1
|
Schulze-Späte U, Wurschi L, van der Vorst EPC, Hölzle F, Craveiro RB, Wolf M, Noels H. Crosstalk between periodontitis and cardiovascular risk. Front Immunol 2024; 15:1469077. [PMID: 39717783 PMCID: PMC11663742 DOI: 10.3389/fimmu.2024.1469077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 12/25/2024] Open
Abstract
Recent demographic developments resulted in an aged society with a rising disease burden of systemic and non-communicable diseases (NCDs). In cardiovascular disease (CVD), a NCD with high morbidity and mortality, recent preventive strategies include the investigation of comorbidities to reduce its significant economic burden. Periodontal disease, an oral bacterial-induced inflammatory disease of tooth-supporting tissue, is regulated in its prevalence and severity by the individual host response to a dysbiotic oral microbiota. Clinically, both NCDs are highly associated; however, shared risk factors such as smoking, obesity, type II diabetes mellitus and chronic stress represent only an insufficient explanation for the multifaceted interactions of both disease entities. Specifically, the crosstalk between both diseases is not yet fully understood. This review summarizes current knowledge on the clinical association of periodontitis and CVD, and elaborates on how periodontitis-induced pathophysiological mechanisms in patients may contribute to increased cardiovascular risk with focus on atherosclerosis. Clinical implications as well as current and future therapy considerations are discussed. Overall, this review supports novel scientific endeavors aiming at improving the quality of life with a comprehensive and integrated approach to improve well-being of the aging populations worldwide.
Collapse
Affiliation(s)
- Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Ludwig Wurschi
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, School of Medicine, Uniklinik RWTH Aachen, Aachen, Germany
| | - Rogerio B. Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Basdorf P, Kocher T, Baumeister SE, Pink C, Budde K, Petersmann A, Friedrich N, Völzke H, Nauck M, Holtfreter B. Periodontitis adversely affects lipoprotein subfractions - results from the cohort study SHIP-TREND: Periodontitis adversely affects lipoprotein subfractions. DIABETES & METABOLISM 2024; 50:101584. [PMID: 39396553 DOI: 10.1016/j.diabet.2024.101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
AIM We aimed to investigate the medium-term associations of periodontitis and the number of missing teeth with serum lipoproteins and their plasma subfractions using follow-up data from the population-based Study of Health in Pomerania (SHIP-TREND). METHODS A total of 2,058 participants with 7-year follow-up data underwent periodontal examinations, serum lipid panel tests, and proton nuclear magnetic resonance (1H-NMR) spectroscopy of plasma lipoproteins and their subfractions. Generalized models with gamma distribution and loglink were used to analyze associations between periodontal variables and lipoproteins and their subfractions, adjusting for confounders using propensity score weighting. RESULTS Periodontal variables were consistently associated with elevated follow-up serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels. When plasma lipoprotein subfractions were evaluated, periodontal variables were associated with elevated levels of triglycerides and cholesterol-enriched apolipoprotein B-containing lipoprotein particles, particularly small dense low-density lipoprotein, very-low-density lipoprotein and intermediate density lipoprotein. In addition, altered high-density lipoprotein particle composition was observed, suggesting potential functional changes. CONCLUSION This study provides evidence for causal effects of periodontitis on conventional serum lipids and plasma lipoprotein subfractions. As the underlying biological mechanisms are not fully understood, further research is needed.
Collapse
Affiliation(s)
- Pascal Basdorf
- Department of Restorative Dentistry, Periodontology and Endodontology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology and Endodontology, University Medicine Greifswald, Greifswald, Germany
| | | | - Christiane Pink
- Department of Restorative Dentistry, Periodontology and Endodontology, University Medicine Greifswald, Greifswald, Germany
| | - Kathrin Budde
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Institute for Community Medicine, SHIP/Clinical-Epidemiological Research, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology and Endodontology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
3
|
Zhao Y, Yang K, Ferreira TA, Kang X, Feng X, Katz J, Michalek SM, Zhang P. Activation of liver X receptors suppresses the abundance and osteoclastogenic potential of osteoclast precursors and periodontal bone loss. Mol Oral Microbiol 2024; 39:125-135. [PMID: 38108557 PMCID: PMC11096071 DOI: 10.1111/omi.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Liver-X receptors (LXRs) are essential nuclear hormone receptors involved in cholesterol and lipid metabolism. They are also believed to regulate inflammation and physiological and pathological bone turnover. We have previously shown that infection with the periodontal pathogen Porphyromonas gingivalis (Pg) in mice increases the abundance of CD11b+c-fms+Ly6Chi cells in bone marrow (BM), spleen (SPL), and peripheral blood. These cells also demonstrated enhanced osteoclastogenic activity and a distinctive gene profile following Pg infection. Here, we investigated the role of LXRs in regulating these osteoclast precursors (OCPs) and periodontal bone loss. We found that Pg infection downregulates the gene expression of LXRs, as well as ApoE, a transcription target of LXRs, in CD11b+c-fms+Ly6Chi OCPs. Activation of LXRs by treatment with GW3965, a selective LXR agonist, significantly decreased Pg-induced accumulation of CD11b+c-fms+Ly6Chi population in BM and SPL. GW3965 treatment also significantly suppressed the osteoclastogenic potential of these OCPs induced by Pg infection. Furthermore, the activation of LXRs reduces the abundance of OCPs systemically in BM and locally in the periodontium, as well as mitigates gingival c-fms expression and periodontal bone loss in a ligature-induced periodontitis model. These data implicate a novel role of LXRs in regulating OCP abundance and osteoclastogenic potential in inflammatory bone loss.
Collapse
Affiliation(s)
- Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kai Yang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thalyta Amanda Ferreira
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Xu Feng
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jannet Katz
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suzanne M Michalek
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ping Zhang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Li J, Li Y, Zhou L, Li C, Liu J, Liu D, Fu Y, Wang Y, Tang J, Zhou L, Tan S, Wang L. The human microbiome and benign prostatic hyperplasia: Current understandings and clinical implications. Microbiol Res 2024; 281:127596. [PMID: 38215640 DOI: 10.1016/j.micres.2023.127596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
The research of the human microbiome in the preceding decade has yielded novel perspectives on human health and diseases. Benign prostatic hyperplasia (BPH) is a common disease in middle-aged and elderly males, which negatively affects the life quality. Existing evidence has indicated that the human microbiome, including urinary, intra-prostate, gut, oral and blood microbiome may exert a significant impact on the natural progression of BPH. The dysbiosis of the microbiome may induce inflammation at either a local or systemic level, thereby affecting the BPH. Moreover, metabolic syndrome (MetS) caused by the microbiome can also be involved in the development of BPH. Additionally, alterations in the microbiome composition during the senility process may serve as another cause of the BPH. Here, we summarize the influence of human microbiome on BPH and explore how the microbiome is linked to BPH through inflammation, MetS, and senility. In addition, we propose promising areas of investigation and discuss the implications for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Dingwen Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yunlong Fu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yichuan Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shuo Tan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
5
|
Ehteshami A, Shirban F, Bagherniya M, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Association between High-density Lipoproteins and Periodontitis. Curr Med Chem 2024; 31:6407-6428. [PMID: 37493158 DOI: 10.2174/0929867331666230726140736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Periodontitis is one of the most typical chronic dental diseases. This inflammatory disease can change various functions of immune cells and impair lipid metabolism through proinflammatory cytokines. High-Density Lipoprotein (HDL) is considered protective of the cardiovascular system. It has anti-thrombotic and anti-inflammatory effects. In this article, we have reviewed the association between periodontitis and HDL. Various studies have demonstrated a reverse relationship between inflammatory cytokines and HDL. HDL contains antioxidative enzymes and proteins, whereas periopathogens impair HDL's antioxidant function. The presence of periodontal bacteria is associated with a low HDL level in patients with periodontitis. Genetic variants in the interleukin- 6 (IL)-6 gene and cytochrome (CYP)1A1 rs1048943 gene polymorphism are associated with HDL levels and periodontal status. Studies showed that HDL levels improve after treatment for periodontitis. On the one hand, periodontal pathogenic bacteria and their metabolites and pro-inflammatory cytokines from periodontal infection can result in various disorders of lipid metabolism and lipid peroxidation. On the other hand, hyperlipidemia and lipid peroxidation stimulate proinflammatory cytokines, resulting in oxidative stress and delayed wound healing, making individuals susceptible to periodontitis.
Collapse
Affiliation(s)
- Ailin Ehteshami
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK of Great Britain and Northern Ireland, Hull, UK
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Park S, Kim I, Han SJ, Kwon S, Min EJ, Cho W, Koh H, Koo BN, Lee JS, Kwon JS, Seo KY, Ha JW, Park YM. Oral Porphyromonas gingivalis infection affects intestinal microbiota and promotes atherosclerosis. J Clin Periodontol 2023; 50:1553-1567. [PMID: 37621247 DOI: 10.1111/jcpe.13864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
AIM The link between periodontitis and intestinal dysbiosis, two factors that contribute to atherosclerosis, has not been clearly defined. We investigated the integrative effects of oral infection with Porphyromonas gingivalis (PG), the major pathogen for periodontitis, on intestinal microbiota and atherosclerosis. MATERIALS AND METHODS ApoE-/- mice were fed a normal chow diet (NC), a Western diet (WD) or a WD with oral PG infection (PG). The PG infection was investigated by placing a total of 109 CFUs of live PG into the oral cavity of each mouse using a feeding needle five times a week for 3 weeks. Atherosclerotic lesions of the aortae were measured, and blood lipoproteins and the expression of molecules related to lipid metabolism in the liver were analysed. We also performed 16S RNA sequencing and a microbiome analysis using faeces. RESULTS En face bloc preparation of the aortae showed that the PG group had a 1.7-fold increase in atherosclerotic lesions compared with the WD group (p < .01). Serum analyses showed that oral PG infection induced a significant decrease in high-density lipoprotein (HDL) and triglyceride. Western blots of hepatic tissue lysates revealed that PG infection reduced the expression of scavenger receptor class B type 1 (SR-B1) in the liver by 50%. Faecal microbiota analysis revealed that species richness estimates (Chao1, ACE) decreased immediately after PG infection. PG infection also induced a significant decrease in Shannon diversity and an increase in Simpson's indices in the WD-fed mice. PG infection significantly increased the phyla Actinobacteria and Deferribacteres, along with the species Mucispirillum schaedleri and Lactobacillus gasseri, in the mice. The functional study showed that PG infection increased the expression of proteins that function in carbohydrate and glucose metabolism, including phosphotransferase system (PTS) proteins and the GntR family transcriptional regulator. CONCLUSIONS Oral PG infection promotes atherosclerosis and induces significant metabolic changes, including reduced serum HDL and reduced hepatic SR-B1 and ABCA1 expression, as well as changes in intestinal microbiota. Our study suggests that intestinal dysbiosis accompanies periodontitis and could play a role in atherosclerosis.
Collapse
Affiliation(s)
- Sowon Park
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Inyoung Kim
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Soo Jung Han
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Soyeon Kwon
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Eun-Ji Min
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Wonkyoung Cho
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Hong Koh
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Seok Lee
- Department of Periodontics, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Won Ha
- Cardiology Division, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Mi Park
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Yamada C, Ho A, Nusbaum A, Xu R, Davey ME, Nichols F, Mao C, Movila A. Inhibitory effect of Porphyromonas gingivalis-derived phosphoethanolamine dihydroceramide on acid ceramidase expression in oral squamous cells. J Cell Mol Med 2023; 27:1290-1295. [PMID: 37016912 PMCID: PMC10148054 DOI: 10.1111/jcmm.17722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 04/06/2023] Open
Abstract
The maintenance of diminished acid ceramidase (ASAH1) gene expression leading to the accumulation of antiproliferative intracellular ceramides in oral squamous cell carcinoma (OSCC) has emerged as a prospective oral cancer therapeutic regimen. Our published study demonstrated that the key periodontal pathogen Porphyromonas gingivalis downregulates the expression patterns of ASAH1 mRNA in normal epithelial cells in vitro. Therefore, P. gingivalis may also beneficially diminish the expression of ASAH1 in OSCC. Because a uniquely structured P. gingivalis-derived phosphoethanolamine dihydroceramide (PEDHC) inhibits the proliferation of normal human fibroblasts, this study aimed to test the effect of PEDHC on the survival of human oral squamous OECM-1 cells in vitro. We demonstrated that the P. gingivalis dihydroceramide-null (ΔPG1780) strain upregulates the expression of ASAH1 mRNA and promotes aggressive proliferation and migration of OECM-1 cells compared to the parent P. gingivalis-W83 strain. In addition, the intracellular concentration of ceramides was dramatically elevated in OECM-1 cells exposed to PEDHC in vitro. Furthermore, PEDHC inhibited expression patterns of ASAH1 mRNA as well as some genes associated with degradation of the basement membranes and extracellular matrix, for example, MMP-2, ADAM-17 and IL-6, in OECM-1 cells. Altogether, these data indicated that PEDHC produced by P. gingivalis inhibits acid ceramidase expression, promotes intracellular ceramide accumulation and suppresses the survival and migration of OSCC cells in vitro. Further studies are needed to determine molecular mechanisms of PEDHC-mediated inhibitory effect(s) on OSCC using in vivo models of oral cancer.
Collapse
Affiliation(s)
- Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
| | - Anny Ho
- Institute for Neuro‐Immune MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Amilia Nusbaum
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ruijuan Xu
- Department of Medicine, Stony Brook Cancer CenterRenaissance School of MedicineThe State University of New York at Stony BrookStony BrookNew YorkUSA
| | - Mary Ellen Davey
- Department of MicrobiologyThe Forsyth InstituteCambridgeMassachusettsUSA
| | - Frank Nichols
- Department of Oral Health and Diagnostic SciencesUniversity of Connecticut School of Dental MedicineFarmingtonConnecticutUSA
| | - Cungui Mao
- Department of Medicine, Stony Brook Cancer CenterRenaissance School of MedicineThe State University of New York at Stony BrookStony BrookNew YorkUSA
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
8
|
Manikandan P, Veeraraghavan VP, Sekaran S, Rengasamy G, Eswaramoorthy R. Molecular docking analysis of oxazole compounds with the heme-binding protein from Porphyromonas gingivalis. Bioinformation 2023; 19:105-110. [PMID: 37720292 PMCID: PMC10504525 DOI: 10.6026/97320630019105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
Porphyromonas gingivalis, a peripathogen, has several methods to impede or modify the protective mechanisms of the teeth. Targeting the inhibition of the heme protein will prevent the organism from multiplying and inhibit the virulence mechanism. The literature derived oxazole compounds (1-5) were docked against the protein's active site, and the results show that the selected oxazole derivatives exhibit better interaction compared to clinically proven drugs.
Collapse
Affiliation(s)
- Pranaw Manikandan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, India
| | - Surya Sekaran
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077, India
| | - Gayathri Rengasamy
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, India
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077, India
| |
Collapse
|
9
|
Omori M, Kato-Kogoe N, Sakaguchi S, Komori E, Inoue K, Yamamoto K, Hamada W, Hayase T, Tano T, Nakamura S, Nakano T, Une H, Ueno T. Characterization of Oral Microbiota Following Chemotherapy in Patients With Hematopoietic Malignancies. Integr Cancer Ther 2023; 22:15347354231159309. [PMID: 36922730 PMCID: PMC10021090 DOI: 10.1177/15347354231159309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Oral microbiota may be associated with serious local or systemic medical conditions resulting from chemotherapy. This study was conducted to evaluate the changes in the oral microbiota following the initiation of chemotherapy in patients with hematopoietic malignancies and to identify the characteristics of the oral microbiota associated with oral mucositis. Oral samples were collected from 57 patients with hematopoietic malignancies at 2 time points: before the start of chemotherapy and 8 to 20 days after the start of chemotherapy, when chemotherapy-induced oral mucositis often occurs, and 16S rRNA metagenomic analyses were performed. Comparative and linear discriminant analysis effect size (LEfSe) analyses were used to determine the characteristic bacterial groups before and after the initiation of chemotherapy and in those who developed oral mucositis. The alpha and beta diversities of oral microbiota before and after the initiation of chemotherapy differed significantly (operational taxonomic unit index, P < .001; Shannon's index, P < .001; unweighted UniFrac distances, P = .001; and weighted UniFrac distances, P = .001). The LEfSe analysis revealed a group of bacteria whose abundance differed significantly before and after the initiation of chemotherapy. In the group of patients who developed oral mucositis, a characteristic group of bacteria was identified before the start of chemotherapy. In conclusion, we characterized the oral microbiota associated with the initiation of chemotherapy in patients with hematopoietic malignancies. In addition, our findings suggest that oral microbiota composition before the start of chemotherapy may be associated with oral mucositis. The results of this study emphasize the importance of oral management focusing on the oral microbiota during chemotherapy in patients with hematologic malignancies.
Collapse
Affiliation(s)
- Michi Omori
- Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | | | | | - Eri Komori
- Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuya Inoue
- Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kayoko Yamamoto
- Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Wataru Hamada
- Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tomoyoshi Hayase
- Chugoku Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuyama, Japan
| | - Tomoyuki Tano
- Chugoku Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuyama, Japan
| | | | - Takashi Nakano
- Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hidenori Une
- Chugoku Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuyama, Japan
| | - Takaaki Ueno
- Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
10
|
Satish S, Rengasamy G, Sekaran S, Sankaran K, Veeraraghavan VP, Eswaramoorthy R. Molecular docking analysis of protein filamin-A with thioazo compounds. Bioinformation 2023; 19:99-104. [PMID: 37720273 PMCID: PMC10504497 DOI: 10.6026/97320630019099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
It is of interest to document the molecular docking analysis of protein Filamin-A with thioazo compounds. The compounds 1, 3, 5, and 6 showed best molecular docking interaction as compared to the drug doxorubicin. Among the selected ligands (1-6), compound 3 shows better interaction score than doxorubicin and follows Lipinski's rule of five. Hence, it could be considered as a potential lead molecule for inhibiting protein filamin A in the treatment of oral cancer.
Collapse
Affiliation(s)
- Sudarshan Satish
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Gayathri Rengasamy
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Surya Sekaran
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077
| | - Kavitha Sankaran
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077
| |
Collapse
|
11
|
Miyabe M, Nakamura N, Saiki T, Miyabe S, Ito M, Sasajima S, Minato T, Matsubara T, Naruse K. Porphyromonas gingivalis Lipopolysaccharides Promote Proliferation and Migration of Human Vascular Smooth Muscle Cells through the MAPK/TLR4 Pathway. Int J Mol Sci 2022; 24:ijms24010125. [PMID: 36613563 PMCID: PMC9820797 DOI: 10.3390/ijms24010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a major cause of mortality worldwide. The initial change in atherosclerosis is intimal thickening due to muscle cell proliferation and migration. A correlation has been observed between periodontal disease and atherosclerosis. Here, we investigated the proliferation and migration of human aortic smooth muscle cells (HASMCs) using Porphyromonas gingivalis-derived LPS (Pg-LPS). To elucidate intracellular signaling, toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) of HASMCs were knocked down, and the role of these molecules in Pg-LPS-stimulated proliferation and migration was examined. The role of mitogen-activated protein kinase (MAPK) in HASMC proliferation and migration was further elucidated by MAPK inhibition. Pg-LPS stimulation increased the proliferation and migration of HASMCs and activated the TLR4/MyD88 pathway. TLR4 knockdown inhibited Pg-LPS stimulated HASMCs proliferation and migration. Pg-LPS stimulation led to the phosphorylation of P38 MAPK, JNK, and ERK, and MyD88 knockdown inhibited the phosphorylation of P38 MAPK and JNK but not ERK. P38 MAPK and SAPK/JNK inhibition did not suppress the proliferation of HASMCs upon Pg-LPS stimulation, but ERK inhibition significantly inhibited proliferation. SAPK/JNK and ERK inhibition suppressed Pg-LPS-stimulated migration of HASMCs. In conclusion, our findings suggest that Pg-LPS may promote atherosclerosis via the activation of MAPK through TLR4.
Collapse
Affiliation(s)
- Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
- Correspondence: ; Tel./Fax: +81-52-759-2168
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Tomokazu Saiki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
- Department of Pharmacy, Aichi Gakuin University Dental Hospital, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Satoru Miyabe
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Mizuho Ito
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Sachiko Sasajima
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Tomomi Minato
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
- Department of Clinical Laboratory, Aichi Gakuin University Dental Hospital, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Tatsuaki Matsubara
- The Graduate Center of Human Sciences, Aichi Mizuho College, Syunko-cho, Mizuho-ku, Nagoya 467-0867, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 2-11, Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| |
Collapse
|
12
|
Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol 2022; 12:1026457. [PMID: 36467726 PMCID: PMC9712990 DOI: 10.3389/fcimb.2022.1026457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
The association between periodontal disease and systemic disease has become a research hotspot. Porphyromonas gingivalis (P. gingivalis), a crucial periodontal pathogen, affects the development of systemic diseases. The pathogenicity of P. gingivalis is largely linked to interference with the host's immunity. This review aims to discover the role of P. gingivalis in the modulation of the host's adaptive immune system through a large number of virulence factors and the manipulation of cellular immunological responses (mainly mediated by T cells). These factors may affect the cause of large numbers of systemic diseases, such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's disease. The point of view of adaptive immunity may provide a new idea for treating periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
13
|
Curia MC, Pignatelli P, D’Antonio DL, D’Ardes D, Olmastroni E, Scorpiglione L, Cipollone F, Catapano AL, Piattelli A, Bucci M, Magni P. Oral Porphyromonas gingivalis and Fusobacterium nucleatum Abundance in Subjects in Primary and Secondary Cardiovascular Prevention, with or without Heterozygous Familial Hypercholesterolemia. Biomedicines 2022; 10:biomedicines10092144. [PMID: 36140246 PMCID: PMC9496065 DOI: 10.3390/biomedicines10092144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Low-grade chronic inflammation, promoted by dysbiosis of the gut and oral microbiota, has been shown to contribute to individual susceptibility to atherosclerotic cardiovascular disease (ASCVD). High oral Porphyromonas gingivalis (Pg) and lower Fusobacterium nucleatum (Fn) concentrations have been associated with clinical and experimental atherosclerosis. We assessed oral Pg and Fn abundance in very high-risk patients with previously diagnosed ASCVD, with or without heterozygous familial hypercholesterolemia (HeFH), in subjects with HeFH in primary prevention and in healthy subjects. Methods: In this cross-sectional study, 40 patients with previously diagnosed ASCVD (10 with genetically proven HeFH, and 30 without FH), 26 subjects with HeFH in primary prevention, and 31 healthy subjects were selected to quantify oral Pg and Fn abundance by qPCR and assess oral health status. Results: Compared to healthy subjects, patients with previously diagnosed ASCVD showed greater Pg abundance (1101.3 vs. 192.4, p = 0.03), but similar Fn abundance. HeFH patients with ASCVD had an even greater Pg abundance than did non-HeFH patients and healthy subjects (1770.6 vs. 758.4 vs. 192.4, respectively; p = 0.048). No differences were found in the levels of Pg and Fn abundance in HeFH subjects in primary prevention, as compared to healthy subjects. Conclusions: Greater oral Pg abundance is present in very high-risk patients with previously diagnosed ASCVD, with or without FH, suggesting a potential relationship with CV events. Future studies will assess the predictive value of Pg abundance measurement in ASCVD risk stratification.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (M.C.C.); (M.B.); (P.M.)
| | - Pamela Pignatelli
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
- Department of Oral and Maxillofacial Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
| | - Damiano D’Ardes
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, “SS Annunziata” Hospital—ASL, 66100 Chieti, Italy
- C.A.S.T., Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
| | - Elena Olmastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Luca Scorpiglione
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, “SS Annunziata” Hospital—ASL, 66100 Chieti, Italy
- C.A.S.T., Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Cipollone
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, “SS Annunziata” Hospital—ASL, 66100 Chieti, Italy
- C.A.S.T., Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
| | - Alberico Luigi Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Adriano Piattelli
- Master Course in Microsurgery in Odontostomatology, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy
- Fondazione Villaserena per la Ricerca, 65013 Città Sant’Angelo, Pescara, Italy
- Casa di Cura Villa Serena, 65013 Città Sant’Angelo, Pescara, Italy
| | - Marco Bucci
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, “SS Annunziata” Hospital—ASL, 66100 Chieti, Italy
- C.A.S.T., Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (M.C.C.); (M.B.); (P.M.)
| | - Paolo Magni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (M.C.C.); (M.B.); (P.M.)
| |
Collapse
|
14
|
Kim S, Bando Y, Chang C, Kwon J, Tarverti B, Kim D, Lee SH, Ton-That H, Kim R, Nara PL, Park NH. Topical application of Porphyromonas gingivalis into the gingival pocket in mice leads to chronic‑active infection, periodontitis and systemic inflammation. Int J Mol Med 2022; 50:103. [PMID: 35703359 PMCID: PMC9242655 DOI: 10.3892/ijmm.2022.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis (Pg), one of the 'red-complex' perio-pathogens known to play a critical role in the development of periodontitis, has been used in various animal models to mimic human bacteria-induced periodontitis. In order to achieve a more realistic animal model of human Pg infection, the present study investigated whether repeated small-volume topical applications of Pg directly into the gingival pocket can induce local infection, including periodontitis and systemic vascular inflammation in wild-type mice. Freshly cultured Pg was topically applied directly into the gingival pocket of the second molars for 5 weeks (3 times/week). After the final application, the mice were left in cages for 4 or 8 weeks and sacrificed. The status of Pg colony formation in the pocket, gingival inflammation, alveolar bone loss, the expression levels of pro-inflammatory cytokines in the serum and aorta, the presence of anti-Pg lipopolysaccharide (LPS) and gingipain (Kpg and RgpB) antibodies in the serum, as well as the accumulation of Pg LPS and gingipain aggregates in the gingiva and arterial wall were evaluated. The topical application of Pg into the gingival pocket induced the following local and systemic pathohistological changes in mice when examined at 4 or 8 weeks after the final topical Pg application: Pg colonization in the majority of gingival pockets; increased gingival pocket depths; gingival inflammation indicated by the increased expression of TNF-α, IL-6 and IL-1β; significant loss of alveolar bone at the sites of topical Pg application; and increased levels of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-17, IL-13, KC and IFN-γ in the serum in comparison to those from mice receiving PBS. In addition, the Pg application/colonization model induced anti-Pg LPS and gingipain antibodies in serum, as well as the accumulation of Pg LPS and gingipain aggregates in the gingivae and arterial walls. To the best of our knowledge, this mouse model represents the first example of creating a more sustained local infection in the gingival tissues of wild-type mice and may prove to be useful for the investigation of the more natural and complete pathogenesis of the bacteria in the development of local oral and systemic diseases, such as atherosclerosis. It may also be useful for the determination of a treatment/prevention/efficacy model associated with Pg-induced colonization periodontitis in mice.
Collapse
Affiliation(s)
- Sharon Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yasuhiko Bando
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Chungyu Chang
- Section of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Jeonga Kwon
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Berta Tarverti
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Doohyun Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Hung Ton-That
- Section of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Reuben Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Peter L Nara
- Keystone Bio Incorporated, Suite 200, St. Louis, MO 63110, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Cardiovascular Diseases and Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:261-280. [PMID: 35612803 DOI: 10.1007/978-3-030-96881-6_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontitis is a chronic inflammatory disease of the tooth-supporting connective tissue and alveolar bone that is initiated by a bacterial biofilm in periodontal pockets. It affects about half of adults in the Western world, and is associated with a range of systemic comorbidities, e.g., cardiovascular disease (CVD), diabetes and rheumatoid arthritis, and these diseases share overlapping systemic and target tissue inflammatory mechanisms. Indeed, mounting evidence has indicated that their association is causal and built on the presence of systemic low-grade inflammation (LGI). Prior research linking periodontitis to CVD has mainly been derived from experimental studies, observational data, and small interventional trials with surrogate markers of CVD, e.g., endothelial dysfunction. However, recent data from randomised studies have demonstrated that intensive treatment of periodontitis can reduce blood pressure in patients with hypertension in conjunction with reduction of systemic inflammatory markers. Furthermore, targeted anti-inflammatory therapy has been shown to reduce recurrent events in patients with established CVD and LGI. Along this line, the concept of residual inflammatory risk has emerged as an independent new risk factor for atherothrombotic CVD. The present review summarizes translational evidence indicating that periodontitis is a risk factor for CVD dependent on LGI, and we conclude that treatment of periodontitis is likely to contribute importantly to reduction of residual inflammatory risk.
Collapse
|
16
|
Zhou J, Liu L, Wu P, Zhao L, Wu Y. Fusobacterium nucleatum Accelerates Atherosclerosis via Macrophage-Driven Aberrant Proinflammatory Response and Lipid Metabolism. Front Microbiol 2022; 13:798685. [PMID: 35359716 PMCID: PMC8963492 DOI: 10.3389/fmicb.2022.798685] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
Periodontitis, an oral chronic inflammatory disease, is reported to show an association with atherosclerotic vascular disease. Fusobacterium nucleatum is an oral commensal bacterium that is abundantly implicated in various forms of periodontal diseases; however, its role in the pathogenesis of atherosclerosis is unclear. This study aimed to elucidate the underlying pathogenic mechanisms of atherosclerosis induced by F. nucleatum to provide new insight on the prevention and treatment of atherosclerosis. We used an animal model, that is, ApoE–/– mice were infected with F. nucleatum by oral gavage, and in vitro co-culture models to assess the pathogenicity of F. nucleatum. The results indicate that F. nucleatum ATCC 25586 invaded aortic tissues and substantially increased the progression of atherosclerotic lesions. In addition, F. nucleatum changed plaque composition into a less-stable phenotype, characterized with increased subcutaneous macrophage infiltration, M1 polarization, lipid deposition, cell apoptosis, and reduced extracellular matrix and collagen content. The serum levels of pro-atherosclerotic factors, such as interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1 (MCP-1), c-reactive protein, and oxidized low-density lipoprotein (ox-LDL) and microRNAs (miR-146a, miR-155, and miR-23b) were considerably increased after F. nucleatum stimulation, whereas HDL-c level was reduced. F. nucleatum induced in vitro macrophage apoptosis in a time- and dose-dependent manner. F. nucleatum facilitated ox-LDL–induced cholesterol phagocytosis and accumulation by regulating the expression of lipid metabolism-related genes (AR-A1, ACAT1, ABCA1, and ABCG1). F. nucleatum further worsened the atherosclerotic plaque microenvironment by considerably increasing the levels of IL-6; IL-1β; TNF-α; MCP-1; and MMP-2, 8, and 9 and by suppressing fibronectin (FN) 1 levels during foam cell formation. This study shows that F. nucleatum ATCC 25586 is implicated in atherosclerosis by causing aberrant activation and lipid metabolism in macrophage.
Collapse
Affiliation(s)
- Jieyu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Xiao L, Huang L, Zhou X, Zhao D, Wang Y, Min H, Song S, Sun W, Gao Q, Hu Q, Xie S. Experimental Periodontitis Deteriorated Atherosclerosis Associated With Trimethylamine N-Oxide Metabolism in Mice. Front Cell Infect Microbiol 2022; 11:820535. [PMID: 35118014 PMCID: PMC8804528 DOI: 10.3389/fcimb.2021.820535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Periodontitis is considered a risk factor for atherosclerosis, but the mechanism is not clear. It was reported that oral administration of Porphyromonas gingivalis altered the gut microbiota in mice. Gut dysbiosis and the intestinal metabolite trimethylamine N-oxide (TMAO) were verified to be associated with atherosclerosis. Therefore, the possible TMAO-related mechanism between periodontitis and atherosclerosis needs to be explored. Methods Experimental periodontitis was established by oral administration of P. gingivalis for 2 months in ApoE−/− mice. Mouse hemi-mandibles were scanned using Micro-CT. Quantification of TMAO was performed using liquid chromatography–tandem mass spectrometry. Mouse feces were collected and the bacterial DNA was extracted, then the gut microbiota was analyzed using 16S rRNA genes. Atherosclerotic lesion areas were quantified. Livers, small intestines, and large intestines were analyzed for gene expression. Results Aggravated atherosclerosis plaques were found in experimental periodontitis mice. Plasma TMAO, a pathogenic factor of atherosclerosis, was initially found to be increased in periodontitis mice. Changes in the composition and abundance of the intestinal microflora of periodontitis mice were found. Flavin monooxygenase 3 (FMO3), the catalyzing enzyme of TMAO in the liver, was significantly increased, accompanied by an increase of IL-6 in liver, the abnormal intestinal integrity and enhanced plasma LPS. The IL-6 and LPS were verified to be able to increase FMO3 in HepG2 cells. Conclusion Our research discovered that experimental periodontitis in ApoE−/− mice induced gut dysbiosis and an increase in TMAO. These results suggest a possible mechanism by which periodontitis may accelerate atherosclerosis by influencing the intestinal microbes and the metabolism, which were triggered by inflammation of the liver and intestine.
Collapse
Affiliation(s)
- Lingling Xiao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Stomatology, The Second People’s Hospital of Taizhou, Taizhou, China
| | - Lingyan Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Zhou
- The Affiliated Stomatological Hospital of Soochow University, Suzhou, China
| | - Dan Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haiyan Min
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Weibin Sun
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sijing Xie, ; Qingang Hu, ; Qian Gao,
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sijing Xie, ; Qingang Hu, ; Qian Gao,
| | - Sijing Xie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sijing Xie, ; Qingang Hu, ; Qian Gao,
| |
Collapse
|
18
|
Sasaki M, Shimoyama Y, Kodama Y, Ishikawa T. Tryptophanyl tRNA Synthetase from Human Macrophages Infected by Porphyromonas gingivalis Induces a Proinflammatory Response Associated with Atherosclerosis. Pathogens 2021; 10:1648. [PMID: 34959604 PMCID: PMC8708850 DOI: 10.3390/pathogens10121648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Porphyromonas gingivalis is the most common microorganism associated with adult periodontal disease, causing inflammation around the subgingival lesion. In this study, we investigated tryptophanyl tRNA synthase (WRS) production by THP-1 cells infected with P. gingivalis. Cytokine production, leukocyte adhesion molecules, and low-density lipoprotein receptor (LDLR) expressions in cultured cells were examined. WRS was detected in THP-1 cell culture supernatants stimulated with P. gingivalis from 1 to 24 h, and apparent production was observed after 4 h. No change in WRS mRNA expression was observed from 1 to 6 h in THP-1 cells, whereas its expression was significantly increased 12 h after stimulation with P. gingivalis. Lactate dehydrogenase (LDH) activity was observed from 4 to 24 h. The TNF-α, IL-6, IL-8, and CXCL2 levels of THP-1 cells were upregulated after treatment with recombinant WRS (rWRS) and were significantly reduced when THP-1 cells were treated with C29. The MCP-1, ICAM-1, and VCAM-1 levels in human umbilical vein endothelial cells were upregulated following treatment with rWRS, and TAK242 suppressed these effects. Additionally, unmodified LDLR, macrophage scavenger receptor A, and lectin-like oxidized LDLRs were upregulated in THP-1 cells treated with rWRS. These results suggest that WRS from macrophages infected with P. gingivalis is associated with atherosclerosis.
Collapse
Affiliation(s)
- Minoru Sasaki
- Department of Microbiology, Division of Molecular Microbiology, Iwate Medical University, Morioka 028-3694, Japan; (Y.S.); (Y.K.); (T.I.)
| | | | | | | |
Collapse
|
19
|
Lee JS, Yoon S, Han SJ, Kim ED, Kim J, Shin HS, Seo KY. Eyedrop vaccination: an immunization route with promises for effective responses to pandemics. Expert Rev Vaccines 2021; 21:91-101. [PMID: 34788181 DOI: 10.1080/14760584.2022.2008246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mucosal vaccines have several advantages over parenteral vaccines. They induce both systemic and mucosal antigen-specific immune responses, allow easy administration, and bypass the need for trained medical personnel. AREAS COVERED Eye mucosa is a novel route of mucosal vaccine administration. Eyedrop vaccination induces systemic and mucosal immune responses similar to other forms of mucosal vaccines such as oral and intranasal vaccines. EXPERT OPINION Eyedrop vaccines are free of serious adverse side effects like the infiltration of CNS by pathogens. Studies over the years have shown promising results for eye drop vaccines against infectious agents like the influenza virus, Salmonella typhi, and Escherichia coli in animal models. Such efficacy and safety of eyedrop vaccination enable the application of eyedrop vaccines against other infectious diseases as well as chronic diseases. In this review of published literature, we examine the mechanism, efficacy, and safety of eyedrop vaccines and contemplate their role in times of a pandemic.
Collapse
Affiliation(s)
- Jihei Sara Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sangchul Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Department of Medical Humanities and Social Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Jung Han
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Do Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jiyeon Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Hae-Sol Shin
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Korea Mouse Sensory Phenotyping Center (Kmspc), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Korea Mouse Sensory Phenotyping Center (Kmspc), Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Blanco C, Liñares A, Dopico J, Pico A, Sobrino T, Leira Y, Blanco J. Peri-implantitis, systemic inflammation, and dyslipidemia: a cross-sectional biochemical study. J Periodontal Implant Sci 2021; 51:342-351. [PMID: 34713995 PMCID: PMC8558006 DOI: 10.5051/jpis.2100920046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose The aim of this study was to compare the inflammatory and lipid profile of patients with and without peri-implantitis. Methods A cross-sectional biochemical study was carried out in which blood samples were collected from 16 patients with peri-implantitis and from 31 subjects with healthy implants. Clinical peri-implant parameters were obtained from all subjects. Levels of tumor necrosis factor-alpha and interleukin-10 (IL-10) were measured in serum. Lipid fractions, glucose and creatinine levels, and complete blood count were also assessed. Results After controlling for a history of periodontitis, statistically significant differences between peri-implantitis patients and controls were found for total cholesterol (estimated adjusted mean difference, 76.4 mg/dL; 95% confidence interval [CI], 39.6, 113.2 mg/dL; P<0.001), low-density lipoprotein (LDL) cholesterol (estimated adjusted mean difference, 57.7 mg/dL; 95% CI, 23.8, 91.6 mg/dL; P<0.001), white blood cells (WBC) (estimated adjusted mean difference, 2.8×103/μL; 95% CI, 1.6, 4.0×103/μL; P<0.001) and IL-10 (estimated adjusted mean difference, −10.4 pg/mL; 95% CI, −15.8, −5.0 pg/mL; P<0.001). The peri-implant probing pocket depth (PPD) was modestly positively correlated with total cholesterol (r=0.512; P<0.001), LDL cholesterol (r=0.463; P=0.001), and WBC (r=0.519; P<0.001). A moderate negative correlation was observed between IL-10 and PPD (r=0.609; P<0.001). Conclusions Otherwise healthy individuals with peri-implantitis showed increased low-grade systemic inflammation and dyslipidemia.
Collapse
Affiliation(s)
- Carlota Blanco
- Periodontology Unit, Faculty of Odontology, University of Santiago de Compostela & Medical-Surgical Dentistry Research Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Liñares
- Periodontology Unit, Faculty of Odontology, University of Santiago de Compostela & Medical-Surgical Dentistry Research Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Dopico
- Periodontology Unit, Faculty of Odontology, University of Santiago de Compostela & Medical-Surgical Dentistry Research Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alex Pico
- Periodontology Unit, Faculty of Odontology, University of Santiago de Compostela & Medical-Surgical Dentistry Research Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Yago Leira
- Periodontology Unit, Faculty of Odontology, University of Santiago de Compostela & Medical-Surgical Dentistry Research Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.,Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.,Periodontology Unit, UCL Eastman Dental Institute & NIHR UCLH Biomedical Research Centre, University College London, London, United Kingdom.
| | - Juan Blanco
- Periodontology Unit, Faculty of Odontology, University of Santiago de Compostela & Medical-Surgical Dentistry Research Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Bregaint S, Boyer E, Fong SB, Meuric V, Bonnaure-Mallet M, Jolivet-Gougeon A. Porphyromonas gingivalis outside the oral cavity. Odontology 2021; 110:1-19. [PMID: 34410562 DOI: 10.1007/s10266-021-00647-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/31/2021] [Indexed: 12/14/2022]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacillus present in periodontal disease, is considered one of the major pathogens in periodontitis. A literature search for English original studies, case series and review articles published up to December 2019 was performed using the MEDLINE, PubMed and GoogleScholar databases, with the search terms "Porphyromonas gingivalis" AND the potentially associated condition or systemic disease Abstracts and full text articles were used to make a review of published research literature on P. gingivalis outside the oral cavity. The main points of interest of this narrative review were: (i) a potential direct action of the bacterium and not the systemic effects of the inflammatory acute-phase response induced by the periodontitis, (ii) the presence of the bacterium (viable or not) in the organ, or (iii) the presence of its virulence factors. Virulence factors (gingipains, capsule, fimbriae, hemagglutinins, lipopolysaccharide, hemolysin, iron uptake transporters, toxic outer membrane blebs/vesicles, and DNA) associated with P. gingivalis can deregulate certain functions in humans, particularly host immune systems, and cause various local and systemic pathologies. The most recent studies linking P. gingivalis to systemic diseases were discussed, remembering particularly the molecular mechanisms involved in different infections, including cerebral, cardiovascular, pulmonary, bone, digestive and peri-natal infections. Recent involvement of P. gingivalis in neurological diseases has been demonstrated. P. gingivalis modulates cellular homeostasis and increases markers of inflammation. It is also a factor in the oxidative stress involved in beta-amyloid production.
Collapse
Affiliation(s)
- Steeve Bregaint
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Emile Boyer
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Shao Bing Fong
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Vincent Meuric
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Martine Bonnaure-Mallet
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Anne Jolivet-Gougeon
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France. .,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France.
| |
Collapse
|
22
|
Mikami R, Mizutani K, Matsuyama Y, Matsuura T, Kido D, Takeda K, Takemura S, Nakagawa K, Mukaiyama Y, Suda T, Yasuda T, Ohta S, Takaya N, Fujiwara T, Izumi Y, Iwata T. Association between periodontal inflammation and serum lipid profile in a healthy population: A cross-sectional study. J Periodontal Res 2021; 56:1037-1045. [PMID: 34273107 DOI: 10.1111/jre.12917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023]
Abstract
AIMS The impact of periodontal inflammation on lipid metabolism is controversial. This study aimed to investigate the association between full-mouth periodontal inflammation and serum lipid levels. MATERIALS AND METHODS In this cross-sectional study, we performed periodontal and bacteriological examinations during medical checkup on 131 subjects. The association between the periodontal inflamed surface area (PISA) and the lipid markers was analyzed by multiple linear regression, adjusting for age, sex, smoking, and body mass index. RESULTS Overall, 118 medically healthy participants were analyzed. The proportions of none, mild, moderate, and severe periodontitis were 37.3%, 32.2%, 25.4%, and 5.1%, respectively. Multivariate analysis showed that high-density lipoprotein cholesterol was significantly higher in participants with the lowest tertile of PISA values (PISA low, coefficient: 7.94; 95% confidence interval [CI]: 1.63, 14.26, p = .01) compared to those in other tertiles (PISA high). Low-density/high-density lipoprotein cholesterol and total/high-density lipoprotein cholesterol ratios were significantly lower in the PISA-low group than the PISA-high group (coefficient: -0.26 and -0.30; 95% CI: -0.50, -0.02, and -0.59, -0.0002; p = .04 and .0498). Serum high-sensitivity C-reactive protein level, but not serum Porphyromonas gingivalis antibody titer, partly explained the association between PISA and high-density lipoprotein cholesterol. A significant interaction between female sex and PISA values toward high-density lipoprotein cholesterol level was detected. CONCLUSION Periodontal inflammation was inversely associated with higher high-density lipoprotein cholesterol, especially in females. Elevated serum C-reactive protein partly explained this association.
Collapse
Affiliation(s)
- Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yusuke Matsuyama
- Department of Global Health Promotion, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Matsuura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Daisuke Kido
- Department of General Dentistry, Tokyo Medical and Dental University Dental Hospital, Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuto Mukaiyama
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | | | | | | - Takeo Fujiwara
- Department of Global Health Promotion, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Oral Care Perio Center, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Fukushima, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
23
|
Chigasaki O, Aoyama N, Sasaki Y, Takeuchi Y, Mizutani K, Ikeda Y, Gokyu M, Umeda M, Izumi Y, Iwata T, Aoki A. Porphyromonas gingivalis, the most influential pathogen in red-complex bacteria: A cross-sectional study on the relationship between bacterial count and clinical periodontal status in Japan. J Periodontol 2021; 92:1719-1729. [PMID: 33856713 DOI: 10.1002/jper.21-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/16/2021] [Accepted: 04/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Porphyromonas gingivalis is a key pathogen in microbiota associated with periodontitis. The purpose of the present study was to assess the association between salivary counts of red-complex bacteria and clinical periodontal status in a Japanese population. METHODS A total of 977 subjects who visited a general dental clinic in Japan from 2003 to 2006 were enrolled in the study. Stimulated saliva was obtained, and the amounts of major periodontal bacteria were measured using real-time polymerase chain reaction. Probing pocket depth (PPD), bleeding on probing (BOP), and each subject's average proximal bone crest level (BCL) on dental radiographs were measured. RESULTS The number of P. gingivalis strongly associated with percentage of 4 mm or more PPD sites, BOP positive percentage, and 1.5 mm or more BCL sites. The detection of P. gingivalis with Treponema denticola and/or Tannerella forsythia showed a high rate of three positive clinical parameters, whereas the only P. gingivalis detected group and those without P. gingivalis had a low rate of three positive clinical parameters. CONCLUSION Among red-complex bacteria, the amount of P. gingivalis showed the strongest association with the severity of periodontal condition, and co-occurrence of P. gingivalis with T. denticola and/or T. forsythia showed heightened progression of periodontitis.
Collapse
Affiliation(s)
- Otofumi Chigasaki
- Tsukuba Health-Care Dental Clinic, Tsukuba, Japan.,Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Norio Aoyama
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Department of Oral Interdisciplinary Medicine, Kanagawa Dental University, Yokosuka, Japan
| | - Yoshiyuki Sasaki
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Koji Mizutani
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yuichi Ikeda
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Misa Gokyu
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Japan
| | - Yuichi Izumi
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Oral Care Perio Center, Southern Tohoku General Hospital, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Takanori Iwata
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Akira Aoki
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
24
|
Sethi NJ, Safi S, Korang SK, Hróbjartsson A, Skoog M, Gluud C, Jakobsen JC. Antibiotics for secondary prevention of coronary heart disease. Cochrane Database Syst Rev 2021; 2:CD003610. [PMID: 33704780 PMCID: PMC8094925 DOI: 10.1002/14651858.cd003610.pub4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Coronary heart disease is the leading cause of mortality worldwide with approximately 7.4 million deaths each year. People with established coronary heart disease have a high risk of subsequent cardiovascular events including myocardial infarction, stroke, and cardiovascular death. Antibiotics might prevent such outcomes due to their antibacterial, antiinflammatory, and antioxidative effects. However, a randomised clinical trial and several observational studies have suggested that antibiotics may increase the risk of cardiovascular events and mortality. Furthermore, several non-Cochrane Reviews, that are now outdated, have assessed the effects of antibiotics for coronary heart disease and have shown conflicting results. No previous systematic review using Cochrane methodology has assessed the effects of antibiotics for coronary heart disease. OBJECTIVES We assessed the benefits and harms of antibiotics compared with placebo or no intervention for the secondary prevention of coronary heart disease. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, LILACS, SCI-EXPANDED, and BIOSIS in December 2019 in order to identify relevant trials. Additionally, we searched TRIP, Google Scholar, and nine trial registries in December 2019. We also contacted 11 pharmaceutical companies and searched the reference lists of included trials, previous systematic reviews, and other types of reviews. SELECTION CRITERIA Randomised clinical trials assessing the effects of antibiotics versus placebo or no intervention for secondary prevention of coronary heart disease in adult participants (≥18 years). Trials were included irrespective of setting, blinding, publication status, publication year, language, and reporting of our outcomes. DATA COLLECTION AND ANALYSIS Three review authors independently extracted data. Our primary outcomes were all-cause mortality, serious adverse event according to the International Conference on Harmonization - Good Clinical Practice (ICH-GCP), and quality of life. Our secondary outcomes were cardiovascular mortality, myocardial infarction, stroke, and sudden cardiac death. Our primary time point of interest was at maximum follow-up. Additionally, we extracted outcome data at 24±6 months follow-up. We assessed the risks of systematic errors using Cochrane 'Rosk of bias' tool. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) for dichotomous outcomes. We calculated absolute risk reduction (ARR) or increase (ARI) and number needed to treat for an additional beneficial outcome (NNTB) or for an additional harmful outcome (NNTH) if the outcome result showed a beneficial or harmful effect, respectively. The certainty of the body of evidence was assessed by GRADE. MAIN RESULTS We included 38 trials randomising a total of 26,638 participants (mean age 61.6 years), with 23/38 trials reporting data on 26,078 participants that could be meta-analysed. Three trials were at low risk of bias and the 35 remaining trials were at high risk of bias. Trials assessing the effects of macrolides (28 trials; 22,059 participants) and quinolones (two trials; 4162 participants) contributed with the vast majority of the data. Meta-analyses at maximum follow-up showed that antibiotics versus placebo or no intervention seemed to increase the risk of all-cause mortality (RR 1.06; 95% CI 0.99 to 1.13; P = 0.07; I2 = 0%; ARI 0.48%; NNTH 208; 25,774 participants; 20 trials; high certainty of evidence), stroke (RR 1.14; 95% CI 1.00 to 1.29; P = 0.04; I2 = 0%; ARI 0.73%; NNTH 138; 14,774 participants; 9 trials; high certainty of evidence), and probably also cardiovascular mortality (RR 1.11; 95% CI 0.98 to 1.25; P = 0.11; I2= 0%; 4674 participants; 2 trials; moderate certainty of evidence). Little to no difference was observed when assessing the risk of myocardial infarction (RR 0.95; 95% CI 0.88 to 1.03; P = 0.23; I2 = 0%; 25,523 participants; 17 trials; high certainty of evidence). No evidence of a difference was observed when assessing sudden cardiac death (RR 1.08; 95% CI 0.90 to 1.31; P = 0.41; I2 = 0%; 4520 participants; 2 trials; moderate certainty of evidence). Meta-analyses at 24±6 months follow-up showed that antibiotics versus placebo or no intervention increased the risk of all-cause mortality (RR 1.25; 95% CI 1.06 to 1.48; P = 0.007; I2 = 0%; ARI 1.26%; NNTH 79 (95% CI 335 to 42); 9517 participants; 6 trials; high certainty of evidence), cardiovascular mortality (RR 1.50; 95% CI 1.17 to 1.91; P = 0.001; I2 = 0%; ARI 1.12%; NNTH 89 (95% CI 261 to 49); 9044 participants; 5 trials; high certainty of evidence), and probably also sudden cardiac death (RR 1.77; 95% CI 1.28 to 2.44; P = 0.0005; I2 = 0%; ARI 1.9%; NNTH 53 (95% CI 145 to 28); 4520 participants; 2 trials; moderate certainty of evidence). No evidence of a difference was observed when assessing the risk of myocardial infarction (RR 0.95; 95% CI 0.82 to 1.11; P = 0.53; I2 = 43%; 9457 participants; 5 trials; moderate certainty of evidence) and stroke (RR 1.17; 95% CI 0.90 to 1.52; P = 0.24; I2 = 0%; 9457 participants; 5 trials; high certainty of evidence). Meta-analyses of trials at low risk of bias differed from the overall analyses when assessing cardiovascular mortality at maximum follow-up. For all other outcomes, meta-analyses of trials at low risk of bias did not differ from the overall analyses. None of the trials specifically assessed serious adverse event according to ICH-GCP. No data were found on quality of life. AUTHORS' CONCLUSIONS Our present review indicates that antibiotics (macrolides or quinolones) for secondary prevention of coronary heart disease seem harmful when assessing the risk of all-cause mortality, cardiovascular mortality, and stroke at maximum follow-up and all-cause mortality, cardiovascular mortality, and sudden cardiac death at 24±6 months follow-up. Current evidence does, therefore, not support the clinical use of macrolides and quinolones for the secondary prevention of coronary heart disease. Future trials on the safety of macrolides or quinolones for the secondary prevention in patients with coronary heart disease do not seem ethical. In general, randomised clinical trials assessing the effects of antibiotics, especially macrolides and quinolones, need longer follow-up so that late-occurring adverse events can also be assessed.
Collapse
Affiliation(s)
- Naqash J Sethi
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sanam Safi
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steven Kwasi Korang
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Asbjørn Hróbjartsson
- Centre for Evidence-Based Medicine Odense (CEBMO) and Cochrane Denmark, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Maria Skoog
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Clinical Study Support, Clinical Studies Sweden - Forum South, Lund, Sweden
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Tsuzuno T, Takahashi N, Yamada-Hara M, Yokoji-Takeuchi M, Sulijaya B, Aoki-Nonaka Y, Matsugishi A, Katakura K, Tabeta K, Yamazaki K. Ingestion of Porphyromonas gingivalis exacerbates colitis via intestinal epithelial barrier disruption in mice. J Periodontal Res 2021; 56:275-288. [PMID: 33512709 DOI: 10.1111/jre.12816] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/07/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effects of ingested periodontal pathogens on experimental colitis in mice and to elucidate its underlying mechanisms. BACKGROUND Inflammatory bowel disease (IBD) is defined as a chronic intestinal inflammation that results in damage to the gastrointestinal tract. Epidemiological studies have shown an association between IBD and periodontitis. Although a large number of ingested oral bacteria reach gastrointestinal tract constantly, the effect of ingested periodontal pathogens on intestinal inflammation is still unknown. METHODS Experimental colitis was induced by inclusion of dextran sodium sulfate solution in drinking water of the mice. Major periodontal pathogens (Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum) were administered orally every day during the experiment. The severity of colitis between the groups was compared. In vitro studies of the intestinal epithelial cell line were conducted to explore the molecular mechanisms by which periodontal pathogens affect the development of colitis. RESULTS The oral administration of P. gingivalis significantly increased the severity of colitis when compared to other pathogens in the DSS-induced colitis model. The ingested P. gingivalis disrupted the colonic epithelial barrier by decreasing the expression of tight junction proteins in vivo. In vitro permeability assays using the intestinal epithelial cell line suggested the P. gingivalis-specific epithelial barrier disruption. The possible involvement of gingipains in the exacerbation of colitis was implied by using P. gingivalis lacking gingipains. CONCLUSION Porphyromonas gingivalis exacerbates gastrointestinal inflammation by directly interacting with the intestinal epithelial barrier in a susceptible host.
Collapse
Affiliation(s)
- Takahiro Tsuzuno
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Miki Yamada-Hara
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji-Takeuchi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benso Sulijaya
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Yukari Aoki-Nonaka
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aoi Matsugishi
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kyoko Katakura
- Department of Gastroenterology, Iwase general hospital, Fukushima, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
26
|
Chen S, Ma D, Xiao S, Li P, Lei H, Huang X. Effects of chronic apical periodontitis on the inflammatory response of the aorta in hyperlipemic rats. Clin Oral Investig 2021; 25:3845-3852. [PMID: 33404761 DOI: 10.1007/s00784-020-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To study the effects of chronic apical periodontitis (CAP) on the inflammatory response and initial lesion of aorta in hyperlipemic rats. MATERIALS AND METHODS Sprague-Dawley (SD) rats aged 14 weeks were randomly divided into 4 experimental groups (n = 8), namely, normal diet (ND), high-fat diet (HFD), CAP, and HFD + CAP. The rats were raised under controlled conditions and fed with diet specified for each group. All subjects were euthanatized after 14 weeks for histopathological analysis. Serum cytokines were analyzed to assess changes in gene and protein expression of aorta via enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Results were analyzed by one-way ANOVA. RESULTS Low-density lipoprotein cholesterol levels in rats in HFD + CAP group were significantly higher than those in other groups. By comparison, low-density lipoprotein cholesterol levels in rats in both the HFD and HFD + CAP groups were significantly lower than those in the other groups. No significant difference among all groups was observed in terms of CRP level. However, levels of IL-2, IL-6, and IL-10 increased in the experimental CAP rats compared with the control rats. mRNA expression levels of MCP-1, TLR-4, and NF-κB p65 were markedly elevated in rats in the HFD group compared with those in rats in the ND group. TLR-4 mRNA expression was significantly higher in rats in the HFD + CAP group than that in rats in the HFD group. CONCLUSIONS CAP mediated the high expression of cytokines and induced the initial inflammatory response in the aorta. Apical periodontitis may affect the level of inflammatory cytokines (IL-2, IL-6, and IL-10) depending on the immune response. CLINICAL RELEVANCE CAP may trigger a systemic inflammatory response and affect the aorta of patients.
Collapse
Affiliation(s)
- Shuai Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology and Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Dianfu Ma
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Stomatological Hospital of Xiamen Medical College, Xiamen, 361008, China
| | - Suli Xiao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Stomatological Hospital of Xiamen Medical College, Xiamen, 361008, China
| | - Pingping Li
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Stomatological Hospital of Xiamen Medical College, Xiamen, 361008, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology and Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China. .,Institute of Stomatology and Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
27
|
Abstract
Periodontitis is one of the most prevalent chronic inflammatory diseases in humans. However, the disease has been hard to study, majorly because it has been difficult to establish a reproducible animal model. Nonetheless, the ligature-induced periodontitis model in rodent has shown some promise. Here we describe a simplified systematic method to analyze periodontal pathogenesis using quantitative polymerase chain reaction, immunohistochemistry, and bone phenotype in ligature-induced periodontitis murine model. We provide detailed experimental methods and also provide notes that will help to carry out the procedure successfully.
Collapse
|
28
|
Microbiome composition comparison in oral and atherosclerotic plaque from patients with and without periodontitis. Odontology 2020; 109:239-249. [PMID: 32430725 DOI: 10.1007/s10266-020-00524-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
There is no conclusive evidence regarding a causal relationship between periodontitis and atherosclerosis. In this study, we examined the microbiome in the oral cavity and atheromatous plaques from atherosclerosis patients with or without periodontitis to investigate the role of oral bacteria in the formation of atheromatous plaques. We chose four patients with and without periodontitis, who had undergone carotid endarterectomy. Bacterial samples were extracted from the tongue surface, from periodontal pocket (during the oral examination), and from the atheromatous plaques (APs). We investigated the general and oral conditions from each patient and performed next-generation sequencing (NGS) analysis for all bacterial samples. There were no significant differences between both groups concerning general conditions. However, the microbiome patterns of the gingival pocket showed differences depending on the absence or presence of periodontitis, while those of the tongue surface were relatively similar. The microbiome pattern of the atheromatous plaques was entirely different from that on the tongue surface and gingival pocket, and oral bacteria were seldom detected. However, the microbiome pattern in atheromatous plaques was different in the presence or absence of periodontitis. These results suggested that oral bacteria did not affect the formation of atheromatous plaques directly.
Collapse
|
29
|
A Diet Rich in Saturated Fat and Cholesterol Aggravates the Effect of Bacterial Lipopolysaccharide on Alveolar Bone Loss in a Rabbit Model of Periodontal Disease. Nutrients 2020; 12:nu12051405. [PMID: 32422858 PMCID: PMC7284766 DOI: 10.3390/nu12051405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence connects periodontitis with a variety of systemic diseases, including metabolic syndrome, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). The proposal of this study was to evaluate the role of diets rich in saturated fat and cholesterol in some aspects of periodontal diseases in a lipopolysaccharide (LPS)-induced model of periodontal disease in rabbits and to assess the influence of a periodontal intervention on hyperlipidemia, atherosclerosis, and NAFLD progression to non-alcoholic steatohepatitis. Male rabbits were maintained on a commercial standard diet or a diet rich in saturated fat (3% lard w/w) and cholesterol (1.3% w/w) (HFD) for 40 days. Half of the rabbits on each diet were treated 2 days per week with intragingival injections of LPS from Porphyromonas gingivalis. Morphometric analyses revealed that LPS induced higher alveolar bone loss (ABL) around the first premolar in animals receiving standard diets, which was exacerbated by the HFD diet. A higher score of acinar inflammation in the liver and higher blood levels of triglycerides and phospholipids were found in HFD-fed rabbits receiving LPS. These results suggest that certain dietary habits can exacerbate some aspects of periodontitis and that bad periodontal health can contribute to dyslipidemia and promote NAFLD progression, but only under certain conditions.
Collapse
|
30
|
Tian J, Liu C, Zheng X, Jia X, Peng X, Yang R, Zhou X, Xu X. Porphyromonas gingivalis Induces Insulin Resistance by Increasing BCAA Levels in Mice. J Dent Res 2020; 99:839-846. [PMID: 32176550 DOI: 10.1177/0022034520911037] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin resistance is one of the critical pathogeneses of type 2 diabetes mellitus (T2DM). Elevated levels of plasma branched-chain amino acids (BCAAs) are associated with insulin resistance. Recent studies have demonstrated the role of Porphyromonas gingivalis in the development of insulin resistance. However, the mechanisms by which P. gingivalis induces insulin resistance are still unclear. The purpose of this study was to investigate whether P. gingivalis induces insulin resistance through BCAA biosynthesis. We established a murine model of periodontitis by infecting mice with P. gingivalis. Alveolar bone loss, insulin sensitivity, and the plasma level of BCAAs were measured. A P. gingivalis BCAA aminotransferase-deficient strain (∆bcat) was constructed, and its kinetic growth, biofilm formation, and in vivo colonization were compared with its wild-type strain. Alveolar bone loss, insulin sensitivity, and the plasma level of BCAAs of the mice infected with either wild-type strain or ∆bcat strain were further measured. We found that periodontal infection with P. gingivalis significantly upregulated the plasma level of BCAAs and aggravated the high-fat diet (HFD)-induced insulin resistance. Bcat deletion did not alter the growth, biofilm formation, and in vivo colonization of P. gingivalis. More important, the ∆bcat strain was unable to upregulate the plasma level of BCAAs and induce insulin resistance in HFD-fed mice. These findings suggest that the BCAA biosynthesis of P. gingivalis plays a critical role in the development of insulin resistance in the HFD-fed mice. The BCAA biosynthesis pathways may provide a potential target for the disruption of linkage between periodontitis and T2DM.
Collapse
Affiliation(s)
- J Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - C Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - R Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Wu L, Li BH, Wang YY, Wang CY, Zi H, Weng H, Huang Q, Zhu YJ, Zeng XT. Periodontal disease and risk of benign prostate hyperplasia: a cross-sectional study. Mil Med Res 2019; 6:34. [PMID: 31718713 PMCID: PMC6852712 DOI: 10.1186/s40779-019-0223-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Both periodontal disease and benign prostatic hyperplasia are age-related diseases that affect millions of people worldwide. Hence, this study aimed to investigate the association between periodontal disease and the risk of benign prostatic hyperplasia. METHODS A total of 4930 participants were selected from an available health examination that was carried out in 2017, only males were considered for further analysis. All eligible males were divided into benign prostatic hyperplasia and normal groups, the benign prostatic hyperplasia group was then divided into prostate volume ≤ 60 g and > 60 g subgroups; all their periodontal status was extracted and then into normal (CPI score of 0), periodontal disease (CPI score between 1 and 4), and periodontitis (CPI score between 3 and 4) groups. The correlation between periodontal disease and benign prostatic hyperplasia was investigated using logistic regression analyses and greedy matching case-control analysis. Subgroup analysis based on prostate volume was also performed. All analyses were conducted with SAS 9.4 software. RESULTS A total of 2171 males were selected for this analysis. The presence of periodontal disease significantly increased the risk of benign prostatic hyperplasia by 1.68 times (OR = 1.68, 95% CI: 1.26-2.24), and individuals with periodontitis showed a higher risk (OR = 4.18, 95% CI: 2.75-6.35). In addition, among matched cases and controls, this association remained robust (periodontal disease: OR = 1.85, 95% CI: 1.30-2.64; periodontitis: OR = 4.83, 95% CI: 2.57-9.07). Subgroup analysis revealed that periodontal disease significantly increased benign prostate hyperplasia risk as well (for prostate volume ≤ 60 g: OR = 1.64, 95% CI: 1.22-2.20; for volume > 60 g: OR = 2.17, 95% CI: 1.04-4.53), and there was a higher risk in the group with a prostate volume greater than 60 g. CONCLUSION Periodontal disease is significantly and positively associated with an increased risk of benign prostatic hyperplasia. Further validation studies should be performed to explore the relationship between periodontal treatment and benign prostate hyperplasia.
Collapse
Affiliation(s)
- Lan Wu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bing-Hui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, 475000, China
| | - Yun-Yun Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chao-Yang Wang
- Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, 475000, China
| | - Hao Zi
- Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, 475000, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - You-Jia Zhu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, 475000, China. .,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
32
|
The Distinct Immune-Stimulatory Capacities of Porphyromonas gingivalis Strains 381 and ATCC 33277 Are Determined by the fimB Allele and Gingipain Activity. Infect Immun 2019; 87:IAI.00319-19. [PMID: 31570556 DOI: 10.1128/iai.00319-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/19/2019] [Indexed: 11/20/2022] Open
Abstract
The Porphyromonas gingivalis strain ATCC 33277 (33277) and 381 genomes are nearly identical. However, strain 33277 displays a significantly diminished capacity to stimulate host cell Toll-like receptor 2 (TLR2)-dependent signaling and interleukin-1β (IL-1β) production relative to 381, suggesting that there are strain-specific differences in one or more bacterial immune-modulatory factors. Genomic sequencing identified a single nucleotide polymorphism in the 33277 fimB allele (A→T), creating a premature stop codon in the 33277 fimB open reading frame relative to the 381 fimB allele. Gene exchange experiments established that the 33277 fimB allele reduces the immune-stimulatory capacity of this strain. Transcriptome comparisons revealed that multiple genes related to carboxy-terminal domain (CTD) family proteins, including the gingipains, were upregulated in 33277 relative to 381. A gingipain substrate degradation assay demonstrated that cell surface gingipain activity is higher in 33277, and an isogenic mutant strain deficient for the gingipains exhibited an increased ability to induce TLR2 signaling and IL-1β production. Furthermore, 33277 and 381 mutant strains lacking CTD cell surface proteins were more immune-stimulatory than the parental wild-type strains, consistent with an immune-suppressive role for the gingipains. Our data show that the combination of an intact fimB allele and limited cell surface gingipain activity in P. gingivalis 381 renders this strain more immune-stimulatory. Conversely, a defective fimB allele and high-level cell surface gingipain activity reduce the capacity of P. gingivalis 33277 to stimulate host cell innate immune responses. In summary, genomic and transcriptomic comparisons identified key virulence characteristics that confer divergent host cell innate immune responses to these highly related P. gingivalis strains.
Collapse
|
33
|
Suh JS, Kim S, Boström KI, Wang CY, Kim RH, Park NH. Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelial-mesenchymal transition in mice. Int J Oral Sci 2019; 11:21. [PMID: 31257363 PMCID: PMC6802639 DOI: 10.1038/s41368-019-0054-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests close associations between periodontitis and atherosclerosis. To further understand the pathological relationships of these associations, we developed periodontitis with ligature placement around maxillary molars or ligature placement in conjunction with Porphyromonas gingivalis lipopolysaccharide injection at the ligature sites (ligature/P.g. LPS) in Apolipoprotein E knock out mice and studied the atherogenesis process in these animals. The mice were fed with high fat diet for 11 weeks and sacrificed for analyzing periodontitis, systemic inflammation, and atherosclerosis. Controls did not develop periodontitis or systemic inflammation and had minimal lipid deposition in the aortas, but mice receiving ligature or ligature/P.g. LPS showed severe periodontitis, systemic inflammation, and aortic plaque formation. The aortic plaque contained abundant macrophages and cells expressing both endothelial and mesenchymal cell markers. The severity of periodontitis was slightly higher in mice receiving ligature/P.g. LPS than ligature alone, and the magnitude of systemic inflammation and aortic plaque formation were also notably greater in the mice with ligature/P.g. LPS. These observations indicate that the development of atherosclerosis is due to systemic inflammation caused by severe periodontitis. In vitro, P.g. LPS enhanced the secretion of pro-inflammatory cytokines from macrophages and increased the adhesion of monocytes to endothelial cells by upregulating the expression of adhesion molecules from endothelial cells. Moreover, secretory proteins, such as TNF-α, from macrophages induced endothelial–mesenchymal transitions of the endothelial cells. Taken together, systemic inflammation induced by severe periodontitis might exacerbate atherosclerosis via, in part, causing aberrant functions of vascular endothelial cells and the activation of macrophages in mice.
Collapse
Affiliation(s)
- Jin Sook Suh
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Sol Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Kristina I Boström
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.,Department of Bioengineering, UCLA Samueli School of Engineering, Los Angeles, CA, USA
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. .,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Ohtsu A, Takeuchi Y, Katagiri S, Suda W, Maekawa S, Shiba T, Komazaki R, Udagawa S, Sasaki N, Hattori M, Izumi Y. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice. Oral Dis 2019; 25:868-880. [PMID: 30667148 DOI: 10.1111/odi.13044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Increasing evidence suggests that periodontitis can exacerbate diabetes, and gut bacterial dysbiosis appears to be linked with the diabetic condition. The present study examined the effects of oral administration of the periodontopathic bacterium, Porphyromonas gingivalis, on the gut microbiota and systemic conditions in streptozotocin-induced diabetic mice. MATERIALS AND METHODS Diabetes was induced by streptozotocin injection in C57BL/6J male mice (STZ). STZ and wild-type (WT) mice were orally administered P. gingivalis (STZPg, WTPg) or saline (STZco, WTco). Feces were collected, and the gut microbiome was examined by 16S rRNA gene sequencing. The expression of genes related to inflammation, epithelial tight junctions, and glucose/fatty acid metabolism in the ileum or liver were examined by quantitative PCR. RESULTS The relative abundance of several genera, including Brevibacterium, Corynebacterium, and Facklamia, was significantly increased in STZco mice compared to WTco mice. The relative abundances of Staphylococcus and Turicibacter in the gut microbiome were altered by oral administration of P. gingivalis in STZ mice. STZPg mice showed higher concentrations of fasting blood glucose and inflammatory genes levels in the ileum, compared to STZco mice. CONCLUSIONS Oral administration of P. gingivalis altered the gut microbiota and aggravated glycemic control in streptozotocin-induced diabetic mice.
Collapse
Affiliation(s)
- Anri Ohtsu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rina Komazaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Udagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoki Sasaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Faculty of Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
35
|
Yokoji-Takeuchi M, Tabeta K, Takahashi N, Arimatsu K, Miyazawa H, Matsuda-Matsukawa Y, Sato K, Yamada M, Yamazaki K. Indirect regulation of PCSK9 gene in inflammatory response by Porphyromonas gingivalis infection. Heliyon 2019; 5:e01111. [PMID: 30671557 PMCID: PMC6328067 DOI: 10.1016/j.heliyon.2018.e01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 11/12/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9), a secreted serine protease, regulates serum low-density lipoprotein (LDL) cholesterol levels by targeting the degradation of LDL receptor (LDLR) in the liver. Although previous reports describe elevated levels of PCSK9 in patients with periodontitis, the mechanisms that trigger this increase in serum PCSK9 levels and induce the related inflammatory response remain unclear. In an unc93b1-deficient mouse of Porphyromonas gingivalis infection, nucleic acid antigen recognition via Toll-like receptors was found to promote PCSK9 production, suggesting an indirect role for tumor necrosis factor-α as an inducer of PCSK9 in contrast to that reported in previous studies. Furthermore, PCSK9 production was independent of the TIR domain-containing adapter-inducing interferon-β-dependent signaling pathway. These results indicate that changes in LDLR expression precede an increase in the serum PCSK9 level in the context of an infectious disease such as periodontitis.
Collapse
Affiliation(s)
- Mai Yokoji-Takeuchi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kei Arimatsu
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Haruna Miyazawa
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Matsuda-Matsukawa
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Sato
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Miki Yamada
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
36
|
Salhi L, Rompen E, Sakalihasan N, Laleman I, Teughels W, Michel JB, Lambert F. Can Periodontitis Influence the Progression of Abdominal Aortic Aneurysm? A Systematic Review. Angiology 2018; 70:479-491. [DOI: 10.1177/0003319718821243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Leila Salhi
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Eric Rompen
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, Surgical Research Centre, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium
| | - Isabelle Laleman
- Department of Oral Health Sciences, KU Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Periodontology, Research Group for Microbial Adhesion, Catholic University Leuven, Leuven, Belgium
| | - Jean-Baptiste Michel
- DRE Laboratory for Translational Vascular Science, Inserm Denis Diderot University, Paris, France
| | - France Lambert
- Dental Biomaterials Research Unit, Head of Clinic, Department of Periodontology and Oral Surgery, University of Liège, Liège, Belgium
| |
Collapse
|
37
|
Abstract
Periodontal disease induced by periodontopathic bacteria like Porphyromonas gingivalis is demonstrated to increase the risk of metabolic, inflammatory, and autoimmune disorders. Although precise mechanisms for this connection have not been elucidated, we have proposed mechanisms by which orally administered periodontopathic bacteria might induce changes in gut microbiota composition, barrier function, and immune system, resulting in an increased risk of diseases characterized by low-grade systemic inflammation. Accumulating evidence suggests a profound effect of altered gut metabolite profiles on overall host health. Therefore, it is possible that P. gingivalis can affect these metabolites. To test this, C57BL/6 mice were administered with P. gingivalis W83 orally twice a week for 5 weeks and compared with sham-inoculated mice. The gut microbial communities were analyzed by pyrosequencing the 16S rRNA genes. Inferred metagenomic analysis was used to determine the relative abundance of KEGG pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analyses. Oral administration of P. gingivalis induced a change in gut microbiota composition. The distributions of metabolic pathways differed between the two groups, including those related to amino acid metabolism and, in particular, the genes for phenylalanine, tyrosine, and tryptophan biosynthesis. Also, alanine, glutamine, histidine, tyrosine, and phenylalanine were significantly increased in the serum of P. gingivalis-administered mice. In addition to altering immune modulation and gut barrier function, oral administration of P. gingivalis affects the host's metabolic profile. This supports our hypothesis regarding a gut-mediated systemic pathology resulting from periodontal disease.IMPORTANCE Increasing evidence suggest that alterations of the gut microbiome underlie metabolic disease pathology by modulating gut metabolite profiles. We have shown that orally administered Porphyromonas gingivalis, a representative periodontopathic bacterium, alters the gut microbiome; that may be a novel mechanism by which periodontitis increases the risk of various diseases. Given the association between periodontal disease and metabolic diseases, it is possible that P. gingivalis can affect the metabolites. Metabolite profiling analysis demonstrated that several amino acids related to a risk of developing diabetes and obesity were elevated in P. gingivalis-administered mice. Our results revealed that the increased risk of various diseases by P. gingivalis might be mediated at least in part by alteration of metabolic profiles. The findings should add new insights into potential links between periodontal disease and systemic disease for investigators in periodontal disease and also for investigators in the field of other diseases, such as metabolic diseases.
Collapse
|
38
|
Sato K, Yokoji M, Yamada M, Nakajima T, Yamazaki K. An orally administered oral pathobiont and commensal have comparable and innocuous systemic effects in germ-free mice. J Periodontal Res 2018; 53:950-960. [PMID: 30047130 DOI: 10.1111/jre.12593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/29/2018] [Accepted: 07/04/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVES We recently proposed a novel mechanism linking periodontitis and systemic diseases, in which orally administered Porphyromonas gingivalis affects gut microbiota composition and subsequently leads to systemic inflammation. However, the mechanism by which P. gingivalis generates systemic effects from the gut is unknown. MATERIAL AND METHODS Six-week-old germ-free mice were orally administered with either an oral pathobiont P. gingivalis or an oral commensal Lactobacillus salivarius twice a week for 5 weeks. Control mice were administered with vehicle only. Alveolar bone resorption was evaluated histologically. The expression profile of various genes was analyzed in gingival tissue, liver, small intestine and large intestine using real-time polymerase chain reaction. Sera were analyzed for antibody, endotoxin and interleukin (IL)-6 levels. Antibody levels were also analyzed for culture supernatant of cells from mesenteric lymph nodes and spleens. A proportion of T-helper 17 and Treg in the cells from mesenteric lymph nodes and spleens was analyzed by flow cytometry. The level of IL-6 and IL-17 in the cell culture supernatants was analyzed by enzyme-linked immunosorbent assay. RESULTS P. gingivalis administration did not induce alveolar bone resorption. Although P. gingivalis elicited systemic antibody response in germ-free mice, unlike in specific pathogen-free mice, P. gingivalis did not induce an inflammatory response in gingiva, liver and intestinal tissue, or alter the proportion of T-helper 17 and Treg. However, IL-6 and IL-17 productions were significantly elevated and tended to be elevated, respectively, in the cells from mesenteric lymph nodes of P. gingivalis-administered mice. Interestingly, the expression of IL-10 and tight junction protein in the gingiva and intestine, respectively, was significantly upregulated in P. gingivalis-treated mice. Administration of L. salivarius elicited almost similar effects as P. gingivalis. CONCLUSION The oral pathobiont P. gingivalis did not induce any detectable pathogenic changes or any major host responses when administered to germ-free mice. There may be indirect mechanisms for gut-mediated systemic effects by P. gingivalis.
Collapse
Affiliation(s)
- Keisuke Sato
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Miki Yamada
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takako Nakajima
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
39
|
Ohgi K, Kajiya H, Goto-T K, Okamoto F, Yoshinaga Y, Okabe K, Sakagami R. Toll-like receptor 2 activation primes and upregulates osteoclastogenesis via lox-1. Lipids Health Dis 2018; 17:132. [PMID: 29859535 PMCID: PMC5985062 DOI: 10.1186/s12944-018-0787-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lectin-like oxidized low-density-lipoprotein receptor 1 (Lox-1) is the receptor for oxidized low-density lipoprotein (oxLDL), a mediator in dyslipidemia. Toll-like receptor (TLR)-2 and - 4 are receptors of lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major pathogen of chronic periodontitis. Although some reports have demonstrated that periodontitis has an adverse effect on dyslipidemia, little is clear that the mechanism is explained the effects of dyslipidemia on osteoclastogenesis. We have hypothesized that osteoclast oxLDL has directly effect on osteoclasts (OCs), and therefore alveolar bone loss on periodontitis may be increased by dyslipidemia. The present study aimed to elucidate the effect of Lox-1 on osteoclastogenesis associated with TLRs in vitro. METHODS Mouse bone marrow cells (BMCs) were stimulated with macrophage colony-stimulating factor into bone marrow macrophages (BMMs). The cells were also stimulated with synthetic ligands for TLR2 (Pam3CSK4) or TLR4 (Lipid A), with or without receptor activator of nuclear factor kappa-B ligand (RANKL), and assessed for osteoclastogenesis by tartrate-resistant acid phosphatase (TRAP) staining, immunostaining, western blotting, flow activated cell sorting (FACS) analysis, real-time polymerase chain reaction (PCR), and reverse transcription PCR. RESULTS Lox-1 expression was significantly upregulated by Pam3CSK4 and Lipid A in BMCs (p < 0.05), but not in BMMs. FACS analysis identified that Pam3CSK4 upregulated RANK and Lox-1 expression in BMCs. TRAP-positive cells were not increased by stimulation with Pam3CSK4 alone, but were increased by stimulation with combination combined Pam3CSK and oxLDL. Expression of both Lox-1 and myeloid differentiation factor 88 (MyD88), an essential adaptor protein in the TLR signaling pathway, were suppressed by inhibitors of TLR2, TLR4 and mitogen-activated protein kinase (MAPK). CONCLUSIONS This study supports that osteoclastogenesis is promoted under the coexistence of oxLDL by TLR2-induced upregulation of Lox-1 in BMCs. This indicates that periodontitis could worsen with progression of dyslipidemia.
Collapse
Affiliation(s)
- Kimiko Ohgi
- Department of Odontology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Hiroshi Kajiya
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 8140193, Japan.
| | - Kazuko Goto-T
- Department of Dental Hygiene, Fukuoka College of Health Sciences, Fukuoka, 8140193, Japan
| | - Fujio Okamoto
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Yasunori Yoshinaga
- Department of Odontology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Koji Okabe
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Ryuji Sakagami
- Department of Odontology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| |
Collapse
|
40
|
Kim HJ, Cha GS, Kim HJ, Kwon EY, Lee JY, Choi J, Joo JY. Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein. J Periodontal Implant Sci 2018. [PMID: 29535891 PMCID: PMC5841268 DOI: 10.5051/jpis.2018.48.1.60] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Purpose The aim of this study was to evaluate the ability of Porphyromonas gingivalis (P. gingivalis) to induce oxidation of high-density lipoprotein (HDL) and to determine whether the oxidized HDL induced by P. gingivalis exhibited altered antiatherogenic function or became proatherogenic. Methods P. gingivalis and THP-1 monocytes were cultured, and the extent of HDL oxidation induced by P. gingivalis was evaluated by a thiobarbituric acid-reactive substances (TBARS) assay. To evaluate the altered antiatherogenic and proatherogenic properties of P. gingivalis-treated HDL, lipid oxidation was quantified by the TBARS assay, and tumor necrosis factor alpha (TNF-α) levels and the gelatinolytic activity of matrix metalloproteinase (MMP)-9 were also measured. After incubating macrophages with HDL and P. gingivalis, Oil Red O staining was performed to examine foam cells. Results P. gingivalis induced HDL oxidation. The HDL treated by P. gingivalis did not reduce lipid oxidation and may have enhanced the formation of MMP-9 and TNF-α. P. gingivalis-treated macrophages exhibited more lipid aggregates than untreated macrophages. Conclusions P. gingivalis induced HDL oxidation, impairing the atheroprotective function of HDL and making it proatherogenic by eliciting a proinflammatory response through its interaction with monocytes/macrophages.
Collapse
Affiliation(s)
- Hyun-Joo Kim
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea
| | - Gil Sun Cha
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea
| | - Hyung-Joon Kim
- Department of Oral Physiology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea
| | - Eun-Young Kwon
- Dental Clinic Center, Pusan National University Hospital, Busan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| |
Collapse
|
41
|
Fawzy El-Sayed KM, Dörfer CE. Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process. Tissue Eng Part C Methods 2017; 23:900-925. [DOI: 10.1089/ten.tec.2017.0130] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
42
|
Hamilton JA, Hasturk H, Kantarci A, Serhan CN, Van Dyke T. Atherosclerosis, Periodontal Disease, and Treatment with Resolvins. Curr Atheroscler Rep 2017; 19:57. [PMID: 29110146 DOI: 10.1007/s11883-017-0696-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review aims to discuss the existing evidence on the link between atherosclerosis and periodontitis by particularly presenting new findings that link the pathology and therapy of these diseases. Acute vascular ischemic events that can lead to stroke or myocardial infarction are initiated by inflammatory processes leading to rupture or erosion of plaques susceptible to thrombosis ("high risk" or "vulnerable"). These are highly inflamed plaques residing in the media and adventitia that may not be detected by angiography measurments of luminal narrowing. Statistically significant excess risk for atherosclerotic cardiovascular disease has been reported in persons with periodontitis independent of established risk factors. We hypothesized that the systemic pathologic links also represent potential therapeutic links. RECENT FINDINGS We recently demonstrated that periodontal inflammation promotes atherosclerotic plaque inflammation and destabilization. As discrete pathological regions, these plaques with a high susceptibility to rupture can be imaged and differentiated from lower risk plaques. In cholesterol-fed rabbits with periodontal disease, circulating inflammatory mediators were also significantly elevated thereby contributing to "vulnerable blood," a systemic characteristic of high risk for cardiovascular events. New studies show that certain lipid mediators, including lipoxins and resolvins, are potent in preventing and possibly treating a number of inflammation-associated diseases, including periodontitis and vascular inflammation. The concept of the vulnerable patient and the pro-resolving approach open new terrain for discovery of paradigm-changing therapies for the prevention and treatment of two of the most common diseases of man. Importantly, lipoxins and resolvins are natural receptor agonists that do not exhibit the same pro-atherogenic side effects attributed to anti-inflammatory medications (e.g., NSAIDs) but rather coordinate resolution of inflammation and a return to homeostasis.
Collapse
Affiliation(s)
- James A Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, W302, Boston, MA, 02118-2526, USA.
| | - Hatice Hasturk
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| |
Collapse
|
43
|
Matsuda Y, Minagawa T, Okui T, Yamazaki K. Resveratrol suppresses the alveolar bone resorption induced by artificial trauma from occlusion in mice. Oral Dis 2017; 24:412-421. [PMID: 28944599 DOI: 10.1111/odi.12785] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Besides inflammatory bone loss, trauma from occlusion (TO)-induced alveolar bone loss increases the risk of future tooth loss. We have shown that resveratrol, a polyphenol, possesses anti-inflammatory characteristics and a suppressive effect on osteoclastogenesis. Therefore, we investigated the effects of resveratrol on TO-induced bone loss in mice. MATERIAL AND METHODS Trauma from occlusion was induced by overlaying composite resin onto the maxillary first molar of C57BL/6 mice. TO-induced mice were administered either resveratrol or vehicle for 15 days from 5 days before TO induction. The mice administered vehicle only served as controls. The effect of resveratrol on bone resorption was assessed histologically. Gene expression in gingival and periodontal ligament tissues was analyzed. In vitro effect of resveratrol on the differentiation of RAW 264.7 cells and bone marrow-derived macrophages into osteoclastic cells was analyzed. RESULTS Resveratrol administration significantly decreased the bone loss and suppressed the elevated expression of osteoclastogenesis-related gene in periodontal ligament tissue by TO. Resveratrol treatment also suppressed the differentiation of both RAW 264.7 cells and bone marrow-derived macrophages into osteoclastic cells. CONCLUSION Resveratrol administration suppressed the TO-induced alveolar bone loss by suppressing osteoclast differentiation, suggesting that resveratrol is effective in preventing both inflammation and mechanical stress-induced alveolar bone resorption.
Collapse
Affiliation(s)
- Y Matsuda
- Research Unit for Oral-Systemic Connection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Minagawa
- Research Unit for Oral-Systemic Connection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Okui
- Research Unit for Oral-Systemic Connection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Yamazaki
- Research Unit for Oral-Systemic Connection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
44
|
Sethi NJ, Safi S, Korang SK, Hróbjartsson A, Skoog M, Gluud C, Jakobsen JC. Antibiotics for secondary prevention of coronary heart disease. Hippokratia 2017. [DOI: 10.1002/14651858.cd003610.pub3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Naqash J Sethi
- Department 7812, Rigshospitalet, Copenhagen University Hospital; Copenhagen Trial Unit, Centre for Clinical Intervention Research; Blegdamsvej 9 Copenhagen Denmark 2100
| | - Sanam Safi
- Department 7812, Rigshospitalet, Copenhagen University Hospital; Copenhagen Trial Unit, Centre for Clinical Intervention Research; Blegdamsvej 9 Copenhagen Denmark 2100
| | - Steven Kwasi Korang
- Department 7812, Rigshospitalet, Copenhagen University Hospital; Copenhagen Trial Unit, Centre for Clinical Intervention Research; Blegdamsvej 9 Copenhagen Denmark 2100
| | - Asbjørn Hróbjartsson
- Odense University Hospital and University of Southern Denmark; Center for Evidence-Based Medicine; Sdr. Boulevard 29, Gate 50 (Videncenteret) Odense C Denmark 5000
| | - Maria Skoog
- Barsebäcksvägen 39 Löddeköpinge Sweden 24630
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; The Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Denmark DK-2100
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; The Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Denmark DK-2100
- Holbaek Hospital; Department of Cardiology; Holbaek Denmark 4300
| |
Collapse
|
45
|
Kramer CD, Simas AM, He X, Ingalls RR, Weinberg EO, Genco CA. Distinct roles for dietary lipids and Porphyromonas gingivalis infection on atherosclerosis progression and the gut microbiota. Anaerobe 2017; 45:19-30. [PMID: 28442421 DOI: 10.1016/j.anaerobe.2017.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/08/2023]
Abstract
Mounting evidence in humans supports an etiological role for the microbiota in inflammatory atherosclerosis. Atherosclerosis is a progressive disease characterized by accumulation of inflammatory cells and lipids in vascular tissue. While retention of lipoprotein into the sub-endothelial vascular layer is believed to be the initiating stimulus leading to the development of atherosclerosis, activation of multiple pathways related to vascular inflammation and endothelial dysfunction sustain the process by stimulating recruitment of leukocytes and immune cells into the sub-endothelial layer. The Gram-negative oral pathogen Porphyromonas gingivalis has been associated with the development and acceleration of atherosclerosis in humans and these observations have been validated in animal models. It has been proposed that common mechanisms of immune signaling link stimulation by lipids and pathogens to vascular inflammation. Despite the common outcome of P. gingivalis and lipid feeding on atherosclerosis progression, we established that these pro-atherogenic stimuli induced distinct gene signatures in the ApoE-/- mouse model of atherosclerosis. In this study, we further defined the distinct roles of dietary lipids and P. gingivalis infection on atherosclerosis progression and the gut microbiota. We demonstrate that diet-induced lipid lowering resulted in less atherosclerotic plaque in ApoE-/- mice compared to ApoE-/- mice continuously fed a Western diet. However, the effect of diet-induced lipid lowering on plaque accumulation was blunted by P. gingivalis infection. Using principal component analysis and hierarchical clustering, we demonstrate that dietary intervention as well as P. gingivalis infection result in distinct bacterial communities in fecal and cecal samples of ApoE-/- mice as compared to ApoE-/- mice continuously fed either a Western diet or a normal chow diet. Collectively, we identified distinct microbiota changes accompanying atherosclerotic plaque, suggesting a future avenue for investigation on the impact of the gut microbiota, diet, and P. gingivalis infection on atherosclerosis.
Collapse
Affiliation(s)
- Carolyn D Kramer
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA.
| | - Alexandra M Simas
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA; Graduate Program in Biochemical and Molecular Nutrition, Gerald J. and Dorothy R. Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02111, USA.
| | - Xianbao He
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Boston Medical Center, Evans Biomedical Research Center, 650 Albany Street, Boston, MA 02118, USA.
| | - Robin R Ingalls
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Boston Medical Center, Evans Biomedical Research Center, 650 Albany Street, Boston, MA 02118, USA.
| | - Ellen O Weinberg
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA.
| | - Caroline Attardo Genco
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA; Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA; Graduate Program in Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, M & V 701, Boston, MA 02111, USA.
| |
Collapse
|
46
|
Kantarci A, Hasturk H, Van Dyke TE. Animal models for periodontal regeneration and peri-implant responses. Periodontol 2000 2017; 68:66-82. [PMID: 25867980 DOI: 10.1111/prd.12052] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
Abstract
Translation of experimental data to the clinical setting requires the safety and efficacy of such data to be confirmed in animal systems before application in humans. In dental research, the animal species used is dependent largely on the research question or on the disease model. Periodontal disease and, by analogy, peri-implant disease, are complex infections that result in a tissue-degrading inflammatory response. It is impossible to explore the complex pathogenesis of periodontitis or peri-implantitis using only reductionist in-vitro methods. Both the disease process and healing of the periodontal and peri-implant tissues can be studied in animals. Regeneration (after periodontal surgery), in response to various biologic materials with potential for tissue engineering, is a continuous process involving various types of tissue, including epithelia, connective tissues and alveolar bone. The same principles apply to peri-implant healing. Given the complexity of the biology, animal models are necessary and serve as the standard for successful translation of regenerative materials and dental implants to the clinical setting. Smaller species of animal are more convenient for disease-associated research, whereas larger animals are more appropriate for studies that target tissue healing as the anatomy of larger animals more closely resembles human dento-alveolar architecture. This review focuses on the animal models available for the study of regeneration in periodontal research and implantology; the advantages and disadvantages of each animal model; the interpretation of data acquired; and future perspectives of animal research, with a discussion of possible nonanimal alternatives. Power calculations in such studies are crucial in order to use a sample size that is large enough to generate statistically useful data, whilst, at the same time, small enough to prevent the unnecessary use of animals.
Collapse
|
47
|
Porphyromonas gingivalis oral infection promote T helper 17/Treg imbalance in the development of atherosclerosis. J Dent Sci 2016; 12:60-69. [PMID: 30895025 PMCID: PMC6395245 DOI: 10.1016/j.jds.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/13/2016] [Indexed: 02/08/2023] Open
Abstract
Background/purpose Increasing studies have indicated the involvement of Porphyromonas gingivalis in atherosclerosis. T helper 17 (Th17)/Treg balance is critical during atherosclerosis. However, whether P. gingivalis oral infection is associated with Th17/Treg imbalance is unclear. The aim of the present study was to investigate the effect of P. gingivalis on Th17/Treg balance during atherosclerosis. Materials and methods ApoE–/– and C57BL/6 mice were inoculated orally with P. gingivalis ATCC 33277 for 9 weeks. The alveolar bone loss was assessed by microcomputerized tomography. The area of atherosclerosis plaque was identified by oil red O staining. Plaque stability was analyzed by CD68 and αSMA immunohistochemistry staining and Masson staining. The frequency of Th17 and Treg in spleen was detected by flow cytometry. The mRNA expression of Th17- and Treg-related factors was determined by quantitative polymerase chain reaction. Interleukin (IL)-6, a critical factor in modulating T-cell differentiation, was determined from spleen cells and mouse dendritic cells by enzyme-linked immunosorbent assay. Results Long-term P. gingivalis oral infection induced alveolar bone resorption. In ApoE–/– mice, P. gingivalis enhanced atherosclerotic lesion formation and plaque instability accompanied with a decreased Treg frequency and an increased Th17 cell frequency. In addition, mRNA expression of retinoic acid receptor-related orphan receptor γt and IL-17 was increased, and that of transforming growth factor (TGF) β and IL-10 was decreased in P. gingivalis-infected ApoE–/– mice. Furthermore, secretion of IL-6 was elevated in the spleen of P. gingivalis-infected ApoE–/– mice, as well as in mouse dendritic cells after P. gingivalis infection. Conclusion P. gingivalis oral infection may promote Th17/Treg imbalance by influencing T-cell differentiation during the process of atherosclerosis, with a larger lesion area and decreasing plaque instability.
Collapse
|
48
|
Olsen I, Taubman MA, Singhrao SK. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer's disease. J Oral Microbiol 2016; 8:33029. [PMID: 27882863 PMCID: PMC5122233 DOI: 10.3402/jom.v8.33029] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1)-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg) imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1), and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of the armory of adaptive immune suppression through a plethora of virulence factors, P. gingivalis may act as a keystone organism in periodontitis and in related systemic diseases and other remote body inflammatory pathologies.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway;
| | - Martin A Taubman
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Medical School, Boston, MA, USA
| | - Sim K Singhrao
- Dementia & Neurodegeneration Research Group, School of Dentistry, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
49
|
Ardila CM, Guzmán IC. High levels of Porphyromonas gingivalis-induced immunoglobulin G2 are associated with lower high-density lipoprotein levels in chronic periodontitis. ACTA ACUST UNITED AC 2016; 7:368-375. [PMID: 26074399 DOI: 10.1111/jicd.12169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/16/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the association between the presence of Porphyromonas gingivalis-induced immunoglobulin G antibodies and the high-density lipoprotein (HDL) level. METHODS A total of 108 individuals were examined. The presence of P. gingivalis was detected using primers designed to target the 16S rRNA gene sequence. Peripheral blood was collected from each subject to determine the levels of P. gingivalis-induced IgG1 and IgG2 serum antibodies. The HDL levels were determined using fully enzymatic methods. RESULTS A higher proportion of periodontitis patients had high levels of P. gingivalis-induced IgG1 and IgG2, and the proportion of subjects with a HDL level of < 35 md/dL was higher in the group of chronic periodontitis patients. In the unadjusted regression model, the presence of high levels of P. gingivalis-induced IgG2 was associated with a HDL level of < 35 md/dL. The adjusted model indicated that periodontitis patients with high levels of P. gingivalis-induced IgG2 showed 3.2 more chances of having pathological HDL levels (odds ratio = 3.2, 95% confidence interval = 1.2-9.8). CONCLUSION High levels of P. gingivalis-induced IgG2 were associated with low HDL concentrations in patients with periodontitis, which suggests that the response of the host to periodontal infection may play an important role in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Carlos M Ardila
- Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia.
| | - Isabel C Guzmán
- Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia
| |
Collapse
|
50
|
Lawson JS. Multiple Infectious Agents and the Origins of Atherosclerotic Coronary Artery Disease. Front Cardiovasc Med 2016; 3:30. [PMID: 27672638 PMCID: PMC5018484 DOI: 10.3389/fcvm.2016.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
Although deaths due to atherosclerotic coronary artery disease (ACAD) have fallen dramatically during the past 50 years, ACAD remains as the leading cause of death in all continents, except Africa, where deaths due to infections are still dominant. Although food and nutrition have a proven role in atherosclerosis, the underlying causes of ACAD remain unknown. This is despite a century of intensive research dominated by investigations into the saturated fat hypothesis. In this review, it is hypothesized that the rise and fall in ACAD during the past 100 years is primarily due to the parallel rise and fall in the prevalence of coronary atheroma, the underlying disease. It is further hypothesized that infectious pathogens initiate atherosclerosis mainly during infancy and childhood. It is speculated that widespread use of antibiotics and vaccines against bacterial and viral infections may be the reason for the dramatic fall in coronary atheroma and ACAD during the past 50 years. The relevant evidence and a working hypothesis are included in this review.
Collapse
Affiliation(s)
- James S. Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|