1
|
Kuchimaru T. Emerging Synthetic Bioluminescent Reactions for Non-Invasive Imaging of Freely Moving Animals. Int J Mol Sci 2024; 25:7338. [PMID: 39000448 PMCID: PMC11242611 DOI: 10.3390/ijms25137338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Bioluminescence imaging (BLI) is an indispensable technique for visualizing the dynamics of diverse biological processes in mammalian animal models, including cancer, viral infections, and immune responses. However, a critical scientific challenge remains: non-invasively visualizing homeostatic and disease mechanisms in freely moving animals to understand the molecular basis of exercises, social behavior, and other phenomena. Classical BLI relies on prolonged camera exposure to accumulate the limited number of photons that traveled from deep tissues in anesthetized or constrained animals. Recent advancements in synthetic bioluminescence reactions, utilizing artificial luciferin-luciferase pairs, have considerably increased the number of detectable photons from deep tissues, facilitating high-speed BLI to capture moving objects. In this review, I provide an overview of emerging synthetic bioluminescence reactions that enable the non-invasive imaging of freely moving animals. This approach holds the potential to uncover unique physiological processes that are inaccessible with current methodologies.
Collapse
Affiliation(s)
- Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
2
|
Vicente M, Salgado-Almario J, Martínez-Sielva A, Llopis J, Domingo B. Optimized Aequorin Reconstitution Protocol to Visualize Calcium Ion Transients in the Heart of Transgenic Zebrafish Embryos In Vivo. Methods Mol Biol 2022; 2524:271-280. [PMID: 35821478 DOI: 10.1007/978-1-0716-2453-1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We introduce how to image calcium ion levels in the heart of zebrafish embryos and larvae up to 5 days post-fertilization with the photoprotein green fluorescent protein (GFP)-aequorin (GA) in the transgenic line Tg(myl7:GA). Incubation of the embryos with CTZ to obtain the functional photoprotein yields few emission counts, suggesting that, when the heart is beating, the rate of aequorin consumption is faster than that of the reconstitution with CTZ. In this chapter, we present an improved aequorin reconstitution protocol. We further describe the experimental procedure as well as the bioluminescence data analysis and processing.
Collapse
Affiliation(s)
- Manuel Vicente
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Jussep Salgado-Almario
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Antonio Martínez-Sielva
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan Llopis
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Beatriz Domingo
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
3
|
RedquorinXS Mutants with Enhanced Calcium Sensitivity and Bioluminescence Output Efficiently Report Cellular and Neuronal Network Activities. Int J Mol Sci 2020; 21:ijms21217846. [PMID: 33105848 PMCID: PMC7660078 DOI: 10.3390/ijms21217846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023] Open
Abstract
Considerable efforts have been focused on shifting the wavelength of aequorin Ca2+-dependent blue bioluminescence through fusion with fluorescent proteins. This approach has notably yielded the widely used GFP-aequorin (GA) Ca2+ sensor emitting green light, and tdTomato-aequorin (Redquorin), whose bioluminescence is completely shifted to red, but whose Ca2+ sensitivity is low. In the present study, the screening of aequorin mutants generated at twenty-four amino acid positions in and around EF-hand Ca2+-binding domains resulted in the isolation of six aequorin single or double mutants (AequorinXS) in EF2, EF3, and C-terminal tail, which exhibited markedly higher Ca2+ sensitivity than wild-type aequorin in vitro. The corresponding Redquorin mutants all showed higher Ca2+ sensitivity than wild-type Redquorin, and four of them (RedquorinXS) matched the Ca2+ sensitivity of GA in vitro. RedquorinXS mutants exhibited unaltered thermostability and peak emission wavelengths. Upon stable expression in mammalian cell line, all RedquorinXS mutants reported the activation of the P2Y2 receptor by ATP with higher sensitivity and assay robustness than wt-Redquorin, and one, RedquorinXS-Q159T, outperformed GA. Finally, wide-field bioluminescence imaging in mouse neocortical slices showed that RedquorinXS-Q159T and GA similarly reported neuronal network activities elicited by the removal of extracellular Mg2+. Our results indicate that RedquorinXS-Q159T is a red light-emitting Ca2+ sensor suitable for the monitoring of intracellular signaling in a variety of applications in cells and tissues, and is a promising candidate for the transcranial monitoring of brain activities in living mice.
Collapse
|
4
|
Vicente M, Salgado-Almario J, Soriano J, Burgos M, Domingo B, Llopis J. Visualization of Mitochondrial Ca 2+ Signals in Skeletal Muscle of Zebrafish Embryos with Bioluminescent Indicators. Int J Mol Sci 2019; 20:ijms20215409. [PMID: 31671636 PMCID: PMC6862566 DOI: 10.3390/ijms20215409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are believed to play an important role in shaping the intracellular Ca2+ transients during skeletal muscle contraction. There is discussion about whether mitochondrial matrix Ca2+ dynamics always mirror the cytoplasmic changes and whether this happens in vivo in whole organisms. In this study, we characterized cytosolic and mitochondrial Ca2+ signals during spontaneous skeletal muscle contractions in zebrafish embryos expressing bioluminescent GFP-aequorin (GA, cytoplasm) and mitoGFP-aequorin (mitoGA, trapped in the mitochondrial matrix). The Ca2+ transients measured with GA and mitoGA reflected contractions of the trunk observed by transmitted light. The mitochondrial uncoupler FCCP and the inhibitor of the mitochondrial calcium uniporter (MCU), DS16570511, abolished mitochondrial Ca2+ transients whereas they increased the frequency of cytosolic Ca2+ transients and muscle contractions, confirming the subcellular localization of mitoGA. Mitochondrial Ca2+ dynamics were also determined with mitoGA and were found to follow closely cytoplasmic changes, with a slower decay. Cytoplasmic Ca2+ kinetics and propagation along the trunk and tail were characterized with GA and with the genetically encoded fluorescent Ca2+ indicator, Twitch-4. Although fluorescence provided a better spatio-temporal resolution, GA was able to resolve the same kinetic parameters while allowing continuous measurements for hours.
Collapse
Affiliation(s)
- Manuel Vicente
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Jussep Salgado-Almario
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Joaquim Soriano
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Miguel Burgos
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Beatriz Domingo
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Juan Llopis
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| |
Collapse
|
5
|
Red-shifted bioluminescence Resonance Energy Transfer: Improved tools and materials for analytical in vivo approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Tricoire L, Drobac E, Tsuzuki K, Gallopin T, Picaud S, Cauli B, Rossier J, Lambolez B. Bioluminescence calcium imaging of network dynamics and their cholinergic modulation in slices of cerebral cortex from male rats. J Neurosci Res 2019; 97:414-432. [PMID: 30604494 DOI: 10.1002/jnr.24380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
The activity of neuronal ensembles was monitored in neocortical slices from male rats using wide-field bioluminescence imaging of a calcium sensor formed with the fusion of green fluorescent protein and aequorin (GA) and expressed through viral transfer. GA expression was restricted to pyramidal neurons and did not conspicuously alter neuronal morphology or neocortical cytoarchitecture. Removal of extracellular magnesium or addition of GABA receptor antagonists triggered epileptiform flashes of variable amplitude and spatial extent, indicating that the excitatory and inhibitory networks were functionally preserved in GA-expressing slices. We found that agonists of muscarinic acetylcholine receptors largely increased the peak bioluminescence response to local electrical stimulation in layer I or white matter, and gave rise to a slowly decaying response persisting for tens of seconds. The peak increase involved layers II/III and V and did not result in marked alteration of response spatial properties. The persistent response involved essentially layer V and followed the time course of the muscarinic afterdischarge depolarizing plateau in layer V pyramidal cells. This plateau potential triggered spike firing in layer V, but not layer II/III pyramidal cells, and was accompanied by recurrent synaptic excitation in layer V. Our results indicate that wide-field imaging of GA bioluminescence is well suited to monitor local and global network activity patterns, involving different mechanisms of intracellular calcium increase, and occurring on various timescales.
Collapse
Affiliation(s)
- Ludovic Tricoire
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Estelle Drobac
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Keisuke Tsuzuki
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Thierry Gallopin
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Sandrine Picaud
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Bruno Cauli
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Jean Rossier
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Bertrand Lambolez
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| |
Collapse
|
7
|
Mercier D, Tsuchimoto Y, Ohta K, Kazama H. Olfactory Landmark-Based Communication in Interacting Drosophila. Curr Biol 2018; 28:2624-2631.e5. [PMID: 30078566 DOI: 10.1016/j.cub.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 11/16/2022]
Abstract
To communicate with conspecifics, animals deploy various strategies to release pheromones, chemical signals modulating social and sexual behaviors [1-5]. Importantly, a single pheromone induces different behaviors depending on the context and exposure dynamics [6-8]. Therefore, to comprehend the ethological role of pheromones, it is essential to characterize how neurons in the recipients respond to temporally and spatially fluctuating chemical signals emitted by donors during natural interactions. In Drosophila melanogaster, the male pheromone 11-cis-vaccenyl acetate (cVA) [9] activates specific olfactory receptor neurons (ORNs) [10, 11] to regulate diverse social and sexual behaviors in recipients [12-15]. Physicochemical analyses have identified this chemical on an animal's body [16, 17] and in its local environment [18, 19]. However, because these methods are imprecise in capturing spatiotemporal dynamics, it is poorly understood how individual pheromone cues are released, detected, and interpreted by recipients. Here, we developed a system based on bioluminescence to monitor neural activity in freely interacting Drosophila, and investigated the active detection and perception of the naturally emitted cVA. Unexpectedly, neurons specifically tuned to cVA did not exhibit significant activity during physical interactions between males, and instead responded strongly to olfactory landmarks deposited by males. These landmarks mediated attraction through Or67d receptors and allured both sexes to the marked region. Importantly, the landmarks remained attractive even when a pair of flies was engaged in courtship behavior. In contrast, female deposits did not affect the exploration pattern of either sex. Thus, Drosophila use pheromone marking to remotely signal their sexual identity and to enhance social interactions.
Collapse
Affiliation(s)
- Damien Mercier
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Yoshiko Tsuchimoto
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazumi Ohta
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
8
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Rathod M, Mal A, De A. Reporter-Based BRET Sensors for Measuring Biological Functions In Vivo. Methods Mol Biol 2018; 1790:51-74. [PMID: 29858783 DOI: 10.1007/978-1-4939-7860-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic reporter systems provide a good alternative to monitor cellular functions in vitro and in vivo and are contributing immensely in experimental research. Reporters like fluorescence and bioluminescence genes, which support optical measurements, provide exquisite sensitivity to the assay systems. In recent years several activatable strategies have been developed, which can relay specialized molecular functions from inside the cells. The application of bioluminescence resonance energy transfer (BRET) is one such strategy that has been proved to be extremely valuable as an in vitro or in vivo assay to measure dynamic events such as protein-protein interactions (PPIs).The BRET assay using RLuc-YFP was introduced in biological research in the late 1990s and demonstrated the interaction of two proteins involved in circadian rhythm. Since then, BRET has become a popular genetic reporter-based assay for PPI studies due to several inherent attributes that facilitate high-throughput assay development such as rapid and fairly sensitive ratio-metric measurement, the assessment of PPI irrespective of protein location in cellular compartment and cost effectiveness. In BRET-based screening, within a defined proximity range of 10-100 Å, the excited energy state of the luminescent molecule excites the acceptor fluorophore in the form of resonance energy transfer, causing it to emit at its characteristic emission wavelength. Based on this principle, several such donor-acceptor pairs, using Renilla luciferase or its mutants as donor and either GFP2, YFP, mOrange, TagRFP or TurboFP as acceptor, have been reported for use.In recent years, the applicability of BRET has been greatly enhanced by the adaptation of the assay to multiple detection devices such as a luminescence plate reader, a bioluminescence microscope and a small animal optical imaging platform. Apart from quantitative measurement studies of PPIs and protein dimerization, molecular spectral imaging has expanded the scope for fast screening of pharmacological compounds that modulate PPIs by unifying in vitro, live cell and in vivo animal/plant measurement, all using one assay. Using examples from the literature, we will describe methods to perform in vitro and in vivo BRET imaging experiments and some of its applications.
Collapse
Affiliation(s)
- Maitreyi Rathod
- KS325, Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre(TMC), Navi Mumbai, Maharashtra, India
| | - Arijit Mal
- KS325, Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre(TMC), Navi Mumbai, Maharashtra, India
| | - Abhijit De
- KS325, Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre(TMC), Navi Mumbai, Maharashtra, India.
| |
Collapse
|
10
|
Jurgielewicz P, Harmsen S, Wei E, Bachmann MH, Ting R, Aras O. New imaging probes to track cell fate: reporter genes in stem cell research. Cell Mol Life Sci 2017; 74:4455-4469. [PMID: 28674728 DOI: 10.1007/s00018-017-2584-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023]
Abstract
Cell fate is a concept used to describe the differentiation and development of a cell in its organismal context over time. It is important in the field of regenerative medicine, where stem cell therapy holds much promise but is limited by our ability to assess its efficacy, which is mainly due to the inability to monitor what happens to the cells upon engraftment to the damaged tissue. Currently, several imaging modalities can be used to track cells in the clinical setting; however, they do not satisfy many of the criteria necessary to accurately assess several aspects of cell fate. In recent years, reporter genes have become a popular option for tracking transplanted cells, via various imaging modalities in small mammalian animal models. This review article examines the reporter gene strategies used in imaging modalities such as MRI, SPECT/PET, Optoacoustic and Bioluminescence Imaging. Strengths and limitations of the use of reporter genes in each modality are discussed.
Collapse
Affiliation(s)
- Piotr Jurgielewicz
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Stefan Harmsen
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Suite 1511, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Bakayan A, Domingo B, Vaquero CF, Peyriéras N, Llopis J. Fluorescent Protein-photoprotein Fusions and Their Applications in Calcium Imaging. Photochem Photobiol 2017; 93:448-465. [PMID: 27925224 DOI: 10.1111/php.12682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
Calcium-activated photoproteins, such as aequorin, have been used as luminescent Ca2+ indicators since 1967. After the cloning of aequorin in 1985, microinjection was substituted by its heterologous expression, which opened the way for a widespread use. Molecular fusion of green fluorescent protein (GFP) to aequorin recapitulated the nonradiative energy transfer process that occurs in the jellyfish Aequorea victoria, from which these two proteins were obtained, resulting in an increase of light emission and a shift to longer wavelength. The abundance and location of the chimera are seen by fluorescence, whereas its luminescence reports Ca2+ levels. GFP-aequorin is broadly used in an increasing number of studies, from organelles and cells to intact organisms. By fusing other fluorescent proteins to aequorin, the available luminescence color palette has been expanded for multiplexing assays and for in vivo measurements. In this report, we will attempt to review the various photoproteins available, their reported fusions with fluorescent proteins and their biological applications to image Ca2+ dynamics in organelles, cells, tissue explants and in live organisms.
Collapse
Affiliation(s)
- Adil Bakayan
- BioEmergences Unit (CNRS, USR3695), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Beatriz Domingo
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Cecilia F Vaquero
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Nadine Peyriéras
- BioEmergences Unit (CNRS, USR3695), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Juan Llopis
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
12
|
Grinstead KM, Rowe L, Ensor CM, Joel S, Daftarian P, Dikici E, Zingg JM, Daunert S. Red-Shifted Aequorin Variants Incorporating Non-Canonical Amino Acids: Applications in In Vivo Imaging. PLoS One 2016; 11:e0158579. [PMID: 27367859 PMCID: PMC4930207 DOI: 10.1371/journal.pone.0158579] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/17/2016] [Indexed: 11/18/2022] Open
Abstract
The increased importance of in vivo diagnostics has posed new demands for imaging technologies. In that regard, there is a need for imaging molecules capable of expanding the applications of current state-of-the-art imaging in vivo diagnostics. To that end, there is a desire for new reporter molecules capable of providing strong signals, are non-toxic, and can be tailored to diagnose or monitor the progression of a number of diseases. Aequorin is a non-toxic photoprotein that can be used as a sensitive marker for bioluminescence in vivo imaging. The sensitivity of aequorin is due to the fact that bioluminescence is a rare phenomenon in nature and, therefore, it does not suffer from autofluorescence, which contributes to background emission. Emission of bioluminescence in the blue-region of the spectrum by aequorin only occurs when calcium, and its luciferin coelenterazine, are bound to the protein and trigger a biochemical reaction that results in light generation. It is this reaction that endows aequorin with unique characteristics, making it ideally suited for a number of applications in bioanalysis and imaging. Herein we report the site-specific incorporation of non-canonical or non-natural amino acids and several coelenterazine analogues, resulting in a catalog of 72 cysteine-free, aequorin variants which expand the potential applications of these photoproteins by providing several red-shifted mutants better suited to use in vivo. In vivo studies in mouse models using the transparent tissue of the eye confirmed the activity of the aequorin variants incorporating L-4-iodophehylalanine and L-4-methoxyphenylalanine after injection into the eye and topical addition of coelenterazine. The signal also remained localized within the eye. This is the first time that aequorin variants incorporating non-canonical amino acids have shown to be active in vivo and useful as reporters in bioluminescence imaging.
Collapse
Affiliation(s)
- Kristen M. Grinstead
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Laura Rowe
- Department of Chemistry, 1610 Campus Drive East, Valparaiso University, Valparaiso, IN, 46385, United States of America
| | - Charles M. Ensor
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, United States of America
| | - Smita Joel
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Pirouz Daftarian
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| |
Collapse
|
13
|
Improving the luminescence properties of aequorin by conjugating to CdSe/ZnS quantum dot nanoparticles: Red shift and slowing decay rate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:153-161. [PMID: 27371914 DOI: 10.1016/j.jphotobiol.2016.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022]
Abstract
Changing the properties of photoprotein aequorin such as the wavelength emission and decay half-life by using bioluminescence resonance energy transfer (BRET) phenomenon is the main aim in this paper. BRET system was set up with CdSe/ZnS quantum dot nanoparticles as an acceptor molecule and photoprotein as an energy donor molecule. Quantum dots are semiconductor nanoparticles with very interesting optical properties, including broad excitation spectra, narrow and the symmetric band width emission spectra, tunable by their sizes, compositions, negligible photo-bleaching and good chemical and photo-stability. In this QD-BRET system, aequorin is conjugated to the carboxyl groups on quantum dot surface by EDC/NHS chemistry as cross linker. Bioluminescence energy generates by aequorin upon adding Ca(2+) and transfers to the quantum dots in a radiationless manner and emits at a longer wavelength. The determined bioluminescent parameters for this method included aequorin activity, emission spectra and decay half-life time. In fact, this spectrum tuning strategy resulted in a change in bioluminescent properties of photoprotein, therefore, the maximum emission wavelength shifted from 455 to 540nm and the decay time increased from 3.76 to 12.11s. Nowadays, photoproteins with different characteristics are capable of being employed as a reporter in multi-analyte detections and in vivo imaging.
Collapse
|
14
|
Xu T, Close D, Handagama W, Marr E, Sayler G, Ripp S. The Expanding Toolbox of In Vivo Bioluminescent Imaging. Front Oncol 2016; 6:150. [PMID: 27446798 PMCID: PMC4917529 DOI: 10.3389/fonc.2016.00150] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022] Open
Abstract
In vivo bioluminescent imaging (BLI) permits the visualization of engineered bioluminescence from living cells and tissues to provide a unique perspective toward the understanding of biological processes as they occur within the framework of an authentic in vivo environment. The toolbox of in vivo BLI includes an inventory of luciferase compounds capable of generating bioluminescent light signals along with sophisticated and powerful instrumentation designed to detect and quantify these light signals non-invasively as they emit from the living subject. The information acquired reveals the dynamics of a wide range of biological functions that play key roles in the physiological and pathological control of disease and its therapeutic management. This mini review provides an overview of the tools and applications central to the evolution of in vivo BLI as a core technology in the preclinical imaging disciplines.
Collapse
Affiliation(s)
- Tingting Xu
- The Center for Environmental Biotechnology, The University of Tennessee , Knoxville, TN , USA
| | - Dan Close
- 490 BioTech, Inc. , Knoxville, TN , USA
| | - Winode Handagama
- The Department of Biology, Maryville College , Maryville, TN , USA
| | - Enolia Marr
- The Center for Environmental Biotechnology, The University of Tennessee , Knoxville, TN , USA
| | - Gary Sayler
- The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; 490 BioTech, Inc., Knoxville, TN, USA
| | - Steven Ripp
- The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; 490 BioTech, Inc., Knoxville, TN, USA
| |
Collapse
|
15
|
Navas-Navarro P, Rojo-Ruiz J, Rodriguez-Prados M, Ganfornina MD, Looger LL, Alonso MT, García-Sancho J. GFP-Aequorin Protein Sensor for Ex Vivo and In Vivo Imaging of Ca(2+) Dynamics in High-Ca(2+) Organelles. Cell Chem Biol 2016; 23:738-45. [PMID: 27291400 DOI: 10.1016/j.chembiol.2016.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
Proper functioning of organelles such as the ER or the Golgi apparatus requires luminal accumulation of Ca(2+) at high concentrations. Here we describe a ratiometric low-affinity Ca(2+) sensor of the GFP-aequorin protein (GAP) family optimized for measurements in high-Ca(2+) concentration environments. Transgenic animals expressing the ER-targeted sensor allowed monitoring of Ca(2+) signals inside the organelle. The use of the sensor was demonstrated under three experimental paradigms: (1) ER Ca(2+) oscillations in cultured astrocytes, (2) ex vivo functional mapping of cholinergic receptors triggering ER Ca(2+) release in acute hippocampal slices from transgenic mice, and (3) in vivo sarcoplasmic reticulum Ca(2+) dynamics in the muscle of transgenic flies. Our results provide proof of the suitability of the new biosensors to monitor Ca(2+) dynamics inside intracellular organelles under physiological conditions and open an avenue to explore complex Ca(2+) signaling in animal models of health and disease.
Collapse
Affiliation(s)
- Paloma Navas-Navarro
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - Macarena Rodriguez-Prados
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - María Dolores Ganfornina
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain.
| |
Collapse
|
16
|
Tung JK, Berglund K, Gutekunst CA, Hochgeschwender U, Gross RE. Bioluminescence imaging in live cells and animals. NEUROPHOTONICS 2016; 3:025001. [PMID: 27226972 PMCID: PMC4874058 DOI: 10.1117/1.nph.3.2.025001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/23/2016] [Indexed: 05/13/2023]
Abstract
The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as their applications and unique advantages over conventional fluorescent reporters become more appreciated. Here, we describe practical methods and principles for detecting and imaging bioluminescence from live cells and animals. We systematically tested various components of our conventional fluorescence microscope to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons were obtained with our microscope setup, which could be continuously captured for several hours with no signs of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely detected and measured from live cells and animals in a cost-effective way with common reagents and equipment.
Collapse
Affiliation(s)
- Jack K. Tung
- Georgia Institute of Technology, Coulter Department of Biomedical Engineering, 313 Ferst Drive, Room 2127, Atlanta, Georgia 30332, United States
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
| | - Ken Berglund
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
| | - Claire-Anne Gutekunst
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine and Neuroscience Program, Department of Neuroscience, 1280 S. East Campus Street, Mt. Pleasant, Michigan 48859, United States
| | - Robert E. Gross
- Georgia Institute of Technology, Coulter Department of Biomedical Engineering, 313 Ferst Drive, Room 2127, Atlanta, Georgia 30332, United States
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
- Address all correspondence to: Robert E. Gross, E-mail:
| |
Collapse
|
17
|
Grinstead K, Joel S, Zingg JM, Dikici E, Daunert S. Enabling Aequorin for Biotechnology Applications Through Genetic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015:149-179. [PMID: 26475468 DOI: 10.1007/10_2015_336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, luminescent proteins have been studied for their potential application in a variety of detection systems. Bioluminescent proteins, which do not require an external excitation source, are especially well-suited as reporters in analytical detection. The photoprotein aequorin is a bioluminescent protein that can be engineered for use as a molecular reporter under a wide range of conditions while maintaining its sensitivity. Herein, the characteristics of aequorin as well as the engineering and production of aequorin variants and their impact on signal detection in biological systems are presented. The structural features and activity of aequorin, its benefits as a label for sensing and applications in highly sensitive detection, as well as in gaining insight into biological processes are discussed. Among those, focus has been placed on the highly sensitive calcium detection in vivo, in vitro DNA and small molecule sensing, and development of in vivo imaging technologies. Graphical Abstract.
Collapse
Affiliation(s)
- Kristen Grinstead
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Smita Joel
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
18
|
Rodríguez-Prados M, Rojo-Ruiz J, Aulestia FJ, García-Sancho J, Alonso MT. A new low-Ca²⁺ affinity GAP indicator to monitor high Ca²⁺ in organelles by luminescence. Cell Calcium 2015; 58:558-64. [PMID: 26412347 DOI: 10.1016/j.ceca.2015.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022]
Abstract
We have recently described a new class of genetically encoded Ca(2+) indicators composed of two jellyfish proteins, a variant of green fluorescent protein (GFP) and the calcium binding protein apoaequorin, named GAP (Rodriguez-García et al., 2014). GAP is a unique dual-mode Ca(2+) indicator, able to function either as a fluorescent or a luminescent probe, depending on whether the photoprotein aequorin is in its apo-state or reconstituted with its cofactor coelenterazine. We describe here a novel application of GAP as a low affinity bioluminescent indicator, suitable for measurements of [Ca(2+)] in ER or in Golgi apparatus. We used the low affinity variant, GAP1, which carries mutations in two EF-hands of aequorin, reconstituted with coelenterazine n. In comparison to previous bioluminescent aequorin fusions, the decay rate of GAP1 was decreased 8 fold and the affinity for Ca(2+) was lowered one order of magnitude. This improvement allows long-term measurements in high Ca(2+) environments avoiding fast aequorin consumption. GAP1 was targeted to the ER of various cell types, where it monitored resting Ca(2+) concentrations in the range from 400 to 600 μM. ER could be emptied of calcium by stimulation with ATP, carbachol or histamine in intact cells, and by challenge with inositol tris-phosphate in permeabilized cells. GAP1 was also targeted to the Golgi apparatus where it was able to precisely monitor long-term calcium dynamics. GAP1 provides a novel and robust indicator applicable to bioluminescent high-throughput quantitative assays.
Collapse
Affiliation(s)
- Macarena Rodríguez-Prados
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Sanz y Forés 3, 47003 Valladolid, Spain
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Sanz y Forés 3, 47003 Valladolid, Spain
| | - Francisco Javier Aulestia
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Sanz y Forés 3, 47003 Valladolid, Spain
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Sanz y Forés 3, 47003 Valladolid, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Sanz y Forés 3, 47003 Valladolid, Spain.
| |
Collapse
|
19
|
In vivo veritas, the next frontier for functionally selective GPCR ligands. Methods 2015; 92:64-71. [PMID: 26320830 DOI: 10.1016/j.ymeth.2015.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023] Open
Abstract
The realization that G-protein coupled receptors (GPCR) engage several cell signaling mechanisms simultaneously has led to a multiplication of research aimed at developing biased ligands exerting a selective action on subsets of responses downstream of a given receptor. Several tools have been developed to identify such ligands using recombinant cell systems. However the validation of biased ligand activity in animal models remains a serious challenge. Here we present a general strategy that can be used to validate biased ligand activity in vivo and supports it as a strategy for further drug development. In doing so, we placed special attention on strategies allowing to discriminate between G-protein and beta-arrestin mediated mechanisms. We also underscore differences between in vitro and in vivo systems and suggest avenues for tool development to streamline the translation of biased ligands development to pre-clinical animal models.
Collapse
|
20
|
Ottolini D, Calì T, Brini M. Methods to measure intracellular Ca(2+) fluxes with organelle-targeted aequorin-based probes. Methods Enzymol 2015; 543:21-45. [PMID: 24924126 DOI: 10.1016/b978-0-12-801329-8.00002-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photoprotein aequorin generates blue light upon binding of Ca(2+) ions. Together with its very low Ca(2+)-buffering capacity and the possibility to add specific targeting sequences, this property has rendered aequorin particularly suitable to monitor Ca(2+) concentrations in specific subcellular compartments. Recently, a new generation of genetically encoded Ca(2+) probes has been developed by fusing Ca(2+)-responsive elements with the green fluorescent protein (GFP). Aequorin has also been employed to this aim, resulting in an aequorin-GFP chimera with the Ca(2+) sensitivity of aequorin and the fluorescent properties of GFP. This setup has actually solved the major limitation of aequorin, for example, its poor ability to emit light, which rendered it inappropriate for the monitoring of Ca(2+) waves at the single-cell level by imaging. In spite of the numerous genetically encoded Ca(2+) indicators that are currently available, aequorin-based probes remain the method of election when an accurate quantification of Ca(2+) levels is required. Here, we describe currently available aequorin variants and their use for monitoring Ca(2+) waves in specific subcellular compartments. Among various applications, this method is relevant for the study of the alterations of Ca(2+) homeostasis that accompany oncogenesis, tumor progression, and response to therapy.
Collapse
Affiliation(s)
- Denis Ottolini
- Department of Biology, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biology, University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
21
|
Bakayan A, Domingo B, Miyawaki A, Llopis J. Imaging Ca(2+) activity in mammalian cells and zebrafish with a novel red-emitting aequorin variant. Pflugers Arch 2014; 467:2031-42. [PMID: 25355614 PMCID: PMC4537489 DOI: 10.1007/s00424-014-1639-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 02/04/2023]
Abstract
Ca2+ monitoring with aequorin is an established bioluminescence technique, whereby the photoprotein emits blue light when it binds to Ca2+. However, aequorin’s blue emission and low quantum yield limit its application for in vivo imaging because blue-green light is greatly attenuated in animal tissues. In earlier work, aequorin was molecularly fused with green, yellow, and red fluorescent proteins, producing an emission shift through bioluminescence resonance energy transfer (BRET). We have previously shown that the chimera tandem dimer Tomato-aequorin (tdTA) emits red light in mammalian cells and across the skin and other tissues of mice [1]. In this work, we varied the configuration of the linker in tdTA to maximize energy transfer. One variant, named Redquorin, improved BRET from aequorin to tdTomato to almost a maximum value, and the emission above 575 nm exceeded 73 % of total counts. By pairing Redquorin with appropriate synthetic coelenterazines, agonist-induced and spontaneous Ca2+ oscillations in single HEK-293 cells were imaged. In addition, we also imaged Ca2+ transients associated with twitching behavior in developing zebrafish embryos expressing Redquorin during the segmentation period. Furthermore, the emission profile of Redquorin resulted in significant luminescence crossing a blood sample, a highly absorbing tissue. This new tool will facilitate in vivo imaging of Ca2+ from deep tissues of animals.
Collapse
Affiliation(s)
- Adil Bakayan
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad Castilla-La Mancha, C/ Almansa 14, 02008, Albacete, Spain
| | | | | | | |
Collapse
|
22
|
Oheim M, van 't Hoff M, Feltz A, Zamaleeva A, Mallet JM, Collot M. New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2284-306. [PMID: 24681159 DOI: 10.1016/j.bbamcr.2014.03.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/09/2014] [Indexed: 01/15/2023]
Abstract
Most chemical and, with only a few exceptions, all genetically encoded fluorimetric calcium (Ca(2+)) indicators (GECIs) emit green fluorescence. Many of these probes are compatible with red-emitting cell- or organelle markers. But the bulk of available fluorescent-protein constructs and transgenic animals incorporate green or yellow fluorescent protein (GFP and YFP respectively). This is, in part, not only heritage from the tendency to aggregate of early-generation red-emitting FPs, and due to their complicated photochemistry, but also resulting from the compatibility of green-fluorescent probes with standard instrumentation readily available in most laboratories and core imaging facilities. Photochemical constraints like limited water solubility and low quantum yield have contributed to the relative paucity of red-emitting Ca(2+) probes compared to their green counterparts, too. The increasing use of GFP and GFP-based functional reporters, together with recent developments in optogenetics, photostimulation and super-resolution microscopies, has intensified the quest for red-emitting Ca(2+) probes. In response to this demand more red-emitting chemical and FP-based Ca(2+)-sensitive indicators have been developed since 2009 than in the thirty years before. In this topical review, we survey the physicochemical properties of these red-emitting Ca(2+) probes and discuss their utility for biological Ca(2+) imaging. Using the spectral separability index Xijk (Oheim M., 2010. Methods in Molecular Biology 591: 3-16) we evaluate their performance for multi-color excitation/emission experiments, involving the identification of morphological landmarks with GFP/YFP and detecting Ca(2+)-dependent fluorescence in the red spectral band. We also establish a catalog of criteria for evaluating Ca(2+) indicators that ideally should be made available for each probe. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Martin Oheim
- CNRS, UMR 8154, Paris F-75006, France; INSERM, U603, Paris F-75006, France; University Paris Descartes, PRES Sorbonne Paris Cité, Laboratory of Neurophysiology and New Microscopies, 45 rue des Saints Pères, Paris F-75006, France.
| | - Marcel van 't Hoff
- CNRS, UMR 8154, Paris F-75006, France; INSERM, U603, Paris F-75006, France; University Paris Descartes, PRES Sorbonne Paris Cité, Laboratory of Neurophysiology and New Microscopies, 45 rue des Saints Pères, Paris F-75006, France; University of Florence, LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| | - Anne Feltz
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris F-75005, France; INSERM U1024, Paris F-75005, France; CNRS UMR 8197, Paris F-75005, France
| | - Alsu Zamaleeva
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris F-75005, France; INSERM U1024, Paris F-75005, France; CNRS UMR 8197, Paris F-75005, France
| | - Jean-Maurice Mallet
- UPMC Université́ Paris 06, Ecole Normale Supérieure (ENS), 24 rue Lhomond, Paris F-75005, France; CNRS UMR 7203, Paris F-75005, France
| | - Mayeul Collot
- UPMC Université́ Paris 06, Ecole Normale Supérieure (ENS), 24 rue Lhomond, Paris F-75005, France; CNRS UMR 7203, Paris F-75005, France
| |
Collapse
|
23
|
Preuss B, Tunaru S, Henes J, Offermanns S, Klein R. A novel luminescence-based method for the detection of functionally active antibodies to muscarinic acetylcholine receptors of the M3 type (mAchR3) in patients' sera. Clin Exp Immunol 2014; 177:179-89. [PMID: 24628494 DOI: 10.1111/cei.12324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/11/2022] Open
Abstract
In different bioassays, functional antibodies reacting with the human muscarinic acetylcholine receptor M3(mAchR3) have been detected in sera from patients with Sjögren's syndrome (SS), and there is strong evidence that those antibodies may have pathogenetic relevance. However, depending on the method of detection, their prevalence varied. Furthermore, those bioassays are difficult to standardize. We report on the development and optimization of a novel test system based on a luminometric method to determine downstream signalling of mAchR3 which produces specific and reproducible results. Chinese hamster ovarian (CHO) cells were transfected with plasmids encoding mAchR3 and a green fluorescence protein (GFP)/aequorin fusion protein. Incubation of cells with carbachol resulted in an increase in intracellular [Ca(2+)], which was detected by measuring light emission with a luminometer, and the effect of incubation with patients' immunoglobulins (Ig) was evaluated. Optimal cell density, Ig preparation and time of incubation with patients' sera were determined. Sera from patients with primary Sjögren's syndrome (pSS; n = 40), systemic sclerosis (SSc; n = 47), myasthenia gravis (MG; n = 133) and 50 blood donors were analysed. Optimal assay conditions were obtained with a cell density of 100 000 cells/ml, isolation of Ig by ammonium sulphate precipitation and short-term incubation. Based on this highly reliable assay, 50% of the pSS patients had antibodies which inhibited carbachol-induced activation of mAchR3; none of the SSc patients, 6% of the patients with MG and 12% of the blood donors had antibodies which reacted with the mAchR3. This method facilitates the determination of functional anti-mAchR3 antibodies in patients' sera, confirmed their high prevalence in pSS patients and may, therefore, help to analyse their pathogenetic and clinical relevance in more detail.
Collapse
Affiliation(s)
- B Preuss
- Department of Internal Medicine II, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Bioluminescent properties of obelin and aequorin with novel coelenterazine analogues. Anal Bioanal Chem 2014; 406:2695-707. [DOI: 10.1007/s00216-014-7656-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/28/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
25
|
Webb SE, Karplus E, Miller AL. Retrospective on the development of aequorin and aequorin-based imaging to visualize changes in intracellular free [Ca2+]. Mol Reprod Dev 2014; 82:563-86. [DOI: 10.1002/mrd.22298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/26/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Sarah E. Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Kowloon Hong Kong
| | | | - Andrew L. Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Kowloon Hong Kong
- Marine Biological Laboratory; Woods Hole Massachusetts
| |
Collapse
|
26
|
Tricoire L, Lambolez B. Neuronal network imaging in acute slices using Ca2+ sensitive bioluminescent reporter. Methods Mol Biol 2014; 1098:33-45. [PMID: 24166366 DOI: 10.1007/978-1-62703-718-1_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genetically encoded indicators are valuable tools to study intracellular signaling cascades in real time using fluorescent or bioluminescent imaging techniques. Imaging of Ca(2+) indicators is widely used to record transient intracellular Ca(2+) increases associated with bioelectrical activity. The natural bioluminescent Ca(2+) sensor aequorin has been historically the first Ca(2+) indicator used to address biological questions. Aequorin imaging offers several advantages over fluorescent reporters: it is virtually devoid of background signal; it does not require light excitation and interferes little with intracellular processes. Genetically encoded sensors such as aequorin are commonly used in dissociated cultured cells; however it becomes more challenging to express them in differentiated intact specimen such as brain tissue. Here we describe a method to express a GFP-aequorin (GA) fusion protein in pyramidal cells of neocortical acute slices using recombinant Sindbis virus. This technique allows expressing GA in several hundreds of neurons on the same slice and to perform the bioluminescence recording of Ca(2+) transients in single neurons or multiple neurons simultaneously.
Collapse
Affiliation(s)
- Ludovic Tricoire
- Neurobiologie des processus adaptatifs, UMR7102, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
27
|
Holland AD, Rückerl F, Dragavon JM, Rekiki A, Tinevez JY, Tournebize R, Shorte SL. In vitro characterization of Fluorescence by Unbound Excitation from Luminescence: broadening the scope of energy transfer. Methods 2013; 66:353-61. [PMID: 24045025 DOI: 10.1016/j.ymeth.2013.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/20/2013] [Accepted: 09/02/2013] [Indexed: 01/10/2023] Open
Abstract
Energy transfer mechanisms represent the basis for an array of valuable tools to infer interactions in vitro and in vivo, enhance detection or resolve interspecies distances such as with resonance. Based upon our own previously published studies and new results shown here we present a novel framework describing for the first time a model giving a view of the biophysical relationship between Fluorescence by Unbound Excitation from Luminescence (FUEL), a conventional radiative excitation-emission process, and bioluminescence resonance energy transfer. We show here that in homogeneous solutions and in fluorophore-targeted bacteria, FUEL is the dominant mechanism responsible for the production of red-shifted photons. The minor resonance contribution was ascertained by comparing the intensity of the experimental signal to its theoretical resonance counterpart. Distinctive features of the in vitro FUEL signal include a macroscopic depth dependency, a lack of enhancement upon targeting at a constant fluorophore concentration cf and a non-square dependency on cf. Significantly, FUEL is an important, so far overlooked, component of all resonance phenomena which should guide the design of appropriate controls when elucidating interactions. Last, our results highlight the potential for FUEL as a means to enhance in vivo and in vitro detection through complex media while alleviating the need for targeting.
Collapse
Affiliation(s)
- Alexandra D Holland
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Florian Rückerl
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Joseph M Dragavon
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Abdessalem Rekiki
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Jean-Yves Tinevez
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Régis Tournebize
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France; Unité INSERM U786, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France.
| | - Spencer L Shorte
- Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
28
|
Li F, Yu J, Zhang Z, Cui Z, Wang D, Wei H, Zhang XE. Use of hGluc/tdTomato pair for sensitive BRET sensing of protease with high solution media tolerance. Talanta 2013; 109:141-6. [PMID: 23618151 DOI: 10.1016/j.talanta.2013.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/25/2013] [Accepted: 02/01/2013] [Indexed: 11/23/2022]
Abstract
Due to the complicated media, monitoring proteases in real physiological environments is still a big challenge. Bioluminescence resonance energy transfer (BRET) is one of the promising techniques but its application is limited by the susceptibility to buffer composition, which might cause serious errors for the assay. Herein we report a novel combination of BRET pair with humanized Gaussia luciferase (hGluc) and highly bright red fluorescence protein tdTomato for sensitive and robust protease activity determination. As a result, the hGluc/tdTomato BRET pair showed much better tolerance to buffer composition, pH and sample matrices, and wide spectral separation (Δλ:~110 nm). With the protease sensor built with this pair, the detection limit for enterokinase reached 2.1 pM in pure buffer and 3.3 pM in 3% serum. The proposed pair would find broad use in both in vitro and in vivo assays, especially for samples with complicated matrix.
Collapse
Affiliation(s)
- Fengyun Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Roura S, Gálvez-Montón C, Bayes-Genis A. Bioluminescence imaging: a shining future for cardiac regeneration. J Cell Mol Med 2013; 17:693-703. [PMID: 23402217 PMCID: PMC3823173 DOI: 10.1111/jcmm.12018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/28/2012] [Indexed: 12/28/2022] Open
Abstract
Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light-emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell-based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light-emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | | | | |
Collapse
|
30
|
Genetically encoded Ca(2+) indicators: properties and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1787-97. [PMID: 23352808 DOI: 10.1016/j.bbamcr.2013.01.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/02/2013] [Accepted: 01/10/2013] [Indexed: 02/04/2023]
Abstract
Genetically encoded calcium ion (Ca(2+)) indicators have become very useful and widely used tools for Ca(2+) imaging, not only in cellular models, but also in living organisms. However, the in vivo and in situ characterization of these indicators is tedious and time consuming, and it does not provide information regarding the suitability of an indicator for particular experimental environments. Thus, initial in vitro evaluation of these tools is typically performed to determine their properties. In this review, we examined the properties of dynamic range, affinity, selectivity, and kinetics for Ca(2+) indicators. Commonly used strategies for evaluating these properties are presented. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
31
|
Ozawa T, Yoshimura H, Kim SB. Advances in Fluorescence and Bioluminescence Imaging. Anal Chem 2012; 85:590-609. [DOI: 10.1021/ac3031724] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Takeaki Ozawa
- Department of Chemistry, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sung Bae Kim
- Research Institute for Environmental Management
Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba
305-8569, Japan
| |
Collapse
|
32
|
Collot M, Loukou C, Yakovlev AV, Wilms CD, Li D, Evrard A, Zamaleeva A, Bourdieu L, Léger JF, Ropert N, Eilers J, Oheim M, Feltz A, Mallet JM. Calcium rubies: a family of red-emitting functionalizable indicators suitable for two-photon Ca2+ imaging. J Am Chem Soc 2012; 134:14923-31. [PMID: 22816677 DOI: 10.1021/ja304018d] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We designed Calcium Rubies, a family of functionalizable BAPTA-based red-fluorescent calcium (Ca(2+)) indicators as new tools for biological Ca(2+) imaging. The specificity of this Ca(2+)-indicator family is its side arm, attached on the ethylene glycol bridge that allows coupling the indicator to various groups while leaving open the possibility of aromatic substitutions on the BAPTA core for tuning the Ca(2+)-binding affinity. Using this possibility we now synthesize and characterize three different CaRubies with affinities between 3 and 22 μM. Their long excitation and emission wavelengths (peaks at 586/604 nm) allow their use in otherwise challenging multicolor experiments, e.g., when combining Ca(2+) uncaging or optogenetic stimulation with Ca(2+) imaging in cells expressing fluorescent proteins. We illustrate this capacity by the detection of Ca(2+) transients evoked by blue light in cultured astrocytes expressing CatCh, a light-sensitive Ca(2+)-translocating channelrhodopsin linked to yellow fluorescent protein. Using time-correlated single-photon counting, we measured fluorescence lifetimes for all CaRubies and demonstrate a 10-fold increase in the average lifetime upon Ca(2+) chelation. Since only the fluorescence quantum yield but not the absorbance of the CaRubies is Ca(2+)-dependent, calibrated two-photon fluorescence excitation measurements of absolute Ca(2+) concentrations are feasible.
Collapse
Affiliation(s)
- Mayeul Collot
- UPMC Université Paris 06, Ecole Normale Supérieure, Paris, F-75005 France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Raut N, O'Connor G, Pasini P, Daunert S. Engineered cells as biosensing systems in biomedical analysis. Anal Bioanal Chem 2012; 402:3147-59. [PMID: 22311427 DOI: 10.1007/s00216-012-5756-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/07/2012] [Accepted: 01/16/2012] [Indexed: 01/08/2023]
Abstract
Over the past two decades there have been great advances in biotechnology, including use of nucleic acids, proteins, and whole cells to develop a variety of molecular analytical tools for diagnostic, screening, and pharmaceutical applications. Through manipulation of bacterial plasmids and genomes, bacterial whole-cell sensing systems have been engineered that can serve as novel methods for analyte detection and characterization, and as more efficient and cost-effective alternatives to traditional analytical techniques. Bacterial cell-based sensing systems are typically sensitive, specific and selective, rapid, easy to use, low-cost, and amenable to multiplexing, high-throughput, and miniaturization for incorporation into portable devices. This critical review is intended to provide an overview of available bacterial whole-cell sensing systems for assessment of a variety of clinically relevant analytes. Specifically, we examine whole-cell sensing systems for detection of bacterial quorum sensing molecules, organic and inorganic toxic compounds, and drugs, and for screening of antibacterial compounds for identification of their mechanisms of action. Methods used in the design and development of whole-cell sensing systems are also reviewed.
Collapse
Affiliation(s)
- Nilesh Raut
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | |
Collapse
|
35
|
Webb SE, Miller AL. Aequorin-based genetic approaches to visualize Ca2+ signaling in developing animal systems. Biochim Biophys Acta Gen Subj 2011; 1820:1160-8. [PMID: 22198462 DOI: 10.1016/j.bbagen.2011.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND In recent years, as our understanding of the various roles played by Ca2+ signaling in development and differentiation has expanded, the challenge of imaging Ca2+ dynamics within living cells, tissues, and whole animal systems has been extended to include specific signaling activity in organelles and non-membrane bound sub-cellular domains. SCOPE OF REVIEW In this review we outline how recent advances in genetics and molecular biology have contributed to improving and developing current bioluminescence-based Ca2+ imaging techniques. Reporters can now be targeted to specific cell types, or indeed organelles or domains within a particular cell. MAJOR CONCLUSIONS These advances have contributed to our current understanding of the specificity and heterogeneity of developmental Ca2+ signaling. The improvement in the spatial resolution that results from specifically targeting a Ca2+ reporter has helped to reveal how a ubiquitous signaling messenger like Ca2+ can regulate coincidental but different signaling events within an individual cell; a Ca2+ signaling paradox that until now has been hard to explain. GENERAL SIGNIFICANCE Techniques used to target specific reporters via genetic means will have applications beyond those of the Ca2+ signaling field, and these will, therefore, make a significant contribution in extending our understanding of the signaling networks that regulate animal development. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | |
Collapse
|
36
|
Markova SV, Burakova LP, Vysotski ES. High-active truncated luciferase of copepod Metridia longa. Biochem Biophys Res Commun 2011; 417:98-103. [PMID: 22138240 DOI: 10.1016/j.bbrc.2011.11.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/14/2011] [Indexed: 11/16/2022]
Abstract
The technology of real-time imaging in living cells is crucial for understanding of intracellular events. For this purpose, bioluminescent reporters have been introduced as sensitive and convenient tools. Metridia luciferase (MLuc) from the copepod Metridia longa is a coelenterazine-dependent luciferase containing a natural signal peptide for secretion. We report the high-active MLuc mutants with deletion of the N-terminal variable part of amino acid sequence. The MLuc variants were produced in Escherichia coli cells, converted to an active protein, and characterized. We demonstrate that the truncated MLucs have significantly increased bioluminescent activity as against the wild type enzyme but substantially retain other properties. One of the truncated variants of MLuc was transiently expressed in HEK 293 cells. The results clearly suggest that the truncated Metridia luciferase is well suited as a secreted reporter ensuring higher detection sensitivity in comparison with a wild type enzyme.
Collapse
Affiliation(s)
- Svetlana V Markova
- Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | | | | |
Collapse
|