1
|
Mednicoff SD, Barashy S, Gonzales D, Benning SD, Snyder JS, Hannon EE. Auditory affective processing, musicality, and the development of misophonic reactions. Front Neurosci 2022; 16:924806. [PMID: 36213735 PMCID: PMC9537735 DOI: 10.3389/fnins.2022.924806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Misophonia can be characterized both as a condition and as a negative affective experience. Misophonia is described as feeling irritation or disgust in response to hearing certain sounds, such as eating, drinking, gulping, and breathing. Although the earliest misophonic experiences are often described as occurring during childhood, relatively little is known about the developmental pathways that lead to individual variation in these experiences. This literature review discusses evidence of misophonic reactions during childhood and explores the possibility that early heightened sensitivities to both positive and negative sounds, such as to music, might indicate a vulnerability for misophonia and misophonic reactions. We will review when misophonia may develop, how it is distinguished from other auditory conditions (e.g., hyperacusis, phonophobia, or tinnitus), and how it relates to developmental disorders (e.g., autism spectrum disorder or Williams syndrome). Finally, we explore the possibility that children with heightened musicality could be more likely to experience misophonic reactions and develop misophonia.
Collapse
Affiliation(s)
| | | | | | | | | | - Erin E. Hannon
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
2
|
Bianco V, Berchicci M, Gigante E, Perri RL, Quinzi F, Mussini E, Di Russo F. Brain Plasticity Induced by Musical Expertise on Proactive and Reactive Cognitive Functions. Neuroscience 2021; 483:1-12. [PMID: 34973386 DOI: 10.1016/j.neuroscience.2021.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Proactive and reactive brain activities usually refer to processes occurring in anticipation or in response to perceptual and/or cognitive events. Previous studies found that, in auditory tasks, musical expertise improves performance mainly at the reactive stage of processing. In the present work, we aimed at acknowledging the effects of musical practice on proactive brain activities as a result of neuroplasticity processes occurring at the level of anticipatory motor/cognitive functions. Accordingly, performance and electroencephalographic recordings were compared between professional musicians and non-musicians during an auditory go/no-go task. Both proactive (pre-stimulus) and reactive (post-stimulus) event-related potentials (ERPs) were analyzed. Behavioral findings showed improved performance in musicians compared to non-musicians in terms of accuracy. For what concerns electrophysiological results, different ERP patterns of activity both before and after the presentation of the auditory stimulus emerged between groups. Specifically, musicians showed increased proactive cognitive activity in prefrontal scalp areas, previously localized in the prefrontal cortex, and reduced anticipatory excitability in frontal scalp areas, previously localized in the associative auditory cortices (reflected by the pN and aP components, respectively). In the reactive stage of processing (i.e., following stimulus presentation), musicians showed enhanced early (N1) and late (P3) components, in line with longstanding literature of enhanced auditory processing in this group. Crucially, we also found a significant correlation between the N1 component and years of musical practice. We interpreted these findings in terms of neural plasticity processes resulting from musical training, which lead musicians to high efficiency in auditory sensorial anticipation and more intense cognitive control and sound analysis.
Collapse
Affiliation(s)
- Valentina Bianco
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; Laboratory of Cognitive Neuroscience, Dept. of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.
| | - Marika Berchicci
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Elena Gigante
- International Association for Analytical Psychology, Zurich, Switzerland
| | | | - Federico Quinzi
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Elena Mussini
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Francesco Di Russo
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
3
|
Quiroga-Martinez DR, Hansen NC, Højlund A, Pearce M, Brattico E, Holmes E, Friston K, Vuust P. Musicianship and melodic predictability enhance neural gain in auditory cortex during pitch deviance detection. Hum Brain Mapp 2021; 42:5595-5608. [PMID: 34459062 PMCID: PMC8559476 DOI: 10.1002/hbm.25638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
When listening to music, pitch deviations are more salient and elicit stronger prediction error responses when the melodic context is predictable and when the listener is a musician. Yet, the neuronal dynamics and changes in connectivity underlying such effects remain unclear. Here, we employed dynamic causal modeling (DCM) to investigate whether the magnetic mismatch negativity response (MMNm)-and its modulation by context predictability and musical expertise-are associated with enhanced neural gain of auditory areas, as a plausible mechanism for encoding precision-weighted prediction errors. Using Bayesian model comparison, we asked whether models with intrinsic connections within primary auditory cortex (A1) and superior temporal gyrus (STG)-typically related to gain control-or extrinsic connections between A1 and STG-typically related to propagation of prediction and error signals-better explained magnetoencephalography responses. We found that, compared to regular sounds, out-of-tune pitch deviations were associated with lower intrinsic (inhibitory) connectivity in A1 and STG, and lower backward (inhibitory) connectivity from STG to A1, consistent with disinhibition and enhanced neural gain in these auditory areas. More predictable melodies were associated with disinhibition in right A1, while musicianship was associated with disinhibition in left A1 and reduced connectivity from STG to left A1. These results indicate that musicianship and melodic predictability, as well as pitch deviations themselves, enhance neural gain in auditory cortex during deviance detection. Our findings are consistent with predictive processing theories suggesting that precise and informative error signals are selected by the brain for subsequent hierarchical processing.
Collapse
Affiliation(s)
- David R Quiroga-Martinez
- Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Niels Christian Hansen
- Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Andreas Højlund
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Marcus Pearce
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
| | - Elvira Brattico
- Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.,Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Emma Holmes
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
4
|
Bialystok E. Bilingualism as a Slice of Swiss Cheese. Front Psychol 2021; 12:769323. [PMID: 34819899 PMCID: PMC8606518 DOI: 10.3389/fpsyg.2021.769323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ellen Bialystok
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
5
|
Johnson N, Shiju AM, Parmar A, Prabhu P. Evaluation of Auditory Stream Segregation in Musicians and Nonmusicians. Int Arch Otorhinolaryngol 2021; 25:e77-e80. [PMID: 33542755 PMCID: PMC7851367 DOI: 10.1055/s-0040-1709116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/30/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction
One of the major cues that help in auditory stream segregation is spectral profiling. Musicians are trained to perceive a fine structural variation in the acoustic stimuli and have enhanced temporal perception and speech perception in noise.
Objective
To analyze the differences in spectral profile thresholds in musicians and nonmusicians.
Methods
The spectral profile analysis threshold was compared between 2 groups (musicians and nonmusicians) in the age range between 15 and 30 years old. The stimuli had 5 harmonics, all at the same amplitude (f0 = 330 Hz, mi4). The third (variable tone) has a similar harmonic structure; however, the amplitude of the third harmonic component was higher, producing a different timbre in comparison with the standards. The subject had to identify the odd timbre tone. The testing was performed at 60 dB HL in a sound-treated room.
Results
The results of the study showed that the profile analysis thresholds were significantly better in musicians compared with nonmusicians. The result of the study also showed that the profile analysis thresholds were better with an increase in the duration of music training. Thus, improved auditory processing in musicians could have resulted in a better profile analysis threshold.
Conclusions
Auditory stream segregation was found to be better in musicians compared with nonmusicians, and the performance improved with an increase in several years of training. However, further studies are essential on a larger group with more variables for validation of the results.
Collapse
Affiliation(s)
- Naina Johnson
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, India
| | - Annika Mariam Shiju
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, India
| | - Adya Parmar
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, India
| | - Prashanth Prabhu
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, India
| |
Collapse
|
6
|
Susini P, Jiaouan SJ, Brunet E, Houix O, Ponsot E. Auditory local-global temporal processing: evidence for perceptual reorganization with musical expertise. Sci Rep 2020; 10:16390. [PMID: 33009439 PMCID: PMC7532159 DOI: 10.1038/s41598-020-72423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/10/2020] [Indexed: 11/29/2022] Open
Abstract
The way the visual system processes different scales of spatial information has been widely studied, highlighting the dominant role of global over local processing. Recent studies addressing how the auditory system deals with local–global temporal information suggest a comparable processing scheme, but little is known about how this organization is modulated by long-term musical training, in particular regarding musical sequences. Here, we investigate how non-musicians and expert musicians detect local and global pitch changes in short hierarchical tone sequences structured across temporally-segregated triplets made of musical intervals (local scale) forming a melodic contour (global scale) varying either in one direction (monotonic) or both (non-monotonic). Our data reveal a clearly distinct organization between both groups. Non-musicians show global advantage (enhanced performance to detect global over local modifications) and global-to-local interference effects (interference of global over local processing) only for monotonic sequences, while musicians exhibit the reversed pattern for non-monotonic sequences. These results suggest that the local–global processing scheme depends on the complexity of the melodic contour, and that long-term musical training induces a prominent perceptual reorganization that reshapes its initial global dominance to favour local information processing. This latter result supports the theory of “analytic” processing acquisition in musicians.
Collapse
Affiliation(s)
- Patrick Susini
- STMS Ircam-CNRS-SU, 1 Place Igor Stravinsky, 75004, Paris, France.
| | | | - Elena Brunet
- STMS Ircam-CNRS-SU, 1 Place Igor Stravinsky, 75004, Paris, France
| | - Olivier Houix
- STMS Ircam-CNRS-SU, 1 Place Igor Stravinsky, 75004, Paris, France
| | - Emmanuel Ponsot
- Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, 29 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
7
|
Cervigni M, Alfonso G, Deleglise Á, Gallegos M, Martino P. Experticia y cognición. Exploración de funciones cognitivas verbales y visoespaciales en arquitectos y psicólogos. UNIVERSITAS PSYCHOLOGICA 2020. [DOI: 10.11144/javeriana.upsy19.ecef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Diversas investigaciones han advertido que el ejercicio de algunas profesiones puede conllevar efectos moduladores en la estructura cerebral y el funcionamiento cognitivo. Se presentan los resultados de un estudio exploratorio transversal referente a las modificaciones que las experticias en arquitectura (N = 41, edad: X = 39, DE = 10) y en psicología (N = 40, edad: X = 35, DE = 7) producen sobre procesos cognitivos específicos. El objetivo general fue contribuir a la determinación de perfiles cognitivos diferenciales. Los arquitectos mostraron un mejor rendimiento en tareas que involucran la retención y manipulación de información visoespacial. No se hallaron diferencias significativas en la resolución de tareas verbales. Estos resultados sugieren que la experiencia en arquitectura podría conducir a un desempeño conductual mejorado en procesos cognitivos correspondientes a la memoria de trabajo visoespacial. Se discuten los alcances de la presente exploración y las instancias necesarias para la validación de estas observaciones. Se sugiere la realización de nuevos estudios que integren seguimiento longitudinal y tecnologías de neuroimagen.
Collapse
|
8
|
Chien VSC, Maess B, Knösche TR. A generic deviance detection principle for cortical On/Off responses, omission response, and mismatch negativity. BIOLOGICAL CYBERNETICS 2019; 113:475-494. [PMID: 31428855 PMCID: PMC6848254 DOI: 10.1007/s00422-019-00804-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/07/2019] [Indexed: 05/04/2023]
Abstract
Neural responses to sudden changes can be observed in many parts of the sensory pathways at different organizational levels. For example, deviants that violate regularity at various levels of abstraction can be observed as simple On/Off responses of individual neurons or as cumulative responses of neural populations. The cortical deviance-related responses supporting different functionalities (e.g., gap detection, chunking, etc.) seem unlikely to arise from different function-specific neural circuits, given the relatively uniform and self-similar wiring patterns across cortical areas and spatial scales. Additionally, reciprocal wiring patterns (with heterogeneous combinations of excitatory and inhibitory connections) in the cortex naturally speak in favor of a generic deviance detection principle. Based on this concept, we propose a network model consisting of reciprocally coupled neural masses as a blueprint of a universal change detector. Simulation examples reproduce properties of cortical deviance-related responses including the On/Off responses, the omitted-stimulus response (OSR), and the mismatch negativity (MMN). We propose that the emergence of change detectors relies on the involvement of disinhibition. An analysis of network connection settings further suggests a supportive effect of synaptic adaptation and a destructive effect of N-methyl-D-aspartate receptor (NMDA-r) antagonists on change detection. We conclude that the nature of cortical reciprocal wiring gives rise to a whole range of local change detectors supporting the notion of a generic deviance detection principle. Several testable predictions are provided based on the network model. Notably, we predict that the NMDA-r antagonists would generally dampen the cortical Off response, the cortical OSR, and the MMN.
Collapse
Affiliation(s)
- Vincent S. C. Chien
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, Leipzig, Germany
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, Leipzig, Germany
| | - Thomas R. Knösche
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, Leipzig, Germany
| |
Collapse
|
9
|
Lumaca M, Trusbak Haumann N, Brattico E, Grube M, Vuust P. Weighting of neural prediction error by rhythmic complexity: A predictive coding account using mismatch negativity. Eur J Neurosci 2019; 49:1597-1609. [DOI: 10.1111/ejn.14329] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Massimo Lumaca
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
- SISSA International School for Advanced Studies Trieste Italy
| | - Niels Trusbak Haumann
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
| | - Elvira Brattico
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
| | - Manon Grube
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
| | - Peter Vuust
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
| |
Collapse
|
10
|
Wiens S, Szychowska M, Eklund R, van Berlekom E. Cascade and no-repetition rules are comparable controls for the auditory frequency mismatch negativity in oddball tasks. Psychophysiology 2018; 56:e13280. [PMID: 30246255 PMCID: PMC7379195 DOI: 10.1111/psyp.13280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 11/29/2022]
Abstract
The mismatch negativity (MMN) has been widely studied with oddball tasks to index processing of unexpected auditory change. The MMN is computed as the difference of deviant minus standard and is used to capture the pattern violation by the deviant. However, this oddball MMN is confounded because the deviant differs physically from the standard and is presented less often. To improve measurement, the same tone as the deviant is presented in a separate condition. This control tone is equiprobable with other tones and is used to compute a corrected MMN (deviant minus control). Typically, the tones are in random order except that consecutive tones are not identical (no-repetition rule). In contrast, a recent study on frequency MMN presented tones in a regular up-and-down sequence (cascade rule). If the cascade rule is detected more easily than the no-repetition rule, there should be a lower risk of a confounding MMN within the cascade condition. However, in previous research, the cascade and no-repetition conditions differed not only in the regularity of the tone sequence but also in number of tones, frequency range, and proportion of tones. We controlled for these differences to isolate effects of regularity in the tone sequence. Results of our preregistered analyses provided moderate evidence (BF01 >6) that the corrected MMN did not differ between cascade and no-repetition conditions. These findings imply that no-repetition and cascade rules are processed similarly and that the no-repetition condition provides an adequate control in frequency MMN.
Collapse
Affiliation(s)
- Stefan Wiens
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Malina Szychowska
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Rasmus Eklund
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Erik van Berlekom
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Wollman I, Morillon B. Organizational principles of multidimensional predictions in human auditory attention. Sci Rep 2018; 8:13466. [PMID: 30194376 PMCID: PMC6128843 DOI: 10.1038/s41598-018-31878-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
Anticipating the future rests upon our ability to exploit contextual cues and to formulate valid internal models or predictions. It is currently unknown how multiple predictions combine to bias perceptual information processing, and in particular whether this is determined by physiological constraints, behavioral relevance (task demands), or past knowledge (perceptual expertise). In a series of behavioral auditory experiments involving musical experts and non-musicians, we investigated the respective and combined contribution of temporal and spectral predictions in multiple detection tasks. We show that temporal and spectral predictions alone systematically increase perceptual sensitivity, independently of task demands or expertise. When combined, however, spectral predictions benefit more to non-musicians and dominate over temporal ones, and the extent of the spectrotemporal synergistic interaction depends on task demands. This suggests that the hierarchy of dominance primarily reflects the tonotopic organization of the auditory system and that expertise or attention only have a secondary modulatory influence.
Collapse
Affiliation(s)
- Indiana Wollman
- Montreal Neurological Institute, McGill University, Montreal, Canada
- CIRMMT, Schulich School of Music, McGill University, Montreal, Canada
| | - Benjamin Morillon
- Montreal Neurological Institute, McGill University, Montreal, Canada.
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
12
|
Item-Place Encoding Through Hippocampal Long-Term Depression. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Bhatt I. Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans. PLoS One 2017; 12:e0184036. [PMID: 28886123 PMCID: PMC5590870 DOI: 10.1371/journal.pone.0184036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022] Open
Abstract
Research suggests that college-aged adults are vulnerable to tinnitus and hearing loss due to exposure to traumatic levels of noise on a regular basis. Recent human studies have associated exposure to high noise exposure background (NEB, i.e., routine noise exposure) with the reduced cochlear output and impaired speech processing ability in subjects with clinically normal hearing sensitivity. While the relationship between NEB and the functions of the auditory afferent neurons are studied in the literature, little is known about the effects of NEB on functioning of the auditory efferent system. The objective of the present study was to investigate the relationship between medial olivocochlear reflex (MOCR) strength and NEB in subjects with clinically normal hearing sensitivity. It was hypothesized that subjects with high NEB would exhibit reduced afferent input to the MOCR circuit which would subsequently lead to reduced strength of the MOCR. In normal-hearing listeners, the study examined (1) the association between NEB and baseline click-evoked otoacoustic emissions (CEOAEs) and (2) the association between NEB and MOCR strength. The MOCR was measured using CEOAEs evoked by 60 dB pSPL linear clicks in a contralateral acoustic stimulation (CAS)-off and CAS-on (a broadband noise at 60 dB SPL) condition. Participants with at least 6 dB signal-to-noise ratio (SNR) in the CAS-off and CAS-on conditions were included for analysis. A normalized CEOAE inhibition index was calculated to express MOCR strength in a percentage value. NEB was estimated using a validated questionnaire. The results showed that NEB was not associated with the baseline CEOAE amplitude (r = -0.112, p = 0.586). Contrary to the hypothesis, MOCR strength was positively correlated with NEB (r = 0.557, p = 0.003). NEB remained a significant predictor of MOCR strength (β = 2.98, t(19) = 3.474, p = 0.003) after the unstandardized coefficient was adjusted to control for effects of smoking, sound level tolerance (SLT) and tinnitus. These data provide evidence that MOCR strength is associated with NEB. The functional significance of increased MOCR strength is discussed.
Collapse
Affiliation(s)
- Ishan Bhatt
- Department of Communication Sciences & Disorders, Northern Arizona University, Flagstaff, AZ, United States of America
- * E-mail:
| |
Collapse
|
14
|
Musical literacy shifts asymmetries in the ventral visual cortex. Neuroimage 2017; 156:445-455. [DOI: 10.1016/j.neuroimage.2017.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/07/2017] [Accepted: 04/11/2017] [Indexed: 11/21/2022] Open
|
15
|
Lappe C, Bodeck S, Lappe M, Pantev C. Shared Neural Mechanisms for the Prediction of Own and Partner Musical Sequences after Short-term Piano Duet Training. Front Neurosci 2017; 11:165. [PMID: 28420951 PMCID: PMC5378800 DOI: 10.3389/fnins.2017.00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
Predictive mechanisms in the human brain can be investigated using markers for prediction violations like the mismatch negativity (MMN). Short-term piano training increases the MMN for melodic and rhythmic deviations in the training material. This increase occurs only when the material is actually played, not when it is only perceived through listening, suggesting that learning predictions about upcoming musical events are derived from motor involvement. However, music is often performed in concert with others. In this case, predictions about upcoming actions from a partner are a crucial part of the performance. In the present experiment, we use magnetoencephalography (MEG) to measure MMNs to deviations in one's own and a partner's musical material after both engaged in musical duet training. Event-related field (ERF) results revealed that the MMN increased significantly for own and partner material suggesting a neural representation of the partner's part in a duet situation. Source analysis using beamforming revealed common activations in auditory, inferior frontal, and parietal areas, similar to previous results for single players, but also a pronounced contribution from the cerebellum. In addition, activation of the precuneus and the medial frontal cortex was observed, presumably related to the need to distinguish between own and partner material.
Collapse
Affiliation(s)
- Claudia Lappe
- Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünster, Germany
| | - Sabine Bodeck
- Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünster, Germany
| | - Markus Lappe
- Department of Psychology, University of MünsterMünster, Germany
| | - Christo Pantev
- Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünster, Germany
| |
Collapse
|
16
|
Cheung MC, Chan AS, Liu Y, Law D, Wong CWY. Music training is associated with cortical synchronization reflected in EEG coherence during verbal memory encoding. PLoS One 2017; 12:e0174906. [PMID: 28358852 PMCID: PMC5373634 DOI: 10.1371/journal.pone.0174906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/17/2017] [Indexed: 11/19/2022] Open
Abstract
Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation.
Collapse
Affiliation(s)
- Mei-chun Cheung
- Department of Social Work, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
- * E-mail:
| | - Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
- Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Ying Liu
- School of Public Administration, Guangzhou University, Guangzhou, P.R. China
| | - Derry Law
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Christina W. Y. Wong
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| |
Collapse
|
17
|
Mandikal Vasuki PR, Sharma M, Ibrahim RK, Arciuli J. Musicians' Online Performance during Auditory and Visual Statistical Learning Tasks. Front Hum Neurosci 2017; 11:114. [PMID: 28352223 PMCID: PMC5348489 DOI: 10.3389/fnhum.2017.00114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
Musicians' brains are considered to be a functional model of neuroplasticity due to the structural and functional changes associated with long-term musical training. In this study, we examined implicit extraction of statistical regularities from a continuous stream of stimuli-statistical learning (SL). We investigated whether long-term musical training is associated with better extraction of statistical cues in an auditory SL (aSL) task and a visual SL (vSL) task-both using the embedded triplet paradigm. Online measures, characterized by event related potentials (ERPs), were recorded during a familiarization phase while participants were exposed to a continuous stream of individually presented pure tones in the aSL task or individually presented cartoon figures in the vSL task. Unbeknown to participants, the stream was composed of triplets. Musicians showed advantages when compared to non-musicians in the online measure (early N1 and N400 triplet onset effects) during the aSL task. However, there were no differences between musicians and non-musicians for the vSL task. Results from the current study show that musical training is associated with enhancements in extraction of statistical cues only in the auditory domain.
Collapse
Affiliation(s)
- Pragati R. Mandikal Vasuki
- Department of Linguistics, Macquarie UniversitySydney, NSW, Australia
- The HEARing CRC, The University of MelbourneParkville, VIC, Australia
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, NSW, Australia
| | - Mridula Sharma
- Department of Linguistics, Macquarie UniversitySydney, NSW, Australia
- The HEARing CRC, The University of MelbourneParkville, VIC, Australia
| | - Ronny K. Ibrahim
- Department of Linguistics, Macquarie UniversitySydney, NSW, Australia
- The HEARing CRC, The University of MelbourneParkville, VIC, Australia
| | - Joanne Arciuli
- The HEARing CRC, The University of MelbourneParkville, VIC, Australia
- Faculty of Health Sciences, University of SydneySydney, NSW, Australia
| |
Collapse
|
18
|
Bellinger D, Altenmüller E, Volkmann J. Perception of Time in Music in Patients with Parkinson's Disease-The Processing of Musical Syntax Compensates for Rhythmic Deficits. Front Neurosci 2017; 11:68. [PMID: 28280454 PMCID: PMC5322262 DOI: 10.3389/fnins.2017.00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022] Open
Abstract
Objective: Perception of time as well as rhythm in musical structures rely on complex brain mechanisms and require an extended network of multiple neural sources. They are therefore sensitive to impairment. Several psychophysical studies have shown that patients with Parkinson's disease (PD) have deficits in perceiving time and rhythms due to a malfunction of the basal ganglia (BG) network. Method: In this study we investigated the time perception of PD patients during music perception by assessing their just noticeable difference (JND) in the time perception of a complex musical Gestalt. We applied a temporal discrimination task using a short melody with a clear beat-based rhythm. Among the subjects, 26 patients under L-Dopa administration and 21 age-matched controls had to detect an artificially delayed time interval in the range between 80 and 300 ms in the middle of the musical period. We analyzed the data by (a) calculating the detection threshold directly, (b) by extrapolating the JNDs, (c) relating it to musical expertise. Results: Patients differed from controls in the detection of time-intervals between 220 and 300 ms (*p = 0.0200, n = 47). Furthermore, this deficit depended on the severity of the disease (*p = 0.0452; n = 47). Surprisingly, PD patients did not show any deficit of their JND compared to healthy controls, although the results showed a trend (*p = 0.0565, n = 40). Furthermore, no significant difference of the JND was found according to the severity of the disease. Additionally, musically trained persons seemed to have lower thresholds in detecting deviations in time and syntactic structures of music (*p = 0.0343, n = 39). Conclusion: As an explanation of these results, we would like to propose the hypothesis of a time-syntax-congruency in music perception suggesting that processing of time and rhythm is a Gestalt process and that cortical areas involved in processing of musical syntax may compensate for impaired BG circuits that are responsible for time processing and rhythm perception. This mechanism may emerge more strongly as the deficits in time processing and rhythm perception progress. Furthermore, we presume that top-down-bottom-up-processes interfere additionally and interact in this context of compensation.
Collapse
Affiliation(s)
- Daniel Bellinger
- Department of Neurology, University Hospital Würzburg Würzburg, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama and Media Hannover, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg Würzburg, Germany
| |
Collapse
|
19
|
François C, Cunillera T, Garcia E, Laine M, Rodriguez-Fornells A. Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping during novel word learning. Neuropsychologia 2016; 98:56-67. [PMID: 27732869 DOI: 10.1016/j.neuropsychologia.2016.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
Abstract
Learning a new language requires the identification of word units from continuous speech (the speech segmentation problem) and mapping them onto conceptual representation (the word to world mapping problem). Recent behavioral studies have revealed that the statistical properties found within and across modalities can serve as cues for both processes. However, segmentation and mapping have been largely studied separately, and thus it remains unclear whether both processes can be accomplished at the same time and if they share common neurophysiological features. To address this question, we recorded EEG of 20 adult participants during both an audio alone speech segmentation task and an audiovisual word-to-picture association task. The participants were tested for both the implicit detection of online mismatches (structural auditory and visual semantic violations) as well as for the explicit recognition of words and word-to-picture associations. The ERP results from the learning phase revealed a delayed learning-related fronto-central negativity (FN400) in the audiovisual condition compared to the audio alone condition. Interestingly, while online structural auditory violations elicited clear MMN/N200 components in the audio alone condition, visual-semantic violations induced meaning-related N400 modulations in the audiovisual condition. The present results support the idea that speech segmentation and meaning mapping can take place in parallel and act in synergy to enhance novel word learning.
Collapse
Affiliation(s)
- Clément François
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-] IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Educational Science, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.
| | - Toni Cunillera
- Department of Cognition, Development and Educational Science, University of Barcelona, Barcelona, Spain
| | - Enara Garcia
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-] IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Educational Science, University of Barcelona, Barcelona, Spain
| | - Matti Laine
- Department of Psychology, Abo Akademi University, Turku, Finland
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-] IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Educational Science, University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain.
| |
Collapse
|
20
|
Sanju HK, Kumar P. Pre-attentive auditory discrimination skill in Indian classical vocal musicians and non-musicians. J Otol 2016; 11:102-110. [PMID: 29937818 PMCID: PMC6002603 DOI: 10.1016/j.joto.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Objective To test for pre-attentive auditory discrimination skills in Indian classical vocal musicians and non-musicians. Design Mismatch negativity (MMN) was recorded to test for pre-attentive auditory discrimination skills with a pair of stimuli of /1000 Hz/ and /1100 Hz/, with /1000 Hz/ as the frequent stimulus and /1100 Hz/ as the infrequent stimulus. Onset, offset and peak latencies were the considered latency parameters, whereas peak amplitude and area under the curve were considered for amplitude analysis. Study sample Exactly 50 participants, out of which the experimental group had 25 adult Indian classical vocal musicians and 25 age-matched non-musicians served as the control group, were included in the study. Experimental group participants had a minimum professional music experience in Indian classic vocal music of 10 years. However, control group participants did not have any formal training in music. Results Descriptive statistics showed better waveform morphology in the experimental group as compared to the control. MANOVA showed significantly better onset latency, peak amplitude and area under the curve in the experimental group but no significant difference in the offset and peak latencies between the two groups. Conclusion The present study probably points towards the enhancement of pre-attentive auditory discrimination skills in Indian classical vocal musicians compared to non-musicians. It indicates that Indian classical musical training enhances pre-attentive auditory discrimination skills in musicians, leading to higher peak amplitude and a greater area under the curve compared to non-musicians.
Collapse
Affiliation(s)
| | - Prawin Kumar
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, Karnataka, India
| |
Collapse
|
21
|
Lumaca M, Baggio G. Brain potentials predict learning, transmission and modification of an artificial symbolic system. Soc Cogn Affect Neurosci 2016; 11:1970-1979. [PMID: 27510496 DOI: 10.1093/scan/nsw112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/28/2016] [Accepted: 08/03/2016] [Indexed: 11/12/2022] Open
Abstract
It has recently been argued that symbolic systems evolve while they are being transmitted across generations of learners, gradually adapting to the relevant brain structures and processes. In the context of this hypothesis, little is known on whether individual differences in neural processing capacity account for aspects of 'variation' observed in symbolic behavior and symbolic systems. We addressed this issue in the domain of auditory processing. We conducted a combined behavioral and EEG study on 2 successive days. On day 1, participants listened to standard and deviant five-tone sequences: as in previous oddball studies, an mismatch negativity (MMN) was elicited by deviant tones. On day 2, participants learned an artificial signaling system from a trained confederate of the experimenters in a coordination game in which five-tone sequences were associated to affective meanings (emotion-laden pictures of human faces). In a subsequent game with identical structure, participants transmitted and occasionally changed the signaling system learned during the first game. The MMN latency from day 1 predicted learning, transmission and structural modification of signaling systems on day 2. Our study introduces neurophysiological methods into research on cultural transmission and evolution, and relates aspects of variation in symbolic systems to individual differences in neural information processing.
Collapse
Affiliation(s)
- Massimo Lumaca
- SISSA International School for Advanced Studies, Trieste
| | - Giosuè Baggio
- Language Acquisition and Language Processing Lab Department of Language and Literature, Norwegian University of Science and Technology, Trondheim
| |
Collapse
|
22
|
Sanju HK, Kumar P. Enhanced auditory evoked potentials in musicians: A review of recent findings. J Otol 2016; 11:63-72. [PMID: 29937812 PMCID: PMC6002589 DOI: 10.1016/j.joto.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/26/2022] Open
Abstract
Auditory evoked potentials serve as an objective mode for assessment to check the functioning of the auditory system and neuroplasticity. Literature has reported enhanced electrophysiological responses in musicians, which shows neuroplasticity in musicians. Various databases including PubMed, Google, Google Scholar and Medline were searched for references related to auditory evoked potentials in musicians from 1994 till date. Different auditory evoked potentials in musicians have been summarized in the present article. The findings of various studies may support as evidences for music-induced neuroplasticity which can be used for the treatment of various clinical disorders. The search results showed enhanced auditory evoked potentials in musicians compared to non-musicians from brainstem to cortical levels. Also, the present review showed enhanced attentive and pre-attentive skills in musicians compared to non-musicians.
Collapse
Affiliation(s)
| | - Prawin Kumar
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, Karnataka, India
| |
Collapse
|
23
|
Bendixen A, Duwe S, Reiche M. Noise occlusion in discrete tone sequences as a tool towards auditory predictive processing? Brain Res 2015; 1626:97-107. [PMID: 26187755 DOI: 10.1016/j.brainres.2015.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
The notion of predictive coding is a common feature of many theories of auditory information processing. Experimental demonstrations of predictive auditory processing often rest on omitting predictable input in order to uncover the prediction made by the brain. Findings show that auditory cortical activity elicited by the omission of a predictable tone resembles the activity elicited by the actual tone. Here we attempted to extend this approach towards using noises instead of omissions in order to capture a more prevalent case of degraded sensory input. By applying a subtraction approach to remove ERP effects of the noise itself, auditory cortical activity elicited "behind" the noise was uncovered. We hypothesized that ERPs elicited behind noise stimuli covering predictable tones should be more similar to ERPs elicited by the actual tones than when the same comparison is made for unpredictable tones. ERP results during passive listening partly confirm this hypothesis, but also point towards some methodological caveats in this particular approach towards studying neural correlates of predictive auditory processing due to contributions from predictability-unrelated factors. A follow-up active listening condition indicated that participants were not more likely to perceive the tone sequence as continuous when a predictable tone was covered with noise than when this pertained to an unpredictable tone. Overall, the noise-based paradigm in its present form was not shown to be successful in revealing predictive processing in perceptual judgments or early neural correlates of sound processing. We discuss these findings in the contexts of predictive processing and illusory auditory continuity. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
Affiliation(s)
- Alexandra Bendixen
- Institute of Psychology, University of Leipzig, D-04103 Leipzig, Germany; Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg, D-26111 Oldenburg, Germany; Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz, Germany.
| | - Susann Duwe
- Institute of Psychology, University of Leipzig, D-04103 Leipzig, Germany.
| | - Martin Reiche
- Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg, D-26111 Oldenburg, Germany; Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz, Germany.
| |
Collapse
|
24
|
Putkinen V, Tervaniemi M, Saarikivi K, Huotilainen M. Promises of formal and informal musical activities in advancing neurocognitive development throughout childhood. Ann N Y Acad Sci 2015; 1337:153-62. [PMID: 25773630 DOI: 10.1111/nyas.12656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult musicians show superior neural sound discrimination when compared to nonmusicians. However, it is unclear whether these group differences reflect the effects of experience or preexisting neural enhancement in individuals who seek out musical training. Tracking how brain function matures over time in musically trained and nontrained children can shed light on this issue. Here, we review our recent longitudinal event-related potential (ERP) studies that examine how formal musical training and less formal musical activities influence the maturation of brain responses related to sound discrimination and auditory attention. These studies found that musically trained school-aged children and preschool-aged children attending a musical playschool show more rapid maturation of neural sound discrimination than their control peers. Importantly, we found no evidence for pretraining group differences. In a related cross-sectional study, we found ERP and behavioral evidence for improved executive functions and control over auditory novelty processing in musically trained school-aged children and adolescents. Taken together, these studies provide evidence for the causal role of formal musical training and less formal musical activities in shaping the development of important neural auditory skills and suggest transfer effects with domain-general implications.
Collapse
Affiliation(s)
- Vesa Putkinen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland; Finnish Centre of Interdisciplinary Music Research, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | |
Collapse
|
25
|
|
26
|
Ono K, Altmann CF, Matsuhashi M, Mima T, Fukuyama H. Neural correlates of perceptual grouping effects in the processing of sound omission by musicians and nonmusicians. Hear Res 2014; 319:25-31. [PMID: 25446245 DOI: 10.1016/j.heares.2014.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Perceptual grouping is the process of organizing sounds into perceptually meaningful elements. Psychological studies have found that tones presented as a regular frequency or temporal pattern are grouped according to gestalt principles, such as similarity, proximity, and good continuity. Predictive coding theory suggests that this process helps create an internal model for the prediction of sounds in a tone sequence and that an omission-related brain response reflects the violation of this prediction. However, it remains unclear which brain areas are related to this process, especially in paying attention to the stimuli. To clarify this uncertainty, the present study investigated the neural correlates of perceptual grouping effects. Using magnetoencephalography (MEG), we recorded the evoked response fields (ERFs) of amateur musicians and nonmusicians to sound omissions in tone sequences with a regular or random pattern of three different frequencies during an omission detection task. Omissions in the regular sequences were detected faster and evoked greater activity in the left Heschl's gyrus (HG), right postcentral gyrus, and bilateral superior temporal gyrus (STG) than did omissions in the irregular sequences. Additionally, an interaction between musical experience and regularity was found in the left HG/STG. Tone-evoked responses did not show this difference, indicating that the expertise effect did not reflect the superior tone processing acquired by amateur musicians due to musical training. These results suggest that perceptual grouping based on repetition of a pattern of frequencies affects the processing of omissions in tone sequences and induces more activation of the bilateral auditory cortex by violating internal models. The interaction in the left HG/STG may suggest different styles of processing for musicians and nonmusicians, although this difference was not reflected at the behavioral level.
Collapse
Affiliation(s)
- Kentaro Ono
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Christian F Altmann
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masao Matsuhashi
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tatsuya Mima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
27
|
Marti S, Thibault L, Dehaene S. How does the extraction of local and global auditory regularities vary with context? PLoS One 2014; 9:e107227. [PMID: 25197987 PMCID: PMC4157871 DOI: 10.1371/journal.pone.0107227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
How does the human brain extract regularities from its environment? There is evidence that short range or ‘local’ regularities (within seconds) are automatically detected by the brain while long range or ‘global’ regularities (over tens of seconds or more) require conscious awareness. In the present experiment, we asked whether participants' attention was needed to acquire such auditory regularities, to detect their violation or both. We designed a paradigm in which participants listened to predictable sounds. Subjects could be distracted by a visual task at two moments: when they were first exposed to a regularity or when they detected violations of this regularity. MEG recordings revealed that early brain responses (100–130 ms) to violations of short range regularities were unaffected by visual distraction and driven essentially by local transitional probabilities. Based on global workspace theory and prior results, we expected that visual distraction would eliminate the long range global effect, but unexpectedly, we found the contrary, i.e. late brain responses (300–600 ms) to violations of long range regularities on audio-visual trials but not on auditory only trials. Further analyses showed that, in fact, visual distraction was incomplete and that auditory and visual stimuli interfered in both directions. Our results show that conscious, attentive subjects can learn the long range dependencies present in auditory stimuli even while performing a visual task on synchronous visual stimuli. Furthermore, they acquire a complex regularity and end up making different predictions for the very same stimulus depending on the context (i.e. absence or presence of visual stimuli). These results suggest that while short-range regularity detection is driven by local transitional probabilities between stimuli, the human brain detects and stores long-range regularities in a highly flexible, context dependent manner.
Collapse
Affiliation(s)
- Sébastien Marti
- INSERM, U992, Cognitive Neuroimaging Unit, Gif/Yvette, France
- CEA, DSV/I2BM, NeuroSpin Center, Gif/Yvette, France
- * E-mail:
| | - Louis Thibault
- Laboratoire Psychologie de la Perception, UMR 8242, Université Paris Descartes, Paris, France
| | - Stanislas Dehaene
- INSERM, U992, Cognitive Neuroimaging Unit, Gif/Yvette, France
- CEA, DSV/I2BM, NeuroSpin Center, Gif/Yvette, France
- Collège de France, Paris, France
| |
Collapse
|
28
|
Experience-dependent learning of auditory temporal resolution: evidence from Carnatic-trained musicians. Neuroreport 2014; 25:134-7. [PMID: 24264076 DOI: 10.1097/wnr.0000000000000093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Musical training and experience greatly enhance the cortical and subcortical processing of sounds, which may translate to superior auditory perceptual acuity. Auditory temporal resolution is a fundamental perceptual aspect that is critical for speech understanding in noise in listeners with normal hearing, auditory disorders, cochlear implants, and language disorders, yet very few studies have focused on music-induced learning of temporal resolution. This report demonstrates that Carnatic musical training and experience have a significant impact on temporal resolution assayed by gap detection thresholds. This experience-dependent learning in Carnatic-trained musicians exhibits the universal aspects of human perception and plasticity. The present work adds the perceptual component to a growing body of neurophysiological and imaging studies that suggest plasticity of the peripheral auditory system at the level of the brainstem. The present work may be intriguing to researchers and clinicians alike interested in devising cross-cultural training regimens to alleviate listening-in-noise difficulties.
Collapse
|
29
|
Recasens M, Grimm S, Wollbrink A, Pantev C, Escera C. Encoding of nested levels of acoustic regularity in hierarchically organized areas of the human auditory cortex. Hum Brain Mapp 2014; 35:5701-16. [PMID: 24996147 DOI: 10.1002/hbm.22582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/29/2014] [Accepted: 06/28/2014] [Indexed: 11/10/2022] Open
Abstract
Our auditory system is able to encode acoustic regularity of growing levels of complexity to model and predict incoming events. Recent evidence suggests that early indices of deviance detection in the time range of the middle-latency responses (MLR) precede the mismatch negativity (MMN), a well-established error response associated with deviance detection. While studies suggest that only the MMN, but not early deviance-related MLR, underlie complex regularity levels, it is not clear whether these two mechanisms interplay during scene analysis by encoding nested levels of acoustic regularity, and whether neuronal sources underlying local and global deviations are hierarchically organized. We registered magnetoencephalographic evoked fields to rapidly presented four-tone local sequences containing a frequency change. Temporally integrated local events, in turn, defined global regularities, which were infrequently violated by a tone repetition. A global magnetic mismatch negativity (MMNm) was obtained at 140-220 ms when breaking the global regularity, but no deviance-related effects were shown in early latencies. Conversely, Nbm (45-55 ms) and Pbm (60-75 ms) deflections of the MLR, and an earlier MMNm response at 120-160 ms, responded to local violations. Distinct neuronal generators in the auditory cortex underlay the processing of local and global regularity violations, suggesting that nested levels of complexity of auditory object representations are represented in separated cortical areas. Our results suggest that the different processing stages and anatomical areas involved in the encoding of auditory representations, and the subsequent detection of its violations, are hierarchically organized in the human auditory cortex.
Collapse
Affiliation(s)
- Marc Recasens
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, 08035, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, 08035, Catalonia, Spain
| | | | | | | | | |
Collapse
|
30
|
Bendixen A. Predictability effects in auditory scene analysis: a review. Front Neurosci 2014; 8:60. [PMID: 24744695 PMCID: PMC3978260 DOI: 10.3389/fnins.2014.00060] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/14/2014] [Indexed: 12/02/2022] Open
Abstract
Many sound sources emit signals in a predictable manner. The idea that predictability can be exploited to support the segregation of one source's signal emissions from the overlapping signals of other sources has been expressed for a long time. Yet experimental evidence for a strong role of predictability within auditory scene analysis (ASA) has been scarce. Recently, there has been an upsurge in experimental and theoretical work on this topic resulting from fundamental changes in our perspective on how the brain extracts predictability from series of sensory events. Based on effortless predictive processing in the auditory system, it becomes more plausible that predictability would be available as a cue for sound source decomposition. In the present contribution, empirical evidence for such a role of predictability in ASA will be reviewed. It will be shown that predictability affects ASA both when it is present in the sound source of interest (perceptual foreground) and when it is present in other sound sources that the listener wishes to ignore (perceptual background). First evidence pointing toward age-related impairments in the latter capacity will be addressed. Moreover, it will be illustrated how effects of predictability can be shown by means of objective listening tests as well as by subjective report procedures, with the latter approach typically exploiting the multi-stable nature of auditory perception. Critical aspects of study design will be delineated to ensure that predictability effects can be unambiguously interpreted. Possible mechanisms for a functional role of predictability within ASA will be discussed, and an analogy with the old-plus-new heuristic for grouping simultaneous acoustic signals will be suggested.
Collapse
Affiliation(s)
- Alexandra Bendixen
- Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all," European Medical School, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
31
|
Denham S, Bõhm TM, Bendixen A, Szalárdy O, Kocsis Z, Mill R, Winkler I. Stable individual characteristics in the perception of multiple embedded patterns in multistable auditory stimuli. Front Neurosci 2014; 8:25. [PMID: 24616656 PMCID: PMC3937586 DOI: 10.3389/fnins.2014.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 11/25/2022] Open
Abstract
The ability of the auditory system to parse complex scenes into component objects in order to extract information from the environment is very robust, yet the processing principles underlying this ability are still not well understood. This study was designed to investigate the proposal that the auditory system constructs multiple interpretations of the acoustic scene in parallel, based on the finding that when listening to a long repetitive sequence listeners report switching between different perceptual organizations. Using the “ABA-” auditory streaming paradigm we trained listeners until they could reliably recognize all possible embedded patterns of length four which could in principle be extracted from the sequence, and in a series of test sessions investigated their spontaneous reports of those patterns. With the training allowing them to identify and mark a wider variety of possible patterns, participants spontaneously reported many more patterns than the ones traditionally assumed (Integrated vs. Segregated). Despite receiving consistent training and despite the apparent randomness of perceptual switching, we found individual switching patterns were idiosyncratic; i.e., the perceptual switching patterns of each participant were more similar to their own switching patterns in different sessions than to those of other participants. These individual differences were found to be preserved even between test sessions held a year after the initial experiment. Our results support the idea that the auditory system attempts to extract an exhaustive set of embedded patterns which can be used to generate expectations of future events and which by competing for dominance give rise to (changing) perceptual awareness, with the characteristics of pattern discovery and perceptual competition having a strong idiosyncratic component. Perceptual multistability thus provides a means for characterizing both general mechanisms and individual differences in human perception.
Collapse
Affiliation(s)
- Susan Denham
- Cognition Institute, University of Plymouth Plymouth, UK ; School of Psychology, University of Plymouth Plymouth, UK
| | - Tamás M Bõhm
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences Budapest, Hungary ; Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics Budapest, Hungary
| | - Alexandra Bendixen
- Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Orsolya Szalárdy
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences Budapest, Hungary ; Department of Cognitive Science, Budapest University of Technology and Economics Budapest, Hungary
| | - Zsuzsanna Kocsis
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences Budapest, Hungary ; Department of Cognitive Science, Budapest University of Technology and Economics Budapest, Hungary
| | - Robert Mill
- Cognition Institute, University of Plymouth Plymouth, UK
| | - István Winkler
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences Budapest, Hungary ; Institute of Psychology, University of Szeged Szeged, Hungary
| |
Collapse
|
32
|
Strait DL, Kraus N. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear Res 2014; 308:109-21. [PMID: 23988583 PMCID: PMC3947192 DOI: 10.1016/j.heares.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/08/2013] [Accepted: 08/11/2013] [Indexed: 01/19/2023]
Abstract
Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function.
Collapse
Affiliation(s)
- Dana L Strait
- Auditory Neuroscience Laboratory, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA; Department of Communication Sciences, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology & Physiology, Northwestern University, Evanston, IL 60208, USA; Department of Otolaryngology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
33
|
Schröger E, Bendixen A, Denham SL, Mill RW, Bőhm TM, Winkler I. Predictive Regularity Representations in Violation Detection and Auditory Stream Segregation: From Conceptual to Computational Models. Brain Topogr 2013; 27:565-77. [DOI: 10.1007/s10548-013-0334-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/13/2013] [Indexed: 11/24/2022]
|
34
|
François C, Schön D. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice. Hear Res 2013; 308:122-8. [PMID: 24035820 DOI: 10.1016/j.heares.2013.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations.
Collapse
Affiliation(s)
- Clément François
- Cognition and Brain Plasticity Unit, Dept. of Basic Psychology (Campus de Bellvitge) & IDIBELL, University of Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet (Barcelona), Spain; Department of Basic Psychology, Faculty of Psychology, University of Barcelona, 08035 Barcelona, Spain
| | - Daniele Schön
- Aix-Marseille Université, INS, Marseille, France; INSERM, U1106, Marseille, France.
| |
Collapse
|
35
|
Perrot X, Collet L. Function and plasticity of the medial olivocochlear system in musicians: a review. Hear Res 2013; 308:27-40. [PMID: 23994434 DOI: 10.1016/j.heares.2013.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/11/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
The outer hair cells of the organ of Corti are the target of abundant efferent projections from the olivocochlear system. This peripheral efferent auditory subsystem is currently thought to be modulated by central activity via corticofugal descending auditory system, and to modulate active cochlear micromechanics. Although the function of this efferent subsystem remains unclear, physiological, psychophysical, and modeling data suggest that it may be involved in ear protection against noise damage and auditory perception, especially in the presence of background noise. Moreover, there is mounting evidence that its activity is modulated by auditory and visual attention. A commonly used approach to measure olivocochlear activity noninvasively in humans relies on the suppression of otoacoustic emissions by contralateral noise. Previous studies have found substantial interindividual variability in this effect, and statistical differences have been observed between professional musicians and non-musicians, with stronger bilateral suppression effects in the former. In this paper, we review these studies and discuss various possible interpretations for these findings, including experience-dependent neuroplasticity. We ask whether differences in olivocochlear function between musicians and non-musicians reflect differences in peripheral auditory function or in more central factors, such as top-down attentional modulation.
Collapse
Affiliation(s)
- Xavier Perrot
- Université de Lyon, Lyon F-69000, France; INSERM U1028, CNRS UMR5292, Université Lyon 1, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon F-69000, France; Claude Bernard Lyon 1 University, Lyon F-69500, France; Hospices Civils de Lyon, Lyon Sud Teaching Hospital, Department of Audiology and Orofacial Explorations, Pierre-Bénite F-69310, France.
| | - Lionel Collet
- Université de Lyon, Lyon F-69000, France; INSERM U1028, CNRS UMR5292, Université Lyon 1, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon F-69000, France; Claude Bernard Lyon 1 University, Lyon F-69500, France; Hospices Civils de Lyon, Lyon Sud Teaching Hospital, Department of Audiology and Orofacial Explorations, Pierre-Bénite F-69310, France.
| |
Collapse
|
36
|
The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia 2013; 51:1608-18. [DOI: 10.1016/j.neuropsychologia.2013.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/14/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
|
37
|
Paavilainen P. The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: A review. Int J Psychophysiol 2013; 88:109-23. [PMID: 23542165 DOI: 10.1016/j.ijpsycho.2013.03.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 11/26/2022]
|
38
|
Kuchenbuch A, Paraskevopoulos E, Herholz SC, Pantev C. Effects of musical training and event probabilities on encoding of complex tone patterns. BMC Neurosci 2013; 14:51. [PMID: 23617597 PMCID: PMC3639196 DOI: 10.1186/1471-2202-14-51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human auditory cortex automatically encodes acoustic input from the environment and differentiates regular sound patterns from deviant ones in order to identify important, irregular events. The Mismatch Negativity (MMN) response is a neuronal marker for the detection of sounds that are unexpected, based on the encoded regularities. It is also elicited by violations of more complex regularities and musical expertise has been shown to have an effect on the processing of complex regularities. Using magnetoencephalography (MEG), we investigated the MMN response to salient or less salient deviants by varying the standard probability (70%, 50% and 35%) of a pattern oddball paradigm. To study the effects of musical expertise in the encoding of the patterns, we compared the responses of a group of non-musicians to those of musicians. RESULTS We observed significant MMN in all conditions, including the least salient condition (35% standards), in response to violations of the predominant tone pattern for both groups. The amplitude of MMN from the right hemisphere was influenced by the standard probability. This effect was modulated by long-term musical training: standard probability changes influenced MMN amplitude in the group of non-musicians only. CONCLUSION This study indicates that pattern violations are detected automatically, even if they are of very low salience, both in non-musicians and musicians, with salience having a stronger impact on processing in the right hemisphere of non-musicians. Long-term musical training influences this encoding, in that non-musicians benefit to a greater extent from a good signal-to-noise ratio (i.e. high probability of the standard pattern), while musicians are less dependent on the salience of an acoustic environment.
Collapse
Affiliation(s)
- Anja Kuchenbuch
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | | | | |
Collapse
|
39
|
Mill RW, Bőhm TM, Bendixen A, Winkler I, Denham SL. Modelling the emergence and dynamics of perceptual organisation in auditory streaming. PLoS Comput Biol 2013; 9:e1002925. [PMID: 23516340 PMCID: PMC3597549 DOI: 10.1371/journal.pcbi.1002925] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/31/2012] [Indexed: 11/29/2022] Open
Abstract
Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the dynamics of human perception in auditory streaming. The sound waves produced by objects in the environment mix together before reaching the ears. Before we can make sense of an auditory scene, our brains must solve the puzzle of how to disassemble the sound waveform into groupings that correspond to the original source signals. How is this feat accomplished? We propose that the auditory system continually scans the structure of incoming signals in search of clues to indicate which pieces belong together. For instance, sound events may belong together if they have similar features, or form part of a clear temporal pattern. However this process is complicated by lack of knowledge of future events and the many possible ways in which even a simple sound sequence can be decomposed. The biological solution is multistability: one possible interpretation of a sound is perceived initially, which then gives way to another interpretation, and so on. We propose a model of auditory multistability, in which fragmental descriptions of the signal compete and cooperate to explain the sound scene. We demonstrate, using simplified experimental stimuli, that the model can account for both the contents (perceptual organisations) and the dynamics of human perception in auditory streaming.
Collapse
Affiliation(s)
- Robert W. Mill
- MRC Institute of Hearing Research, Nottingham, United Kingdom
| | - Tamás M. Bőhm
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, MTA, Budapest, Hungary
- Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail:
| | | | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, MTA, Budapest, Hungary
- Institute for Psychology, University of Szeged, Szeged, Hungary
| | - Susan L. Denham
- Cognition Institute and School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
40
|
Kühnis J, Elmer S, Meyer M, Jäncke L. Musicianship Boosts Perceptual Learning of Pseudoword-Chimeras: An Electrophysiological Approach. Brain Topogr 2012; 26:110-25. [DOI: 10.1007/s10548-012-0237-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/07/2012] [Indexed: 11/28/2022]
|
41
|
Rimmele J, Schröger E, Bendixen A. Age-related changes in the use of regular patterns for auditory scene analysis. Hear Res 2012; 289:98-107. [PMID: 22543088 DOI: 10.1016/j.heares.2012.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/31/2012] [Accepted: 04/09/2012] [Indexed: 11/30/2022]
Abstract
A recent approach to auditory processing suggests a close relationship of regularity processing in auditory sensory memory (ASM) and stream segregation, such that within-stream regularities can be used to stabilize stream segregation. The present study investigates age-related changes in how regular patterns are used for auditory scene analysis (ASA), when the stream containing the regularity is attended or unattended. In order to accomplish an intensity level deviant detection task, participants had to segregate the task-relevant pure tone sequence from an irrelevant distractor pure tone sequence, which randomly varied in level. In three conditions a simple spectro-temporal regularity ("Isochronous"), a more complex spectro-temporal regularity ("Rhythmic"), or no regularity ("Random") was embedded in either the attended target sequence (Experiment 1), or the unattended distractor sequence (Experiment 2). When the sequence containing the regularity was attended, older participants showed a similar increase of performance to younger adults in the conditions with regular patterns ("Isochronous" and "Rhythmic") compared to the "Random" condition. In contrast, when the sequence containing the regularity was unattended, older adults showed a specific performance decline compared to younger adults in the "Isochronous" condition. Results suggest a link between impaired automatic processing of regularities in ASM, and age-related deficits in the use of regular patterns for ASA.
Collapse
Affiliation(s)
- Johanna Rimmele
- Institute of Psychology, University of Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|
42
|
Kuchenbuch A, Paraskevopoulos E, Herholz SC, Pantev C. Electromagnetic correlates of musical expertise in processing of tone patterns. PLoS One 2012; 7:e30171. [PMID: 22279568 PMCID: PMC3261169 DOI: 10.1371/journal.pone.0030171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 12/13/2011] [Indexed: 11/18/2022] Open
Abstract
Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training.
Collapse
Affiliation(s)
- Anja Kuchenbuch
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | - Sibylle C. Herholz
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christo Pantev
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|