1
|
Sharma HK, Karna A, Verma SK, Gupta P, Nagpal D, Kumar A, Pandita D, Mukherjee M, Parmar VS, Agarwal P, Lather V. Exploring the Synergistic Effect of Thymol with Oxacillin against Methicillin Resistant Staphylococcus aureus. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/11/2024] [Indexed: 01/12/2025] Open
|
2
|
Rokicka-Konieczna P, Morawski AW. Photocatalytic Bacterial Destruction and Mineralization by TiO 2-Based Photocatalysts: A Mini Review. Molecules 2024; 29:2221. [PMID: 38792082 PMCID: PMC11123885 DOI: 10.3390/molecules29102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This work presents an overview of the reports on the bacterial cell photocatalytic destruction and mineralization process in the presence of TiO2-based photocatalysts. The presented research included experiments conducted in air and water. Numerous works confirmed that a photocatalytic process with TiO2 led to bacteria and their organic residues' mineralization. Additionally, based on the obtained results, a possible two-stage mechanism of photocatalytic mineralization in the presence of TiO2-based materials was proposed. To help future studies, challenges of photocatalytic microorganism mineralization are also proposed. There are some aspects that need to be addressed, such as the lack of standardization of conducted research or relatively small amount of research on photocatalytic microorganism mineralization. According to our best knowledge, in the available literature, no work regarding a summary of previous research on photocatalytic bacterial mineralization process was found.
Collapse
Affiliation(s)
- Paulina Rokicka-Konieczna
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
| | | |
Collapse
|
3
|
Lien TS, Sun DS, Wu WS, Chang HH. Simulation of Hemorrhage Pathogenesis in Mice through Dual Stimulation with Dengue Envelope Protein Domain III-Coated Nanoparticles and Antiplatelet Antibody. Int J Mol Sci 2023; 24:ijms24119270. [PMID: 37298220 DOI: 10.3390/ijms24119270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Dengue hemorrhagic fever (DHF) is a severe form of dengue virus (DENV) infection that can lead to abnormal immune responses, endothelial vascular dysfunction, and hemorrhage pathogenesis. The virion-associated envelope protein domain III (EIII) is thought to play a role in the virulence of DENV by damaging endothelial cells. However, it is unclear whether EIII-coated nanoparticles simulating DENV virus particles could cause a more severe pathogenesis than soluble EIII alone. This study aimed to investigate whether EIII-coated silica nanoparticles (EIII-SNPs) could elicit greater cytotoxicity in endothelial cells and hemorrhage pathogenesis in mice compared to EIII or silica nanoparticles alone. The main methods included in vitro assays to assess cytotoxicity and in vivo experiments to examine hemorrhage pathogenesis in mice. EIII-SNPs induced greater endothelial cytotoxicity in vitro than EIII or silica nanoparticles alone. Two-hit combined treatment with EIII-SNPs and antiplatelet antibodies to simulate DHF hemorrhage pathogenesis during secondary DENV infections resulted in higher endothelial cytotoxicity than either treatment alone. In mouse experiments, two-hit combined treatment with EIII-SNPs and antiplatelet antibodies resulted in more severe hemorrhage pathogenesis compared to single treatments of EIII, EIII-SNPs, or antiplatelet antibodies alone. These findings suggest that EIII-coated nanoparticles are more cytotoxic than soluble EIII and could be used to develop a tentative dengue two-hit hemorrhage pathogenesis model in mice. Additionally, our results indicated that EIII-containing DENV particles could potentially exacerbate hemorrhage pathogenesis in DHF patients who have antiplatelet antibodies, highlighting the need for further research on the potential role of EIII in DHF pathogenesis.
Collapse
Affiliation(s)
- Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
4
|
Li CC, Jhou SM, Li YC, Ciou JW, Lin YY, Hung SC, Chang JH, Chang JC, Sun DS, Chou ML, Chang HH. Exposure to low levels of photocatalytic TiO 2 nanoparticles enhances seed germination and seedling growth of amaranth and cruciferous vegetables. Sci Rep 2022; 12:18228. [PMID: 36309586 PMCID: PMC9617883 DOI: 10.1038/s41598-022-23179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/26/2022] [Indexed: 12/31/2022] Open
Abstract
Titanium dioxide (TiO2) is one of the most common compounds on Earth, and it is used in natural forms or engineered bulks or nanoparticles (NPs) with increasing rates. However, the effect of TiO2 NPs on plants remains controversial. Previous studies demonstrated that TiO2 NPs are toxic to plants, because the photocatalytic property of TiO2 produces biohazardous reactive oxygen species. In contrast, another line of evidence suggested that TiO2 NPs are beneficial to plant growth. To verify this argument, in this study, we used seed germination of amaranth and cruciferous vegetables as a model system. Intriguingly, our data suggested that the controversy was due to the dosage effect. The photocatalytic activity of TiO2 NPs positively affected seed germination and growth through gibberellins in a plant-tolerable range (0.1 and 0.2 mg/cm2), whereas overdosing (1 mg/cm2) induced tissue damage. Given that plants are the foundations of the ecosystem; these findings are useful for agricultural application, sustainable development and maintenance of healthy environments.
Collapse
Affiliation(s)
- Chi-Cheng Li
- grid.414692.c0000 0004 0572 899XDepartment of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan ,Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Sian-Ming Jhou
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - Yi-Chen Li
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - Jhih-Wei Ciou
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - You-Yen Lin
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Jen-Hsiang Chang
- grid.445052.20000 0004 0639 3773Department and Graduate School of Computer Science, National Pingtung University, Pingtung, Taiwan
| | | | - Der-Shan Sun
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Lun Chou
- grid.411824.a0000 0004 0622 7222Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
5
|
Huang CY, Yu WS, Liu GC, Hung SC, Chang JH, Chang JC, Cheng CL, Sun DS, Lin MD, Lin WY, Tzeng YJ, Chang HH. Opportunistic gill infection is associated with TiO2 nanoparticle-induced mortality in zebrafish. PLoS One 2021; 16:e0247859. [PMID: 34283836 PMCID: PMC8291654 DOI: 10.1371/journal.pone.0247859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
The large amounts of engineered titanium dioxide nanoparticles (TiO2NPs) that have been manufactured have inevitably been released into the ecosystem. Reports have suggested that TiO2 is a relatively inert material that has low toxicity to animals. However, as various types of NPs increasingly accumulate in the ocean, their effects on aquatic life-forms remain unclear. In this study, a zebrafish model was used to investigate TiO2NP-induced injury and mortality. We found that the treatment dosages of TiO2NP are positively associated with increased motility of zebrafish and the bacterial counts in the water. Notably, gill but not dorsal fin and caudal fin of the zebrafish displayed considerably increased bacterial load. Metagenomic analysis further revealed that gut microflora, such as phyla Proteobacteria, Bacteroidetes, and Actinobacteria, involving more than 95% of total bacteria counts in the NP-injured zebrafish gill samples. These results collectively suggest that opportunistic bacterial infections are associated with TiO2NP-induced mortality in zebrafish. Infections secondary to TiO2NP-induced injury could be a neglected factor determining the detrimental effects of TiO2NPs on wild fish.
Collapse
Affiliation(s)
- Chiao-Yi Huang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Wei-Sheng Yu
- Tzu-Chi Senior High School Affiliated with Tzu-Chi University, Tzu-Chi University, Hualien, Taiwan
| | - Geng-Chia Liu
- Tzu-Chi Senior High School Affiliated with Tzu-Chi University, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Jen-Hsiang Chang
- Department and Graduate School of Computer Science, National Pingtung University, Pingtung, Taiwan
| | | | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Yin-Jeh Tzeng
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
6
|
Abstract
Pure titanium dioxide TiO2 photocatalytic substrates exhibit antibacterial activity only when they are irradiated with ultraviolet light, which comprises high-energy wavelengths that damage all life. Impurity doping of TiO2-related materials enables visible light to stimulate photocatalytic activity, which enhances opportunities for TiO2 to be used as a disinfectant in living environments. Boron-doped TiO2 displays visible-light-responsive bactericidal properties. However, because boron-derived compounds also exert notable antibacterial effects, most reports did not clearly demonstrate the extent to which the bactericidal property of boron-doped TiO2 is contributed by visible-light-stimulated photocatalysis. In addition, TiO2 thin films have considerable potential for applications in equipment that requires sterilization; however, the antibacterial properties of boron-doped TiO2 thin films have been examined by only a few studies. We found that boron-doped TiO2 thin films displayed visible-light-driven antibacterial properties. Moreover, because boron compounds may have intrinsic antibacterial properties, using control groups maintained in the dark, we clearly demonstrated that visible light stimulated the photocatalysis of boron-doped TiO2 thin films but not the residue boron compounds display antibacterial property. The bactericidal effects induced by visible light are equally potent for the elimination of the model organism Escherichia coli and human pathogens, such as Acinetobacter baumannii, Staphylococcus aureus, and Streptococcus pyogenes. The antibacterial applications of boron-doped TiO2 thin films are described, and relevant perspectives discussed.
Collapse
|
7
|
Rasmuson A, VanNess K, Ron CA, Johnson WP. Hydrodynamic versus Surface Interaction Impacts of Roughness in Closing the Gap between Favorable and Unfavorable Colloid Transport Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2450-2459. [PMID: 30762346 DOI: 10.1021/acs.est.8b06162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent experiments revealed that roughness decreases the gap in colloid attachment between favorable (repulsion absent) and unfavorable (repulsion present) conditions through a combination of hydrodynamic slip and surface interactions with asperities. Hydrodynamic slip was calibrated to experimentally observed tangential colloid velocities, demonstrating that slip length was equal to maximum asperity relief, thereby providing a functional relationship between slip and roughness metrics. Incorporation of the slip length in mechanistic particle trajectory simulations yielded the observed modest decrease in attachment over rough surfaces under favorable conditions, with the observed decreased attachment being due to reduced colloid delivery rather than decreased attraction. Cumulative interactions with multiple asperities acting within the zone of colloid-surface interaction were unable to produce the observed dramatic increased attachment and decreased reversibility with increased roughness under unfavorable conditions, necessitating inclusion of nanoscale attractive heterogeneity that was inferred to have codeveloped with roughness. Simulated attachment matched experimental observations when the spatial frequency of larger heterodomains (nanoscale zones of attraction) increased disproportionately relative to smaller heterodomains as roughness increased, whereas attachment was insensitive to asperity properties, including the number of interactions per asperity and asperity height; colloid detachment simulations were highly sensitive to these parameters. These cumulative findings reveal that hydrodynamic slip moderately decreases colloid bulk delivery, nanoscale heterogeneity dramatically enhances colloid attachment, and multiple interactions among asperities decrease detachment from rough surfaces.
Collapse
Affiliation(s)
- Anna Rasmuson
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Kurt VanNess
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Cesar A Ron
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| | - William P Johnson
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
8
|
Yang CH, Chen YC, Peng SY, Tsai APY, Lee TJF, Yen JH, Liou JW. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Sci Rep 2018; 8:14602. [PMID: 30279591 PMCID: PMC6168480 DOI: 10.1038/s41598-018-32981-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/20/2018] [Indexed: 12/05/2022] Open
Abstract
The increase in the prevalence of antibiotic-resistant bacteria has become a major public health concern. Antimicrobial peptides (AMPs) are emerging as promising candidates addressing this issue. In this study, we designed several AMPs by increasing α-helical contents and positive charges and optimizing hydrophobicity and amphipathicity in the Sushi 1 peptide from horseshoe crabs. A neural network–based bioinformatic prediction tool was used for the first stage evaluations of peptide properties. Among the peptides designed, Sushi-replacement peptide (SRP)-2, an arginine-rich and highly α-helical peptide, showed broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus and multidrug-resistant Acinetobacter baumannii; nevertheless, it showed little hemolytic and cytotoxic activity against mammalian cells. Atomic force microscopy results indicated that SRP-2 should interact directly with cell membrane components, resulting in bacterial cell death. SRP-2 also neutralized LPS-induced macrophage activation. Moreover, in an intraperitoneal multidrug-resistant A. baumannii infection mouse model, SRP-2 successfully reduced the bacterial number in ascitic fluid and tumor necrosis factor-α production. Our study findings demonstrate that bioinformatic calculations can be powerful tools to help design potent AMPs and that arginine is superior to lysine for providing positive charges for AMPs to exhibit better bactericidal activity and selectivity against bacterial cells.
Collapse
Affiliation(s)
- Chin-Hao Yang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yi-Cheng Chen
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Andy Po-Yi Tsai
- Ph.D. Program in Translational Medicine, Tzu Chi University/Academia Sinica, Taipei, Taiwan
| | - Tony Jer-Fu Lee
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan. .,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
9
|
Tseng CC, Yu PY, Liou JW, Chang KC. Altered susceptibility to air sampling stress by filtration is related to colistin resistance development in Acinetobacter baumannii. INDOOR AIR 2018; 28:732-743. [PMID: 29943860 DOI: 10.1111/ina.12487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The accurate quantification of antibiotic-resistant bacteria in indoor air has recently attracted increasing attention. Here, we investigated whether the susceptibility of a nosocomial infection-related microbe, Acinetobacter baumannii, to strong sampling stress caused by Nuclepore filter changes as it develops resistance to a drug called colistin. Both colistin-sensitive A. baumannii (CSAB) and colistin-resistant A. baumannii (CRAB) are generally desiccation-resistant strains that can be collected by filter sampling. However, the resistance of CRAB to the three combined stresses (aerosolization, impaction, and desiccation) caused by filter sampling was 1.8 times lower than that of CSAB (P < 0.05). The sampling stresses caused by filter sampling not only reduced the culturability of A. baumannii but also destroyed proteins to result in cellular protein leakage. CRAB released 17%-38% more extracellular protein than did CSAB when they were both subjected to desiccation stress for 240 minutes (P < 0.01). The combination of using a sampling flow rate of 20 L/min and sampling for 60 minutes with a Nuclepore filter with open-face cassettes (OFCs) is recommended for collecting airborne A. baumannii. A Nuclepore filter operated with closed-face cassettes (CFCs) significantly decreased the culturability of CRAB due to desiccation effects.
Collapse
Affiliation(s)
- Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Pei-Ying Yu
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
10
|
Visible Light-Responsive Platinum-Containing Titania Nanoparticle-Mediated Photocatalysis Induces Nucleotide Insertion, Deletion and Substitution Mutations. NANOMATERIALS 2016; 7:nano7010002. [PMID: 28336836 PMCID: PMC5295192 DOI: 10.3390/nano7010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022]
Abstract
Conventional photocatalysts are primarily stimulated using ultraviolet (UV) light to elicit reactive oxygen species and have wide applications in environmental and energy fields, including self-cleaning surfaces and sterilization. Because UV illumination is hazardous to humans, visible light-responsive photocatalysts (VLRPs) were discovered and are now applied to increase photocatalysis. However, fundamental questions regarding the ability of VLRPs to trigger DNA mutations and the mutation types it elicits remain elusive. Here, through plasmid transformation and β-galactosidase α-complementation analyses, we observed that visible light-responsive platinum-containing titania (TiO2) nanoparticle (NP)-mediated photocatalysis considerably reduces the number of Escherichia coli transformants. This suggests that such photocatalytic reactions cause DNA damage. DNA sequencing results demonstrated that the DNA damage comprises three mutation types, namely nucleotide insertion, deletion and substitution; this is the first study to report the types of mutations occurring after photocatalysis by TiO2-VLRPs. Our results may facilitate the development and appropriate use of new-generation TiO2 NPs for biomedical applications.
Collapse
|
11
|
Antibacterial Properties of Visible-Light-Responsive Carbon-Containing Titanium Dioxide Photocatalytic Nanoparticles against Anthrax. NANOMATERIALS 2016; 6:nano6120237. [PMID: 28335365 PMCID: PMC5302719 DOI: 10.3390/nano6120237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
The bactericidal activity of conventional titanium dioxide (TiO2) photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO2 for use in living environments. Recently, carbon-containing TiO2 nanoparticles [TiO2(C) NP] were found to be a visible-light-responsive photocatalyst (VLRP), which displayed significantly enhanced antibacterial properties under visible light illumination. However, whether TiO2(C) NPs exert antibacterial properties against Bacillus anthracis remains elusive. Here, we evaluated these VLRP NPs in the reduction of anthrax-induced pathogenesis. Bacteria-killing experiments indicated that a significantly higher proportion (40%–60%) of all tested Bacillus species, including B. subtilis, B. cereus, B. thuringiensis, and B. anthracis, were considerably eliminated by TiO2(C) NPs. Toxin inactivation analysis further suggested that the TiO2(C) NPs efficiently detoxify approximately 90% of tested anthrax lethal toxin, a major virulence factor of anthrax. Notably, macrophage clearance experiments further suggested that, even under suboptimal conditions without considerable bacterial killing, the TiO2(C) NP-mediated photocatalysis still exhibited antibacterial properties through the reduction of bacterial resistance against macrophage killing. Our results collectively suggested that TiO2(C) NP is a conceptually feasible anti-anthrax material, and the relevant technologies described herein may be useful in the development of new strategies against anthrax.
Collapse
|
12
|
Tseng CC, Tsai YH, Hu A, Liou JW, Chang KC, Chang HH. Altered susceptibility to the bactericidal effect of photocatalytic oxidation by TiO2 is related to colistin resistance development in Acinetobacter baumannii. Appl Microbiol Biotechnol 2016; 100:8549-61. [DOI: 10.1007/s00253-016-7654-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
13
|
Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light. Sci Rep 2015; 5:11978. [PMID: 26156001 PMCID: PMC4496671 DOI: 10.1038/srep11978] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/12/2015] [Indexed: 11/24/2022] Open
Abstract
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.
Collapse
|
14
|
Dual Roles of Capsular Extracellular Polymeric Substances in Photocatalytic Inactivation of Escherichia coli: Comparison of E. coli BW25113 and Isogenic Mutants. Appl Environ Microbiol 2015; 81:5174-83. [PMID: 26002903 DOI: 10.1128/aem.00775-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
The dual roles of capsular extracellular polymeric substances (EPS) in the photocatalytic inactivation of bacteria were demonstrated in a TiO2-UVA system, by comparing wild-type Escherichia coli strain BW25113 and isogenic mutants with upregulated and downregulated production of capsular EPS. In a partition system in which direct contact between bacterial cells and TiO2 particles was inhibited, an increase in the amount of EPS was associated with increased bacterial resistance to photocatalytic inactivation. In contrast, when bacterial cells were in direct contact with TiO2 particles, an increase in the amount of capsular EPS decreased cell viability during photocatalytic treatment. Taken together, these results suggest that although capsular EPS can protect bacterial cells by consuming photogenerated reactive species, it also facilitates photocatalytic inactivation of bacteria by promoting the adhesion of TiO2 particles to the cell surface. Fluorescence microscopy and scanning electron microscopy analyses further confirmed that high capsular EPS density led to more TiO2 particles attaching to cells and forming bacterium-TiO2 aggregates. Calculations of interaction energy, represented by extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) potential, suggested that the presence of capsular EPS enhances the attachment of TiO2 particles to bacterial cells via acid-base interactions. Consideration of these mechanisms is critical for understanding bacterium-nanoparticle interactions and the photocatalytic inactivation of bacteria.
Collapse
|
15
|
Wu MS, Sun DS, Lin YC, Cheng CL, Hung SC, Chen PK, Yang JH, Chang HH. Nanodiamonds protect skin from ultraviolet B-induced damage in mice. J Nanobiotechnology 2015; 13:35. [PMID: 25947194 PMCID: PMC4432518 DOI: 10.1186/s12951-015-0094-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Solar ultraviolet (UV) radiation causes various deleterious effects, and UV blockage is recommended for avoiding sunburn. Nanosized titanium dioxide and zinc oxide offer effective protection and enhance cosmetic appearance but entail health concerns regarding their photocatalytic activity, which generates reactive oxygen species. These concerns are absent in nanodiamonds (NDs). Among the UV wavelengths in sunlight, UVB irradiation primarily threatens human health. RESULTS The efficacy and safety of NDs in UVB protection were evaluated using cell cultures and mouse models. We determined that 2 mg/cm(2) of NDs efficiently reduced over 95% of UVB radiation. Direct UVB exposure caused cell death of cultured keratinocyte, fibroblasts and skin damage in mice. By contrast, ND-shielding significantly protected the aforementioned pathogenic alterations in both cell cultures and mouse models. CONCLUSIONS NDs are feasible and safe materials for preventing UVB-induced skin damage.
Collapse
Affiliation(s)
- Meng-Si Wu
- Division of Plastic Surgery, Department of Surgery, Buddhist Tzu Chi General Hospital, No. 707 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Yu-Chung Lin
- Department of Physics, National Dong Hwa University, No. 1 Sec. 2, University Road, Shoufeng Township, Hualien County, 974, Taiwan.
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, No. 1 Sec. 2, University Road, Shoufeng Township, Hualien County, 974, Taiwan.
- Nanotechnology Research Center, National Dong Hwa University, No. 1 Sec. 2, University Road, Shoufeng Township, Hualien County, 974, Taiwan.
| | - Shih-Che Hung
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Po-Kong Chen
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Jen-Hung Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Department of Dermatology, Buddhist Tzu Chi General Hospital, No. 707 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Research Center of Nanobiomedical Science, Tzu-Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
- Nanotechnology Research Center, National Dong Hwa University, No. 1 Sec. 2, University Road, Shoufeng Township, Hualien County, 974, Taiwan.
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, No. 701 Sec. 3, Chung-Yang Rd, Hualien City, Hualien County, 970, Taiwan.
| |
Collapse
|
16
|
Li J, Singh VV, Sattayasamitsathit S, Orozco J, Kaufmann K, Dong R, Gao W, Jurado-Sanchez B, Fedorak Y, Wang J. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS NANO 2014; 8:11118-11125. [PMID: 25289459 DOI: 10.1021/nn505029k] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications.
Collapse
Affiliation(s)
- Jinxing Li
- Department of Nanoengineering, University of California, San Diego , La Jolla, California 92093, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae. Appl Environ Microbiol 2014; 80:7527-35. [PMID: 25261515 DOI: 10.1128/aem.02416-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have investigated the antimicrobial effects of photocatalysis on the yeast model Saccharomyces cerevisiae. To accurately study the antimicrobial mechanisms of the photocatalytic process, we focused our investigations on two questions: the entry of the nanoparticles in treated cells and the fate of the intracellular environment. Transmission electronic microscopy did not reveal any entry of nanoparticles within the cells, even for long exposure times, despite degradation of the cell wall space and deconstruction of cellular compartments. In contrast to proteins located at the periphery of the cells, intracellular proteins did not disappear uniformly. Disappearance or persistence of proteins from the pool of oxidized intracellular isoforms was not correlated to their functions. Altogether, our data suggested that photocatalysis induces the establishment of an intracellular oxidative environment. This hypothesis was sustained by the detection of an increased level of superoxide ions (O2°(-)) in treated cells and by greater cell cultivability for cells expressing oxidant stress response genes during photocatalytic exposure. The increase in intracellular ROS, which was not connected to the entry of nanoparticles within the cells or to a direct contact with the plasma membrane, could be the result of an imbalance in redox status amplified by chain reactions. Moreover, we expanded our study to other yeast and filamentous fungi and pointed out that, in contrast to the laboratory model S. cerevisiae, some environmental strains are very resistant to photocatalysis. This could be related to the cell wall composition and structure.
Collapse
|
18
|
Chakraborti S, Mandal AK, Sarwar S, Singh P, Chakraborty R, Chakrabarti P. Bactericidal effect of polyethyleneimine capped ZnO nanoparticles on multiple antibiotic resistant bacteria harboring genes of high-pathogenicity island. Colloids Surf B Biointerfaces 2014; 121:44-53. [DOI: 10.1016/j.colsurfb.2014.03.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/13/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
|
19
|
Cell adhesion as a novel approach to determining the cellular binding motif on the severe acute respiratory syndrome coronavirus spike protein. J Virol Methods 2014; 201:1-6. [PMID: 24530430 PMCID: PMC7113645 DOI: 10.1016/j.jviromet.2014.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 11/22/2022]
Abstract
Emerging life threatening pathogens such as severe acute aspiratory syndrome-coronavirus (SARS-CoV), avian-origin influenzas H7N9, and the Middle East respiratory syndrome coronavirus (MERS-CoV) have caused a high case-fatality rate and psychological effects on society and the economy. Therefore, a simple, rapid, and safe method to investigate a therapeutic approach against these pathogens is required. In this study, a simple, quick, and safe cell adhesion inhibition assay was developed to determine the potential cellular binding site on the SARS-CoV spike protein. Various synthetic peptides covering the potential binding site helped to minimize further the binding motif to 10–25 residues. Following analyses, 2 peptides spanning the 436–445 and 437–461 amino acids of the spike protein were identified as peptide inhibitor or peptide vaccine candidates against SARS-CoV.
Collapse
|
20
|
Tseng YH, Sun DS, Wu WS, Chan H, Syue MS, Ho HC, Chang HH. Antibacterial performance of nanoscaled visible-light responsive platinum-containing titania photocatalyst in vitro and in vivo. Biochim Biophys Acta Gen Subj 2013; 1830:3787-95. [PMID: 23542693 DOI: 10.1016/j.bbagen.2013.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/01/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Traditional antibacterial photocatalysts are primarily induced by ultraviolet light to elicit antibacterial reactive oxygen species. New generation visible-light responsive photocatalysts were discovered, offering greater opportunity to use photocatalysts as disinfectants in our living environment. Recently, we found that visible-light responsive platinum-containing titania (TiO2-Pt) exerted high performance antibacterial property against soil-borne pathogens even in soil highly contaminated water. However, its physical and photocatalytic properties, and the application in vivo have not been well-characterized. METHODS Transmission electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet-visible absorption spectrum and the removal rate of nitrogen oxides were therefore analyzed. The antibacterial performance under in vitro and in vivo conditions was evaluated. RESULTS The apparent quantum efficiency for visible light illuminated TiO2-Pt is relatively higher than several other titania photocatalysts. The killing effect achieved approximately 2 log reductions of pathogenic bacteria in vitro. Illumination of injected TiO2-Pt successfully ameliorated the subcutaneous infection in mice. CONCLUSIONS This is the first demonstration of in vivo antibacterial use of TiO2-Pt nanoparticles. When compared to nanoparticles of some other visible-light responsive photocatalysts, TiO2-Pt nanoparticles induced less adverse effects such as exacerbated platelet clearance and hepatic cytotoxicity in vivo. GENERAL SIGNIFICANCE These findings suggest that the TiO2-Pt may have potential application on the development of an antibacterial material in both in vitro and in vivo settings.
Collapse
Affiliation(s)
- Yao-Hsuan Tseng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang L, Han M, Tan OK, Tse MS, Wang YX, Sze CC. Facile fabrication of Ag/C-TiO2nanoparticles with enhanced visible light photocatalytic activity for disinfection of Escherichia coli and Enterococcus faecalis. J Mater Chem B 2013; 1:564-570. [DOI: 10.1039/c2tb00113f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Chang KC, Chiang YW, Yang CH, Liou JW. Atomic force microscopy in biology and biomedicine. Tzu Chi Med J 2012. [DOI: 10.1016/j.tcmj.2012.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Visible light–responsive core-shell structured In2O3@CaIn2O4 photocatalyst with superior bactericidal properties and biocompatibility. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:609-17. [DOI: 10.1016/j.nano.2011.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 09/12/2011] [Accepted: 09/25/2011] [Indexed: 11/18/2022]
|
24
|
Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp (Warsz) 2012; 60:267-75. [PMID: 22678625 DOI: 10.1007/s00005-012-0178-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
This review focuses on the antibacterial activities of visible light-responsive titanium dioxide (TiO(2)) photocatalysts. These photocatalysts have a range of applications including disinfection, air and water cleaning, deodorization, and pollution and environmental control. Titanium dioxide is a chemically stable and inert material, and can continuously exert antimicrobial effects when illuminated. The energy source could be solar light; therefore, TiO(2) photocatalysts are also useful in remote areas where electricity is insufficient. However, because of its large band gap for excitation, only biohazardous ultraviolet (UV) light irradiation can excite TiO(2), which limits its application in the living environment. To extend its application, impurity doping, through metal coating and controlled calcination, has successfully modified the substrates of TiO(2) to expand its absorption wavelengths to the visible light region. Previous studies have investigated the antibacterial abilities of visible light-responsive photocatalysts using the model bacteria Escherichia coli and human pathogens. The modified TiO(2) photocatalysts significantly reduced the numbers of surviving bacterial cells in response to visible light illumination. They also significantly reduced the activity of bacterial endospores; reducing their toxicity while retaining their germinating abilities. It is suggested that the photocatalytic killing mechanism initially damages the surfaces weak points of the bacterial cells, before totally breakage of the cell membranes. The internal bacterial components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction oxidizes the cell debris. In summary, visible light-responsive TiO(2) photocatalysts are more convenient than the traditional UV light-responsive TiO(2) photocatalysts because they do not require harmful UV light irradiation to function. These photocatalysts, thus, provide a promising and feasible approach for disinfection of pathogenic bacteria; facilitating the prevention of infectious diseases.
Collapse
|
25
|
Chen YL, Chen YS, Chan H, Tseng YH, Yang SR, Tsai HY, Liu HY, Sun DS, Chang HH. The use of nanoscale visible light-responsive photocatalyst TiO2-Pt for the elimination of soil-borne pathogens. PLoS One 2012; 7:e31212. [PMID: 22384003 PMCID: PMC3285157 DOI: 10.1371/journal.pone.0031212] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/04/2012] [Indexed: 12/02/2022] Open
Abstract
Exposure to the soil-borne pathogens Burkholderia pseudomallei and Burkholderia cenocepacia can lead to severe infections and even mortality. These pathogens exhibit a high resistance to antibiotic treatments. In addition, no licensed vaccine is currently available. A nanoscale platinum-containing titania photocatalyst (TiO2-Pt) has been shown to have a superior visible light-responsive photocatalytic ability to degrade chemical contaminants like nitrogen oxides. The antibacterial activity of the catalyst and its potential use in soil pathogen control were evaluated. Using the plating method, we found that TiO2-Pt exerts superior antibacterial performance against Escherichia coli compared to other commercially available and laboratory prepared ultraviolet/visible light-responsive titania photocatalysts. TiO2-Pt-mediated photocatalysis also affectively eliminates the soil-borne bacteria B. pseudomallei and B. cenocepacia. An air pouch infection mouse model further revealed that TiO2-Pt-mediated photocatalysis could reduce the pathogenicity of both strains of bacteria. Unexpectedly, water containing up to 10% w/v dissolved soil particles did not reduce the antibacterial potency of TiO2-Pt, suggesting that the TiO2-Pt photocatalyst is suitable for use in soil-contaminated environments. The TiO2-Pt photocatalyst exerted superior antibacterial activity against a broad spectrum of human pathogens, including B. pseudomallei and B. cenocepacia. Soil particles (<10% w/v) did not significantly reduce the antibacterial activity of TiO2-Pt in water. These findings suggest that the TiO2-Pt photocatalyst may have potential applications in the development of bactericides for soil-borne pathogens.
Collapse
Affiliation(s)
- Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yao-Shen Chen
- Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, National Yung-Ming University, Taipei, Taiwan
| | - Hao Chan
- Graduate Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Yao-Hsuan Tseng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Shu-Ru Yang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hsin-Ying Tsai
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hong-Yi Liu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|