC bacteria have the ability to survive and inactivate these disinfectants. With BZK, C14BDMA-Cl, and C12BDMA-Cl, inhibition of the growth of 20 BCC strains was observed in disinfectant solutions that ranged from 64 to 256 µg/ml. The efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone increased the sensitivity of bacteria to 64 µg/ml BZK. The 20 BCC strains grew well in 1/10-diluted TSB medium with BZK, C12BDMA-Cl, and C10BDMA-Cl; they absorbed and degraded the compounds in 7 days. Formation of benzyldimethylamine and benzylmethylamine as the initial metabolites suggested that the cleavage of the C alkyl-N bond occurred as the first step of BZK degradation by BCC bacteria. Proteomic data confirmed the observed efflux activity and metabolic inactivation via biodegradation in terms of BZK resistance of BCC bacteria, which suggests that the two main resistance mechanisms are intrinsic and widespread. IMPORTANCE Benzyldimethylalkylammonium chloride is commonly used as an antiseptic in the United States. Several recent microbial outbreaks were linked to antiseptics that were found to contain strains of the Burkholderia cepacia complex. Burkholderia species survived in antiseptics, possibly because of the degradation of antiseptic molecules or regulation of relevant gene expression. In this study, we assessed the efflux pump and the potential of B. cepacia complex bacteria to degrade benzyldimethylalkylammonium chloride and improved our understanding of the resistance mechanisms, by using proteomic and metabolic information. To our knowledge, this is the first systematic report of the intrinsic mechanisms of B. cepacia complex strain resistance to benzyldimethylalkylammonium chloride, based on the metabolic and proteomic evidence for efflux pumps and the complete biodegradation of benzyldimethylalkylammonium chloride.
Collapse
Affiliation(s)
- Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Jeong Myeong Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Kellie Woodling
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - John J LiPuma
- Department of Pediatrics & Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - David Hussong
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bernard S Marasa
- Division of Microbiology Assessment, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
29
|
Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. J Med Microbiol 2016; 65:1296-1306. [DOI: 10.1099/jmm.0.000358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Abstract
The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Katherine A Rhodes
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute and Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA; Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute and Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Van Acker H, Coenye T. The Role of Efflux and Physiological Adaptation in Biofilm Tolerance and Resistance. J Biol Chem 2016; 291:12565-12572. [PMID: 27129224 DOI: 10.1074/jbc.r115.707257] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Microbial biofilms demonstrate a decreased susceptibility to antimicrobial agents. Various mechanisms have been proposed to be involved in this recalcitrance. We focus on two of these factors. Firstly, the ability of sessile cells to actively mediate efflux of antimicrobial compounds has a profound impact on resistance and tolerance, and several studies point to the existence of biofilm-specific efflux systems. Secondly, biofilm-specific stress responses have a marked influence on cellular physiology, and contribute to the occurrence of persister cells. We provide an overview of the data that demonstrate that both processes are important for survival following exposure to antimicrobial agents.
Collapse
Affiliation(s)
- Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium.
| |
Collapse
|
32
|
Puopolo G, Tomada S, Sonego P, Moretto M, Engelen K, Perazzolli M, Pertot I. The Lysobacter capsici AZ78 Genome Has a Gene Pool Enabling it to Interact Successfully with Phytopathogenic Microorganisms and Environmental Factors. Front Microbiol 2016; 7:96. [PMID: 26903975 PMCID: PMC4742617 DOI: 10.3389/fmicb.2016.00096] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 01/26/2023] Open
Abstract
Lysobacter capsici AZ78 has considerable potential for biocontrol of phytopathogenic microorganisms. However, lack of information about genetic cues regarding its biological characteristics may slow down its exploitation as a biofungicide. In order to obtain a comprehensive overview of genetic features, the L. capsici AZ78 genome was sequenced, annotated and compared with the phylogenetically related pathogens Stenotrophomonas malthophilia K729a and Xanthomonas campestris pv. campestris ATCC 33913. Whole genome comparison, supported by functional analysis, indicated that L. capsici AZ78 has a larger number of genes responsible for interaction with phytopathogens and environmental stress than S. malthophilia K729a and X. c. pv. campestris ATCC 33913. Genes involved in the production of antibiotics, lytic enzymes and siderophores were specific for L. capsici AZ78, as well as genes involved in resistance to antibiotics, environmental stressors, fungicides and heavy metals. The L. capsici AZ78 genome did not encompass genes involved in infection of humans and plants included in the S. malthophilia K729a and X. c. pv. campestris ATCC 33913 genomes, respectively. The L. capsici AZ78 genome provides a genetic framework for detailed analysis of other L. capsici members and the development of novel biofungicides based on this bacterial strain.
Collapse
Affiliation(s)
- Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Selena Tomada
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy; Department of Agricultural and Environmental Science (DISA), PhD School of Agricultural Science and Biotechnology, University of UdineUdine, Italy
| | - Paolo Sonego
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Marco Moretto
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Kristof Engelen
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| |
Collapse
|
33
|
Activity of Tobramycin against Cystic Fibrosis Isolates of Burkholderia cepacia Complex Grown as Biofilms. Antimicrob Agents Chemother 2015; 60:348-55. [PMID: 26503664 DOI: 10.1128/aac.02068-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/22/2015] [Indexed: 11/20/2022] Open
Abstract
Pulmonary infection with Burkholderia cepacia complex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on mature B. cepacia complex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin for Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness of Burkholderia dolosa biofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for all Burkholderia species. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml for B. cepacia and B. dolosa (24 h) and ≥100 μg/ml for Burkholderia cenocepacia and B. dolosa (48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of all B. cepacia complex species with the exception of B. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only for B. multivorans compared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness of B. cepacia complex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF.
Collapse
|
34
|
Scoffone VC, Ryabova O, Makarov V, Iadarola P, Fumagalli M, Fondi M, Fani R, De Rossi E, Riccardi G, Buroni S. Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia. Front Microbiol 2015; 6:815. [PMID: 26300878 PMCID: PMC4525489 DOI: 10.3389/fmicb.2015.00815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/24/2015] [Indexed: 11/13/2022] Open
Abstract
Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8 μg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known B. cepacia complex species. Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by quantitative reverse transcription PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance.
Collapse
Affiliation(s)
- Viola C Scoffone
- Laboratory of Molecular Microbiology, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," Università degli Studi di Pavia Pavia, Italy
| | - Olga Ryabova
- Bakh Institute of Biochemistry, Russian Academy of Science Moscow, Russia
| | - Vadim Makarov
- Bakh Institute of Biochemistry, Russian Academy of Science Moscow, Russia
| | - Paolo Iadarola
- Laboratory of Molecular Microbiology, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," Università degli Studi di Pavia Pavia, Italy
| | - Marco Fumagalli
- Laboratory of Molecular Microbiology, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," Università degli Studi di Pavia Pavia, Italy
| | - Marco Fondi
- Department of Biology, University of Florence Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence Florence, Italy
| | - Edda De Rossi
- Laboratory of Molecular Microbiology, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," Università degli Studi di Pavia Pavia, Italy
| | - Giovanna Riccardi
- Laboratory of Molecular Microbiology, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," Università degli Studi di Pavia Pavia, Italy
| | - Silvia Buroni
- Laboratory of Molecular Microbiology, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," Università degli Studi di Pavia Pavia, Italy
| |
Collapse
|
35
|
Schlisselberg DB, Kler E, Kisluk G, Shachar D, Yaron S. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants. Int J Antimicrob Agents 2015; 46:456-9. [PMID: 26260191 DOI: 10.1016/j.ijantimicag.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/04/2015] [Accepted: 06/14/2015] [Indexed: 10/23/2022]
Abstract
Recent studies offer contradictory findings about the role of multidrug efflux pumps in bacterial biofilm development. Thus, the aim of this study was to investigate the involvement of the AcrAB efflux pump in biofilm formation by investigating the ability of AcrB and AcrAB null mutants of Salmonella enterica serovar Typhimurium to produce biofilms. Three models were used to compare the ability of S. Typhimurium wild-type and its mutants to form biofilms: formation of biofilm on polystyrene surfaces; production of biofilm (mat model) on the air/liquid interface; and expression of curli and cellulose on Congo red-supplemented agar plates. All three investigated genotypes formed biofilms with similar characteristics. However, upon exposure to chloramphenicol, formation of biofilms on solid surfaces as well as the production of curli were either reduced or were delayed more significantly in both mutants, whilst there was no visible effect on pellicle formation. It can be concluded that when no selective pressure is applied, S. Typhimurium is able to produce biofilms even when the AcrAB efflux pumps are inactivated, implying that the use of efflux pump inhibitors to prevent biofilm formation is not a general solution and that combined treatments might be more efficient. Other factors that affect the ability to produce biofilms depending on efflux pump activity are yet to be identified.
Collapse
Affiliation(s)
- Dov B Schlisselberg
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Edna Kler
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Guy Kisluk
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Dina Shachar
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Sima Yaron
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
36
|
Stopnisek N, Zühlke D, Carlier A, Barberán A, Fierer N, Becher D, Riedel K, Eberl L, Weisskopf L. Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME JOURNAL 2015; 10:253-64. [PMID: 25989372 DOI: 10.1038/ismej.2015.73] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 01/27/2023]
Abstract
Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.
Collapse
Affiliation(s)
- Nejc Stopnisek
- Institute of Plant Biology, University of Zurich, Zürich, Switzerland.,Institute for Sustainability Sciences, Agroscope, Zürich, Switzerland
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Aurélien Carlier
- Institute of Plant Biology, University of Zurich, Zürich, Switzerland
| | - Albert Barberán
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Leo Eberl
- Institute of Plant Biology, University of Zurich, Zürich, Switzerland
| | - Laure Weisskopf
- Institute of Plant Biology, University of Zurich, Zürich, Switzerland.,Institute for Sustainability Sciences, Agroscope, Zürich, Switzerland
| |
Collapse
|
37
|
Podnecky NL, Rhodes KA, Schweizer HP. Efflux pump-mediated drug resistance in Burkholderia. Front Microbiol 2015; 6:305. [PMID: 25926825 PMCID: PMC4396416 DOI: 10.3389/fmicb.2015.00305] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/27/2015] [Indexed: 12/17/2022] Open
Abstract
Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.
Collapse
Affiliation(s)
- Nicole L Podnecky
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University Fort Collins, CO, USA
| | - Katherine A Rhodes
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University Fort Collins, CO, USA ; Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University Fort Collins, CO, USA ; Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL, USA
| |
Collapse
|
38
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 961] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
39
|
Gautam V, Shafiq N, Singh M, Ray P, Singhal L, Jaiswal NP, Prasad A, Singh S, Agarwal A. Clinical and in vitro evidence for the antimicrobial therapy in Burkholderia cepacia complex infections. Expert Rev Anti Infect Ther 2015; 13:629-63. [PMID: 25772031 DOI: 10.1586/14787210.2015.1025056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatment of infections caused by Burkholderia cepacia complex (Bcc) in cystic fibrosis (CF) patients poses a complex problem. Bcc is multidrug-resistant due to innate and acquired mechanisms of resistance. As CF patients receive multiple courses of antibiotics, susceptibility patterns of strains from CF patients may differ from those noted in strains from non-CF patients. Thus, there was a need for assessing in vitro and clinical data to guide antimicrobial therapy in these patients. A systematic search of literature, followed by extraction and analysis of available information from human and in vitro studies was done. The results of the analysis are used to address various aspects like use of antimicrobials for pulmonary and non-pulmonary infections, use of combination versus monotherapy, early eradication, duration of therapy, route of administration, management of biofilms, development of resistance during therapy, pharmacokinetics-pharmacodynamics correlations, therapy in post-transplant patients and newer drugs in Bcc-infected CF patients.
Collapse
Affiliation(s)
- Vikas Gautam
- Deparatment of Medical Microbiology, PGIMER, Chandigarh 160022, India
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells. Antimicrob Agents Chemother 2014; 58:7424-9. [PMID: 25267676 DOI: 10.1128/aac.03800-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Burkholderia cenocepacia is notorious for causing respiratory tract infections in people with cystic fibrosis. Infections with this organism are particularly difficult to treat due to its high level of intrinsic resistance to most antibiotics. Multidrug resistance in B. cenocepacia can be ascribed to different mechanisms, including the activity of efflux pumps and biofilm formation. In the present study, the effects of deletion of the 16 operons encoding resistance-nodulation-cell division (RND)-type efflux pumps in B. cenocepacia strain J2315 were investigated by determining the MICs of various antibiotics and by investigating the antibiofilm effect of these antibiotics. Finally, the expression levels of selected RND genes in treated and untreated cultures were investigated using reverse transcriptase quantitative PCR (RT-qPCR). Our data indicate that the RND-3 and RND-4 efflux pumps are important for resistance to various antimicrobial drugs (including tobramycin and ciprofloxacin) in planktonic B. cenocepacia J2315 populations, while the RND-3, RND-8, and RND-9 efflux systems protect biofilm-grown cells against tobramycin. The RND-8 and RND-9 efflux pumps are not involved in ciprofloxacin resistance. Results from the RT-qPCR experiments on the wild-type strain B. cenocepacia J2315 suggest that there is little regulation at the level of mRNA expression for these efflux pumps under the conditions tested.
Collapse
|
41
|
Tseng SP, Tsai WC, Liang CY, Lin YS, Huang JW, Chang CY, Tyan YC, Lu PL. The contribution of antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates: an emphasis on efflux pump activity. PLoS One 2014; 9:e104986. [PMID: 25153194 PMCID: PMC4143217 DOI: 10.1371/journal.pone.0104986] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022] Open
Abstract
Due to the limited information of the contribution of various antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates, Antibiotic resistance mechanisms, including integron analysis, identification of quinolone resistance-determining region mutations, measurement of efflux pump activity, and sequence analysis of efflux pump regulators, were investigated in 66 clinical B. cepacia complex isolates. Species were identified via recA-RFLP and MALDI-TOF. Four genomovars were identified by recA-RFLP. B. cenocepacia (genomovar III) was the most prevalent genomovar (90.1%). Most isolates (60/66, 90.9%) were correctly identified by MALDI-TOF analysis. Clonal relatedness determined by PFGE analysis revealed 30 pulsotypes, including two major pulsotypes that comprised 22.7% and 18.2% of the isolates, respectively. Seventeen (25.8%) isolates harboured class 1 integron with various combinations of resistance genes. Among six levofloxacin-resistant isolates, five had single-base substitutions in the gyrA gene and three demonstrated efflux pump activities. Among the 42 isolates exhibiting resistance to at least one antimicrobial agent, 94.4% ceftazidime-resistant isolates (17/18) and 72.7% chloramphenicol-resistant isolates (16/22) demonstrated efflux pump activity. Quantitation of efflux pump RNA level and sequence analysis revealed that over-expression of the RND-3 efflux pump was attributable to specific mutations in the RND-3 efflux pump regulator gene. In conclusion, high-level expression of efflux pumps is prevalent in B. cepacia complex isolates. Mutations in the RND-3 efflux pump regulator gene are the major cause of efflux pump activity, resulting in the resistance to antibiotics in clinical B. cepacia complex isolates.
Collapse
Affiliation(s)
- Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chih-Yuan Liang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yin-Shiou Lin
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Jun-Wei Huang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chung-Yu Chang
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Po-Liang Lu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan, ROC
- * E-mail:
| |
Collapse
|
42
|
Vörös A, Simm R, Slamti L, McKay MJ, Hegna IK, Nielsen-LeRoux C, Hassan KA, Paulsen IT, Lereclus D, Økstad OA, Molloy MP, Kolstø AB. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins. PLoS One 2014; 9:e103326. [PMID: 25083861 PMCID: PMC4118872 DOI: 10.1371/journal.pone.0103326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.
Collapse
Affiliation(s)
- Aniko Vörös
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roger Simm
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Leyla Slamti
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
| | - Matthew J. McKay
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Ida K. Hegna
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Didier Lereclus
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
- AgroParistech, UMR Micalis, Jouy-en-Josas, France
| | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mark P. Molloy
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
43
|
Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 2014; 22:326-33. [PMID: 24598086 DOI: 10.1016/j.tim.2014.02.001] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 12/22/2022]
Abstract
The formation of microbial biofilms is an important reason for failure of antimicrobial therapy. However, the molecular mechanisms underlying the survival of biofilm cells are still not completely understood. In this review we discuss three mechanisms that play an important role in biofilm survival: (i) biofilm-specific protection against oxidative stress; (ii) biofilm-specific expression of efflux pumps; and (iii) protection provided by matrix polysaccharides. We demonstrate that these mechanisms are found both in bacterial and fungal biofilms and are often surprisingly similar between distantly related organisms. In addition, we give an overview of the data that suggests that these mechanisms may not be independent.
Collapse
Affiliation(s)
- Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Patrick Van Dijck
- Department of Molecular Microbiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium; Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
44
|
Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:573518. [PMID: 24701243 PMCID: PMC3950482 DOI: 10.1155/2014/573518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/10/2014] [Indexed: 11/18/2022]
Abstract
In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris) to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc). These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF), and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members. However, three of them (i.e., Eugenia caryophyllata, Origanum vulgare, and Thymus vulgaris) were particularly active versus the Bcc strains, including those exhibiting a high degree or resistance to ciprofloxacin, one of the most used antibiotics to treat Bcc infections. These three oils are also active toward both environmental and clinical strains (isolated from CF patients), suggesting that they might be used in the future to fight B. cepacia complex infections.
Collapse
|
45
|
Jassem AN, Forbes CM, Speert DP. Investigation of aminoglycoside resistance inducing conditions and a putative AmrAB-OprM efflux system in Burkholderia vietnamiensis. Ann Clin Microbiol Antimicrob 2014; 13:2. [PMID: 24393536 PMCID: PMC4077030 DOI: 10.1186/1476-0711-13-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/01/2014] [Indexed: 11/11/2022] Open
Abstract
Background Burkholderia cepacia complex (BCC) bacteria are highly virulent, typically multidrug-resistant, opportunistic pathogens in cystic fibrosis (CF) patients and other immunocompromised individuals. B. vietnamiensis is more often susceptible to aminoglycosides than other BCC species, and strains acquire aminoglycoside resistance during chronic CF infection and under tobramycin and azithromycin exposure in vitro, apparently from gain of antimicrobial efflux as determined through pump inhibition. The aims of the present study were to determine if oxidative stress could also induce aminoglycoside resistance and provide further observations in support of a role for antimicrobial efflux in aminoglycoside resistance in B. vietnamiensis. Findings Here we identified hydrogen peroxide as an additional aminoglycoside resistance inducing agent in B. vietnamiensis. After antibiotic and hydrogen peroxide exposure, isolates accumulated significantly less [3H] gentamicin than the susceptible isolate from which they were derived. Strains that acquired aminoglycoside resistance during infection and after exposure to tobramycin or azithromycin overexpressed a putative resistance-nodulation-division (RND) transporter gene, amrB. Missense mutations in the repressor of amrB, amrR, were identified in isolates that acquired resistance during infection, and not in those generated in vitro. Conclusions These data identify oxidative stress as an inducer of aminoglycoside resistance in B. vietnamiensis and further suggest that active efflux via a RND efflux system impairs aminoglycoside accumulation in clinical B. vietnamiensis strains that have acquired aminoglycoside resistance, and in those exposed to tobramycin and azithromycin, but not hydrogen peroxide, in vitro. Furthermore, the repressor AmrR is likely just one regulator of the putative AmrAB-OprM efflux system in B. vietnamiensis.
Collapse
Affiliation(s)
- Agatha N Jassem
- Department of Pathology and Laboratory Medicine, University of British Columbia, 950 W 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada.
| | | | | |
Collapse
|
46
|
Mechanism of resistance to an antitubercular 2-thiopyridine derivative that is also active against Burkholderia cenocepacia. Antimicrob Agents Chemother 2014; 58:2415-7. [PMID: 24395233 DOI: 10.1128/aac.02438-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The discovery of new compounds that are able to inhibit the growth of Burkholderia cenocepacia is of primary importance for cystic fibrosis patients. Here, the mechanism of resistance to a new pyridine derivative already shown to be effective against Mycobacterium tuberculosis and to have good activity toward B. cenocepacia was investigated. Increased expression of a resistance-nodulation-cell division (RND) efflux system was detected in the resistant mutants, thus confirming their important roles in B. cenocepacia antibiotic resistance.
Collapse
|
47
|
Ibrahim M, Tao Z, Hussain A, Chunlan Y, Ilyas M, Waheed A, Yuan F, Li B, Xie GL. Deciphering the role of Burkholderia cenocepacia membrane proteins in antimicrobial properties of chitosan. Arch Microbiol 2013; 196:9-16. [PMID: 24213809 DOI: 10.1007/s00203-013-0936-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/09/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Chitosan, a versatile derivative of chitin, is widely used as an antimicrobial agent either alone or mixed with other natural polymers. Burkholderia cenocepacia is a multidrug-resistant bacteria and difficult to eradicate. Our previous studies shown that chitosan had strong antibacterial activity against B. cenocepacia. In the current study, we have investigated the molecular aspects for the susceptibility of B. cenocepacia in response to chitosan antibacterial activity. We have conducted RNA expression analysis of drug efflux system by RT-PCR, membrane protein profiling by SDS-PAGE, and by LC-MS/MS analysis following the validation of selected membrane proteins by real-time PCR analysis. By RT-PCR analysis, it was found that orf3, orf9, and orf13 were expressed at detectable levels, which were similar to control, while rest of the orf did not express. Moreover, shotgun proteomics analysis revealed 21 proteins in chitosan-treated cells and 16 proteins in control. Among them 4 proteins were detected as shared proteins under control and chitosan-treated cells and 17 proteins as uniquely identified proteins under chitosan-treated cells. Among the catalog of uniquely identified proteins, there were proteins involved in electron transport chain and ATP synthase, metabolism of carbohydrates and adaptation to atypical conditions proteins which indicate that utilization and pattern of chitosan is diverse which might be responsible for its antibacterial effects on bacteria. Moreover, our results showed that RND drug efflux system, which display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents, was not determined to play its role in response to chitosan. It might be lipopolysaccharides interaction with chitosan resulted in the destabilization of membrane protein to membrane lyses to cell death. Membrane proteome analysis were also validated by RT-qPCR analysis, which corroborated our results that of membrane proteins.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Knapp L, Rushton L, Stapleton H, Sass A, Stewart S, Amezquita A, McClure P, Mahenthiralingam E, Maillard JY. The effect of cationic microbicide exposure against Burkholderia cepacia
complex (Bcc); the use of Burkholderia lata
strain 383 as a model bacterium. J Appl Microbiol 2013; 115:1117-26. [DOI: 10.1111/jam.12320] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/11/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
Affiliation(s)
- L. Knapp
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University; Cardiff UK
| | - L. Rushton
- Cardiff School of Biosciences, Cardiff University; Cardiff UK
| | - H. Stapleton
- CB Attribution, Detection Department; Applied Microbiology; Porton Down UK
| | - A. Sass
- Laboratorium voor Farmaceutische Microbiologie, Universiteit Gent; Gent Belgium
| | - S. Stewart
- Unilever SEAC, Colworth Science Park; Bedford UK
| | - A. Amezquita
- Unilever SEAC, Colworth Science Park; Bedford UK
| | - P. McClure
- Unilever SEAC, Colworth Science Park; Bedford UK
| | | | - J.-Y. Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University; Cardiff UK
| |
Collapse
|
49
|
KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 2013; 57:4449-62. [PMID: 23836167 DOI: 10.1128/aac.02284-12] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae has been frequently associated with nosocomial infections. Efflux systems are ubiquitous transporters that also function in drug resistance. Genome analysis of K. pneumoniae strain NTUH-K2044 revealed the presence of ∼15 putative drug efflux systems. We discuss here for the first time the characterization of a putative SMR-type efflux pump, an ebrAB homolog (denoted here as kpnEF) with respect to Klebsiella physiology and the multidrug-resistant phenotype. Analysis of hypermucoviscosity revealed direct involvement of kpnEF in capsule synthesis. The ΔkpnEF mutant displayed higher sensitivity to hyperosmotic (∼2.8-fold) and high bile (∼4.0-fold) concentrations. Mutation in kpnEF resulted in increased susceptibility to cefepime, ceftriaxone, colistin, erythromycin, rifampin, tetracycline, and streptomycin; mutated strains changed from being resistant to being susceptible, and the resistance was restored upon complementation. The ΔkpnEF mutant displayed enhanced sensitivity toward structurally related compounds such as sodium dodecyl sulfate, deoxycholate, and dyes, including clinically relevant disinfectants such as benzalkonium chloride, chlorhexidine, and triclosan. The prevalence of kpnEF in clinical strains broadens the diversity of antibiotic resistance in K. pneumoniae. Experimental evidence of CpxR binding to the efflux pump promoter and quantification of its expression in a cpxAR mutant background demonstrated kpnEF to be a member of the Cpx regulon. This study helps to elucidate the unprecedented biological functions of the SMR-type efflux pump in Klebsiella spp.
Collapse
|
50
|
Perrin E, Fondi M, Papaleo MC, Maida I, Emiliani G, Buroni S, Pasca MR, Riccardi G, Fani R. A census of RND superfamily proteins in the Burkholderia genus. Future Microbiol 2013; 8:923-37. [DOI: 10.2217/fmb.13.50] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: The aim of this work was to analyze the eight resistance–nodulation–cell division (RND) families (a group of proteins mainly involved in multidrug resistance of Gram-negative bacteria) in 26 Burkholderia genomes in order to gain knowledge regarding their presence and distribution, to obtain a platform for future experimental tests aimed to identify new molecular targets to be used in antimicrobial therapy against Burkholderia species and to refine the annotation of RND-like sequences in these genomes. Materials & methods: A total of 417 coding sequences were retrieved and analyzed using different bioinformatics tools. Results & conclusion: A complex pattern of RND presence and distribution in the different Burkholderia species was disclosed and a core of proteins represented in all 26 genomes was identified. These ‘core’ proteins might represent useful targets of new synthetic antimicrobial compounds. Furthermore, the annotation of RND-like sequences in Burkholderia was refined.
Collapse
Affiliation(s)
- Elena Perrin
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy
| | - Marco Fondi
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy
- Computer Laboratory, University of Cambridge, Cambridge, UK
| | - Maria Cristiana Papaleo
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy
| | - Isabel Maida
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy
| | - Giovanni Emiliani
- Trees & Timber Institute, National Research Council, via Madonna del Piano, 10, 50019 Florence, Italy
| | - Silvia Buroni
- Department of Biology & Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Maria Rosalia Pasca
- Department of Biology & Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanna Riccardi
- Department of Biology & Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Renato Fani
- Laboratory of Molecular & Microbial Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Fi), Italy.
| |
Collapse
|