1
|
Horikawa M, Hayase J, Kamakura S, Kohda A, Nakamura M, Sumimoto H. The scaffold protein IQGAP1 promotes reorientation of epithelial cell polarity at the two-cell stage for cystogenesis. Genes Cells 2024. [PMID: 39377417 DOI: 10.1111/gtc.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
A single epithelial cell embedded in extracellular matrix (ECM) can proliferate to form an apical lumen-harboring cyst, whose formation is a fundamental step in epithelial organ development. At an early two-cell stage after cell division, the cell doublet typically displays "inverted" polarity, with apical and basolateral proteins being located to the ECM-facing and cell-cell-contacting plasma membranes, respectively. Correct cystogenesis requires polarity reorientation, a process containing apical protein endocytosis from the ECM-abutting periphery and subsequent apical vesicle delivery to a cell-cell contact site for lumen formation. Here, we show that downstream of the ECM-signal-transducer β1-integrin, Rac1, and its effector IQGAP1 promote apical protein endocytosis, contributing to polarity reorientation of mammalian epithelial Madin-Darby canine kidney (MDCK) cells at a later two-cell stage in three-dimensional culture. Rac1-GTP facilitates IQGAP1 interaction with the Rac-specific activator Tiam1, which also contributes to the endocytosis and enhances the effect of IQGAP1. These findings suggest that Tiam1 and IQGAP1 form a positive feedback loop to activate Rac1. With Rac1-GTP, IQGAP1 also binds to AP2α, an adaptor protein subunit for clathrin-mediated endocytosis; depletion of the AP2 complex impairs apical protein endocytosis in MDCK doublets. Thus, Rac1 likely participates in polarity reorientation at the two-cell stage via its interaction with IQGAP1.
Collapse
Affiliation(s)
- Michihiro Horikawa
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
2
|
Naillat F, Deshar G, Hankkila A, Rak-Raszewska A, Sharma A, Prunskaite-Hyyrylainen R, Railo A, Shan J, Vainio SJ. Calcium signaling induces partial EMT and renal fibrosis in a Wnt4 mCherry knock-in mouse model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167180. [PMID: 38653356 DOI: 10.1016/j.bbadis.2024.167180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The renal tubular epithelial cells (TEC) have a strong capacity for repair after acute injury, but when this mechanism becomes uncontrollable, it leads to chronic kidney diseases (CKD). Indeed, in progress toward CKDs, the TECs may dedifferentiate, undergo epithelial-to-mesenchyme transition (EMT), and promote inflammation and fibrosis. Given the critical role of Wnt4 signaling in kidney ontogenesis, we addressed whether changes in this signaling are connected to renal inflammation and fibrosis by taking advantage of a knock-in Wnt4mCh/mCh mouse. While the Wnt4mCh/mCh embryos appeared normal, the corresponding mice, within one month, developed CKD-related phenotypes, such as pro-inflammatory responses including T-cell/macrophage influx, expression of fibrotic markers, and epithelial cell damage with a partial EMT. The Wnt signal transduction component β-catenin remained unchanged, while calcium signaling is induced in the injured TECs involving Nfat and Tfeb transcription factors. We propose that the Wnt4 signaling pathway is involved in repairing the renal injury, and when the signal is overdriven, CKD is established.
Collapse
Affiliation(s)
- Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| | - Ganga Deshar
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Anni Hankkila
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | | | - Abhishek Sharma
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | | | - Antti Railo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Jingdong Shan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Infotech Oulu, Kvantum Institute, University of Oulu, Finland
| |
Collapse
|
3
|
Raykhel I, Ronkainen VP, Myllyharju J, Manninen A. HIF2α-dependent Dock4/Rac1-signaling regulates formation of adherens junctions and cell polarity in normoxia. Sci Rep 2024; 14:12153. [PMID: 38802496 PMCID: PMC11130225 DOI: 10.1038/s41598-024-62955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Hypoxia-inducible factors (HIF) 1 and 2 regulate similar but distinct sets of target genes. Although HIFs are best known for their roles in mediating the hypoxia response accumulating evidence suggests that under certain conditions HIFs, particularly HIF2, may function also under normoxic conditions. Here we report that HIF2α functions under normoxic conditions in kidney epithelial cells to regulate formation of adherens junctions. HIF2α expression was required to induce Dock4/Rac1/Pak1-signaling mediating stability and compaction of E-cadherin at nascent adherens junctions. Impaired adherens junction formation in HIF2α- or Dock4-deficient cells led to aberrant cyst morphogenesis in 3D kidney epithelial cell cultures. Taken together, we show that HIF2α functions in normoxia to regulate epithelial morphogenesis.
Collapse
Affiliation(s)
- I Raykhel
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Extracellular Matrix and Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - V-P Ronkainen
- Extracellular Matrix and Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - J Myllyharju
- Extracellular Matrix and Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - A Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
4
|
Hagelaars MJ, Nikolic M, Vermeulen M, Dekker S, Bouten CVC, Loerakker S. A computational analysis of the role of integrins and Rho-GTPases in the emergence and disruption of apical-basal polarization in renal epithelial cells. PLoS Comput Biol 2024; 20:e1012140. [PMID: 38768266 PMCID: PMC11142725 DOI: 10.1371/journal.pcbi.1012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/31/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Apical-basal polarization in renal epithelial cells is crucial to renal function and an important trigger for tubule formation in kidney development. Loss of polarity can induce epithelial-to-mesenchymal transition (EMT), which can lead to kidney pathologies. Understanding the relative and combined roles of the involved proteins and their interactions that govern epithelial polarity may provide insights for controlling the process of polarization via chemical or mechanical manipulations in an in vitro or in vivo setting. Here, we developed a computational framework that integrates several known interactions between integrins, Rho-GTPases Rho, Rac and Cdc42, and polarity complexes Par and Scribble, to study their mutual roles in the emergence of polarization. The modeled protein interactions were shown to induce the emergence of polarized distributions of Rho-GTPases, which in turn led to the accumulation of apical and basal polarity complexes Par and Scribble at their respective poles, effectively recapitulating polarization. Our multiparametric sensitivity analysis suggested that polarization depends foremost on the mutual inhibition between Rac and Rho. Next, we used the computational framework to investigate the role of integrins and GTPases in the generation and disruption of polarization. We found that a minimum concentration of integrins is required to catalyze the process of polarization. Furthermore, loss of polarization was found to be only inducible via complete degradation of the Rho-GTPases Rho and Cdc42, suggesting that polarization is fairly stable once it is established. Comparison of our computational predictions against data from in vitro experiments in which we induced EMT in renal epithelial cells while quantifying the relative Rho-GTPase levels, displayed that EMT coincides with a large reduction in the Rho-GTPase Rho. Collectively, these results demonstrate the essential roles of integrins and Rho-GTPases in the establishment and disruption of apical-basal polarity and thereby provide handles for the in vitro or in vivo regulation of polarity.
Collapse
Affiliation(s)
- Maria J. Hagelaars
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Milica Nikolic
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Maud Vermeulen
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Sylvia Dekker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Naturale VF, Pickett MA, Feldman JL. Persistent cell contacts enable E-cadherin/HMR-1- and PAR-3-based symmetry breaking within a developing C. elegans epithelium. Dev Cell 2023; 58:1830-1846.e12. [PMID: 37552986 PMCID: PMC10592304 DOI: 10.1016/j.devcel.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/10/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Tissue-wide patterning is essential to multicellular development, requiring cells to individually generate polarity axes and coordinate them in space and time with neighbors. Using the C. elegans intestinal epithelium, we identified a patterning mechanism that is informed by cell contact lifetime asymmetry and executed via the scaffolding protein PAR-3 and the transmembrane protein E-cadherin/HMR-1. Intestinal cells break symmetry as PAR-3 and HMR-1 recruit apical determinants into punctate "local polarity complexes" (LPCs) at homotypic contacts. LPCs undergo an HMR-1-based migration to a common midline, thereby establishing tissue-wide polarity. Thus, symmetry breaking results from PAR-3-dependent intracellular polarization coupled to HMR-1-based tissue-level communication, which occurs through a non-adhesive signaling role for HMR-1. Differential lifetimes between homotypic and heterotypic cell contacts are created by neighbor exchanges and oriented divisions, patterning where LPCs perdure and thereby breaking symmetry. These cues offer a logical and likely conserved framework for how epithelia without obvious molecular asymmetries can polarize.
Collapse
Affiliation(s)
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Castillo-Azofeifa D, Wald T, Reyes EA, Gallagher A, Schanin J, Vlachos S, Lamarche-Vane N, Bomidi C, Blutt S, Estes MK, Nystul T, Klein OD. A DLG1-ARHGAP31-CDC42 axis is essential for the intestinal stem cell response to fluctuating niche Wnt signaling. Cell Stem Cell 2023; 30:188-206.e6. [PMID: 36640764 PMCID: PMC9922544 DOI: 10.1016/j.stem.2022.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
A central factor in the maintenance of tissue integrity is the response of stem cells to variations in the levels of niche signals. In the gut, intestinal stem cells (ISCs) depend on Wnt ligands for self-renewal and proliferation. Transient increases in Wnt signaling promote regeneration after injury or in inflammatory bowel diseases, whereas constitutive activation of this pathway leads to colorectal cancer. Here, we report that Discs large 1 (Dlg1), although dispensable for polarity and cellular turnover during intestinal homeostasis, is required for ISC survival in the context of increased Wnt signaling. RNA sequencing (RNA-seq) and genetic mouse models demonstrated that DLG1 regulates the cellular response to increased canonical Wnt ligands. This occurs via the transcriptional regulation of Arhgap31, a GTPase-activating protein that deactivates CDC42, an effector of the non-canonical Wnt pathway. These findings reveal a DLG1-ARHGAP31-CDC42 axis that is essential for the ISC response to increased niche Wnt signaling.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Regenerative Medicine, Genentech, Inc., South San Francisco, CA, USA
| | - Tomas Wald
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Efren A Reyes
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pharmaceutical Chemistry and TETRAD Program, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Gallagher
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Schanin
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie Vlachos
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Todd Nystul
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
8
|
Alfonso-Pérez T, Baonza G, Herranz G, Martín-Belmonte F. Deciphering the interplay between autophagy and polarity in epithelial tubulogenesis. Semin Cell Dev Biol 2022; 131:160-172. [PMID: 35641407 DOI: 10.1016/j.semcdb.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.
Collapse
Affiliation(s)
- Tatiana Alfonso-Pérez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain
| | - Gonzalo Herranz
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain.
| |
Collapse
|
9
|
Hagelaars MJ, Yousef Yengej FA, Verhaar MC, Rookmaaker MB, Loerakker S, Bouten CVC. Substrate Stiffness Determines the Establishment of Apical-Basal Polarization in Renal Epithelial Cells but Not in Tubuloid-Derived Cells. Front Bioeng Biotechnol 2022; 10:820930. [PMID: 35299632 PMCID: PMC8923587 DOI: 10.3389/fbioe.2022.820930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 11/15/2022] Open
Abstract
Mechanical guidance of tissue morphogenesis is an emerging method of regenerative medicine that can be employed to steer functional kidney architecture for the purpose of bioartificial kidney design or renal tissue engineering strategies. In kidney morphogenesis, apical-basal polarization of renal epithelial cells is paramount for tubule formation and subsequent tissue functions like excretion and resorption. In kidney epithelium, polarization is initiated by integrin-mediated cell-matrix adhesion at the cell membrane. Cellular mechanobiology research has indicated that this integrin-mediated adhesion is responsive to matrix stiffness, raising the possibility to use matrix stiffness as a handle to steer cell polarization. Herein, we evaluate apical-basal polarization in response to 2D substates of different stiffness (1, 10, 50 kPa and glass) in Madin Darby Canine Kidney cells (MDCKs), a classic canine-derived cell model of epithelial polarization, and in tubuloid-derived cells, established from human primary cells derived from adult kidney tissue. Our results show that sub-physiological (1 kPa) substrate stiffness with low integrin-based adhesion induces polarization in MDCKs, while MDCKs on supraphysiological (>10 kPa) stiffness remain unpolarized. Inhibition of integrin, indeed, allows for polarization on the supraphysiological substrates, suggesting that increased cellular adhesion on stiff substrates opposes polarization. In contrast, tubuloid-derived cells do not establish apical-basal polarization on 2D substrates, irrespective of substrate stiffness, despite their ability to polarize in 3D environments. Further analysis implies that the 2D cultured tubuloid-derived cells have a diminished mechanosensitive capacity when presented with different substrate stiffnesses due to immature focal adhesions and the absence of a connection between focal adhesions and the cytoskeleton. Overall, this study demonstrates that apical-basal polarization is a complex process, where cell type, the extracellular environment, and both the mechanical and chemical aspects in cell-matrix interactions performed by integrins play a role.
Collapse
Affiliation(s)
- Maria J. Hagelaars
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
- *Correspondence: Carlijn V. C. Bouten,
| |
Collapse
|
10
|
Ichise SF, Koide T. Synthetic Collagen-like Polymer That Undergoes a Sol–Gel Transition Triggered by O–N Acyl Migration at Physiological pH. Int J Mol Sci 2022; 23:ijms23031584. [PMID: 35163505 PMCID: PMC8835898 DOI: 10.3390/ijms23031584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
We previously reported an artificial collagen gel that can be used as a cell-culture substrate by end-to-end cross-linking of collagen-like triple-helical peptides via disulfide bonds. However, the gel had to be formed a priori by polymerizing the peptide in an acidic solution containing dimethyl sulfoxide for several days, which prevented its use as an injectable gel or three-dimensional (3D) scaffold for cell culture. In this study, we developed a collagen-like peptide polymer by incorporating an O–N acyl migration-triggered triple helix formation mechanism into a collagen-like peptide, which formed a gel within 10 min. We demonstrated that the collagen-like peptide polymer can be used as a 3D cell scaffold and that the 3D structure formation of cells can be controlled by collagen-derived bioactive sequences introduced into the peptide sequence.
Collapse
Affiliation(s)
- Shinichiro F. Ichise
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| | - Takaki Koide
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Correspondence:
| |
Collapse
|
11
|
Abstract
The Drosophila midgut is mainly composed of highly polarized epithelial cells called enterocytes that establish their apical-basal polarity in a fundamentally different way from other Drosophila epithelia. The roles of polarity factors in the midgut can be studied by generating clones of homozygous mutant cells in the background of wild-type tissue. In this chapter, we will introduce and discuss the procedures for producing positively marked mutant clones in the midgut and describe specific protocols for dissecting, fixing, and immunostaining this tissue.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Abstract
Organoids-cellular aggregates derived from stem or progenitor cells that recapitulate organ function in miniature-are of growing interest in developmental biology and medicine. Organoids have been developed for organs and tissues such as the liver, gut, brain, and pancreas; they are used as organ surrogates to study a wide range of questions in basic and developmental biology, genetic disorders, and therapies. However, many organoids reported to date have been cultured in Matrigel, which is prepared from the secretion of Engelbreth-Holm-Swarm mouse sarcoma cells; Matrigel is complex and poorly defined. This complexity makes it difficult to elucidate Matrigel-specific factors governing organoid development. In this review, we discuss promising Matrigel-free methods for the generation and maintenance of organoids that use decellularized extracellular matrix (ECM), synthetic hydrogels, or gel-forming recombinant proteins.
Collapse
Affiliation(s)
- Mark T Kozlowski
- DEVCOM US Army Research Laboratory, Weapons and Materials Research Directorate, Science of Extreme Materials Division, Polymers Branch, 6300 Rodman Rd. Building 4600, Aberdeen Proving Ground, Aberdeen, MD, 21005, USA.
| | - Christiana J Crook
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
13
|
Zhang Y, Zegers MMP, Nagelkerke A, Rowan AE, Span PN, Kouwer PHJ. Tunable Hybrid Matrices Drive Epithelial Morphogenesis and YAP Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003380. [PMID: 33511022 PMCID: PMC7816720 DOI: 10.1002/advs.202003380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Indexed: 06/10/2023]
Abstract
Morphogenesis is a tightly-regulated developmental process by which tissues acquire the morphology that is critical to their function. For example, epithelial cells exhibit different 2D and 3D morphologies, induced by distinct biochemical and biophysical cues from their environment. In this work, novel hybrid matrices composed of a Matrigel and synthetic oligo(ethylene glycol)-grafted polyisocyanides (PICs) hydrogels are used to form a highly tailorable environment. Through precise control of the stiffness and cell-matrix interactions, while keeping other properties constant, a broad range of morphologies induced in Madin-Darby Canine Kidney (MDCK) cells is observed. At relatively low matrix stiffness, a large morphological shift from round hollow cysts to 2D monolayers is observed, without concomitant translocation of the mechanotransduction protein Yes-associated protein (YAP). At higher stiffness levels and enhanced cell-matrix interactions, tuned by controlling the adhesive peptide density on PIC, the hybrid hydrogels induce a flattened cell morphology with simultaneous YAP translocation, suggesting activation. In 3D cultures, the latter matrices lead to the formation of tubular structures. Thus, mixed synthetic and natural gels, such as the hybrids presented here, are ideal platforms to dissect how external physical factors can be used to regulate morphogenesis in MDCK model system, and in the future, in more complex environments.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation OncologyRadboud University Medical CenterGeert Grooteplein 32Nijmegen6525 GAThe Netherlands
| | - Mirjam M. P. Zegers
- Department of Cell Biology, Radboud Institute for Molecular SciencesRadboud University Medical CenterGeert Grooteplein 28Nijmegen6525 GAThe Netherlands
| | - Anika Nagelkerke
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation OncologyRadboud University Medical CenterGeert Grooteplein 32Nijmegen6525 GAThe Netherlands
- Present address:
Pharmaceutical Analysis, Groningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Paul N. Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation OncologyRadboud University Medical CenterGeert Grooteplein 32Nijmegen6525 GAThe Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
14
|
Kim H, Witt H, Oswald TA, Tarantola M. Adhesion of Epithelial Cells to PNIPAm Treated Surfaces for Temperature-Controlled Cell-Sheet Harvesting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33516-33529. [PMID: 32631046 PMCID: PMC7467562 DOI: 10.1021/acsami.0c09166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stimuli responsive polymer coatings are a common motive for designing surfaces for cell biological applications. In the present study, we have characterized temperature dependent adhesive properties of poly(N-isopropylacrylamide) (PNIPAm) microgel coated surfaces (PMS) using various atomic force microscopy based approaches. We imaged and quantified the material properties of PMS upon a temperature switch using quantitative AFM imaging but also employed single-cell force spectroscopy (SCFS) before and after decreasing the temperature to assess the forces and work of initial adhesion between cells and PMS. We performed a detailed analysis of steps in the force-distance curves. Finally, we applied colloid probe atomic force microscopy (CP-AFM) to analyze the adhesive properties of two major components of the extracellular matrix to PMS under temperature control, namely collagen I and fibronectin. In combination with confocal imaging, we could show that these two ECM components differ in their detachment properties from PNIPAm microgel films upon cell harvesting, and thus gained a deeper understanding of cell-sheet maturation and harvesting process and the involved partial ECM dissolution.
Collapse
Affiliation(s)
- Hyejeong Kim
- Max Planck Institute
for Dynamics and Self Organization (MPIDS), Am Fassberg 17, 37077 Göttingen, Germany
| | - Hannes Witt
- Max Planck Institute
for Dynamics and Self Organization (MPIDS), Am Fassberg 17, 37077 Göttingen, Germany
| | - Tabea A. Oswald
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Marco Tarantola
- Max Planck Institute
for Dynamics and Self Organization (MPIDS), Am Fassberg 17, 37077 Göttingen, Germany
- Institute for Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund Platz 1, 37073 Göttingen, Germany
- E-mail: . Phone: +49-551-5176-316
| |
Collapse
|
15
|
The Pseudomonas aeruginosa Lectin LecB Causes Integrin Internalization and Inhibits Epithelial Wound Healing. mBio 2020; 11:mBio.03260-19. [PMID: 32156827 PMCID: PMC7064779 DOI: 10.1128/mbio.03260-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the leading causes of nosocomial infections. P. aeruginosa is able to switch between planktonic, intracellular, and biofilm-based lifestyles, which allows it to evade the immune system as well as antibiotic treatment. Hence, alternatives to antibiotic treatment are urgently required to combat P. aeruginosa infections. Lectins, like the fucose-specific LecB, are promising targets, because removal of LecB resulted in decreased virulence in mouse models. Currently, several research groups are developing LecB inhibitors. However, the role of LecB in host-pathogen interactions is not well understood. The significance of our research is in identifying cellular mechanisms of how LecB facilitates P. aeruginosa infection. We introduce LecB as a new member of the list of bacterial molecules that bind integrins and show that P. aeruginosa can move forward underneath attached epithelial cells by loosening cell-basement membrane attachment in a LecB-dependent manner. The opportunistic bacterium Pseudomonas aeruginosa produces the fucose-specific lectin LecB, which has been identified as a virulence factor. LecB has a tetrameric structure with four opposing binding sites and has been shown to act as a cross-linker. Here, we demonstrate that LecB strongly binds to the glycosylated moieties of β1-integrins on the basolateral plasma membrane of epithelial cells and causes rapid integrin endocytosis. Whereas internalized integrins were degraded via a lysosomal pathway, washout of LecB restored integrin cell surface localization, thus indicating a specific and direct action of LecB on integrins to bring about their endocytosis. Interestingly, LecB was able to trigger uptake of active and inactive β1-integrins and also of complete α3β1-integrin–laminin complexes. We provide a mechanistic explanation for this unique endocytic process by showing that LecB has the additional ability to recognize fucose-bearing glycosphingolipids and causes the formation of membrane invaginations on giant unilamellar vesicles. In cells, LecB recruited integrins to these invaginations by cross-linking integrins and glycosphingolipids. In epithelial wound healing assays, LecB specifically cleared integrins from the surface of cells located at the wound edge and blocked cell migration and wound healing in a dose-dependent manner. Moreover, the wild-type P. aeruginosa strain PAO1 was able to loosen cell-substrate adhesion in order to crawl underneath exposed cells, whereas knockout of LecB significantly reduced crawling events. Based on these results, we suggest that LecB has a role in disseminating bacteria along the cell-basement membrane interface.
Collapse
|
16
|
Scott LE, Weinberg SH, Lemmon CA. Mechanochemical Signaling of the Extracellular Matrix in Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2019; 7:135. [PMID: 31380370 PMCID: PMC6658819 DOI: 10.3389/fcell.2019.00135] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) is a critical process in embryonic development in which epithelial cells undergo a transdifferentiation into mesenchymal cells. This process is essential for tissue patterning and organization, and it has also been implicated in a wide array of pathologies. While the intracellular signaling pathways that regulate EMT are well-understood, there is increasing evidence that the mechanical properties and composition of the extracellular matrix (ECM) also play a key role in regulating EMT. In turn, EMT drives changes in the mechanics and composition of the ECM, creating a feedback loop that is tightly regulated in healthy tissues, but is often dysregulated in disease. Here we present a review that summarizes our understanding of how ECM mechanics and composition regulate EMT, and how in turn EMT alters ECM mechanics and composition.
Collapse
Affiliation(s)
| | | | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
17
|
Bazzoun D, Adissu HA, Wang L, Urazaev A, Tenvooren I, Fostok SF, Chittiboyina S, Sturgis J, Hodges K, Chandramouly G, Vidi PA, Talhouk RS, Lelièvre SA. Connexin 43 maintains tissue polarity and regulates mitotic spindle orientation in the breast epithelium. J Cell Sci 2019; 132:jcs.223313. [PMID: 30992345 DOI: 10.1242/jcs.223313] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-cell communication is essential for tissue homeostasis, but its contribution to disease prevention remains to be understood. We demonstrate the involvement of connexin 43 (Cx43, also known as GJA1) and related gap junction in epithelial homeostasis, illustrated by polarity-mediated cell cycle entry and mitotic spindle orientation (MSO). Cx43 localization is restricted to the apicolateral membrane of phenotypically normal breast luminal epithelial cells in 3D culture and in vivo Chemically induced blockade of gap junction intercellular communication (GJIC), as well as the absence of Cx43, disrupt the apicolateral distribution of polarity determinant tight junction marker ZO-1 (also known as TJP1) and lead to random MSO and cell multilayering. Induced expression of Cx43 in cells that normally lack this protein reestablishes polarity and proper MSO in 3D culture. Cx43-directed MSO implicates PI3K-aPKC signaling, and Cx43 co-precipitates with signaling node proteins β-catenin (CTNNB1) and ZO-2 (also known as TJP2) in the polarized epithelium. The distribution of Cx43 is altered by pro-inflammatory breast cancer risk factors such as leptin and high-fat diet, as shown in cell culture and on tissue biopsy sections. The control of polarity-mediated quiescence and MSO may contribute to the tumor-suppressive role of Cx43.
Collapse
Affiliation(s)
- D Bazzoun
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA.,Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - H A Adissu
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - L Wang
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - A Urazaev
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - I Tenvooren
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - S F Fostok
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S Chittiboyina
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Sturgis
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - K Hodges
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - G Chandramouly
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - P-A Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - R S Talhouk
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S A Lelièvre
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Søgaard PP, Ito N, Sato N, Fujita Y, Matter K, Itoh Y. Epithelial polarization in 3D matrix requires DDR1 signaling to regulate actomyosin contractility. Life Sci Alliance 2019; 2:2/1/e201800276. [PMID: 30760555 PMCID: PMC6374992 DOI: 10.26508/lsa.201800276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/19/2023] Open
Abstract
For epithelial cells to establish epithelial polarity in a 3D matrix, signaling of a collagen receptor tyrosine kinase, DDR1, plays a crucial role. DDR1 signaling controls actomyosin contractility at the cell–cell junction through suppression of ROCK activity. Epithelial cells form sheets and tubules in various epithelial organs and establish apicobasal polarity and asymmetric vesicle transport to provide functionality in these structures. However, the molecular mechanisms that allow epithelial cells to establish polarity are not clearly understood. Here, we present evidence that the kinase activity of the receptor tyrosine kinase for collagen, discoidin domain receptor 1 (DDR1), is required for efficient establishment of epithelial polarity, proper asymmetric protein secretion, and execution of morphogenic programs. Lack of DDR1 protein or inhibition of DDR1 kinase activity disturbed tubulogenesis, cystogenesis, and the establishment of epithelial polarity and caused defects in the polarized localization of membrane-type 1 matrix metalloproteinase (MT1-MMP), GP135, primary cilia, laminin, and the Golgi apparatus. Disturbed epithelial polarity and cystogenesis upon DDR1 inhibition was caused by excess ROCK (rho-associated, coiled-coil-containing protein kinase)-driven actomyosin contractility, and pharmacological inhibition of ROCK was sufficient to correct these defects. Our data indicate that a DDR1-ROCK signaling axis is essential for the efficient establishment of epithelial polarity.
Collapse
Affiliation(s)
| | - Noriko Ito
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Nanami Sato
- Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Fujita
- Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Japan
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Myllymäki SM, Kämäräinen UR, Liu X, Cruz SP, Miettinen S, Vuorela M, Varjosalo M, Manninen A. Assembly of the β4-Integrin Interactome Based on Proximal Biotinylation in the Presence and Absence of Heterodimerization. Mol Cell Proteomics 2019; 18:277-293. [PMID: 30404858 PMCID: PMC6356083 DOI: 10.1074/mcp.ra118.001095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/01/2018] [Indexed: 01/19/2023] Open
Abstract
Integrin-mediated laminin adhesions mediate epithelial cell anchorage to basement membranes and are critical regulators of epithelial cell polarity. Integrins assemble large multiprotein complexes that link to the cytoskeleton and convey signals into the cells. Comprehensive proteomic analyses of actin network-linked focal adhesions (FA) have been performed, but the molecular composition of intermediate filament-linked hemidesmosomes (HD) remains incompletely characterized. Here we have used proximity-dependent biotin identification (BioID) technology to label and characterize the interactome of epithelia-specific β4-integrin that, as α6β4-heterodimer, forms the core of HDs. The analysis identified ∼150 proteins that were specifically labeled by BirA-tagged integrin-β4. In addition to known HDs proteins, the interactome revealed proteins that may indirectly link integrin-β4 to actin-connected protein complexes, such as FAs and dystrophin/dystroglycan complexes. The specificity of the screening approach was validated by confirming the HD localization of two candidate β4-interacting proteins, utrophin (UTRN) and ELKS/Rab6-interacting/CAST family member 1 (ERC1). Interestingly, although establishment of functional HDs depends on the formation of α6β4-heterodimers, the assembly of β4-interactome was not strictly dependent on α6-integrin expression. Our survey to the HD interactome sets a precedent for future studies and provides novel insight into the mechanisms of HD assembly and function of the β4-integrin.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland;.
| | - Ulla-Reetta Kämäräinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Xiaonan Liu
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sara Pereira Cruz
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Sini Miettinen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikko Vuorela
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Aki Manninen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland;.
| |
Collapse
|
20
|
Abstract
Cells in tissues in vivo face a very different microenvironment than typical cultured cells plated on a plastic dish. Already several decades ago, cell biologists observed that cell lines show dramatically different morphology and growth characteristics when embedded into three-dimensional (3D) substrates or standard tissue culture plates (Montesano R, Schaller G, Orci L, Cell. 66:697-711, 1991; Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ, Development. 105:223-235, 1989; Simian M, Bissell MJ, J Cell Biol. 216:31-40, 2017). Despite its imminent benefit for cell biological studies, suspicion and prejudice toward more complicated sample preparation requirements limited the popularity of 3D culture techniques until recently, when it was shown that soft 3D gels made of basement membrane extracts (BME) allow prolonged culture of many types of primary epithelial cells (Clevers H, Cell. 165:1586-1597, 2016; Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al., Nature. 459:262-265, 2009). These observations have brought 3D organoid culture systems into the mainstream. Here we describe two protocols for culturing epithelial cells in 3D substrates, the "blob culture" setup where cells are fully embedded into BME gel and the "overlay setup" where cells are seeded on top of BME gel and then overlaid with a thin layer of BME (Debnath J, Brugge JS, Nat Rev Cancer. 5:675-688, 2005; Bryant DM, Datta A, Rodriguez-Fraticelli AE, Peranen J, Martin-Belmonte F, Mostov KE, Nat Cell Biol. 12:1035-1045, 2010).
Collapse
Affiliation(s)
- Kai Zhang
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. .,Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| | - Aki Manninen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
21
|
Chen J, Sayadian AC, Lowe N, Lovegrove HE, St Johnston D. An alternative mode of epithelial polarity in the Drosophila midgut. PLoS Biol 2018; 16:e3000041. [PMID: 30339698 PMCID: PMC6209374 DOI: 10.1371/journal.pbio.3000041] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/31/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Apical-basal polarity is essential for the formation and function of epithelial tissues, whereas loss of polarity is a hallmark of tumours. Studies in Drosophila have identified conserved polarity factors that define the apical (Crumbs, Stardust, Par-6, atypical protein kinase C [aPKC]), junctional (Bazooka [Baz]/Par-3), and basolateral (Scribbled [Scrib], Discs large [Dlg], Lethal [2] giant larvae [Lgl]) domains of epithelial cells. Because these conserved factors mark equivalent domains in diverse types of vertebrate and invertebrate epithelia, it is generally assumed that this system underlies polarity in all epithelia. Here, we show that this is not the case, as none of these canonical factors are required for the polarisation of the endodermal epithelium of the Drosophila adult midgut. Furthermore, like vertebrate epithelia but not other Drosophila epithelia, the midgut epithelium forms occluding junctions above adherens junctions (AJs) and requires the integrin adhesion complex for polarity. Thus, Drosophila contains two types of epithelia that polarise by fundamentally different mechanisms. This diversity of epithelial types may reflect their different developmental origins, junctional arrangement, or whether they polarise in an apical-basal direction or vice versa. Since knock-outs of canonical polarity factors in vertebrates often have little or no effect on epithelial polarity and the Drosophila midgut shares several common features with vertebrate epithelia, this diversity of polarity mechanisms is likely to be conserved in other animals.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Aram-Christopher Sayadian
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nick Lowe
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Holly E. Lovegrove
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Raykhel I, Moafi F, Myllymäki SM, Greciano PG, Matlin KS, Moyano JV, Manninen A, Myllyharju J. BAMBI is a novel HIF1-dependent modulator of TGFβ-mediated disruption of cell polarity during hypoxia. J Cell Sci 2018; 131:jcs.210906. [PMID: 29685894 DOI: 10.1242/jcs.210906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and loss of cell polarity are common features of malignant carcinomas. Hypoxia-inducible factor 1 (HIF1) is the major regulator of cellular hypoxia response and mediates the activation of ∼300 genes. Increased HIF1 signaling is known to be associated with epithelial-mesenchymal transformation. Here, we report that hypoxia disrupts polarized epithelial morphogenesis of MDCK cells in a HIF1α-dependent manner by modulating the transforming growth factor-β (TGFβ) signaling pathway. Analysis of potential HIF1 targets in the TGFβ pathway identified the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a transmembrane glycoprotein related to the type I receptors of the TGFβ family, whose expression was essentially lost in HIF1-depleted cells. Similar to what was observed in HIF1-deficient cells, BAMBI-depleted cells failed to efficiently activate TGFβ signaling and retained epithelial polarity during hypoxia. Taken together, we show that hypoxic conditions promote TGFβ signaling in a HIF1-dependent manner and BAMBI is identified in this pathway as a novel HIF1-regulated gene that contributes to hypoxia-induced loss of epithelial polarity.
Collapse
Affiliation(s)
- Irina Raykhel
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Fazeh Moafi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Satu M Myllymäki
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Patricia G Greciano
- Department of Surgery (Section of Research), University of Chicago, Chicago, IL 60637-1470, USA
| | - Karl S Matlin
- Department of Surgery (Section of Research), University of Chicago, Chicago, IL 60637-1470, USA
| | - Jose V Moyano
- Department of Surgery (Section of Research), University of Chicago, Chicago, IL 60637-1470, USA
| | - Aki Manninen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
23
|
Capra J, Eskelinen S. Correlation between E-cadherin interactions, survivin expression, and apoptosis in MDCK and ts-Src MDCK cell culture models. J Transl Med 2017; 97:1453-1470. [PMID: 28892098 DOI: 10.1038/labinvest.2017.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Survivin, a member of inhibitor of apoptosis (IAP) protein family, is a multifunctional protein expressed in most cancers. In addition to inhibition of apoptosis, it regulates proliferation and promotes migration. Its presence and function in cells is strongly regulated via transcription factors, intracellular localization, and degradation. We analyzed the presence of survivin at protein level in various culture environments and under activation of Src tyrosine kinase in epithelial canine kidney MDCK cells in order to elucidate factors controlling survivin 'lifespan'. We used untransformed and temperature sensitive ts-Src MDCK cells as a model and forced them to grow in suspension (1D), in 2D on hard and soft surfaces and in soft 3D Matrigel environment with or without EGTA. In addition, we tested the effect of stressful conditions by cultivating the cells in the presence of an anti-cancer drug and a generator of reactive oxygen species (ROS), piperlongumine (PL) with or without an antioxidant, N-acetylcysteine (NAC). We could confirm that inhibition of apoptosis and simultaneous downregulation of survivin in MDCK cells required both intact cell-cell junctions, trans-interactions of E-cadherin and soft 3D matrix environment. In ts-Src-transformed MDCK cells, survivin was upregulated as soon as the cell-cell junctions were disintegrated. ROS generation with PL-induced cell death of ts-Src MDCK cells concomitantly with survivin downregulation. NAC rescued the ts-Src MDCK cells from ROS-induced apoptosis without upregulation of survivin resulting in a situation resembling untransformed MDCK cells in 3D environment and E-cadherin delineating the lateral cell walls.
Collapse
Affiliation(s)
- Janne Capra
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Sinikka Eskelinen
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| |
Collapse
|
24
|
Abstract
Epithelial tubes are crucial to the function of organ systems including the excretory, gastrointestinal, cardiovascular, and pulmonary. Studies in the last two decades using in vitro organotypic systems and a variety of animal models have substantiated a large number of the morphogenetic mechanisms required to form epithelial tubes in development and regeneration. Many of these mechanisms modulate the differentiation and proliferation events necessary for generating the cell movements and changes in cell shape to delineate the wide variety of epithelial tube sizes, lengths, and conformations. For instance, when coupled with oriented cell division, proliferation itself plays a role in changes in tube shape and their directed expansion. Most of these processes are regulated in response to signaling inputs from adjacent cells or soluble factors from the environment. Despite the great deal of recent investigation in this direction, the knowledge we have about the signaling pathways associated with all epithelial tubulogenesis in development and regeneration is still very limited.
Collapse
|
25
|
Almada E, Tonucci FM, Hidalgo F, Ferretti A, Ibarra S, Pariani A, Vena R, Favre C, Girardini J, Kierbel A, Larocca MC. Akap350 Recruits Eb1 to The Spindle Poles, Ensuring Proper Spindle Orientation and Lumen Formation in 3d Epithelial Cell Cultures. Sci Rep 2017; 7:14894. [PMID: 29097729 PMCID: PMC5668257 DOI: 10.1038/s41598-017-14241-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.
Collapse
Affiliation(s)
- Evangelina Almada
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Facundo M Tonucci
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabela Ferretti
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Solange Ibarra
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejandro Pariani
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Javier Girardini
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
26
|
Tong Z, Martyn K, Yang A, Yin X, Mead BE, Joshi N, Sherman NE, Langer RS, Karp JM. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells. Biomaterials 2017; 154:60-73. [PMID: 29120819 DOI: 10.1016/j.biomaterials.2017.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 01/04/2023]
Abstract
Current ISC culture systems face significant challenges such as animal-derived or undefined matrix compositions, batch-to-batch variability (e.g. Matrigel-based organoid culture), and complexity of assaying cell aggregates such as organoids which renders the research and clinical translation of ISCs challenging. Here, through screening for suitable ECM components, we report a defined, collagen based monolayer culture system that supports the growth of mouse and human intestinal epithelial cells (IECs) enriched for an Lgr5+ population comparable or higher to the levels found in a standard Matrigel-based organoid culture. The system, referred to as the Bolstering Lgr5 Transformational (BLT) Sandwich culture, comprises a collagen IV-coated porous substrate and a collagen I gel overlay which sandwich an IEC monolayer in between. The distinct collagen cues synergistically regulate IEC attachment, proliferation, and Lgr5 expression through maximizing the engagement of distinct cell surface adhesion receptors (i.e. integrin α2β1, integrin β4) and cell polarity. Further, we apply our BLT Sandwich system to identify that the addition of a bone morphogenetic protein (BMP) receptor inhibitor (LDN-193189) improves the expansion of Lgr5-GFP+ cells from mouse small intestinal crypts by nearly 2.5-fold. Notably, the BLT Sandwich culture is capable of expanding human-derived IECs with higher LGR5 mRNA levels than conventional Matrigel culture, providing superior expansion of human LGR5+ ISCs. Considering the key roles Lgr5+ ISCs play in intestinal epithelial homeostasis and regeneration, we envision that our BLT Sandwich culture system holds great potential for understanding and manipulating ISC biology in vitro (e.g. for modeling ISC-mediated gut diseases) or for expanding a large number of ISCs for clinical utility (e.g. for stem cell therapy).
Collapse
Affiliation(s)
- Zhixiang Tong
- Division of BioEngineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, United States
| | - Keir Martyn
- Division of BioEngineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, United States
| | - Andy Yang
- Division of BioEngineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, United States
| | - Xiaolei Yin
- Division of BioEngineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, United States; David H. Koch Institute for Integrative Cancer Research at MIT, United States
| | - Benjamin E Mead
- Division of BioEngineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, United States; Broad Institute of Harvard and MIT, United States; David H. Koch Institute for Integrative Cancer Research at MIT, United States
| | - Nitin Joshi
- Division of BioEngineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, United States
| | - Nicholas E Sherman
- Division of BioEngineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, United States
| | - Robert S Langer
- Harvard - Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, United States; Department of Chemical Engineering at MIT, United States; David H. Koch Institute for Integrative Cancer Research at MIT, United States
| | - Jeffrey M Karp
- Division of BioEngineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, United States.
| |
Collapse
|
27
|
Matlin KS, Myllymäki SM, Manninen A. Laminins in Epithelial Cell Polarization: Old Questions in Search of New Answers. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027920. [PMID: 28159878 DOI: 10.1101/cshperspect.a027920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Laminin, a basement membrane protein discovered in 1979, was shortly thereafter implicated in the polarization of epithelial cells in both mammals and a variety of lower organisms. To transduce a spatial cue to the intrinsic polarization machinery, laminin must polymerize into a dense network that forms the foundation of the basement membrane. Evidence suggests that activation of the small GTPase Rac1 by β1-integrins mobilizes laminin-binding integrins and dystroglycan to consolidate formation of the laminin network and initiate rearrangements of both the actin and microtubule cytoskeleton to help establish the apicobasal axis. A key coordinator of spatial signals from laminin is the serine-threonine kinase Par-1, which is known to affect dystroglycan availability, microtubule and actin organization, and lumen formation. The signaling protein integrin-linked kinase (ILK) may also play a role. Despite significant advances, knowledge of the mechanism by which assembled laminin produces a spatial signal remains fragmentary, and much more research into the complex functions of laminin in polarization and other cellular processes is needed.
Collapse
Affiliation(s)
- Karl S Matlin
- Department of Surgery, The University of Chicago, Chicago, Illinois 60637-1470
| | - Satu-Marja Myllymäki
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| | - Aki Manninen
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| |
Collapse
|
28
|
Zhang K, Myllymäki SM, Gao P, Devarajan R, Kytölä V, Nykter M, Wei GH, Manninen A. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene 2017; 36:5681-5694. [PMID: 28604746 PMCID: PMC5658677 DOI: 10.1038/onc.2017.177] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022]
Abstract
In many cancer types, integrin-mediated signaling regulates proliferation, survival and invasion of tumorigenic cells. However, it is still unclear how integrins crosstalk with oncogenes to regulate tumorigenesis and metastasis. Here we show that oncogenic K-RasV12 upregulates α6-integrin expression in Madin–Darby canine kidney (MDCK) cells via activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)/Fos-related antigen 1-signaling cascade. Activated α6-integrins promoted metastatic capacity and anoikis resistance, and led to perturbed growth of MDCK cysts. Transcriptomic analysis of K-RasV12-transformed MDCK cells also revealed robust downregulation of αV-class integrins. Re-expression of αV-integrin in K-RasV12-transformed MDCK cells synergistically upregulated the expression of Zinc finger E-box-binding homeobox 1 and Twist-related protein 1 and triggered epithelial-mesenchymal transition leading to induced cell motility and invasion. These results delineate the signaling cascades connecting oncogenic K-RasV12 with α6- and αV-integrin functions to modulate cancer cell survival and tumorigenesis, and reveal new possible strategies to target highly oncogenic K-RasV12 mutants.
Collapse
Affiliation(s)
- K Zhang
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - S-M Myllymäki
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - P Gao
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - R Devarajan
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - V Kytölä
- Prostate Cancer Research Center, Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - M Nykter
- Prostate Cancer Research Center, Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - G-H Wei
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - A Manninen
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
29
|
Manninen A, Varjosalo M. A proteomics view on integrin-mediated adhesions. Proteomics 2016; 17. [PMID: 27723259 DOI: 10.1002/pmic.201600022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/05/2016] [Accepted: 10/06/2016] [Indexed: 01/15/2023]
Abstract
Individual cells in multicellular organisms constantly explore their microenvironment, or niche, to obtain spatial information that is used to regulate cell behavior to maintain tissue integrity. The extracellular matrix (ECM) is an important source of such spatial information. Binding of the integrin family receptors to the ECM triggers formation of integrin adhesion complexes (IACs) that link the ECM network to cellular cytoskeleton via remarkably large multiprotein complexes collectively referred to as the integrin adhesome. Recent advances in proteomics have enabled researchers to study the IAC composition in detail. Various biochemical IAC isolation methods and culture conditions have been employed to study the composition and dynamics of integrin-mediated adhesions mainly in fibroblasts and lymphoblasts. These studies have led to identification of daunting lists of potential IAC components. This review focuses on the current status of proteomics-driven research seeking to understand integrin functions by comprehensive analysis of IAC components. These systems level approaches have revealed the complexity of biochemical and biomechanical signals that are processed at IACs and provide a novel insight into how these signals are conveyed to regulate cellular behavior.
Collapse
Affiliation(s)
- Aki Manninen
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Biocenter 3, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Baldanzi G, Bettio V, Malacarne V, Graziani A. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity. Front Cell Dev Biol 2016; 4:140. [PMID: 27965956 PMCID: PMC5126041 DOI: 10.3389/fcell.2016.00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Diacylglycerol kinases (DGKs) terminate diacylglycerol (DAG) signaling and promote phosphatidic acid (PA) production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse. When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valentina Bettio
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valeria Malacarne
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| |
Collapse
|
31
|
Pietilä I, Prunskaite-Hyyryläinen R, Kaisto S, Tika E, van Eerde AM, Salo AM, Garma L, Miinalainen I, Feitz WF, Bongers EMHF, Juffer A, Knoers NVAM, Renkema KY, Myllyharju J, Vainio SJ. Wnt5a Deficiency Leads to Anomalies in Ureteric Tree Development, Tubular Epithelial Cell Organization and Basement Membrane Integrity Pointing to a Role in Kidney Collecting Duct Patterning. PLoS One 2016; 11:e0147171. [PMID: 26794322 PMCID: PMC4721645 DOI: 10.1371/journal.pone.0147171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022] Open
Abstract
The Wnts can be considered as candidates for the Congenital Anomaly of Kidney and Urinary Tract, CAKUT diseases since they take part in the control of kidney organogenesis. Of them Wnt5a is expressed in ureteric bud (UB) and its deficiency leads to duplex collecting system (13/90) uni- or bilateral kidney agenesis (10/90), hypoplasia with altered pattern of ureteric tree organization (42/90) and lobularization defects with partly fused ureter trunks (25/90) unlike in controls. The UB had also notably less tips due to Wnt5a deficiency being at E15.5 306 and at E16.5 765 corresponding to 428 and 1022 in control (p<0.02; p<0.03) respectively. These changes due to Wnt5a knock out associated with anomalies in the ultrastructure of the UB daughter epithelial cells. The basement membrane (BM) was malformed so that the BM thickness increased from 46.3 nm to 71.2 nm (p<0.01) at E16.5 in the Wnt5a knock out when compared to control. Expression of a panel of BM components such as laminin and of type IV collagen was also reduced due to the Wnt5a knock out. The P4ha1 gene that encodes a catalytic subunit of collagen prolyl 4-hydroxylase I (C-P4H-I) in collagen synthesis expression and the overall C-P4H enzyme activity were elevated by around 26% due to impairment in Wnt5a function from control. The compound Wnt5a+/-;P4ha1+/- embryos demonstrated Wnt5a-/- related defects, for example local hyperplasia in the UB tree. A R260H WNT5A variant was identified from renal human disease cohort. Functional studies of the consequence of the corresponding mouse variant in comparison to normal ligand reduced Wnt5a-signalling in vitro. Together Wnt5a has a novel function in kidney organogenesis by contributing to patterning of UB derived collecting duct development contributing putatively to congenital disease.
Collapse
Affiliation(s)
- Ilkka Pietilä
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Renata Prunskaite-Hyyryläinen
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Susanna Kaisto
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elisavet Tika
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albertien M. van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antti M. Salo
- Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Leonardo Garma
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Wout F. Feitz
- Department of Urology, Radboudumc Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ernie M. H. F. Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - André Juffer
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Nine V. A. M. Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johanna Myllyharju
- Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo J. Vainio
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
32
|
Juillot S, Cott C, Madl J, Claudinon J, van der Velden NSJ, Künzler M, Thuenauer R, Römer W. Uptake of Marasmius oreades agglutinin disrupts integrin-dependent cell adhesion. Biochim Biophys Acta Gen Subj 2015; 1860:392-401. [PMID: 26546712 PMCID: PMC4717121 DOI: 10.1016/j.bbagen.2015.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a lectin from the fairy ring mushroom with specificity for Galα1-3Gal containing carbohydrates. This lectin is composed of an N-terminal carbohydrate-binding domain and a C-terminal dimerization domain. The dimerization domain of MOA shows in addition calcium-dependent cysteine protease activity, similar to the calpain family. METHODS Cell detachment assay, cell viability assay, immunofluorescence, live cell imaging and Western blot using MDCKII cell line. RESULTS In this study, we demonstrate in MDCKII cells that after internalization, MOA protease activity induces profound physiological cellular responses, like cytoskeleton rearrangement, cell detachment and cell death. These changes are preceded by a decrease in FAK phosphorylation and an internalization and degradation of β1-integrin, consistent with a disruption of integrin-dependent cell adhesion signaling. Once internalized, MOA accumulates in late endosomal compartments. CONCLUSION Our results suggest a possible toxic mechanism of MOA, which consists of disturbing the cell adhesion and the cell viability. GENERAL SIGNIFICANCE After being ingested by a predator, MOA might exert a protective role by diminishing host cell integrity.
Collapse
Affiliation(s)
- Samuel Juillot
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Catherine Cott
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Julie Claudinon
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | | | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Roland Thuenauer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany.
| |
Collapse
|
33
|
Overeem AW, Bryant DM, van IJzendoorn SC. Mechanisms of apical–basal axis orientation and epithelial lumen positioning. Trends Cell Biol 2015; 25:476-85. [DOI: 10.1016/j.tcb.2015.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
|
34
|
Manninen A. Epithelial polarity – Generating and integrating signals from the ECM with integrins. Exp Cell Res 2015; 334:337-49. [DOI: 10.1016/j.yexcr.2015.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/20/2023]
|
35
|
Yamamoto H, Awada C, Matsumoto S, Kaneiwa T, Sugimoto T, Takao T, Kikuchi A. Basolateral secretion of Wnt5a in polarized epithelial cells is required for apical lumen formation. J Cell Sci 2015; 128:1051-63. [PMID: 25593127 DOI: 10.1242/jcs.163683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wnt5a regulates planar cell polarity in epithelial cells, but it remains to be determined whether Wnt5a and its receptors are sorted apically or basolaterally, and how Wnt5a signaling is involved in apical and basolateral polarization. We found that Wnt5a was secreted basolaterally in polarized kidney epithelial cells. The basolateral secretion of Wnt5a required Wntless (Wls), clathrin and adaptor protein 1 (AP-1). Wnt5a receptors were also localized to the basolateral membranes, but their sorting did not require Wls. Wnt5a-induced signaling was stimulated more efficiently at the basolateral side than the apical side of epithelial cells. Knockdown of Wnt5a delayed apical lumen formation of the epithelial cyst, and these phenotypes were rescued by wild-type Wnt5a, but not by a Wnt5a mutant that is secreted apically. Although apoptosis was not required for apical lumen formation in a wild-type cyst, apoptosis was necessary for eliminating luminal cells in a Wnt5a-depleted cyst. These results suggest that Wnt5a and its receptors are sorted to their correct destination by different mechanisms and that the basolateral secretion of Wnt5a is necessary for apical lumen formation in the epithelial cyst.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chihiro Awada
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Kaneiwa
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Sugimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Yonemura S. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment. PLoS One 2014; 9:e112922. [PMID: 25393292 PMCID: PMC4231087 DOI: 10.1371/journal.pone.0112922] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D) culture systems rather than in two-dimensional (2-D) culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM) are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules), EpH4 cells (mouse mammary gland), and R2/7 cells (human colon) expressing wild-type α-catenin (R2/7 α-Cate cells). These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.
Collapse
Affiliation(s)
- Shigenobu Yonemura
- Electron Microscope Laboratory, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
- * E-mail:
| |
Collapse
|
37
|
Rodriguez-Fraticelli AE, Martin-Belmonte F. Picking up the threads: extracellular matrix signals in epithelial morphogenesis. Curr Opin Cell Biol 2014; 30:83-90. [DOI: 10.1016/j.ceb.2014.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023]
|
38
|
Establishing the plane of symmetry for lumen formation and bilateral brain formation in the zebrafish neural rod. Semin Cell Dev Biol 2014; 31:100-5. [PMID: 24721474 DOI: 10.1016/j.semcdb.2014.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 11/21/2022]
Abstract
The lumen of the zebrafish neural tube develops precisely at the midline of the solid neural rod primordium. This process depends on cell polarisation and cell rearrangements, both of which are manifest at the midline of the neural rod. The result of this cell polarisation and cell rearrangement is an epithelial tube that has overt mirror-symmetry, such that cell morphology and apicobasal polarisation are mirrored across the midline of the neural tube. This article discusses how this mirror-symmetry is established and proposes the hypothesis that positioning the cells' centrosomes to the midline of the neural rod is a key event in organising this process.
Collapse
|
39
|
Charpentier MS, Conlon FL. Cellular and molecular mechanisms underlying blood vessel lumen formation. Bioessays 2013; 36:251-9. [PMID: 24323945 DOI: 10.1002/bies.201300133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The establishment of a functional vascular system requires multiple complex steps throughout embryogenesis, from endothelial cell (EC) specification to vascular patterning into venous and arterial hierarchies. Following the initial assembly of ECs into a network of cord-like structures, vascular expansion and remodeling occur rapidly through morphogenetic events including vessel sprouting, fusion, and pruning. In addition, vascular morphogenesis encompasses the process of lumen formation, critical for the transformation of cords into perfusable vascular tubes. Studies in mouse, zebrafish, frog, and human endothelial cells have begun to outline the cellular and molecular requirements underlying lumen formation. Although the lumen can be generated through diverse mechanisms, the coordinated participation of multiple conserved molecules including transcription factors, small GTPases, and adhesion and polarity proteins remains a fundamental principle, leading us closer to a more thorough understanding of this complex event.
Collapse
Affiliation(s)
- Marta S Charpentier
- McAllister Heart Institute, Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
40
|
αV-integrins are required for mechanotransduction in MDCK epithelial cells. PLoS One 2013; 8:e71485. [PMID: 23977051 PMCID: PMC3747215 DOI: 10.1371/journal.pone.0071485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/29/2013] [Indexed: 01/12/2023] Open
Abstract
The properties of epithelial cells within tissues are regulated by their immediate microenvironment, which consists of neighboring cells and the extracellular matrix (ECM). Integrin heterodimers orchestrate dynamic assembly and disassembly of cell-ECM connections and thereby convey biochemical and mechanical information from the ECM into cells. However, the specific contributions and functional hierarchy between different integrin heterodimers in the regulation of focal adhesion dynamics in epithelial cells are incompletely understood. Here, we have studied the functions of RGD-binding αV-integrins in a Madin Darby Canine Kidney (MDCK) cell model and found that αV-integrins regulate the maturation of focal adhesions (FAs) and cell spreading. αV-integrin-deficient MDCK cells bound collagen I (Col I) substrate via α2β1-integrins but failed to efficiently recruit FA components such as talin, focal adhesion kinase (FAK), vinculin and integrin-linked kinase (ILK). The apparent inability to mature α2β1-integrin-mediated FAs and link them to cellular actin cytoskeleton led to disrupted mechanotransduction in αV-integrin deficient cells seeded onto Col I substrate.
Collapse
|
41
|
Denker E, Bocina I, Jiang D. Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete Par domains. Development 2013; 140:2985-96. [PMID: 23760958 DOI: 10.1242/dev.092387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apico-basal polarization is a crucial step in the de novo formation of biological tubes. In Ciona notochord, tubulogenesis occurs in a single file of cells in the absence of cell proliferation. This configuration presents a unique challenge for the formation of a continuous lumen. Here, we show that this geometric configuration is associated with a novel polarization strategy: the generation of bipolar epithelial cells possessing two apical/luminal domains instead of one, as in the conventional epithelium. At the molecular level, cells establish two discrete Par3/Par6/aPKC patches, and form two sets of tight junctions, in opposite points of the cells. The key molecule controlling the formation of both domains is Par3. Changing the position of the cells within the organ fundamentally changes their polarity and the number of apical domains they develop. These results reveal a new mechanism for tubulogenesis from the simplest cell arrangement, which occurs in other developmental contexts, including vertebrate vascular anastomosis.
Collapse
Affiliation(s)
- Elsa Denker
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
42
|
Abstract
Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture models has brought new insights into the mechanisms underlying the establishment and maintenance of higher-order epithelial tissue architecture, and in the dynamic remodeling of cell polarity that often occurs during development of epithelial organs. Here we discuss some important aspects of mammalian epithelial morphogenesis, from the establishment of cell polarity to epithelial tissue generation.
Collapse
|
43
|
Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod. EMBO J 2012; 32:30-44. [PMID: 23202854 PMCID: PMC3545300 DOI: 10.1038/emboj.2012.305] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/30/2012] [Indexed: 02/06/2023] Open
Abstract
By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necessary for the trafficking of proteins required for normal lumen formation, such as partitioning defective 3 and Rab11a to this point. This occurs in advance and is independent of the midline cell division that has been shown to have a powerful role in lumen organisation. To our knowledge, this is the first example of the initiation of apical polarisation part way along the length of a cell, rather than at a cell extremity. Although the midline division is not necessary for apical polarisation, it confers a morphogenetic advantage by efficiently eliminating cellular processes that would otherwise bridge the developing lumen.
Collapse
|
44
|
Tanimizu N, Kikkawa Y, Mitaka T, Miyajima A. α1- and α5-containing laminins regulate the development of bile ducts via β1 integrin signals. J Biol Chem 2012; 287:28586-97. [PMID: 22761447 PMCID: PMC3436529 DOI: 10.1074/jbc.m112.350488] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/24/2012] [Indexed: 12/31/2022] Open
Abstract
Signals derived from basal lamina components are important for developing three-dimensional architecture of epithelial tissues. Laminins consisting of α, β, and γ subunits in basal lamina play pivotal roles in the formation and maintenance of epithelial tissue structures. However, it remains unclear which laminin isoforms transmit signals and how epithelial cells receive them to regulate multiple developmental processes. In three-dimensional culture of a liver progenitor cell line, Hepatic Progenitor Cells Proliferating on Laminin (HPPL), the cells establish apicobasal polarity and form cysts with a central lumen. Neutralizing antibody against β1 integrin blocked the formation and maintenance of the cyst structure, indicating that β1 integrin signaling was necessary throughout the morphogenesis. Although the addition of α1-containing laminin, a ligand of β1 integrin, induced cyst formation, it was dispensable for the maintenance of the cyst, suggesting that HPPL produces another ligand for β1 integrin to maintain the structure. Indeed, we found that HPPL produced α5-containing laminin, and siRNA against laminin α5 partially inhibited the lumen formation. In fetal liver, p75NTR(+) periportal fibroblasts and bile duct epithelial cells, known as cholangiocytes, expressed α1- and α5-containing laminins, respectively. In laminin α5 KO liver, cholangiocytes normally emerged, but the number of bile ducts was decreased. These results suggest that α1-containing laminin is sufficient as a component of the basal lamina for the commitment of bipotential liver progenitors to cholangiocytes and the apicobasal polarization, whereas α5-containing laminin is necessary for the formation of mature duct structures. Thus, α1- and α5-containing laminins differentially regulate the sequential events to form epithelial tissues via β1 integrin signals.
Collapse
Affiliation(s)
- Naoki Tanimizu
- From the Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yamato Kikkawa
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan, and
| | - Toshihiro Mitaka
- From the Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| |
Collapse
|
45
|
Abstract
Cell polarization is an evolutionarily conserved process that facilitates asymmetric distribution of organelles and proteins and that is modified dynamically during physiological processes such as cell division, migration, and morphogenesis. The plasticity with which cells change their behavior and phenotype in response to cell intrinsic and extrinsic cues is an essential feature of normal physiology. In disease states such as cancer, cells lose their ability to behave normally in response to physiological cues. A molecular understanding of mechanisms that alter the behavior of cancer cells is limited. Cell polarity proteins are a recognized class of molecules that can receive and interpret both intrinsic and extrinsic signals to modulate cell behavior. In this review, we discuss how cell polarity proteins regulate a diverse array of biological processes and how they can contribute to alterations in the behavior of cancer cells.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Ontario Cancer Institute, Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto M5G 2M9, Canada.
| | | |
Collapse
|
46
|
Eritja N, Mirantes C, Llobet D, Masip G, Matias-Guiu X, Dolcet X. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance. J Cell Sci 2012; 125:1929-44. [PMID: 22328525 DOI: 10.1242/jcs.095067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Most glandular tissues comprise polarized epithelial cells organized around a single central lumen. Although there is active research investigating the molecular networks involved in the regulation of lumenogenesis, little is known about the extracellular factors that influence lumen formation and maintenance. Using a three-dimensional culture system of epithelial endometrial cells, we have revealed a new role for pro-inflammatory cytokines such as TNFα and IL1α in the formation and, more importantly, maintenance of a single central lumen. We also studied the mechanism by which glucocorticoids repress TNFα and IL1α expression. Interestingly, regulation of pro-inflammatory cytokine expression and subsequent lumen formation is mediated by estrogen receptor α (ERα) but not by the glucocorticoid receptor. Finally, we investigated the signaling pathways involved in the regulation of lumen formation by pro-inflammatory cytokines. Our results demonstrate that activation of the ERK/MAPK signaling pathway, but not the PI3K/Akt signaling pathway, is important for the formation and maintenance of a single central lumen. In summary, our results suggest a novel role for ERα-regulated pro-inflammatory cytokine expression in lumen formation and maintenance.
Collapse
Affiliation(s)
- Nuria Eritja
- Oncologic Pathology Group, Departamento de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Rilla K, Pasonen-Seppänen S, Kärnä R, Karjalainen HM, Törrönen K, Koistinen V, Tammi MI, Tammi RH, Teräväinen T, Manninen A. HAS3-induced accumulation of hyaluronan in 3D MDCK cultures results in mitotic spindle misorientation and disturbed organization of epithelium. Histochem Cell Biol 2011; 137:153-64. [PMID: 22159845 DOI: 10.1007/s00418-011-0896-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 12/31/2022]
Abstract
The amount of hyaluronan (HA) is low in simple epithelia under normal conditions, but during tumorigenesis, trauma or inflammation HA is increased on the epithelial cells and surrounding stroma. Excessive HA in epithelia is suggested to interfere with cell-cell adhesions, resulting in disruption of the epithelial barrier function. In addition, stimulated HA synthesis has been correlated with epithelial-to-mesenchymal transition and invasion of cancer cells. However, the effects of HA overload on normal epithelial morphogenesis have not been characterized in detail. Madin-Darby canine kidney (MDCK) cells form polarized epithelial cysts, when grown in a 3-dimensional (3D) matrix. These cells were used to investigate whether stimulated HA synthesis, induced by stable overexpression of GFP-HAS3, influences cell polarization and epithelial morphogenesis. GFP-HAS3 expression in polarized MDCK cells resulted in active HA secretion at apical and basolateral membrane domains. HA-deposits interfered with the formation of cell-cell junctions, resulting in impaired barrier function. In 3D cyst cultures, HA accumulated into apical lumina and was also secreted from the basal side. The HAS3-expressing cysts failed to form a single lumen and instead displayed multiple small lumina. This phenotype was correlated with aberrant mitotic spindle orientation in dividing cells. The results of this study indicate that excess pericellular HA disturbs the normal cell-cell and cell-ECM interactions in simple epithelia, leading to aberrant epithelial morphogenesis. The morphological abnormalities observed in 3D epithelial cultures upon stimulated HAS3 expression may be related to premalignant changes, including intraluminal invasion and deregulated epithelialization, probably mediated by the mitotic spindle orientation defects.
Collapse
Affiliation(s)
- Kirsi Rilla
- Department of Anatomy, School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Greciano PG, Moyano JV, Buschmann MM, Tang J, Lu Y, Rudnicki J, Manninen A, Matlin KS. Laminin 511 partners with laminin 332 to mediate directional migration of Madin-Darby canine kidney epithelial cells. Mol Biol Cell 2011; 23:121-36. [PMID: 22031290 PMCID: PMC3248892 DOI: 10.1091/mbc.e11-08-0718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Sustained directional migration of epithelial cells is essential for regeneration of injured epithelia. Front-rear polarity of migrating cells is determined by local activation of a signaling network involving Cdc42 and other factors in response to spatial cues from the environment, the nature of which are obscure. We examined the roles of laminin (LM)-511 and LM-332, two structurally different laminin isoforms, in the migration of Madin-Darby canine kidney cells by suppressing expression of their α subunits using RNA interference. We determined that knockdown of LM-511 inhibits directional migration and destabilizes cell-cell contacts, in part by disturbing the localization and activity of the polarization machinery. Suppression of integrin α3, a laminin receptor subunit, in cells synthesizing normal amounts of both laminins has a similar effect as knockdown of LM-511. Surprisingly, simultaneous suppression of both laminin α5 and laminin α3 restores directional migration and cell-cell contact stability, suggesting that cells recognize a haptotactic gradient formed by a combination of laminins.
Collapse
Affiliation(s)
- Patricia G Greciano
- Department of Surgery and Committee on Molecular Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|