1
|
Ludtka C, Allen JB. The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. GRAVITATIONAL AND SPACE RESEARCH : PUBLICATION OF THE AMERICAN SOCIETY FOR GRAVITATIONAL AND SPACE RESEARCH 2024; 12:46-59. [PMID: 38846256 PMCID: PMC11156189 DOI: 10.2478/gsr-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
As considerations are being made for the limitations and safety of long-term human spaceflight, the vasculature is important given its connection to and impact on numerous organ systems. As a major constituent of blood vessels, vascular smooth muscle cells are of interest due to their influence over vascular tone and function. Additionally, vascular smooth muscle cells are responsive to pressure and flow changes. Therefore, alterations in these parameters under conditions of microgravity can be functionally disruptive. As such, here we review and discuss the existing literature that assesses the effects of microgravity, both actual and simulated, on smooth muscle cells. This includes the various methods for achieving or simulating microgravity, the animal models or cells used, and the various durations of microgravity assessed. We also discuss the various reported findings in the field, which include changes to cell proliferation, gene expression and phenotypic shifts, and renin-angiotensin-aldosterone system (RAAS), nitric oxide synthase (NOS), and Ca2+ signaling. Additionally, we briefly summarize the literature on smooth muscle tissue engineering in microgravity as well as considerations of radiation as another key component of spaceflight to contextualize spaceflight experiments, which by their nature include radiation exposure. Finally, we provide general recommendations based on the existing literature's focus and limitations.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Josephine B. Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
2
|
Rabineau J, Issertine M, Hoffmann F, Gerlach D, Caiani EG, Haut B, van de Borne P, Tank J, Migeotte PF. Cardiovascular deconditioning and impact of artificial gravity during 60-day head-down bed rest—Insights from 4D flow cardiac MRI. Front Physiol 2022; 13:944587. [PMID: 36277205 PMCID: PMC9586290 DOI: 10.3389/fphys.2022.944587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Microgravity has deleterious effects on the cardiovascular system. We evaluated some parameters of blood flow and vascular stiffness during 60 days of simulated microgravity in head-down tilt (HDT) bed rest. We also tested the hypothesis that daily exposure to 30 min of artificial gravity (1 g) would mitigate these adaptations. 24 healthy subjects (8 women) were evenly distributed in three groups: continuous artificial gravity, intermittent artificial gravity, or control. 4D flow cardiac MRI was acquired in horizontal position before (−9 days), during (5, 21, and 56 days), and after (+4 days) the HDT period. The false discovery rate was set at 0.05. The results are presented as median (first quartile; third quartile). No group or group × time differences were observed so the groups were combined. At the end of the HDT phase, we reported a decrease in the stroke volume allocated to the lower body (−30% [−35%; −22%]) and the upper body (−20% [−30%; +11%]), but in different proportions, reflected by an increased share of blood flow towards the upper body. The aortic pulse wave velocity increased (+16% [+9%; +25%]), and so did other markers of arterial stiffness (CAVI; CAVI0). In males, the time-averaged wall shear stress decreased (−13% [−17%; −5%]) and the relative residence time increased (+14% [+5%; +21%]), while these changes were not observed among females. Most of these parameters tended to or returned to baseline after 4 days of recovery. The effects of the artificial gravity countermeasure were not visible. We recommend increasing the load factor, the time of exposure, or combining it with physical exercise. The changes in blood flow confirmed the different adaptations occurring in the upper and lower body, with a larger share of blood volume dedicated to the upper body during (simulated) microgravity. The aorta appeared stiffer during the HDT phase, however all the changes remained subclinical and probably the sole consequence of reversible functional changes caused by reduced blood flow. Interestingly, some wall shear stress markers were more stable in females than in males. No permanent cardiovascular adaptations following 60 days of HDT bed rest were observed.
Collapse
Affiliation(s)
- Jeremy Rabineau
- LPHYS, Département de Cardiologie, Université Libre de Bruxelles, Brussels, Belgium
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- *Correspondence: Jeremy Rabineau,
| | - Margot Issertine
- LPHYS, Département de Cardiologie, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabian Hoffmann
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Darius Gerlach
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Enrico G. Caiani
- Electronic, Information and Biomedical Engineering Department, Politecnico di Milano, Milan, Italy
| | - Benoit Haut
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | |
Collapse
|
3
|
Du J, Cui J, Yang J, Wang P, Zhang L, Luo B, Han B. Alterations in Cerebral Hemodynamics During Microgravity: A Literature Review. Med Sci Monit 2021; 27:e928108. [PMID: 33446627 PMCID: PMC7814510 DOI: 10.12659/msm.928108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Most reported neurological symptoms that happen after exposure to microgravity could be originated from alterations in cerebral hemodynamics. The complicated mechanisms involved in the process of hemodynamics and the disparate experimental protocols designed to study the process may have contributed to the discrepancies in results between studies and the lack of consensus among researchers. This literature review examines spaceflight and ground-based studies of cerebral hemodynamics and aims to summarize the underlying physiological mechanisms that are altered in cerebral hemodynamics during microgravity. We reviewed studies that were published before July 2020 and sought to provide a comprehensive summary of the physiological or pathological theories of hemodynamics and to arrive at firm conclusions from incongruous results that were reported in those related articles. We give plausible explanations of inconsistent results on factors including intracranial pressure, cerebral blood flow, and cerebrovascular autoregulation. Although there are no definitive data to confirm how cerebral hemodynamics changes during microgravity, every discrepancy in results was interpreted by existing theories, which were derived from physiological and pathological processes. We conclude that microgravity-induced alterations of hemodynamics at the brain level are multifaceted. Factors including duration, partial pressures of carbon dioxide, and individual adaptability contribute to this process and are unpredictable. With a growing understanding of this hemodynamics model, additional factors will likely be considered. Aiming for a full understanding of the physiological and/or pathological changes of hemodynamics will enable researchers to investigate its cellular and molecular mechanisms in future studies, which are desperately needed.
Collapse
Affiliation(s)
- Jichen Du
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Jiangbo Cui
- Aerospace Clinic Academy, Peking University Health Science Center, Beijing, China (mainland)
| | - Jing Yang
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Peifu Wang
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Lvming Zhang
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Bin Luo
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Bailin Han
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| |
Collapse
|
4
|
Zhang R, Jiang M, Zhang J, Qiu Y, Li D, Li S, Liu J, Liu C, Fang Z, Cao F. Regulation of the cerebrovascular smooth muscle cell phenotype by mitochondrial oxidative injury and endoplasmic reticulum stress in simulated microgravity rats via the PERK-eIF2α-ATF4-CHOP pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165799. [PMID: 32304741 DOI: 10.1016/j.bbadis.2020.165799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 01/27/2023]
Abstract
Microgravity exposure results in vascular remodeling and cardiovascular dysfunction. Here, the effects of mitochondrial oxidative stress on vascular smooth muscle cells (VSMCs) in rat cerebral arteries under microgravity simulated by hindlimb unweighting (HU) was studied. Endoplasmic reticulum (ER)-resident transmembrane sensor proteins and phenotypic markers of rat cerebral VSMCs were examined. In HU rats, CHOP expression was increased gradually, and the upregulation of the PERK-eIF2α-ATF4 pathway was the most pronounced in cerebral arteries. Furthermore, PERK/p-PERK signaling, CHOP, GRP78 and reactive oxygen species were augmented by PERK overexpression but attenuated by the mitochondria-targeting antioxidant MitoTEMPO. Meanwhile, p-PI3K, p-Akt and p-mTOR protein levels in VSMCs were increased in HU rat cerebral arteries. Compared with the control, HU rats exhibited lower α-SMA, calponin, SM-MHC and caldesmon protein levels but higher OPN and elastin levels in cerebral VSMCs. The cerebral VSMC phenotype transition from a contractile to synthetic phenotype in HU rats was augmented by PERK overexpression and 740Y-P but reversed by MitoTEMPO and the ER stress inhibitors tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA). In summary, mitochondrial oxidative stress and ER stress induced by simulated microgravity contribute to phenotype transition of cerebral VSMCs through the PERK-eIF2a-ATF4-CHOP pathway in a rat model.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Jiang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Jibin Zhang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Ya Qiu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Danyang Li
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Sulei Li
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Junsong Liu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuanbin Liu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiyi Fang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Cao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Zhang B, Chen L, Bai YG, Song JB, Cheng JH, Ma HZ, Ma J, Xie MJ. miR-137 and its target T-type Ca V 3.1 channel modulate dedifferentiation and proliferation of cerebrovascular smooth muscle cells in simulated microgravity rats by regulating calcineurin/NFAT pathway. Cell Prolif 2020; 53:e12774. [PMID: 32034930 PMCID: PMC7106958 DOI: 10.1111/cpr.12774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/08/2019] [Accepted: 01/17/2020] [Indexed: 01/01/2023] Open
Abstract
Objectives Postflight orthostatic intolerance has been regarded as a major adverse effect after microgravity exposure, in which cerebrovascular adaptation plays a critical role. Our previous finding suggested that dedifferentiation of vascular smooth muscle cells (VSMCs) might be one of the key contributors to cerebrovascular adaptation under simulated microgravity. This study was aimed to confirm this concept and elucidate the underlying mechanisms. Materials and Methods Sprague Dawley rats were subjected to 28‐day hindlimb‐unloading to simulate microgravity exposure. VSMC dedifferentiation was evaluated by ultrastructural analysis and contractile/synthetic maker detection. The role of T‐type CaV3.1 channel was revealed by assessing its blocking effects. MiR‐137 was identified as the upstream of CaV3.1 channel by luciferase assay and investigated by gain/loss‐of‐function approaches. Calcineurin/nuclear factor of activated T lymphocytes (NFAT) pathway, the downstream of CaV3.1 channel, was investigated by detecting calcineurin activity and NFAT nuclear translocation. Results Simulated microgravity induced the dedifferentiation and proliferation in rat cerebral VSMCs. T‐type CaV3.1 channel promoted the dedifferentiation and proliferation of VSMC. MiR‐137 and calcineurin/NFATc3 pathway were the upstream and downstream signalling of T‐type CaV3.1 channel in modulating the dedifferentiation and proliferation of VSMCs, respectively. Conclusions The present work demonstrated that miR‐137 and its target T‐type CaV3.1 channel modulate the dedifferentiation and proliferation of rat cerebral VSMCs under simulated microgravity by regulating calcineurin/NFATc3 pathway.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Li Chen
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Ji-Bo Song
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Jiu-Hua Cheng
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Hong-Zhe Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Su YT, Cheng YP, Zhang X, Xie XP, Chang YM, Bao JX. Acid sphingomyelinase/ceramide mediates structural remodeling of cerebral artery and small mesenteric artery in simulated weightless rats. Life Sci 2020; 243:117253. [PMID: 31927048 DOI: 10.1016/j.lfs.2019.117253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
AIMS Weightlessness exposure conduces to substantial vascular remodeling, mechanisms behind which remain unclear. Acid sphingomyelinase (ASM) catalyzed ceramide (Cer) generation accounts for multiple vascular disorders, so the role of it in adjustment of cerebral artery (CA) and small mesenteric artery (MA) was investigated in simulated weightless rats. MAIN METHODS Rats were hindlimb unloaded tail suspended (HU) to simulate the effect of weightlessness. Arterial morphology was examined by hematoxylin-eosin staining. Cer abundance was measured by immunohistochemistry. Western blotting was used to detect protein content. Apoptosis was detected by transferase-mediated dUTP nick end labeling. KEY FINDINGS During 4 weeks of tail suspension, intima-media thickness (IMT) and media cross section area (CSA) were increased gradually in CA but decreased gradually in MA (P < 0.05). Correspondingly, the apoptosis and proliferation of vascular smooth muscle cells were reduced and enhanced respectively in CA (P < 0.05), while promoted and restrained in MA (P < 0.05). As compared to control, both ASM protein expression and Cer content were lowered in CA and elevated in MA of HU rats (P < 0.05). Permeable Cer incubation reversed the change of apoptosis and proliferation in CA of HU rats, while ASM inhibition recapitulated it in control rats. On the contrary, ASM inhibitors restored the alteration of apoptosis and proliferation in MA of HU. SIGNIFICANCE The results suggest that by controlling the balance between apoptosis and proliferation, ASM/Cer exerts an important role in structural adaptation of CA and MA to simulated weightlessness.
Collapse
Affiliation(s)
- Yu-Ting Su
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yao-Ping Cheng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xi Zhang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiao-Ping Xie
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Jun-Xiang Bao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
7
|
Chen L, Zhang B, Yang L, Bai YG, Song JB, Ge YL, Ma HZ, Cheng JH, Ma J, Xie MJ. BMAL1 Disrupted Intrinsic Diurnal Oscillation in Rat Cerebrovascular Contractility of Simulated Microgravity Rats by Altering Circadian Regulation of miR-103/Ca V1.2 Signal Pathway. Int J Mol Sci 2019; 20:ijms20163947. [PMID: 31416128 PMCID: PMC6720455 DOI: 10.3390/ijms20163947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
The functional and structural adaptations in cerebral arteries could be one of the fundamental causes in the occurrence of orthostatic intolerance after space flight. In addition, emerging studies have found that many cardiovascular functions exhibit circadian rhythm. Several lines of evidence suggest that space flight might increase an astronaut’s cardiovascular risks by disrupting circadian rhythm. However, it remains unknown whether microgravity disrupts the diurnal variation in vascular contractility and whether microgravity impacts on circadian clock system. Sprague-Dawley rats were subjected to 28-day hindlimb-unweighting to simulate the effects of microgravity on vasculature. Cerebrovascular contractility was estimated by investigating vasoconstrictor responsiveness and myogenic tone. The circadian regulation of CaV1.2 channel was determined by recording whole-cell currents, evaluating protein and mRNA expressions. Then the candidate miRNA in relation with Ca2+ signal was screened. Lastly, the underlying pathway involved in circadian regulation of cerebrovascular contractility was determined. The major findings of this study are: (1) The clock gene BMAL1 could induce the expression of miR-103, and in turn modulate the circadian regulation of CaV1.2 channel in rat cerebral arteries at post-transcriptional level; and (2) simulated microgravity disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility by altering circadian regulation of BMAL1/miR-103/CaV1.2 signal pathway.
Collapse
Affiliation(s)
- Li Chen
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Zhang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Lu Yang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Ji-Bo Song
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Yi-Ling Ge
- First Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Hong-Zhe Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Jiu-Hua Cheng
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Jin Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Michaletti A, Gioia M, Tarantino U, Zolla L. Effects of microgravity on osteoblast mitochondria: a proteomic and metabolomics profile. Sci Rep 2017; 7:15376. [PMID: 29133864 PMCID: PMC5684136 DOI: 10.1038/s41598-017-15612-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
The response of human primary osteoblasts exposed to simulated microgravity has been investigated and analysis of metabolomic and proteomic profiles demonstrated a prominent dysregulation of mitochondrion homeostasis. Gravitational unloading treatment induced a decrease in mitochondrial proteins, mainly affecting efficiency of the respiratory chain. Metabolomic analysis revealed that microgravity influenced several metabolic pathways; stimulating glycolysis and the pentose phosphate pathways, while the Krebs cycle was interrupted at succinate-fumarate transformation. Interestingly, proteomic analysis revealed that Complex II of the mitochondrial respiratory chain, which catalyses the biotransformation of this step, was under-represented by 50%. Accordingly, down-regulation of quinones 9 and 10 was measured. Complex III resulted in up-regulation by 60%, while Complex IV was down-regulated by 14%, accompanied by a reduction in proton transport synthesis of ATP. Finally, microgravity treatment induced an oxidative stress response, indicated by significant decreases in oxidised glutathione and antioxidant enzymes. Decrease in malate dehydrogenase induced a reverse in the malate-aspartate shuttle, contributing to dysregulation of ATP synthesis. Beta-oxidation of fatty acids was inhibited, promoting triglyceride production along with a reduction in the glycerol shuttle. Taken together, our findings suggest that microgravity may suppress bone cell functions, impairing mitochondrial energy potential and the energy state of the cell.
Collapse
Affiliation(s)
- Anna Michaletti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Magda Gioia
- Department of Clinical Medicine and Translational Science, University of Rome Tor Vergata, Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Medicine and Translational Science, University of Rome Tor Vergata, Rome, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| |
Collapse
|
9
|
Ma YG, Wang JW, Bai YG, Liu M, Xie MJ, Dai ZJ. Salidroside contributes to reducing blood pressure and alleviating cerebrovascular contractile activity in diabetic Goto-Kakizaki Rats by inhibition of L-type calcium channel in smooth muscle cells. BMC Pharmacol Toxicol 2017; 18:30. [PMID: 28441970 PMCID: PMC5405536 DOI: 10.1186/s40360-017-0135-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/01/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vascular disease is a common and often severe complication in diabetes mellitus. Hyperglycemia and hypertension are considered to be two of the leading risk factors for vascular complications in diabetic patients. However, few pharmacologic agents could provide a combinational therapy for controlling hyperglycemia and blood pressure in diabetic patients at the same time. Salidroside (SAL) is the major active ingredient derived from Rhodiola. Recently, it has been reported that SAL have an obvious hypoglycemic effect in diabetes and show a beneficial activity in diabetic vascular dysfunction. However, it remains unknown whether or not SAL treatment could directly reduce blood pressure in diabetes. Furthermore, it is not clear what is the molecular mechanism underlying the vascular protection of SAL treatment in diabetes. METHODS Male diabetic Goto-Kakizaki (GK) and non-diabetic control Wistar-Kyoto (WKY) rats were administrated with different dosages of SAL (50, 100 and 200 mg/kg/day) for 4 weeks. Contractile responsiveness of cerebral artery to KCl or 5-HT was investigated by Pressure Myograph System. The activity of CaL channel was investigated by recording whole-cell currents, assessing the expressions of CaL channel α1C-subunit and its downstream kinase, MLCK, at protein or mRNA levels. RESULTS We showed that administration of 100 mg/kg/day SAL for 4 weeks not only lowered blood glucose, but also reduced blood pressure and alleviated cerebrovascular contractile activity in diabetic GK rats, which suggested that SAL treatment may provide a combinational therapy for lowering blood glucose and reducing blood pressure in diabetes at the same time. Furthermore, SAL treatment markedly inhibited the function and expression of CaL channel in cerebral VSMCs isolated from diabetic GK rats or when exposed to hyperglycemia condition, which may be the underlying mechanism responsible for the vascular protection of SAL in diabetes. CONCLUSIONS The present study provided evidences that SAL contributes to reducing blood pressure and alleviating cerebrovascular contractile activity in diabetic GK rats by inhibition of CaL channel in smooth muscle cells, which may provide a novel approach to treat vascular complications in diabetic patients.
Collapse
Affiliation(s)
- Yu-Guang Ma
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Jun-Wei Wang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Mei Liu
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Zhi-Jun Dai
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China.
| |
Collapse
|
10
|
Ma YG, Zhang YB, Bai YG, Dai ZJ, Liang L, Liu M, Xie MJ, Guan HT. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca²⁺ handling in smooth muscle cells. Cardiovasc Diabetol 2016; 15:63. [PMID: 27067643 PMCID: PMC4828787 DOI: 10.1186/s12933-016-0382-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/01/2016] [Indexed: 11/24/2022] Open
Abstract
Background Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca2+ handling in vascular smooth cells (VSMCs) under hyperglycemia. Methods Sprague–Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca2+ handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca2+ channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca2+ in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca2+ ([Ca2+]i) level, and suppressed the Ca2+ releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents and suppress the hyperglycemia-induced Ca2+ releases from RyRs in cerebral VSMCs isolated from normal control rats. Conclusions Our study indicated that berberine alleviated the cerebral arterial contractility in the rat model of streptozotocin-induced diabetes via regulating the intracellular Ca2+ handling of smooth muscle cells.
Collapse
Affiliation(s)
- Yu-Guang Ma
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yin-Bin Zhang
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhi-Jun Dai
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Liang Liang
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Mei Liu
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Hai-Tao Guan
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
11
|
Kang H, Fan Y, Zhao P, Ren C, Wang Z, Deng X. Regional specific modulation of the glycocalyx and smooth muscle cell contractile apparatus in conduit arteries of tail-suspended rats. J Appl Physiol (1985) 2016; 120:537-45. [DOI: 10.1152/japplphysiol.00245.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022] Open
Abstract
The glycocalyx is a key mechanosensor on the surfaces of vascular cells (endothelial cells and smooth muscle cells), and recently, we reported that the redistribution of the hemodynamic factors in tail-suspended (TS) hindlimb-unloaded rats induces the dimensional adaptation of the endothelial glycocalyx in a regional-dependent manner. In the present study, we investigated the coverage and gene expression of the glycocalyx and its possible relationship with smooth muscle contractility in the conduit arteries from the TS rats. The coverage of the glycocalyx, determined by the area analysis of the fluorescein isothiocyanate-labeled wheat germ agglutinin (WGA-FITC) staining to the cryosections of rat vessels, showed a 27.2% increase in the common carotid artery, a 13.3 and 8.0% decrease in the corresponding abdominal aorta and the femoral artery after 3 wk of tail suspension. The relative mRNA levels of syndecan-2, 3, 4, glypican-1, smooth muscle protein 22 (SM22), smoothelin (SMTN), and calponin were enhanced to 1.40, 1.53, 1.70, 1.90, 2.93, 2.30, and 5.23-fold, respectively, in the common carotid artery of the TS rat. However, both glycocalyx-related genes and smooth muscle contractile apparatus were totally or partially downregulated in the abdominal aorta and femoral artery of the TS rat. A linear positive correlation between the normalized coverage of glycocalyx and normalized mRNA levels of SM22, SMTN, and calponin exists. These results suggest the regional-dependent adaptation of the glycocalyx in simulated microgravity condition, which may affect its mechanotransduction of shear stress to regulate the contractility of the smooth muscle, finally contributing to postspaceflight orthostatic intolerance.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ping Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Changhui Ren
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhenze Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
12
|
Liu H, Wang ZC, Bai YG, Cai Y, Yu JW, Zhang HJ, Bao JX, Ren XL, Xie MJ, Ma J. Simulated microgravity promotes monocyte adhesion to rat aortic endothelium via nuclear factor-κB activation. Clin Exp Pharmacol Physiol 2016; 42:510-9. [PMID: 25740656 DOI: 10.1111/1440-1681.12381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 11/28/2022]
Abstract
Microgravity-induced vascular remodelling may play an important role in post-spaceflight orthostatic intolerance. In this study, we aimed to investigate the effects of simulated microgravity on monocyte adhesion to aortic endothelium in hindlimb unweighted rats and to elucidate the underlying mechanisms associated with this event. Sprague-Dawley rats were subjected to 4-week hindlimb unweighting to simulate microgravity. The recruitment of monocytes to the abdominal aorta was investigated by en face immunofluorescence staining and monocyte binding assays. The expression of the adhesion molecules E-selectin and vascular cell adhesion molecule-1 as well as the cytokine monocyte chemoattractant protein (MCP)-1 was evaluated by immunohistochemical staining, western blot, and quantitative reverse transcription polymerase chain reaction analyses. Additionally, nuclear factor-κB (NF-κB) activation and the messenger RNA expression levels of E-selectin, vascular cell adhesion molecule-1, and MCP-1 were assessed with the administration of an NF-κB inhibitor, pyrrolidine dithiocarbamate. Results showed that simulated microgravity significantly increased monocyte recruitment to the aortic endothelium, protein expression of E-selectin and MCP-1, and NF-κB activation in the abdominal aorta of rats. Pyrrolidine dithiocarbamate treatment not only significantly inhibited NF-κB activity but also reduced the messenger RNA levels of E-selectin, vascular cell adhesion molecule-1, and MCP-1 as well as monocyte recruitment in the abdominal aorta of hindlimb unweighted rats. These results suggest that simulated microgravity increases monocyte adhesion to rat aortic endothelium via the NF-κB-mediated expression of the adhesion molecule E-selectin and the cytokine MCP-1. Therefore, an NF-κB-mediated inflammatory response may be one of the cellular mechanisms responsible for arterial remodelling during exposure to microgravity.
Collapse
Affiliation(s)
- Huan Liu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
A load of mice to hypergravity causes AMPKα repression with liver injury, which is overcome by preconditioning loads via Nrf2. Sci Rep 2015; 5:15643. [PMID: 26493041 PMCID: PMC4616048 DOI: 10.1038/srep15643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
An understanding of the effects of hypergravity on energy homeostasis is necessary in managing proper physiological countermeasures for aerospace missions. This study investigated whether a single or multiple load(s) of mice to hypergravity has an effect on molecules associated with energy metabolism. In the liver, AMPKα level and its signaling were repressed 6 h after a load to +9 Gz hypergravity for 1 h, and then gradually returned toward normal. AMPKα level was restored after 3 loads to +9 Gz, suggestive of preconditioning adaptation. In cDNA microarray analyses, 221 genes were differentially expressed by +9 Gz, and the down-regulated genes included Nrf2 targets. Nrf2 gene knockout abrogated the recovery of AMPKα elicited by 3 loads to +9 Gz, indicating that Nrf2 plays a role in the adaptive increase of AMPKα. In addition, +9 Gz stress decreased STAT3, FOXO1/3 and CREB levels, which was attenuated during the resting time. Similarly, apoptotic markers were enhanced in the liver, indicating that the liver may be vulnerable to hypergravity stress. Preconditioning loads prevented hepatocyte apoptosis. Overall, a load of mice to +9 Gz hypergravity causes AMPKα repression with liver injury, which may be overcome by multiple loads to hypergravity as mediated by Nrf2.
Collapse
|
14
|
28-Day hindlimb unweighting reduces expression of Rho kinase and inhibits its effects in femoral artery of rat. J Physiol Biochem 2015; 71:205-16. [DOI: 10.1007/s13105-015-0398-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
15
|
Hypergravity stimulation enhances PC12 neuron-like cell differentiation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:748121. [PMID: 25785273 PMCID: PMC4345237 DOI: 10.1155/2015/748121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/08/2015] [Accepted: 01/27/2015] [Indexed: 01/12/2023]
Abstract
Altered gravity is a strong physical cue able to elicit different cellular responses, representing a largely uninvestigated opportunity for tissue engineering/regenerative medicine applications. Our recent studies have shown that both proliferation and differentiation of C2C12 skeletal muscle cells can be enhanced by hypergravity treatment; given these results, PC12 neuron-like cells were chosen to test the hypothesis that hypergravity stimulation might also affect the behavior of neuronal cells, in particular promoting an enhanced differentiated phenotype. PC12 cells were thus cultured under differentiating conditions for either 12 h or 72 h before being stimulated with different values of hypergravity (50 g and 150 g). Effects of hypergravity were evaluated at transcriptional level 1 h and 48 h after the stimulation, and at protein level 48 h from hypergravity exposure, to assess its influence on neurite development over increasing differentiation times. PC12 differentiation resulted strongly affected by the hypergravity treatments; in particular, neurite length was significantly enhanced after exposure to high acceleration values. The achieved results suggest that hypergravity might induce a faster and higher neuronal differentiation and encourage further investigations on the potential of hypergravity in the preparation of cellular constructs for regenerative medicine and tissue engineering purposes.
Collapse
|
16
|
Zhang R, Ran H, Cai L, Zhu L, Sun J, Peng L, Liu X, Zhang L, Fang Z, Fan Y, Cui G. Simulated microgravity‐induced mitochondrial dysfunction in rat cerebral arteries. FASEB J 2014; 28:2715-2724. [DOI: 10.1096/fj.13-245654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ran Zhang
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Hai‐Hong Ran
- Department of Geriatric HematologyChinese People's Liberation Army General HospitalBeijingChina
| | - Li‐Li Cai
- Department of Clinical Laboratory MedicineChinese People's Liberation Army General HospitalBeijingChina
| | - Li Zhu
- Changhai HospitalSecond Military Medical UniversityShanghaiChina
| | - Jun‐Fang Sun
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Liang Peng
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Xiao‐Juan Liu
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Lan‐Ning Zhang
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Zhou Fang
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Yong‐Yan Fan
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Geng Cui
- Department of OsteologyChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
17
|
Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats. Pflugers Arch 2013; 466:1517-28. [DOI: 10.1007/s00424-013-1387-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/02/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
18
|
Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Ghosh P, Papadopoulos A, Muller-Delp JM, Delp MD. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J 2013; 27:2282-92. [PMID: 23457215 PMCID: PMC3659353 DOI: 10.1096/fj.12-222687] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/11/2013] [Indexed: 11/11/2022]
Abstract
Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236±9 μm and GC: 215±5 μm) with no difference in medial wall thickness (SF: 12.4±1.6 μm; GC: 12.2±1.2 μm). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4±0.3 N/m; GC: 5.4±0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.
Collapse
Affiliation(s)
| | - Mina Hanna
- Department of Mechanical and Aerospace Engineering
- Department of Applied Physiology and Kinesiology
| | - Bradley J. Behnke
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - John N. Stabley
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Robert T. Davis
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - Payal Ghosh
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Judy M. Muller-Delp
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA; and
| | - Michael D. Delp
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| |
Collapse
|
19
|
Zhang LF. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur J Appl Physiol 2013; 113:2873-95. [DOI: 10.1007/s00421-013-2597-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
|
20
|
Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Dominguez JM, Muller-Delp JM, Delp MD. Effects of spaceflight and ground recovery on mesenteric artery and vein constrictor properties in mice. FASEB J 2012; 27:399-409. [PMID: 23099650 DOI: 10.1096/fj.12-218503] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Following exposure to microgravity, there is a reduced ability of astronauts to augment peripheral vascular resistance, often resulting in orthostatic hypotension. The purpose of this study was to test the hypothesis that mesenteric arteries and veins will exhibit diminished vasoconstrictor responses after spaceflight. Mesenteric arteries and veins from female mice flown on the Space Transportation System (STS)-131 (n=11), STS-133 (n=6), and STS-135 (n=3) shuttle missions and respective ground-based control mice (n=30) were isolated for in vitro experimentation. Vasoconstrictor responses were evoked in arteries via norepinephrine (NE), potassium chloride (KCl), and caffeine, and in veins through NE across a range of intraluminal pressures (2-12 cmH(2)O). Vasoconstriction to NE was also determined in mesenteric arteries at 1, 5, and 7 d postlanding. In arteries, maximal constriction to NE, KCl, and caffeine were reduced immediately following spaceflight and 1 d postflight. Spaceflight also reduced arterial ryanodine receptor-3 mRNA levels. In mesenteric veins, there was diminished constriction to NE after flight. The results indicate that the impaired vasoconstriction following spaceflight occurs through the ryanodine receptor-mediated intracellular Ca(2+) release mechanism. Such vascular changes in astronauts could compromise the maintenance of arterial pressure during orthostatic stress.
Collapse
Affiliation(s)
- Bradley J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Tsvirkun D, Bourreau J, Mieuset A, Garo F, Vinogradova O, Larina I, Navasiolava N, Gauquelin-Koch G, Gharib C, Custaud MA. Contribution of social isolation, restraint, and hindlimb unloading to changes in hemodynamic parameters and motion activity in rats. PLoS One 2012; 7:e39923. [PMID: 22768322 PMCID: PMC3388052 DOI: 10.1371/journal.pone.0039923] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/29/2012] [Indexed: 11/19/2022] Open
Abstract
The most accepted animal model for simulation of the physiological and morphological consequences of microgravity on the cardiovascular system is one of head-down hindlimb unloading. Experimental conditions surrounding this model include not only head-down tilting of rats, but also social and restraint stresses that have their own influences on cardiovascular system function. Here, we studied levels of spontaneous locomotor activity, blood pressure, and heart rate during 14 days under the following experimental conditions: cage control, social isolation in standard rat housing, social isolation in special cages for hindlimb unloading, horizontal attachment (restraint), and head-down hindlimb unloading. General activity and hemodynamic parameters were continuously monitored in conscious rats by telemetry. Heart rate and blood pressure were both evaluated during treadmill running to reveal cardiovascular deconditioning development as a result of unloading. The main findings of our work are that: social isolation and restraint induced persistent physical inactivity, while unloading in rats resulted in initial inactivity followed by normalization and increased locomotion after one week. Moreover, 14 days of hindlimb unloading showed significant elevation of blood pressure and slight elevation of heart rate. Hemodynamic changes in isolated and restrained rats largely reproduced the trends observed during unloading. Finally, we detected no augmentation of tachycardia during moderate exercise in rats after 14 days of unloading. Thus, we concluded that both social isolation and restraint, as an integral part of the model conditions, contribute essentially to cardiovascular reactions during head-down hindlimb unloading, compared to the little changes in the hydrostatic gradient.
Collapse
Affiliation(s)
- Darya Tsvirkun
- UMR CNRS 6214 – INSERM 1083, Faculté de Médecine d’Angers, Université d’Angers, Angers, France
- Department of Human and Animal Physiology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Jennifer Bourreau
- UMR CNRS 6214 – INSERM 1083, Faculté de Médecine d’Angers, Université d’Angers, Angers, France
| | - Aurélie Mieuset
- UMR CNRS 6214 – INSERM 1083, Faculté de Médecine d’Angers, Université d’Angers, Angers, France
| | - Florian Garo
- UMR CNRS 6214 – INSERM 1083, Faculté de Médecine d’Angers, Université d’Angers, Angers, France
| | - Olga Vinogradova
- Institute for Biomedical Problems Russian Academy of Sciences SSC, Moscow, Russia
| | - Irina Larina
- Associated French-Russia laboratory CaDyWEC (Cardiovascular Dysfunction induced by Weightlessness and Environmental Conditions), Angers, France
- Institute for Biomedical Problems Russian Academy of Sciences SSC, Moscow, Russia
| | - Nastassia Navasiolava
- Associated French-Russia laboratory CaDyWEC (Cardiovascular Dysfunction induced by Weightlessness and Environmental Conditions), Angers, France
- Institute for Biomedical Problems Russian Academy of Sciences SSC, Moscow, Russia
| | | | - Claude Gharib
- ISOSTEO-LYON (Institut Supérieur d’Ostéopathie), Limonest, France
- Faculté de Médecine Lyon-Est, Physiologie, Lyon, France
| | - Marc-Antoine Custaud
- UMR CNRS 6214 – INSERM 1083, Faculté de Médecine d’Angers, Université d’Angers, Angers, France
- Associated French-Russia laboratory CaDyWEC (Cardiovascular Dysfunction induced by Weightlessness and Environmental Conditions), Angers, France
- Explorations Fonctionnelles Vasculaires, CHU d’Angers, Angers, France
- * E-mail:
| |
Collapse
|
22
|
Ma YG, Liu WC, Dong S, Du C, Wang XJ, Li JS, Xie XP, Wu L, Ma DC, Yu ZB, Xie MJ. Activation of BK(Ca) channels in zoledronic acid-induced apoptosis of MDA-MB-231 breast cancer cells. PLoS One 2012; 7:e37451. [PMID: 22655048 PMCID: PMC3360057 DOI: 10.1371/journal.pone.0037451] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 04/20/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Zoledronic acid, one of the most potent nitrogen-containing biphosphonates, has been demonstrated to have direct anti-tumor and anti-metastatic properties in breast cancer in vitro and in vivo. In particular, tumor-cell apoptosis has been recognized to play an important role in the treatment of metastatic breast cancer with zoledronic acid. However, the precise mechanisms remain less clear. In the present study, we investigated the specific role of large conductance Ca(2+)-activated potassium (BK(Ca)) channel in zoledronic acid-induced apoptosis of estrogen receptor (ER)-negative MDA-MB-231 breast cancer cells. METHODOLOGY/PRINCIPAL FINDINGS The action of zoledronic acid on BK(Ca) channel was investigated by whole-cell and cell-attached patch clamp techniques. Cell apoptosis was assessed with immunocytochemistry, analysis of fragmented DNA by agarose gel electrophoresis, and flow cytometry assays. Cell proliferation was investigated by MTT test and immunocytochemistry. In addition, such findings were further confirmed with human embryonic kidney 293 (HEK293) cells which were transfected with functional BK(Ca) α-subunit (hSloα). Our results clearly indicated that zoledronic acid directly increased the activities of BK(Ca) channels, and then activation of BK(Ca) channel by zoledronic acid contributed to induce apoptosis in MDA-MB-231 cells. The possible mechanisms were associated with the elevated level of intracellular Ca(2+) and a concomitant depolarization of mitochondrial membrane potential (Δψm) in MDA-MB-231 cells. CONCLUSIONS Activation of BK(Ca) channel was here shown to be a novel molecular pathway involved in zoledronic acid-induced apoptosis of MDA-MB-231 cells in vitro.
Collapse
Affiliation(s)
- Yu-Guang Ma
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Breast Disease, First Hospital of Lanzhou University, Lanzhou, China
| | - Wen-Chao Liu
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (WCL); (MJX)
| | - Shuo Dong
- Department of Medicine, Baylor College of Medicine, Houston, United States of America
| | - Cheng Du
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Jun Wang
- Key Laboratory of Aerospace Medicine, Department of Aerospace Physiology, Fourth Military Medical University, Ministry of China, Xi'an, China
| | - Jin-Sheng Li
- Key Laboratory of Aerospace Medicine, Department of Aerospace Physiology, Fourth Military Medical University, Ministry of China, Xi'an, China
| | - Xiao-Ping Xie
- Key Laboratory of Aerospace Medicine, Department of Aerospace Physiology, Fourth Military Medical University, Ministry of China, Xi'an, China
| | - Li Wu
- Department of Breast Disease, First Hospital of Lanzhou University, Lanzhou, China
| | - Da-Chang Ma
- Department of Breast Disease, First Hospital of Lanzhou University, Lanzhou, China
| | - Zhi-Bin Yu
- Key Laboratory of Aerospace Medicine, Department of Aerospace Physiology, Fourth Military Medical University, Ministry of China, Xi'an, China
| | - Man-Jiang Xie
- Key Laboratory of Aerospace Medicine, Department of Aerospace Physiology, Fourth Military Medical University, Ministry of China, Xi'an, China
- * E-mail: (WCL); (MJX)
| |
Collapse
|
23
|
Evaluation by an aeronautic dentist on the adverse effects of a six-week period of microgravity on the oral cavity. Int J Dent 2011; 2011:548068. [PMID: 22190932 PMCID: PMC3235462 DOI: 10.1155/2011/548068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 10/07/2011] [Accepted: 10/08/2011] [Indexed: 11/25/2022] Open
Abstract
Objective. HDT bed rest condition is a simulated microgravity condition in which subject lies on bed inclined −6 degree feet up. To determine the influence of a simulated microgravity (HDT bed rest) on oral cavity, 10 healthy male volunteers were studied before, during, just after, and after 6 weeks of the simulated microgravity condition of −6° head-down-tilt (HDT) bed rest. Materials and Methods. Facial nerve function, facial sensation, chemosensory system, salivary biomarkers were measured. Results. Lactate dehydrogenase, MIP 1 alpha, malonaldehyde, 8-hydroxydeoxyguanosine, and thiocyanate were found to increase significantly, while flow rate, sodium, potassium, calcium, phosphate, protein, amylase activity, vitamin E and C, and mouth opening were decreased in simulation environments in contradiction to normal. The threshold for monosodium glutamate (MSG) and capsaicin increased during microgravity as compared to normal conditions. Moderate pain of teeth, facial oedema, mild pain, loss of sensation of pain and temperature, decreased tongue, and mandibular movement in simulation microgravity environments were observed. Conclusions. These results suggest that reversible effect of microgravity is oedema of face, change in taste, abnormal expression of face, teeth pain, and xerostomia. Further study will be required on large scale on long-term effects of microgravity on oral cavity to prevent the adverse effects.
Collapse
|