1
|
Du R, Yang Y, Yang Y, Zhang D, Xia R, Yu M, He G, Hong S, Yang S. A study of benthic habitat classification schemes in the northern equatorial Pacific based on a Gaussian mixture model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124638. [PMID: 39999755 DOI: 10.1016/j.jenvman.2025.124638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Due to the complexity and extreme environment of the deep sea, related research is limited by the level of detection technology, and the overall understanding of this topic is limited. At present, the increasing number of disturbances in the deep sea, such as those caused by deep-sea mining, necessitates the urgent formulation of scientifically informed deep-sea environmental management decisions. In response to this challenge, a data-driven, large-scale, and probability-based benthic habitat classification scheme is proposed for the northern equatorial Pacific. The dominant environmental factors were identified as topographic features (depth and slope), nutrients (particulate organic carbon flux entering the seabed and phosphate), and water mass properties (dissolved oxygen and pH), and the importance assessment indicated that nutrient played a dominant role, followed by water mass properties, with topographic features having a relatively minor influence. The multiple classification evaluation parameters determined 5 clusters of benthic habitats in the northern equatorial Pacific using the Gaussian mixture model (GMM). Furthermore, this paper provides the first discussion of ecotones at the edges of habitats and suggests that ecotones are more cost effective for environmental management. In conclusion, the benthic habitat classification scheme could provide a consistent unit for habitat mapping and representative assessment of marine protected area network design, as well as a scientific basis for the protection and management of the international seabed area.
Collapse
Affiliation(s)
- Ranran Du
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China
| | - Yong Yang
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China.
| | - Yikai Yang
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Dongsheng Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruixue Xia
- Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Miao Yu
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China.
| | - Gaowen He
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China; Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Shuang Hong
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China
| | - Shengxiong Yang
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou, 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, 511458, China; Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
| |
Collapse
|
2
|
Bilan M, Gori A, Grinyó J, Biel-Cabanelas M, Puigcerver-Segarra X, Santín A, Piraino S, Rossi S, Puig P. Vulnerability of six cold-water corals to sediment resuspension from bottom trawling fishing. MARINE POLLUTION BULLETIN 2023; 196:115423. [PMID: 37862847 DOI: 10.1016/j.marpolbul.2023.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 10/22/2023]
Abstract
Bottom trawling can significantly affect benthic communities, directly through immediate removal of sessile organisms and indirectly through sediment resuspension. Submarine canyons, often surrounded by fishing grounds, are important habitats for cold-water corals (CWC). Vulnerability of CWCs to increased suspended sediment concentration (SSC) is key to understanding the severity of bottom trawling effects on those communities. Here we show survival, growth, and physiological response of six CWCs from a Mediterranean submarine canyon (Dendrophyllia cornigera, Desmophyllum dianthus, Desmophyllum pertusum, Madrepora oculata, Leiopathes glaberrima and Muriceides lepida), exposed to a long-term, aquarium-based sedimentary disturbance experiment. Compared to cup coral and octocoral, which did not exhibit symptoms of distress, our data indicate that colonial scleractinian corals and black coral, which experienced substantial polyp mortality in enhanced SSC treatments, are more vulnerable. Indirect impact of bottom trawling could thus contribute to structural simplification of CWC communities posing an additional stressor alongside with global climate change.
Collapse
Affiliation(s)
- Meri Bilan
- Università del Salento, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Campus Ecotekne, 73100 Lecce, Italy.
| | - Andrea Gori
- Universitat de Barcelona (UB), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Av. Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Grinyó
- NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 53, 1790, AB, Den Burg, the Netherlands
| | - Marina Biel-Cabanelas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Xènia Puigcerver-Segarra
- Universitat de Barcelona (UB), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Andreu Santín
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Stefano Piraino
- Università del Salento, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Campus Ecotekne, 73100 Lecce, Italy; CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma 00196, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Sergio Rossi
- Università del Salento, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Campus Ecotekne, 73100 Lecce, Italy; CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma 00196, Italy; Instituto de Ciências do Mar, LABOMAR, Universidade Federal do Ceará, Fortaleza 60165-081, Brazil
| | - Pere Puig
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|
3
|
Pinheiro M, Martins I, Raimundo J, Caetano M, Neuparth T, Santos MM. Stressors of emerging concern in deep-sea environments: microplastics, pharmaceuticals, personal care products and deep-sea mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162557. [PMID: 36898539 DOI: 10.1016/j.scitotenv.2023.162557] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Although most deep-sea areas are remote in comparison to coastal zones, a growing body of literature indicates that many sensitive ecosystems could be under increased stress from anthropogenic sources. Among the multiple potential stressors, microplastics (MPs), pharmaceuticals and personal care products (PPCPs/PCPs) and the imminent start of commercial deep-sea mining have received increased attention. Here we review recent literature on these emerging stressors in deep-sea environments and discuss cumulative effects with climate change associated variables. Importantly, MPs and PPCPs have been detected in deep-sea waters, organisms and sediments, in some locations in comparable levels to coastal areas. The Atlantic Ocean and the Mediterranean Sea are the most studied areas and where higher levels of MPs and PPCPs have been detected. The paucity of data for most other deep-sea ecosystems indicates that many more locations are likely to be contaminated by these emerging stressors, but the absence of studies hampers a better assessment of the potential risk. The main knowledge gaps in the field are identified and discussed, and future research priorities are highlighted to improve hazard and risk assessment.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Irene Martins
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Miguel Caetano
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| |
Collapse
|
4
|
Alvarado-Cerón V, Muñiz-Castillo AI, León-Pech MG, Prada C, Arias-González JE. A decade of population genetics studies of scleractinian corals: A systematic review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105781. [PMID: 36371949 DOI: 10.1016/j.marenvres.2022.105781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are the most diverse marine ecosystems. However, coral cover has decreased worldwide due to natural disturbances, climate change, and local anthropogenic drivers. In recent decades, various genetic methods and molecular markers have been developed to assess genetic diversity, structure, and connectivity in different coral species to determine the vulnerability of their populations. This review aims to identify population genetic studies of scleractinian corals in the last decade (2010-2020), and the techniques and molecular markers used. Bibliometric analysis was conducted to identify journals and authors working in this field. We then calculated the number of genetic studies by species and ecoregion based on data obtained from 178 studies found in Scopus and Web of Science. Coral Reefs and Molecular Ecology were the main journals published population genetics studies, and microsatellites are the most widely used molecular markers. The Caribbean, Australian Barrier Reef, and South Kuroshio in Japan are among the ecoregions with the most population genetics data. In contrast, we found limited information about the Coral Triangle, a region with the highest biodiversity and key to coral reef conservation. Notably, only 117 (out of 1500 described) scleractinian coral species have genetic studies. This review emphasizes which coral species have been studied and highlights remaining gaps and locations where such data is critical for coral conservation.
Collapse
Affiliation(s)
- Viridiana Alvarado-Cerón
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Aarón Israel Muñiz-Castillo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - María Geovana León-Pech
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Carlos Prada
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Jesús Ernesto Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
5
|
Benestan LM, Rougemont Q, Senay C, Normandeau E, Parent E, Rideout R, Bernatchez L, Lambert Y, Audet C, Parent GJ. Population genomics and history of speciation reveal fishery management gaps in two related redfish species ( Sebastes mentella and Sebastes fasciatus). Evol Appl 2021; 14:588-606. [PMID: 33664797 PMCID: PMC7896722 DOI: 10.1111/eva.13143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the processes shaping population structure and reproductive isolation of marine organisms can improve their management and conservation. Using genomic markers combined with estimation of individual ancestries, assignment tests, spatial ecology, and demographic modeling, we (i) characterized the contemporary population structure, (ii) assessed the influence of space, fishing depth, and sampling years on contemporary distribution, and (iii) reconstructed the speciation history of two cryptic redfish species, Sebastes mentella and S. fasciatus. We genotyped 860 individuals in the Northwest Atlantic Ocean using 24,603 filtered single nucleotide polymorphisms (SNPs). Our results confirmed the clear genetic distinctiveness of the two species and identified three ecotypes within S. mentella and five populations in S. fasciatus. Multivariate analyses highlighted the influence of spatial distribution and depth on the overall genomic variation, while demographic modeling revealed that secondary contact models best explained inter- and intragenomic divergence. These species, ecotypes, and populations can be considered as a rare and wide continuum of genomic divergence in the marine environment. This acquired knowledge pertaining to the evolutionary processes driving population divergence and reproductive isolation will help optimizing the assessment of demographic units and possibly to refine fishery management units.
Collapse
Affiliation(s)
- Laura M. Benestan
- CEFEUniv Montpellier, CNRS, EPHE‐PSL UniversityIRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Caroline Senay
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Eric Parent
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Rick Rideout
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreN.L.St. John’sCanada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Yvan Lambert
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Céline Audet
- Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQCCanada
| | | |
Collapse
|
6
|
Species-specific genetic variation in response to deep-sea environmental variation amongst Vulnerable Marine Ecosystem indicator taxa. Sci Rep 2020; 10:2844. [PMID: 32071333 PMCID: PMC7028729 DOI: 10.1038/s41598-020-59210-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/27/2020] [Indexed: 11/15/2022] Open
Abstract
Understanding the ecological processes that shape spatial genetic patterns of population structure is critical for understanding evolutionary dynamics and defining significant evolutionary and management units in the deep sea. Here, the role of environmental factors (topographic, physico-chemical and biological) in shaping the population genetic structure of four deep-sea habitat-forming species (one sponge - Poecillastra laminaris, three corals - Goniocorella dumosa, Madrepora oculata, Solenosmilia variabilis) was investigated using seascape genetics. Genetic data (nuclear and mitochondrial sequences and microsatellite multilocus genotypes) and environmental variables were employed to build individual-based and population-level models. The results indicated that environmental factors affected genetic variation differently amongst the species, as well as at different geographic scales. For individual-based analyses, different environmental variables explained genetic variation in P. laminaris (dissolved oxygen), G. dumosa (dynamic topography), M. oculata (sea surface temperature and surface water primary productivity), and S. variabilis (tidal current speed). At the population level, factors related to current and food source explained the regional genetic structure in all four species, whilst at the geomorphic features level, factors related to food source and topography were most important. Environmental variation in these parameters may be acting as barriers to gene flow at different scales. This study highlights the utility of seascape genetic studies to better understand the processes shaping the genetic structure of organisms, and to identify environmental factors that can be used to locate sites for the protection of deep-sea Vulnerable Marine Ecosystems.
Collapse
|
7
|
The use of spatially explicit genetic variation data from four deep-sea sponges to inform the protection of Vulnerable Marine Ecosystems. Sci Rep 2019; 9:5482. [PMID: 30940897 PMCID: PMC6445101 DOI: 10.1038/s41598-019-41877-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/20/2019] [Indexed: 11/12/2022] Open
Abstract
The United Nations General Assembly has called for greater protection of the world’s deep-sea species and of features such as Vulnerable Marine Ecosystems (VMEs). Sponges are important components of VMEs and information about their spatially explicit genetic diversity can inform management decisions concerning the placement of protected areas. We employed a spatially explicit hierarchical testing framework to examine genetic variation amongst archived samples of four deep-sea sponges in the New Zealand region. For Poecillastra laminaris Sollas 1886, significant mitochondrial (COI, Cytb) and nuclear DNA (microsatellite) genetic differences were observed between provinces, amongst north-central-south regions and amongst geomorphic features. For Penares sp. no significant structure was detected (COI, 12S) across the same areas. For both Neoaulaxinia persicum Kelly, 2007 (COI, 12S) and Pleroma menoui Lévi & Lévi 1983 (COI) there was no evidence of genetic differentiation within their northern only regional distributions. Of 10 separate species-by-marker tests for isolation-by-distance and isolation-by-depth, only the isolation-by-depth test for N. persicum for COI was significant. The use of archived samples highlights how historical material may be used to support national and international management decisions. The results are discussed in the broader context of existing marine protected areas, and possible future design of spatial management measures for protecting VMEs in the New Zealand region.
Collapse
|
8
|
Taylor ML, Roterman CN. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor. Mol Ecol 2017; 26:4872-4896. [PMID: 28833857 DOI: 10.1111/mec.14237] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made.
Collapse
Affiliation(s)
- M L Taylor
- Department of Zoology, University of Oxford, Oxford, UK
| | - C N Roterman
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Zeng C, Rowden AA, Clark MR, Gardner JPA. Population genetic structure and connectivity of deep-sea stony corals (Order Scleractinia) in the New Zealand region: Implications for the conservation and management of vulnerable marine ecosystems. Evol Appl 2017; 10:1040-1054. [PMID: 29151859 PMCID: PMC5680633 DOI: 10.1111/eva.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/16/2017] [Indexed: 01/17/2023] Open
Abstract
Deep-sea stony corals, which can be fragile, long-lived, late to mature and habitat-forming, are defined as vulnerable marine ecosystem indicator taxa. Under United Nations resolutions, these corals require protection from human disturbance such as fishing. To better understand the vulnerability of stony corals (Goniocorella dumosa, Madrepora oculata, Solenosmilia variabilis) to disturbance within the New Zealand region and to guide marine protected area design, genetic structure and connectivity were determined using microsatellite loci and DNA sequencing. Analyses compared population genetic differentiation between two biogeographic provinces, amongst three subregions (north-central-south) and amongst geomorphic features. Extensive population genetic differentiation was revealed by microsatellite variation, whilst DNA sequencing revealed very little differentiation. For G. dumosa, genetic differentiation existed amongst regions and geomorphic features, but not between provinces. For M. oculata, only a north-central-south regional structure was observed. For S. variabilis, genetic differentiation was observed between provinces, amongst regions and amongst geomorphic features. Populations on the Kermadec Ridge were genetically different from Chatham Rise populations for all three species. A significant isolation-by-depth pattern was observed for both marker types in G. dumosa and also in ITS of M. oculata. An isolation-by-distance pattern was revealed for microsatellite variation in S. variabilis. Medium to high levels of self-recruitment were detected in all geomorphic populations, and rates and routes of genetic connectivity were species-specific. These patterns of population genetic structure and connectivity at a range of spatial scales indicate that flexible spatial management approaches are required for the conservation of deep-sea corals around New Zealand.
Collapse
Affiliation(s)
- Cong Zeng
- College of Animal Science and Technology Hunan Agricultural University Changsha China.,School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,National Institute for Water and Atmospheric Research Kilbirnie Wellington New Zealand
| | - Ashley A Rowden
- National Institute for Water and Atmospheric Research Kilbirnie Wellington New Zealand
| | - Malcolm R Clark
- National Institute for Water and Atmospheric Research Kilbirnie Wellington New Zealand
| | - Jonathan P A Gardner
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand
| |
Collapse
|
10
|
Miller KJ, Gunasekera RM. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal. Sci Rep 2017; 7:46103. [PMID: 28393887 PMCID: PMC5385499 DOI: 10.1038/srep46103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/10/2017] [Indexed: 11/09/2022] Open
Abstract
Ecological processes in the deep sea are poorly understood due to the logistical constraints of sampling thousands of metres below the ocean’s surface and remote from most land masses. Under such circumstances, genetic data provides unparalleled insight into biological and ecological relationships. We use microsatellite DNA to compare the population structure, reproductive mode and dispersal capacity in two deep sea corals from seamounts in the Southern Ocean. The solitary coral Desmophyllum dianthus has widespread dispersal consistent with its global distribution and resilience to disturbance. In contrast, for the matrix-forming colonial coral Solenosmilia variabilis asexual reproduction is important and the dispersal of sexually produced larvae is negligible, resulting in isolated populations. Interestingly, despite the recognised impacts of fishing on seamount communities, genetic diversity on fished and unfished seamounts was similar for both species, suggesting that evolutionary resilience remains despite reductions in biomass. Our results provide empirical evidence that a group of seamounts can function either as isolated islands or stepping stones for dispersal for different taxa. Furthermore different strategies will be required to protect the two sympatric corals and consequently the recently declared marine reserves in this region may function as a network for D. dianthus, but not for S. variabilis.
Collapse
Affiliation(s)
- Karen J Miller
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia (MO96), 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | | |
Collapse
|
11
|
Fox AD, Henry LA, Corne DW, Roberts JM. Sensitivity of marine protected area network connectivity to atmospheric variability. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160494. [PMID: 28018633 PMCID: PMC5180131 DOI: 10.1098/rsos.160494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/18/2016] [Indexed: 05/21/2023]
Abstract
International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.
Collapse
Affiliation(s)
- Alan D. Fox
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
- Department of Computer Science, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
- Author for correspondence: Alan D. Fox e-mail:
| | - Lea-Anne Henry
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
| | - David W. Corne
- Department of Computer Science, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
| | - J. Murray Roberts
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
- Center for Marine Science, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403-5928, USA
| |
Collapse
|
12
|
Fox AD, Henry LA, Corne DW, Roberts JM. Sensitivity of marine protected area network connectivity to atmospheric variability. ROYAL SOCIETY OPEN SCIENCE 2016. [PMID: 28018633 DOI: 10.5061/dryad.2hf38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.
Collapse
Affiliation(s)
- Alan D Fox
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK; Department of Computer Science, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
| | - Lea-Anne Henry
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences , Heriot-Watt University , Riccarton Campus, Edinburgh EH14 4AS , UK
| | - David W Corne
- Department of Computer Science , Heriot-Watt University , Riccarton Campus, Edinburgh EH14 4AS , UK
| | - J Murray Roberts
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK; Center for Marine Science, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403-5928, USA
| |
Collapse
|
13
|
Herrera S, Shank TM. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol Phylogenet Evol 2016; 100:70-79. [DOI: 10.1016/j.ympev.2016.03.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 11/29/2022]
|
14
|
Addamo AM, Martínez-Baraldés I, Vertino A, López-González PJ, Taviani M, Machordom A. Morphological polymorphism of Desmophyllum dianthus (Anthozoa: Hexacorallia) over a wide ecological and biogeographic range: stability in deep habitats? ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Ruiz-Ramos DV, Saunders M, Fisher CR, Baums IB. Home Bodies and Wanderers: Sympatric Lineages of the Deep-Sea Black Coral Leiopathes glaberrima. PLoS One 2015; 10:e0138989. [PMID: 26488161 PMCID: PMC4619277 DOI: 10.1371/journal.pone.0138989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022] Open
Abstract
Colonial corals occur in a wide range of marine benthic habitats from the shallows to the deep ocean, often defining the structure of their local community. The black coral Leiopathes glaberrima is a long-lived foundation species occurring on carbonate outcrops in the Northern Gulf of Mexico (GoM). Multiple color morphs of L. glaberrima grow sympatrically in the region. Morphological, mitochondrial and nuclear ribosomal markers supported the hypothesis that color morphs constituted a single biological species and that colonies, regardless of color, were somewhat genetically differentiated east and west of the Mississippi Canyon. Ten microsatellite loci were used to determine finer-scale population genetic structure and reproductive characteristics. Gene flow was disrupted between and within two nearby (distance = 36.4 km) hardground sites and two sympatric microsatellite lineages, which might constitute cryptic species, were recovered. Lineage one was outbred and found in all sampled locations (N = 5) across 765.6 km in the Northern Gulf of Mexico. Lineage two was inbred, reproducing predominantly by fragmentation, and restricted to sites around Viosca Knoll. In these sites the lineages and the color phenotypes occurred in different microhabitats, and models of maximum entropy suggested that depth and slope influence the distribution of the color phenotypes within the Vioska Knolls. We conclude that L. glaberrima is phenotypically plastic with a mixed reproductive strategy in the Northern GoM. Such strategy might enable this long-lived species to balance local recruitment with occasional long-distance dispersal to colonize new sites in an environment where habitat is limited.
Collapse
Affiliation(s)
- Dannise V. Ruiz-Ramos
- Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| | - Miles Saunders
- Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Charles R. Fisher
- Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Iliana B. Baums
- Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
16
|
Affiliation(s)
- Amanda E. Glazier
- Biology Department; University of Massachusetts; 100 Morrissey Blvd Boston MA 02125 USA
| | - Ron J. Etter
- Biology Department; University of Massachusetts; 100 Morrissey Blvd Boston MA 02125 USA
| |
Collapse
|
17
|
Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc 2014; 89:406-26. [PMID: 24118851 PMCID: PMC4158864 DOI: 10.1111/brv.12061] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 12/01/2022]
Abstract
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| | - Sven Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| |
Collapse
|
18
|
Hernández-Ávila I. Patterns of deep-water coral diversity in the Caribbean Basin and adjacent southern waters: an approach based on records from the R/V Pillsbury expeditions. PLoS One 2014; 9:e92834. [PMID: 24671156 PMCID: PMC3966830 DOI: 10.1371/journal.pone.0092834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/27/2014] [Indexed: 11/21/2022] Open
Abstract
The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200–2000 m depth) than on the upper continental shelf (60–200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges.
Collapse
Affiliation(s)
- Iván Hernández-Ávila
- Departamento de Ciencias, Unidad de Cursos Básicos, Núcleo de Nueva Esparta, Universidad de Oriente, Margarita Island, Venezuela
- IFREMER, Unité de recherche Étude des Écosystèmes Profonds, Laboratoire Environnement Profond, Plouzané, France
- * E-mail:
| |
Collapse
|
19
|
Fillinger L, Richter C. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH. PeerJ 2013; 1:e194. [PMID: 24255810 PMCID: PMC3817589 DOI: 10.7717/peerj.194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022] Open
Abstract
Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.
Collapse
Affiliation(s)
- Laura Fillinger
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung , Bremerhaven , Germany
| | | |
Collapse
|
20
|
Jennings RM, Etter RJ, Ficarra L. Population differentiation and species formation in the deep sea: the potential role of environmental gradients and depth. PLoS One 2013; 8:e77594. [PMID: 24098590 PMCID: PMC3788136 DOI: 10.1371/journal.pone.0077594] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
Ecological speciation probably plays a more prominent role in diversification than previously thought, particularly in marine ecosystems where dispersal potential is great and where few obvious barriers to gene flow exist. This may be especially true in the deep sea where allopatric speciation seems insufficient to account for the rich and largely endemic fauna. Ecologically driven population differentiation and speciation are likely to be most prevalent along environmental gradients, such as those attending changes in depth. We quantified patterns of genetic variation along a depth gradient (1600-3800m) in the western North Atlantic for a protobranch bivalve (Nuculaatacellana) to test for population divergence. Multilocus analyses indicated a sharp discontinuity across a narrow depth range, with extremely low gene flow inferred between shallow and deep populations for thousands of generations. Phylogeographical discordance occurred between nuclear and mitochondrial loci as might be expected during the early stages of species formation. Because the geographic distance between divergent populations is small and no obvious dispersal barriers exist in this region, we suggest the divergence might reflect ecologically driven selection mediated by environmental correlates of the depth gradient. As inferred for numerous shallow-water species, environmental gradients that parallel changes in depth may play a key role in the genesis and adaptive radiation of the deep-water fauna.
Collapse
Affiliation(s)
- Robert M. Jennings
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Ron J. Etter
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Lynn Ficarra
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Havermans C, Sonet G, d’Udekem d’Acoz C, Nagy ZT, Martin P, Brix S, Riehl T, Agrawal S, Held C. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS One 2013; 8:e74218. [PMID: 24086322 PMCID: PMC3783426 DOI: 10.1371/journal.pone.0074218] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022] Open
Abstract
Eurythenes gryllus is one of the most widespread amphipod species, occurring in every ocean with a depth range covering the bathyal, abyssal and hadal zones. Previous studies, however, indicated the existence of several genetically and morphologically divergent lineages, questioning the assumption of its cosmopolitan and eurybathic distribution. For the first time, its genetic diversity was explored at the global scale (Arctic, Atlantic, Pacific and Southern oceans) by analyzing nuclear (28S rDNA) and mitochondrial (COI, 16S rDNA) sequence data using various species delimitation methods in a phylogeographic context. Nine putative species-level clades were identified within E. gryllus. A clear distinction was observed between samples collected at bathyal versus abyssal depths, with a genetic break occurring around 3,000 m. Two bathyal and two abyssal lineages showed a widespread distribution, while five other abyssal lineages each seemed to be restricted to a single ocean basin. The observed higher diversity in the abyss compared to the bathyal zone stands in contrast to the depth-differentiation hypothesis. Our results indicate that, despite the more uniform environment of the abyss and its presumed lack of obvious isolating barriers, abyssal populations might be more likely to show population differentiation and undergo speciation events than previously assumed. Potential factors influencing species' origins and distributions, such as hydrostatic pressure, are discussed. In addition, morphological findings coincided with the molecular clades. Of all specimens available for examination, those of the bipolar bathyal clade seemed the most similar to the 'true' E. gryllus. We present the first molecular evidence for a bipolar distribution in a macro-benthic deep-sea organism.
Collapse
Affiliation(s)
- Charlotte Havermans
- Direction Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Biodiversity Research Centre, Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| | - Gontran Sonet
- Direction Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Cédric d’Udekem d’Acoz
- Direction Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Zoltán T. Nagy
- Direction Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Patrick Martin
- Direction Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Direction Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Saskia Brix
- Centre for Marine Biodiversity Research, Senckenberg Research Institute c/o Biocentrum Grindel, Hamburg, Germany
| | - Torben Riehl
- Centre for Marine Biodiversity Research, Senckenberg Research Institute c/o Biocentrum Grindel, Hamburg, Germany
| | - Shobhit Agrawal
- Section Functional Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Christoph Held
- Section Functional Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
22
|
Costantini F, Carlesi L, Abbiati M. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum. PLoS One 2013; 8:e61546. [PMID: 23646109 PMCID: PMC3640028 DOI: 10.1371/journal.pone.0061546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.
Collapse
Affiliation(s)
- Federica Costantini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Centro Interdipartimentale di Ricerca per le Scienze Ambientali, Università di Bologna, CoNISMa, Ravenna, Italy.
| | | | | |
Collapse
|
23
|
Ceccarelli DM, McKinnon AD, Andréfouët S, Allain V, Young J, Gledhill DC, Flynn A, Bax NJ, Beaman R, Borsa P, Brinkman R, Bustamante RH, Campbell R, Cappo M, Cravatte S, D'Agata S, Dichmont CM, Dunstan PK, Dupouy C, Edgar G, Farman R, Furnas M, Garrigue C, Hutton T, Kulbicki M, Letourneur Y, Lindsay D, Menkes C, Mouillot D, Parravicini V, Payri C, Pelletier B, Richer de Forges B, Ridgway K, Rodier M, Samadi S, Schoeman D, Skewes T, Swearer S, Vigliola L, Wantiez L, Williams A, Williams A, Richardson AJ. The coral sea: physical environment, ecosystem status and biodiversity assets. ADVANCES IN MARINE BIOLOGY 2013; 66:213-290. [PMID: 24182902 DOI: 10.1016/b978-0-12-408096-6.00004-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Coral Sea, located at the southwestern rim of the Pacific Ocean, is the only tropical marginal sea where human impacts remain relatively minor. Patterns and processes identified within the region have global relevance as a baseline for understanding impacts in more disturbed tropical locations. Despite 70 years of documented research, the Coral Sea has been relatively neglected, with a slower rate of increase in publications over the past 20 years than total marine research globally. We review current knowledge of the Coral Sea to provide an overview of regional geology, oceanography, ecology and fisheries. Interactions between physical features and biological assemblages influence ecological processes and the direction and strength of connectivity among Coral Sea ecosystems. To inform management effectively, we will need to fill some major knowledge gaps, including geographic gaps in sampling and a lack of integration of research themes, which hinder the understanding of most ecosystem processes.
Collapse
|
24
|
Addamo AM, Reimer JD, Taviani M, Freiwald A, Machordom A. Desmophyllum dianthus (Esper, 1794) in the scleractinian phylogeny and its intraspecific diversity. PLoS One 2012; 7:e50215. [PMID: 23209679 PMCID: PMC3509136 DOI: 10.1371/journal.pone.0050215] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/22/2012] [Indexed: 11/25/2022] Open
Abstract
The cosmopolitan solitary deep-water scleractinian coral Desmophyllum dianthus (Esper, 1794) was selected as a representative model species of the polyphyletic Caryophylliidae family to (1) examine phylogenetic relationships with respect to the principal Scleractinia taxa, (2) check population structure, (3) test the widespread connectivity hypothesis and (4) assess the utility of different nuclear and mitochondrial markers currently in use. To carry out these goals, DNA sequence data from nuclear (ITS and 28S) and mitochondrial (16S and COI) markers were analyzed for several coral species and for Mediterranean populations of D. dianthus. Three phylogenetic methodologies (ML, MP and BI), based on data from the four molecular markers, all supported D. dianthus as clearly belonging to the “robust” clade, in which the species Lophelia pertusa and D. dianthus not only grouped together, but also shared haplotypes for some DNA markers. Molecular results also showed shared haplotypes among D. dianthus populations distributed in regions separated by several thousands of kilometers and by clear geographic barriers. These results could reflect limited molecular and morphological taxonomic resolution rather than real widespread connectivity. Additional studies are needed in order to find molecular markers and morphological features able to disentangle the complex phylogenetic relationship in the Order Scleractinia and to differentiate isolated populations, thus avoiding the homoplasy found in some morphological characters that are still considered in the literature.
Collapse
Affiliation(s)
- Anna M Addamo
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | | | |
Collapse
|
25
|
Bors EK, Rowden AA, Maas EW, Clark MR, Shank TM. Patterns of deep-sea genetic connectivity in the New Zealand region: implications for management of benthic ecosystems. PLoS One 2012. [PMID: 23185341 PMCID: PMC3504039 DOI: 10.1371/journal.pone.0049474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.
Collapse
Affiliation(s)
- Eleanor K. Bors
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Ashley A. Rowden
- National Institute of Water and Atmospheric Research, Greta Point, Wellington, New Zealand
| | - Elizabeth W. Maas
- National Institute of Water and Atmospheric Research, Greta Point, Wellington, New Zealand
| | - Malcolm R. Clark
- National Institute of Water and Atmospheric Research, Greta Point, Wellington, New Zealand
| | - Timothy M. Shank
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Herrera S, Shank TM, Sánchez JA. Spatial and temporal patterns of genetic variation in the widespread antitropical deep-sea coralParagorgia arborea. Mol Ecol 2012; 21:6053-67. [DOI: 10.1111/mec.12074] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/28/2012] [Accepted: 09/01/2012] [Indexed: 01/20/2023]
Affiliation(s)
| | - T. M. Shank
- Biology Department; Woods Hole Oceanographic Institution; 266 Woods Hole Road; Woods Hole; MA; 02543; USA
| | - J. A. Sánchez
- Laboratorio de Biologia Molecular Marina (BIOMMAR), Departamento Ciencias Biologicas; Universidad de los Andes; Carrera 1E No 18A - 10; Bogota; Colombia
| |
Collapse
|
27
|
Baco AR, Cairns SD. Comparing molecular variation to morphological species designations in the deep-sea coral Narella reveals new insights into seamount coral ranges. PLoS One 2012; 7:e45555. [PMID: 23029093 PMCID: PMC3459954 DOI: 10.1371/journal.pone.0045555] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/22/2012] [Indexed: 11/27/2022] Open
Abstract
Recent studies have countered the paradigm of seamount isolation, confounding conservation efforts at a critical time. Efforts to study deep-sea corals, one of the dominant taxa on seamounts, to understand seamount connectivity, are hampered by a lack of taxonomic keys. A prerequisite for connectivity is species overlap. Attempts to better understand species overlap using DNA barcoding methods suggest coral species are widely distributed on seamounts and nearby features. However, no baseline has been established for variation in these genetic markers relative to morphological species designations for deep-sea octocoral families. Here we assess levels of genetic variation in potential octocoral mitochondrial barcode markers relative to thoroughly examined morphological species in the genus Narella. The combination of six markers used here, approximately 3350 bp of the mitochondrial genome, resolved 83% of the morphological species. Our results show that two of the markers, ND2 and NCR1, are not sufficient to resolve genera within Primnoidae, let alone species. Re-evaluation of previous studies of seamount octocorals based on these results suggest that those studies were looking at distributions at a level higher than species, possibly even genus or subfamily. Results for Narella show that using more markers provides haplotypes with relatively narrow depth ranges on the seamounts studied. Given the lack of 100% resolution of species with such a large portion of the mitochondrial genome, we argue that previous genetic studies have not resolved the degree of species overlap on seamounts and that we may not have the power to even test the hypothesis of seamount isolation using mitochondrial markers, let alone refute it. Thus a precautionary approach is advocated in seamount conservation and management, and the potential for depth structuring should be considered.
Collapse
Affiliation(s)
- Amy R Baco
- Associated Scientists at Woods Hole, Woods Hole, MA, USA.
| | | |
Collapse
|
28
|
Stocks KI, Clark MR, Rowden AA, Consalvey M, Schlacher TA. CenSeam, an International Program on Seamounts within the Census of Marine Life: achievements and lessons learned. PLoS One 2012; 7:e32031. [PMID: 22312448 PMCID: PMC3270038 DOI: 10.1371/journal.pone.0032031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Affiliation(s)
- Karen I. Stocks
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Malcolm R. Clark
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| | - Ashley A. Rowden
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| | - Mireille Consalvey
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| | - Thomas A. Schlacher
- Faculty of Science, University of the Sunshine Coast, Maroochydore, Australia
| |
Collapse
|
29
|
Clark MR, Schlacher TA, Rowden AA, Stocks KI, Consalvey M. Science priorities for seamounts: research links to conservation and management. PLoS One 2012; 7:e29232. [PMID: 22279531 PMCID: PMC3261142 DOI: 10.1371/journal.pone.0029232] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal "proxies", and ecological risk assessment.
Collapse
Affiliation(s)
- Malcolm R Clark
- National Institute of Water & Atmospheric Research, Wellington, New Zealand.
| | | | | | | | | |
Collapse
|