1
|
Chen J, Pal P, Ahrens ET. Systems Engineering Approach Towards Sensitive Cellular Fluorine-19 MRI. NMR IN BIOMEDICINE 2025; 38:e5298. [PMID: 39648456 DOI: 10.1002/nbm.5298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024]
Abstract
In vivo fluorine-19 MRI using F-based tracer media has shown utility and versatility for a wide range of biomedical uses, particularly immune and stem cell detection, as well as biosensing. As with many advanced MRI acquisition techniques, the sensitivity and limit of detection (LOD) in vivo is a key consideration for a successful study outcome. In this review, we analyze the primary factors that limit cell LOD. The achievable sensitivity is strongly dependent on the specific composition of tracer, cell type of interest, cell activity, data acquisition and reconstruction methods, and MRI hardware design. Recent innovations in molecular 19F tracer design and image acquisition-reconstruction methods have achieved significant leaps in 19F MRI sensitivity, and integration of these new materials and methods into studies can result in > 10-fold improvement in LOD. These developments will help unlock the full potential of clinical 19F MRI for biomedical applications.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA
| | - Piya Pal
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA
| | - Eric T Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Lechuga LM, Cho MM, Vail DM, Captini CM, Fain SB, Begovatz P. Feasibility and optimization of 19F MRI on a clinical 3T with a large field-of-view torso coil. Phys Med Biol 2024; 69:125002. [PMID: 38759675 PMCID: PMC11149172 DOI: 10.1088/1361-6560/ad4d50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Objective.The objective of this work is to: (1) demonstrate fluorine-19 (19F) MRI on a 3T clinical system with a large field of view (FOV) multi-channel torso coil (2) demonstrate an example parameter selection optimization for a19F agent to maximize the signal-to-noise ratio (SNR)-efficiency for spoiled gradient echo (SPGR), balanced steady-state free precession (bSSFP), and phase-cycled bSSFP (bSSFP-C), and (3) validate detection feasibility inex vivotissues.Approach.Measurements were conducted on a 3.0T Discovery MR750w MRI (GE Healthcare, USA) with an 8-channel1H/19F torso coil (MRI Tools, Germany). Numerical simulations were conducted for perfluoropolyether to determine the theoretical parameters to maximize SNR-efficiency for the sequences. Theoretical parameters were experimentally verified, and the sensitivity of the sequences was compared with a 10 min acquisition time with a 3.125 × 3.125 × 3 mm3in-plane resolution. Feasibility of a bSSFP-C was also demonstrated in phantom andex vivotissues.Main Results. Flip angles (FAs) of 12 and 64° maximized the signal for SPGR and bSSFP, and validation of optimal FA and receiver bandwidth showed close agreement with numerical simulations. Sensitivities of 2.47, 5.81, and 4.44ms-0.5mM-1 and empirical detection limits of 20.3, 1.5, and 6.2 mM were achieved for SPGR, bSSFP, and bSSFP-C, respectively. bSSFP and bSSFP-C achieved 1.8-fold greater sensitivity over SPGR (p< 0.01).Significance.bSSFP-C was able to improve sensitivity relative to simple SPGR and reduce both bSSFP banding effects and imaging time. The sequence was used to demonstrate the feasibility of19F MRI at clinical FOVs and field strengths withinex-vivotissues.
Collapse
Affiliation(s)
- Lawrence M Lechuga
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Monica M Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - David M Vail
- Department of Medical Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States of America
| | - Christian M Captini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Carbone Cancer Center, University of Wisconsin, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin School of Engineering, Madison, WI, United States of America
| | - Sean B Fain
- Department of Radiology, University of Iowa, Iowa City, IA, United States of America
| | - Paul Begovatz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| |
Collapse
|
3
|
Chudal L, Santelli J, Lux J, Woodward A, Hafeez N, Endsley C, Garland S, Mattrey RF, de Gracia Lux C. In Vivo Ultrasound Imaging of Macrophages Using Acoustic Vaporization of Internalized Superheated Nanodroplets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42413-42423. [PMID: 37650753 DOI: 10.1021/acsami.3c11976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Activating patients' immune cells, either by reengineering them or treating them with bioactive molecules, has been a breakthrough in the field of immunotherapy and has revolutionized treatment, especially against cancer. As immune cells naturally home to tumors or injured tissues, labeling such cells holds promise for non-invasive tracking and biologic manipulation. Our study demonstrates that macrophages loaded with extremely low boiling point perfluorocarbon nanodroplets not only survive ultrasound-induced phase change but also maintain their phagocytic function. Unlike observations made when using higher boiling point perfluorocarbon nanodroplets, our results show that phase change occurs intracellularly at a low mechanical index using a clinical scanner operating within the energy limit set by the Food and Drug Administration (FDA). After nanodroplet-loaded macrophages were given intravenously to nude rats, they were invisible in the liver when imaged at a very low mechanical index using a clinical ultrasound scanner. They became visible when power was increased but still within the FDA limits up to 8 h after administration. The acoustic labeling and in vivo detection of macrophages using a clinical ultrasound scanner represent a paradigm shift in the field of cell tracking and pave the way for potential therapeutic strategies in the clinical setting.
Collapse
Affiliation(s)
- Lalit Chudal
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Julien Santelli
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jacques Lux
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Organic Chemistry Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Adam Woodward
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Nazia Hafeez
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Connor Endsley
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Shea Garland
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Organic Chemistry Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Robert F Mattrey
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Caroline de Gracia Lux
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
4
|
Cell sorting microbeads as novel contrast agent for magnetic resonance imaging. Sci Rep 2022; 12:17640. [PMID: 36271098 PMCID: PMC9586996 DOI: 10.1038/s41598-022-21762-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/30/2022] [Indexed: 01/18/2023] Open
Abstract
The success of several cell-based therapies and prevalent use of magnetic resonance imaging (MRI) in the clinic has fueled the development of contrast agents for specific cell tracking applications. Safe and efficient labeling of non-phagocytic cell types such as T cells nonetheless remains challenging. We developed a one-stop shop approach where the T cell sorting agent also labels the cells which can subsequently be depicted using non-invasive MRI. We compared the MR signal effects of magnetic-assisted cell sorting microbeads (CD25) to the current preclinical gold standard, ferumoxytol. We investigated in vitro labeling efficiency of regulatory T cells (Tregs) with MRI and histopathologic confirmation. Thereafter, Tregs and T cells were labeled with CD25 microbeads in vitro and delivered via intravenous injection. Liver MRIs pre- and 24 h post-injection were performed to determine in vivo tracking feasibility. We show that CD25 microbeads exhibit T2 signal decay properties similar to other iron oxide contrast agents. CD25 microbeads are readily internalized by Tregs and can be detected by non-invasive MRI with dose dependent T2 signal suppression. Systemically injected labeled Tregs can be detected in the liver 24 h post-injection, contrary to T cell control. Our CD25 microbead-based labeling method is an effective tool for Treg tagging, yielding detectable MR signal change in cell phantoms and in vivo. This novel cellular tracking method will be key in tracking the fate of Tregs in inflammatory pathologies and solid organ transplantation.
Collapse
|
5
|
Sato N, Choyke PL. Whole-Body Imaging to Assess Cell-Based Immunotherapy: Preclinical Studies with an Update on Clinical Translation. Mol Imaging Biol 2022; 24:235-248. [PMID: 34816284 PMCID: PMC8983636 DOI: 10.1007/s11307-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
In the past decades, immunotherapies against cancers made impressive progress. Immunotherapy includes a broad range of interventions that can be separated into two major groups: cell-based immunotherapies, such as adoptive T cell therapies and stem cell therapies, and immunomodulatory molecular therapies such as checkpoint inhibitors and cytokine therapies. Genetic engineering techniques that transduce T cells with a cancer-antigen-specific T cell receptor or chimeric antigen receptor have expanded to other cell types, and further modulation of the cells to enhance cancer targeting properties has been explored. Because cell-based immunotherapies rely on cells migrating to target organs or tissues, there is a growing interest in imaging technologies that non-invasively monitor transferred cells in vivo. Here, we review whole-body imaging methods to assess cell-based immunotherapy using a variety of examples. Following a review of preclinically used cell tracking technologies, we consider the status of their clinical translation.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B406, 10 Center Dr, Bethesda, MD, 20892, USA.
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B69F, 10 Center Dr, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Saini S, Vanherwegen AS, Liang S, Verbeke R, Korf H, Lentacker I, De Smedt SC, Gysemans C, Himmelreich U. Fluorine MR Imaging Probes Dynamic Migratory Profiles of Perfluorocarbon-Loaded Dendritic Cells After Streptozotocin-Induced Inflammation. Mol Imaging Biol 2022; 24:321-332. [PMID: 35060024 DOI: 10.1007/s11307-021-01701-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The pathogenesis of type 1 diabetes (T1D) involves presentation of islet-specific self-antigens by dendritic cells (DCs) to autoreactive T cells, resulting in the destruction of insulin-producing pancreatic beta cells. We aimed to study the dynamic homing of diabetes-prone DCs to the pancreas and nearby organs with and without induction of pancreatic stress in a T1D susceptible model of repeated streptozotocin (STZ) injection. PROCEDURES In vitro labeling of activated bone marrow-derived DCs (BMDCs) from NOD (Nonobese diabetes) mice was performed using zonyl perfluoro-15-crown-5-ether nanoparticles (ZPFCE-NPs). Internalization of particles was confirmed by confocal microscopy. Two groups of NOD.SCID (nonobese diabetic/severe combined immunodeficiency) mice with (induced by low dose STZ administration) or without pancreatic stress were compared. Diabetogenic BMDCs loaded with BDC2.5 mimotope were pre-labeled with ZPFCE-NPs and adoptively transferred into mice. Longitudinal in vivo fluorine MRI (19F MRI) was performed 24 h, 36 h and 48 h after transfer of BMDCs. For ex vivo quantification of labeled cells, 19F NMR and flow cytometry were performed on dissected tissues to validate in vivo 19F MRI data. RESULTS In vitro flow cytometry and confocal microscopy confirmed high uptake of nanoparticles in BMDCs during the process of maturation. Migration/homing of activated and ZPFCE-NP- labeled BMDCs to different organs was monitored and quantified longitudinally, showing highest cell density in pancreas at 48-h time-point. Based on 19F MRI, STZ induced mild inflammation in the pancreatic region, as indicated by high accumulation of ZPFCE-NP-labeled BMDCs in the pancreas when compared to the vehicle group. Pancreatic draining lymph nodes showed elevated homing of labeled BMDCs in the vehicle groups in contrast to the STZ group after 72 h. The effect of STZ was confirmed by increased blood glucose levels. CONCLUSION We showed the potential of 19F MRI for the non-invasive visualization and quantification of migrating immune cells in models for pancreatic inflammation after STZ administration. Without any intrinsic background signal, 19F MRI serves as a highly specific imaging tool to study the migration of diabetic-prone BMDCs in T1D models in vivo. This approach could particularly be of interest for the longitudinal assessment of established or novel anti-inflammatory therapeutic approaches in preclinical models.
Collapse
Affiliation(s)
- Shweta Saini
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | | | - Sayuan Liang
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
- Philips Research China, Shanghai, China
| | - Rein Verbeke
- General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA, KU Leuven, Leuven, Belgium
| | - Ine Lentacker
- General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, Belgium
| | - Stefaan C De Smedt
- General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, CHROMETA, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Bulte JWM, Shakeri-Zadeh A. In Vivo MRI Tracking of Tumor Vaccination and Antigen Presentation by Dendritic Cells. Mol Imaging Biol 2022; 24:198-207. [PMID: 34581954 PMCID: PMC8477715 DOI: 10.1007/s11307-021-01647-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023]
Abstract
Cancer vaccination using tumor antigen-primed dendritic cells (DCs) was introduced in the clinic some 25 years ago, but the overall outcome has not lived up to initial expectations. In addition to the complexity of the immune response, there are many factors that determine the efficacy of DC therapy. These include accurate administration of DCs in the target tissue site without unwanted cell dispersion/backflow, sufficient numbers of tumor antigen-primed DCs homing to lymph nodes (LNs), and proper timing of immunoadjuvant administration. To address these uncertainties, proton (1H) and fluorine (19F) magnetic resonance imaging (MRI) tracking of ex vivo pre-labeled DCs can now be used to non-invasively determine the accuracy of therapeutic DC injection, initial DC dispersion, systemic DC distribution, and DC migration to and within LNs. Magnetovaccination is an alternative approach that tracks in vivo labeled DCs that simultaneously capture tumor antigen and MR contrast agent in situ, enabling an accurate quantification of antigen presentation to T cells in LNs. The ultimate clinical premise of MRI DC tracking would be to use changes in LN MRI signal as an early imaging biomarker to predict the efficacy of tumor vaccination and anti-tumor response long before treatment outcome becomes apparent, which may aid clinicians with interim treatment management.
Collapse
Affiliation(s)
- Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, MRB 659, 733 N. Broadway, MD, 21205, Baltimore, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, MRB 659, 733 N. Broadway, MD, 21205, Baltimore, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ali Shakeri-Zadeh
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, MRB 659, 733 N. Broadway, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, MRB 659, 733 N. Broadway, MD, 21205, Baltimore, USA
| |
Collapse
|
8
|
Cooke F, Neal M, Wood MJ, de Vries IJM, Anderson AE, Diboll J, Pratt AG, Stanway J, Nicorescu I, Moyse N, Hiles D, Caulfield D, Dickinson AM, Blamire AM, Thelwall P, Isaacs JD, Hilkens CMU. Fluorine labelling of therapeutic human tolerogenic dendritic cells for 19F-magnetic resonance imaging. Front Immunol 2022; 13:988667. [PMID: 36263039 PMCID: PMC9574244 DOI: 10.3389/fimmu.2022.988667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Tolerogenic dendritic cell (tolDC) therapies aim to restore self-tolerance in patients suffering from autoimmune diseases. Phase 1 clinical trials with tolDC have shown the feasibility and safety of this approach, but have also highlighted a lack of understanding of their distribution in vivo. Fluorine-19 magnetic resonance imaging (19F-MRI) promises an attractive cell tracking method because it allows for detection of 19F-labelled cells in a non-invasive and longitudinal manner. Here, we tested the suitability of nanoparticles containing 19F (19F-NP) for labelling of therapeutic human tolDC for detection by 19F-MRI. We found that tolDC readily endocytosed 19F-NP with acceptable effects on cell viability and yield. The MRI signal-to-noise ratios obtained are more than sufficient for detection of the administered tolDC dose (10 million cells) at the injection site in vivo, depending on the tissue depth and the rate of cell dispersal. Importantly, 19F-NP labelling did not revert tolDC into immunogenic DC, as confirmed by their low expression of typical mature DC surface markers (CD83, CD86), low secretion of pro-inflammatory IL-12p70, and low capacity to induce IFN-γ in allogeneic CD4+ T cells. In addition, the capacity of tolDC to secrete anti-inflammatory IL-10 was not diminished by 19F-NP labelling. We conclude that 19F-NP is a suitable imaging agent for tolDC. With currently available technologies, this imaging approach does not yet approach the sensitivity required to detect small numbers of migrating cells, but could have important utility for determining the accuracy of injecting tolDC into the desired target tissue and their efflux rate.
Collapse
Affiliation(s)
- Fiona Cooke
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Mary Neal
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matthew J Wood
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Division of Rheumatology, Rush University Medical Centre, Chicago, IL, United States
| | - I Jolanda M de Vries
- Department of Tumour Immunology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Amy E Anderson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Julie Diboll
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Arthur G Pratt
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom.,Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - James Stanway
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Ioana Nicorescu
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Nicholas Moyse
- Newcastle Advanced Therapies, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Dawn Hiles
- Newcastle Advanced Therapies, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - David Caulfield
- Newcastle Advanced Therapies, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anne M Dickinson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew M Blamire
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pete Thelwall
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John D Isaacs
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom.,Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Catharien M U Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Delgado PR, Kuehne A, Aravina M, Millward JM, Vázquez A, Starke L, Waiczies H, Pohlmann A, Niendorf T, Waiczies S. B 1 inhomogeneity correction of RARE MRI at low SNR: Quantitative in vivo 19 F MRI of mouse neuroinflammation with a cryogenically-cooled transceive surface radiofrequency probe. Magn Reson Med 2021; 87:1952-1970. [PMID: 34812528 DOI: 10.1002/mrm.29094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Low SNR in fluorine-19 (19 F) MRI benefits from cryogenically-cooled transceive surface RF probes (CRPs), but strong B1 inhomogeneities hinder quantification. Rapid acquisition with refocused echoes (RARE) is an SNR-efficient method for MRI of neuroinflammation with perfluorinated compounds but lacks an analytical signal intensity equation to retrospectively correct B1 inhomogeneity. Here, a workflow was proposed and validated to correct and quantify 19 F-MR signals from the inflamed mouse brain using a 19 F-CRP. METHODS In vivo 19 F-MR images were acquired in a neuroinflammation mouse model with a quadrature 19 F-CRP using an imaging setup including 3D-printed components to acquire co-localized anatomical and 19 F images. Model-based corrections were validated on a uniform 19 F phantom and in the neuroinflammatory model. Corrected 19 F-MR images were benchmarked against reference images and overlaid on in vivo 1 H-MR images. Computed concentration uncertainty maps using Monte Carlo simulations served as a measure of performance of the B1 corrections. RESULTS Our study reports on the first quantitative in vivo 19 F-MR images of an inflamed mouse brain using a 19 F-CRP, including in vivo T1 calculations for 19 F-nanoparticles during pathology and B1 corrections for 19 F-signal quantification. Model-based corrections markedly improved 19 F-signal quantification from errors > 50% to < 10% in a uniform phantom (p < 0.001). Concentration uncertainty maps ex vivo and in vivo yielded uncertainties that were generally < 25%. Monte Carlo simulations prescribed SNR ≥ 10.1 to reduce uncertainties < 10%, and SNR ≥ 4.25 to achieve uncertainties < 25%. CONCLUSION Our model-based correction method facilitated 19 F signal quantification in the inflamed mouse brain when using the SNR-boosting 19 F-CRP technology, paving the way for future low-SNR 19 F-MRI applications in vivo.
Collapse
Affiliation(s)
- Paula Ramos Delgado
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mariya Aravina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | | | - Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | | | - Andreas Pohlmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany.,MRI.TOOLS, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| |
Collapse
|
10
|
Imaging of Inflammation in Spinal Cord Injury: Novel Insights on the Usage of PFC-Based Contrast Agents. Biomedicines 2021; 9:biomedicines9040379. [PMID: 33916774 PMCID: PMC8065995 DOI: 10.3390/biomedicines9040379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022] Open
Abstract
Labeling of macrophages with perfluorocarbon (PFC)-based compounds allows the visualization of inflammatory processes by 19F-magnetic resonance imaging (19F-MRI), due to the absence of endogenous background. Even if PFC-labeling of monocytes/macrophages has been largely investigated and used, information is lacking about the impact of these agents over the polarization towards one of their cell subsets and on the best way to image them. In the present work, a PFC-based nanoemulsion was developed to monitor the course of inflammation in a model of spinal cord injury (SCI), a pathology in which the understanding of immunological events is of utmost importance to select the optimal therapeutic strategies. The effects of PFC over macrophage polarization were studied in vitro, on cultured macrophages, and in vivo, in a mouse SCI model, by testing and comparing various cell tracking protocols, including single and multiple administrations, the use of MRI or Point Resolved Spectroscopy (PRESS), and application of pre-saturation of Kupffer cells. The blood half-life of nanoemulsion was also investigated by 19F Magnetic Resonance Spectroscopy (MRS). In vitro and in vivo results indicate the occurrence of a switch towards the M2 (anti-inflammatory) phenotype, suggesting a possible theranostic function of these nanoparticles. The comparative work presented here allows the reader to select the most appropriate protocol according to the research objectives (quantitative data acquisition, visual monitoring of macrophage recruitment, theranostic purpose, rapid MRI acquisition, etc.). Finally, the method developed here to determine the blood half-life of the PFC nanoemulsion can be extended to other fluorinated compounds.
Collapse
|
11
|
Modo M. 19F Magnetic Resonance Imaging and Spectroscopy in Neuroscience. Neuroscience 2021; 474:37-50. [PMID: 33766776 DOI: 10.1016/j.neuroscience.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
1H magnetic resonance imaging (MRI) has established itself as a key diagnostic technique, affording the visualization of brain anatomy, blood flow, activity and connectivity. The detection of other atoms (e.g. 19F, 23Na, 31P), so called hetero-nuclear MRI and spectroscopy (MRS), provides investigative avenues that complement and extend the richness of information that can be gained from 1H MRI. Especially 19F MRI is increasingly emerging as a multi-nuclear (1H/19F) technique that can be exploited to visualize cell migration and trafficking. The lack of a 19F background signal in the brain affords an unequivocal detection suitable for quantification. Fluorine-based contrast material can be engineered as nanoemulsions, nanocapsules, or nanoparticles to label cells in vitro or in vivo. Fluorinated blood substitutes, typically nanoemulsions, can also carry oxygen and serve as a theranostic in poorly perfused brain regions. Brain tissue concentrations of fluorinated pharmaceuticals, including inhalation anesthetics (e.g. isoflurane) and anti-depressants (e.g. fluoxetine), can also be measured using MRS. However, the low signal from these compounds provides a challenge for imaging. Further methodological advances that accelerate signal acquisition (e.g. compressed sensing, cryogenic coils) are required to expand the applications of 19F MR imaging to, for instance, determine the regional pharmacokinetics of novel fluorine-based drugs. Improvements in 19F signal detection and localization, combined with the development of novel sensitive probes, will increase the utility of these multi-nuclear studies. These advances will provide new insights into cellular and molecular processes involved in neurodegenerative disease, as well as the mode of action of pharmaceutical compounds.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Waiczies S, Prinz C, Starke L, Millward JM, Delgado PR, Rosenberg J, Nazaré M, Waiczies H, Pohlmann A, Niendorf T. Functional Imaging Using Fluorine ( 19F) MR Methods: Basic Concepts. Methods Mol Biol 2021; 2216:279-299. [PMID: 33476007 PMCID: PMC9703275 DOI: 10.1007/978-1-0716-0978-1_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine (19F) MRI in biomedical research to study functional changes during disease states. 19F MRI represents an instrumental tool for the quantification of exogenous 19F substances in vivo. One of the major benefits of 19F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous 19F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of 19F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
| | - Christian Prinz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Ludger Starke
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Jens Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Siemens Healthcare, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
13
|
Quantification and characterization of granulocyte macrophage colony-stimulating factor activated human peripheral blood mononuclear cells by fluorine-19 cellular MRI in an immunocompromised mouse model. Diagn Interv Imaging 2020; 101:577-588. [DOI: 10.1016/j.diii.2020.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
|
14
|
Bouvain P, Temme S, Flögel U. Hot spot 19 F magnetic resonance imaging of inflammation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1639. [PMID: 32380579 DOI: 10.1002/wnan.1639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Among the preclinical molecular imaging approaches, lately fluorine (19 F) magnetic resonance imaging (MRI) has garnered significant scientific interest in the biomedical research community, due to the unique properties of fluorinated materials and the 19 F nucleus. Fluorine is an intrinsically sensitive nucleus for MRI-there is negligible endogenous 19 F in the body and, thus, no background signal which allows the detection of fluorinated materials as "hot spots" by combined 1 H/19 F MRI and renders fluorine-containing molecules as ideal tracers with high specificity. In addition, perfluorocarbons are a family of compounds that exhibit a very high fluorine payload and are biochemically as well as physiologically inert. Perfluorocarbon nanoemulsions (PFCs) are well known to be readily taken up by immunocompetent cells, which can be exploited for the unequivocal identification of inflammatory foci by tracking the recruitment of PFC-loaded immune cells to affected tissues using 1 H/19 F MRI. The required 19 F labeling of immune cells can be accomplished either ex vivo by PFC incubation of isolated endogenous immune cells followed by their re-injection or by intravenous application of PFCs for in situ uptake by circulating immune cells. With both approaches, inflamed tissues can unambiguously be detected via background-free 19 F signals due to trafficking of PFC-loaded immune cells to affected organs. To extend 19 F MRI tracking beyond cells with phagocytic properties, the PFC surface can further be equipped with distinct ligands to generate specificity against epitopes and/or types of immune cells independent of phagocytosis. Recent developments also allow for concurrent detection of different PFCs with distinct spectral signatures allowing the simultaneous visualization of several targets, such as various immune cell subtypes labeled with these PFCs. Since ligands and targets can easily be adapted to a variety of problems, this approach provides a general and versatile platform for inflammation imaging which will strongly extend the frontiers of molecular MRI. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Pascal Bouvain
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Starke L, Pohlmann A, Prinz C, Niendorf T, Waiczies S. Performance of compressed sensing for fluorine-19 magnetic resonance imaging at low signal-to-noise ratio conditions. Magn Reson Med 2019; 84:592-608. [PMID: 31863516 DOI: 10.1002/mrm.28135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE To examine the performance of compressed sensing (CS) in reconstructing low signal-to-noise ratio (SNR) 19 F MR signals that are close to the detection threshold and originate from small signal sources with no a priori known location. METHODS Regularization strength was adjusted automatically based on noise level. As performance metrics, root-mean-square deviations, true positive rates (TPRs), and false discovery rates were computed. CS and conventional reconstructions were compared at equal measurement time and evaluated in relation to high-SNR reference data. 19 F MR data were generated from a purpose-built phantom and benchmarked against simulations, as well as from the experimental autoimmune encephalomyelitis mouse model. We quantified the signal intensity bias and introduced an intensity calibration for in vivo data using high-SNR ex vivo data. RESULTS Low-SNR 19 F MR data could be reliably reconstructed. Detection sensitivity was consistently improved and data fidelity was preserved for undersampling and averaging factors of α = 2 or = 3. Higher α led to signal blurring in the mouse model. The improved TPRs at α = 3 were comparable to a 2.5-fold increase in measurement time. Whereas CS resulted in a downward bias of the 19 F MR signal, Fourier reconstructions resulted in an unexpected upward bias of similar magnitude. The calibration corrected signal-intensity deviations for all reconstructions. CONCLUSION CS is advantageous whenever image features are close to the detection threshold. It is a powerful tool, even for low-SNR data with sparsely distributed 19 F signals, to improve spatial and temporal resolution in 19 F MR applications.
Collapse
Affiliation(s)
- Ludger Starke
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
16
|
Hingorani DV, Chapelin F, Stares E, Adams SR, Okada H, Ahrens ET. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection. Magn Reson Med 2019; 83:974-987. [PMID: 31631402 DOI: 10.1002/mrm.27988] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE A bottleneck in developing cell therapies for cancer is assaying cell biodistribution, persistence, and survival in vivo. Ex vivo cell labeling using perfluorocarbon (PFC) nanoemulsions, paired with 19 F MRI detection, is a non-invasive approach for cell product detection in vivo. Lymphocytes are small and weakly phagocytic limiting PFC labeling levels and MRI sensitivity. To boost labeling, we designed PFC nanoemulsion imaging probes displaying a cell-penetrating peptide, namely the transactivating transcription sequence (TAT) of the human immunodeficiency virus. We report optimized synthesis schemes for preparing TAT co-surfactant to complement the common surfactants used in PFC nanoemulsion preparations. METHODS We performed ex vivo labeling of primary human chimeric antigen receptor (CAR) T cells with nanoemulsion. Intracellular labeling was validated using electron microscopy and confocal imaging. To detect signal enhancement in vivo, labeled CAR T cells were intra-tumorally injected into mice bearing flank glioma tumors. RESULTS By incorporating TAT into the nanoemulsion, a labeling efficiency of ~1012 fluorine atoms per CAR T cell was achieved that is a >8-fold increase compared to nanoemulsion without TAT while retaining high cell viability (~84%). Flow cytometry phenotypic assays show that CAR T cells are unaltered after labeling with TAT nanoemulsion, and in vitro tumor cell killing assays display intact cytotoxic function. The 19 F MRI signal detected from TAT-labeled CAR T cells was 8 times higher than cells labeled with PFC without TAT. CONCLUSION The peptide-PFC nanoemulsion synthesis scheme presented can significantly enhance cell labeling and imaging sensitivity and is generalizable for other targeted imaging probes.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiology, University of California San Diego, California
| | - Fanny Chapelin
- Department of Bioengineering, University of California San Diego, California
| | - Emma Stares
- Department of Radiology, University of California San Diego, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, California
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, California
| |
Collapse
|
17
|
Saini S, Poelmans J, Korf H, Dooley JL, Liang S, Manshian BB, Verbeke R, Soenen SJ, Vande Velde G, Lentacker I, Lagrou K, Liston A, Gysemans C, De Smedt SC, Himmelreich U. Longitudinal In Vivo Assessment of Host-Microbe Interactions in a Murine Model of Pulmonary Aspergillosis. iScience 2019; 20:184-194. [PMID: 31581067 PMCID: PMC6817634 DOI: 10.1016/j.isci.2019.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/24/2019] [Accepted: 09/13/2019] [Indexed: 01/01/2023] Open
Abstract
The fungus Aspergillus fumigatus is ubiquitous in nature and the most common cause of invasive pulmonary aspergillosis (IPA) in patients with a compromised immune system. The development of IPA in patients under immunosuppressive treatment or in patients with primary immunodeficiency demonstrates the importance of the host immune response in controlling aspergillosis. However, study of the host-microbe interaction has been hampered by the lack of tools for their non-invasive assessment. We developed a methodology to study the response of the host's immune system against IPA longitudinally in vivo by using fluorine-19 magnetic resonance imaging (19F MRI). We showed the advantage of a perfluorocarbon-based contrast agent for the in vivo labeling of macrophages and dendritic cells, permitting quantification of pulmonary inflammation in different murine IPA models. Our findings reveal the potential of 19F MRI for the assessment of rapid kinetics of innate immune response against IPA and the permissive niche generated through immunosuppression.
Collapse
Affiliation(s)
- Shweta Saini
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Jennifer Poelmans
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - James L Dooley
- Laboratory of Genetics of Autoimmunity (VIB-KU Leuven Center for Brain & Disease Research), Leuven, Belgium
| | - Sayuan Liang
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium; Philips Research China, Shanghai, China
| | - Bella B Manshian
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Ghent University, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Ghent University, Belgium
| | - Katrien Lagrou
- Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Laboratory of Genetics of Autoimmunity (VIB-KU Leuven Center for Brain & Disease Research), Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - Uwe Himmelreich
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Waiczies S, Rosenberg JT, Kuehne A, Starke L, Delgado PR, Millward JM, Prinz C, Dos Santos Periquito J, Pohlmann A, Waiczies H, Niendorf T. Fluorine-19 MRI at 21.1 T: enhanced spin-lattice relaxation of perfluoro-15-crown-5-ether and sensitivity as demonstrated in ex vivo murine neuroinflammation. MAGMA (NEW YORK, N.Y.) 2019; 32:37-49. [PMID: 30421250 PMCID: PMC6514110 DOI: 10.1007/s10334-018-0710-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Fluorine MR would benefit greatly from enhancements in signal-to-noise ratio (SNR). This study examines the sensitivity gain of 19F MR that can be practically achieved when moving from 9.4 to 21.1 T. MATERIALS AND METHODS We studied perfluoro-15-crown-5-ether (PFCE) at both field strengths (B0), as a pure compound, in the form of nanoparticles (NP) as employed to study inflammation in vivo, as well as in inflamed tissue. Brains, lymph nodes (LNs) and spleens were obtained from mice with experimental autoimmune encephalomyelitis (EAE) that had been administered PFCE NPs. All samples were measured at both B0 with 2D-RARE and 2D-FLASH using 19F volume radiofrequency resonators together. T1 and T2 of PFCE were measured at both B0 strengths. RESULTS Compared to 9.4 T, an SNR gain of > 3 was observed for pure PFCE and > 2 for PFCE NPs at 21.1 T using 2D-FLASH. A dependency of 19F T1 and T2 relaxation on B0 was demonstrated. High spatially resolved 19F MRI of EAE brains and LNs at 21.1 T revealed signals not seen at 9.4 T. DISCUSSION Enhanced SNR and T1 shortening indicate the potential benefit of in vivo 19F MR at higher B0 to study inflammatory processes with greater detail.
Collapse
Affiliation(s)
- Sonia Waiczies
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Ludger Starke
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Paula Ramos Delgado
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Jason M Millward
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Christian Prinz
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Joao Dos Santos Periquito
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Andreas Pohlmann
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | | | - Thoralf Niendorf
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
- MRI TOOLS GmbH, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
19
|
Chapelin F, Capitini CM, Ahrens ET. Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. J Immunother Cancer 2018; 6:105. [PMID: 30305175 PMCID: PMC6180584 DOI: 10.1186/s40425-018-0416-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023] Open
Abstract
Over the past two decades, immune cell therapy has emerged as a potent treatment for multiple cancers, first through groundbreaking leukemia therapy, and more recently, by tackling solid tumors. Developing successful therapeutic strategies using live cells could benefit from the ability to rapidly determine their in vivo biodistribution and persistence. Assaying cell biodistribution is unconventional compared to traditional small molecule drug pharmacokinetic readouts used in the pharmaceutical pipeline, yet this information is critical towards understanding putative therapeutic outcomes and modes of action. Towards this goal, efforts are underway to visualize and quantify immune cell therapy in vivo using advanced magnetic resonance imaging (MRI) techniques. Cell labeling probes based on perfluorocarbon nanoemulsions, paired with fluorine-19 MRI detection, enables background-free quantification of cell localization and survival. Here, we highlight recent preclinical and clinical uses of perfluorocarbon probes and 19F MRI for adoptive cell transfer (ACT) studies employing experimental T lymphocytes, NK, PBMC, and dendritic cell therapies. We assess the forward looking potential of this emerging imaging technology to aid discovery and preclinical phases, as well as clinical trials. The limitations and barriers towards widespread adoption of this technology, as well as alternative imaging strategies, are discussed.
Collapse
Affiliation(s)
- Fanny Chapelin
- Department of Bioengineering, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Christian M Capitini
- Department of Pediatrics and Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA.
| | - Eric T Ahrens
- Department of Radiology, University of California of San Diego, 9500 Gilman Dr. #0695, La Jolla, CA, 92093-0695, USA.
| |
Collapse
|
20
|
Fink C, Gaudet JM, Fox MS, Bhatt S, Viswanathan S, Smith M, Chin J, Foster PJ, Dekaban GA. 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci Rep 2018; 8:590. [PMID: 29330541 PMCID: PMC5766492 DOI: 10.1038/s41598-017-19031-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
A 19Fluorine (19F) perfluorocarbon cell labeling agent, when employed with an appropriate cellular MRI protocol, allows for in vivo cell tracking. 19F cellular MRI can be used to non-invasively assess the location and persistence of cell-based cancer vaccines and other cell-based therapies. This study was designed to determine the feasibility of labeling and tracking peripheral blood mononuclear cells (PBMC), a heterogeneous cell population. Under GMP-compliant conditions human PBMC were labeled with a 19F-based MRI cell-labeling agent in a manner safe for autologous re-injection. Greater than 99% of PBMC labeled with the 19F cell-labeling agent without affecting functionality or affecting viability. The 19F-labeled PBMC were detected in vivo in a mouse model at the injection site and in a draining lymph node. A clinical cellular MR protocol was optimized for the detection of PBMC injected both at the surface of a porcine shank and at a depth of 1.2 cm, equivalent to depth of a human lymph node, using a dual 1H/19F dual switchable surface radio frequency coil. This study demonstrates it is feasible to label and track 19F-labeled PBMC using clinical MRI protocols. Thus, 19F cellular MRI represents a non-invasive imaging technique suitable to assess the effectiveness of cell-based cancer vaccines.
Collapse
Affiliation(s)
- Corby Fink
- Molecular Medicine Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Jeffrey M Gaudet
- Imaging Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Matthew S Fox
- Imaging Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Shashank Bhatt
- 200 Elizabeth Street, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Sowmya Viswanathan
- IBBME, University of Toronto, University Health Network, 200 Elizabeth Street, Toronto, Ontario, M5G 2C4, Canada
| | - Michael Smith
- Molecular Medicine Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Joseph Chin
- Division Of Surgery, Division of Surgical Oncology, London Health Sciences Centre, 800 Commissioners Rd E, London, Ontario, N6A 5W9, Canada
| | - Paula J Foster
- Imaging Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
21
|
Fast, quantitative, murine cardiac 19F MRI/MRS of PFCE-labeled progenitor stem cells and macrophages at 9.4T. PLoS One 2018; 13:e0190558. [PMID: 29324754 PMCID: PMC5764257 DOI: 10.1371/journal.pone.0190558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose To a) achieve cardiac 19F-Magnetic Resonance Imaging (MRI) of perfluoro-crown-ether (PFCE) labeled cardiac progenitor stem cells (CPCs) and bone-derived bone marrow macrophages, b) determine label concentration and cellular load limits, and c) achieve spectroscopic and image-based quantification. Methods Theoretical simulations and experimental comparisons of spoiled-gradient echo (SPGR), rapid acquisition with relaxation enhancement (RARE), and steady state at free precession (SSFP) pulse sequences, and phantom validations, were conducted using 19F MRI/Magnetic Resonance Spectroscopy (MRS) at 9.4 T. Successful cell labeling was confirmed using flow cytometry and confocal microscopy. For CPC and macrophage concentration quantification, in vitro and post-mortem cardiac validations were pursued with the use of the transfection agent FuGENE. Feasibility of fast imaging is demonstrated in murine cardiac acquisitions in vivo, and in post-mortem murine skeletal and cardiac applications. Results SPGR/SSFP proved favorable imaging sequences yielding good signal-to-noise ratio values. Confocal microscopy confirmed heterogeneity of cellular label uptake in CPCs. 19F MRI indicated lack of additional benefits upon label concentrations above 7.5–10 mg/ml/million cells. The minimum detectable CPC load was ~500k (~10k/voxel) in two-dimensional (2D) acquisitions (3–5 min) using the butterfly coil. Additionally, absolute 19F based concentration and intensity estimates (trifluoroacetic-acid solutions, macrophages, and labeled CPCs in vitro and post-CPC injections in the post-mortem state) scaled linearly with fluorine concentrations. Fast, quantitative cardiac 19F-MRI was demonstrated with SPGR/SSFP and MRS acquisitions spanning 3–5 min, using a butterfly coil. Conclusion The developed methodologies achieved in vivo cardiac 19F of exogenously injected labeled CPCs for the first time, accelerating imaging to a total acquisition of a few minutes, providing evidence for their potential for possible translational work.
Collapse
|
22
|
Swider E, Staal AHJ, Koen van Riessen N, Jacobs L, White PB, Fokkink R, Janssen GJ, van Dinther E, Figdor CG, de Vries IJ, Koshkina O, Srinivas M. Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a perfluorocarbon phase for biomedical applications. RSC Adv 2018; 8:6460-6470. [PMID: 35540375 PMCID: PMC9078287 DOI: 10.1039/c7ra13062g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are very widely used, particularly for drug delivery, including commercial clinical formulations. Adding perfluorocarbon (PFC) enables in vivo imaging and quantification of the PLGA particles through 19F NMR, MRS or MRI. PFCs are both hydrophobic and lipophobic at the same time. This property makes their encapsulation in particles challenging, as it requires the addition of a third immiscible phase during the emulsification process. Here we explore how different parameters affect the miniemulsion formation of particles loaded with perfluoro-15-crown-5-ether (PFCE). By changing the concentration of surfactant and type of solvent, we were able to control the radius of synthesized particles, between 85–200 nm. We assessed stability and release from the particles at different pH values, showing that hydrophobic agents are released from the particles by diffusion rather than degradation. With cell experiments, we show that primary human dendritic cells take up the particles without any apparent effect, including on cell migration. In summary, the control of synthesis conditions leads to particles with sufficient PFCE encapsulation, which are suitable for drug loading and cell labeling, and do not affect cell viability or functionality. Finally, these nanoparticles can be produced at GMP-grade for clinical use. The influence of different synthesis parameters on the characteristics of polymeric particles with a third perfluorocarbon phase.![]()
Collapse
|
23
|
Chapelin F, Gao S, Okada H, Weber TG, Messer K, Ahrens ET. Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T cell biodistribution in murine cancer model. Sci Rep 2017; 7:17748. [PMID: 29255242 PMCID: PMC5735180 DOI: 10.1038/s41598-017-17669-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
Discovery of effective cell therapies against cancer can be accelerated by the adaptation of tools to rapidly quantitate cell biodistribution and survival after delivery. Here, we describe the use of nuclear magnetic resonance (NMR) ‘cytometry’ to quantify the biodistribution of immunotherapeutic T cells in intact tissue samples. In this study, chimeric antigen receptor (CAR) T cells expressing EGFRvIII targeting transgene were labeled with a perfluorocarbon (PFC) emulsion ex vivo and infused into immunocompromised mice bearing subcutaneous human U87 glioblastomas expressing EGFRvIII and luciferase. Intact organs were harvested at day 2, 7 and 14 for whole-sample fluorine-19 (19F) NMR to quantitatively measure the presence of PFC-labeled CAR T cells, followed by histological validation. NMR measurements showed greater CAR T cell homing and persistence in the tumors and spleen compared to untransduced T cells. Tumor growth was monitored with bioluminescence imaging, showing that CAR T cell treatment resulted in significant tumor regression compared to untransduced T cells. Overall, 19F NMR cytometry is a rapid and quantitative method to evaluate cell biodistribution, tumor homing, and fate in preclinical studies.
Collapse
Affiliation(s)
- Fanny Chapelin
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Shang Gao
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.,Cancer Immunotherapy Program, University of California San Francisco, San Francisco, CA, USA
| | - Thomas G Weber
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Karen Messer
- Cancer Prevention and Control Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
24
|
Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C, Marek D, Wecker D, Wissmann R, Koch SP, Boehm-Sturm P, Waiczies H, Niendorf T, Pohlmann A. Enhanced Fluorine-19 MRI Sensitivity using a Cryogenic Radiofrequency Probe: Technical Developments and Ex Vivo Demonstration in a Mouse Model of Neuroinflammation. Sci Rep 2017; 7:9808. [PMID: 28851959 PMCID: PMC5575026 DOI: 10.1038/s41598-017-09622-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/19/2017] [Indexed: 11/10/2022] Open
Abstract
Neuroinflammation can be monitored using fluorine-19 (19F)-containing nanoparticles and 19F MRI. Previously we studied neuroinflammation in experimental autoimmune encephalomyelitis (EAE) using room temperature (RT) 19F radiofrequency (RF) coils and low spatial resolution 19F MRI to overcome constraints in signal-to-noise ratio (SNR). This yielded an approximate localization of inflammatory lesions. Here we used a new 19F transceive cryogenic quadrature RF probe ( 19 F-CRP) that provides the SNR necessary to acquire superior spatially-resolved 19F MRI. First we characterized the signal-transmission profile of the 19 F-CRP. The 19 F-CRP was then benchmarked against a RT 19F/1H RF coil. For SNR comparison we used reference compounds including 19F-nanoparticles and ex vivo brains from EAE mice administered with 19F-nanoparticles. The transmit/receive profile of the 19 F-CRP diminished with increasing distance from the surface. This was counterbalanced by a substantial SNR gain compared to the RT coil. Intraparenchymal inflammation in the ex vivo EAE brains was more sharply defined when using 150 μm isotropic resolution with the 19 F-CRP, and reflected the known distribution of EAE histopathology. At this spatial resolution, most 19F signals were undetectable using the RT coil. The 19 F-CRP is a valuable tool that will allow us to study neuroinflammation with greater detail in future in vivo studies.
Collapse
Affiliation(s)
- Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ludger Starke
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | | | | | - Stefan P Koch
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité Core Facility 7T Experimental MRIs, and NeuroCure, Charité University Medicine Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité Core Facility 7T Experimental MRIs, and NeuroCure, Charité University Medicine Berlin, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- MRI TOOLS GmbH, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
25
|
Waiczies S, Niendorf T, Lombardi G. Labeling of cell therapies: How can we get it right? Oncoimmunology 2017; 6:e1345403. [PMID: 29123957 DOI: 10.1080/2162402x.2017.1345403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Labeling cells for non-invasive tracking in vivo using magnetic resonance imaging (MRI) is an emerging hot topic garnering ever increasing attention, yet it is fraught with numerous methodological challenges, which merit careful attention. Several of the current procedures used to label cells for tracking by MRI take advantage of the intrinsic phagocytic nature of cells to engulf nanoparticles, though cells with low intrinsic phagocytic capacity are also commonly studied. Before we take the next steps towards administering such cells in vivo, it is essential to understand how the nanolabel is recognized, internalized, trafficked and distributed within the specific host cell. This is even more critical when contemplating labeling of cells that may ultimately be applied in vivo to patients in a therapeutic context.
Collapse
Affiliation(s)
- Sonia Waiczies
- Fluorine Magnetic Resonance Imaging in Immunology, Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Fluorine Magnetic Resonance Imaging in Immunology, Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Giovanna Lombardi
- Immunoregulation & Immunontervention, MRC Centre for Transplantation, King's College London, UK
| |
Collapse
|
26
|
Ku MC, Edes I, Bendix I, Pohlmann A, Waiczies H, Prozorovski T, Günther M, Martin C, Pagès G, Wolf SA, Kettenmann H, Uckert W, Niendorf T, Waiczies S. ERK1 as a Therapeutic Target for Dendritic Cell Vaccination against High-Grade Gliomas. Mol Cancer Ther 2016; 15:1975-87. [PMID: 27256374 DOI: 10.1158/1535-7163.mct-15-0850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glioma regression requires the recruitment of potent antitumor immune cells into the tumor microenvironment. Dendritic cells (DC) play a role in immune responses to these tumors. The fact that DC vaccines do not effectively combat high-grade gliomas, however, suggests that DCs need to be genetically modified specifically to promote their migration to tumor relevant sites. Previously, we identified extracellular signal-regulated kinase (ERK1) as a regulator of DC immunogenicity and brain autoimmunity. In the current study, we made use of modern magnetic resonance methods to study the role of ERK1 in regulating DC migration and tumor progression in a model of high-grade glioma. We found that ERK1-deficient mice are more resistant to the development of gliomas, and tumor growth in these mice is accompanied by a higher infiltration of leukocytes. ERK1-deficient DCs exhibit an increase in migration that is associated with sustained Cdc42 activation and increased expression of actin-associated cytoskeleton-organizing proteins. We also demonstrated that ERK1 deletion potentiates DC vaccination and provides a survival advantage in high-grade gliomas. Considering the therapeutic significance of these results, we propose ERK1-deleted DC vaccines as an additional means of eradicating resilient tumor cells and preventing tumor recurrence. Mol Cancer Ther; 15(8); 1975-87. ©2016 AACR.
Collapse
Affiliation(s)
- Min-Chi Ku
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Inan Edes
- Department of Molecular Cell Biology and Gene Therapy, Humboldt-University Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Tim Prozorovski
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Günther
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Gilles Pagès
- University Nice-Sophia Antipolis, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Susanne A Wolf
- Department of Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Helmut Kettenmann
- Department of Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Humboldt-University Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
27
|
Fox MS, Gaudet JM, Foster PJ. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging. MAGNETIC RESONANCE INSIGHTS 2016; 8:53-67. [PMID: 27042089 PMCID: PMC4807887 DOI: 10.4137/mri.s23559] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/24/2016] [Accepted: 01/31/2016] [Indexed: 02/06/2023]
Abstract
Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements.
Collapse
Affiliation(s)
- Matthew S Fox
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Jeffrey M Gaudet
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| |
Collapse
|
28
|
Niendorf T, Pohlmann A, Reimann HM, Waiczies H, Peper E, Huelnhagen T, Seeliger E, Schreiber A, Kettritz R, Strobel K, Ku MC, Waiczies S. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Front Pharmacol 2015; 6:255. [PMID: 26617515 PMCID: PMC4642111 DOI: 10.3389/fphar.2015.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
- German Centre for Cardiovascular ResearchBerlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Henning M. Reimann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | | | - Eva Peper
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology, Charité—Universitätsmedizin BerlinBerlin, Germany
| | - Adrian Schreiber
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | - Ralph Kettritz
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | | | - Min-Chi Ku
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| |
Collapse
|
29
|
Grapentin C, Barnert S, Schubert R. Monitoring the Stability of Perfluorocarbon Nanoemulsions by Cryo-TEM Image Analysis and Dynamic Light Scattering. PLoS One 2015; 10:e0130674. [PMID: 26098661 PMCID: PMC4476784 DOI: 10.1371/journal.pone.0130674] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/24/2015] [Indexed: 12/28/2022] Open
Abstract
Perfluorocarbon nanoemulsions (PFC-NE) are disperse systems consisting of nanoscale liquid perfluorocarbon droplets stabilized by an emulsifier, usually phospholipids. Perfluorocarbons are chemically inert and non-toxic substances that are exhaled after in vivo administration. The manufacture of PFC-NE can be done in large scales by means of high pressure homogenization or microfluidization. Originally investigated as oxygen carriers for cases of severe blood loss, their application nowadays is more focused on using them as marker agents in 19F Magnetic Resonance Imaging (19F MRI). 19F is scarce in organisms and thus PFC-NE are a promising tool for highly specific and non-invasive imaging of inflammation via 19F MRI. Neutrophils, monocytes and macrophages phagocytize PFC-NE and subsequently migrate to inflamed tissues. This technique has proven feasibility in numerous disease models in mice, rabbits and mini pigs. The translation to clinical trials in human needs the development of a stable nanoemulsion whose droplet size is well characterized over a long storage time. Usually dynamic light scattering (DLS) is applied as the standard method for determining particle sizes in the nanometer range. Our study uses a second method, analysis of transmission electron microscopy images of cryo-fixed samples (Cryo-TEM), to evaluate stability of PFC-NE in comparison to DLS. Four nanoemulsions of different composition are observed for one year. The results indicate that DLS alone cannot reveal the changes in particle size, but can even mislead to a positive estimation of stability. The combination with Cryo-TEM images gives more insight in the particulate evolution, both techniques supporting one another. The study is one further step in the development of analytical tools for the evaluation of a clinically applicable perfluorooctylbromide nanoemulsion.
Collapse
Affiliation(s)
- Christoph Grapentin
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University Freiburg i. Br., Freiburg im Breisgau, Germany
| | - Sabine Barnert
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University Freiburg i. Br., Freiburg im Breisgau, Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University Freiburg i. Br., Freiburg im Breisgau, Germany
- * E-mail:
| |
Collapse
|
30
|
Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J, Mekle R, Waiczies S, Niendorf T. Eight-channel transceiver RF coil array tailored for ¹H/¹⁹F MR of the human knee and fluorinated drugs at 7.0 T. NMR IN BIOMEDICINE 2015; 28:726-737. [PMID: 25916199 DOI: 10.1002/nbm.3300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to evaluate the feasibility of an eight-channel dual-tuned transceiver surface RF coil array for combined (1)H/(19)F MR of the human knee at 7.0 T following application of (19)F-containing drugs. The (1)H/(19)F RF coil array includes a posterior module with two (1)H loop elements and two anterior modules, each consisting of one (1)H and two (19)F elements. The decoupling of neighbor elements is achieved by a shared capacitor. Electromagnetic field simulations were performed to afford uniform transmission fields and to be in accordance with RF safety guidelines. Localized (19)F MRS was conducted with 47 and 101 mmol/L of flufenamic acid (FA) – a (19)F-containing non-steroidal anti-inflammatory drug – to determine T1 and T2 and to study the (19)F signal-to-dose relationship. The suitability of the proposed approach for (1)H/(19)F MR was examined in healthy subjects. Reflection coefficients of each channel were less than -17 dB and coupling between channels was less than -11 dB. Q(L)/Q(U) was less than 0.5 for all elements. MRS results demonstrated signal stability with 1% variation. T1 and T2 relaxation times changed with concentration of FA: T1 /T2 = 673/31 ms at 101 mmol/L and T1 /T2 = 616/26 ms at 47 mmol/L. A uniform signal and contrast across the patella could be observed in proton imaging. The sensitivity of the RF coil enabled localization of FA ointment administrated to the knee with an in-plane spatial resolution of (1.5 × 1.5) mm(2) achieved in a total scan time of approximately three minutes, which is well suited for translational human studies. This study shows the feasibility of combined (1)H/(19)F MRI of the knee at 7.0 T and proposes T1 and T2 mapping methods for quantifying fluorinated drugs in vivo. Further technological developments are necessary to promote real-time bioavailability studies and quantification of (19)F-containing medicinal compounds in vivo.
Collapse
Affiliation(s)
- Yiyi Ji
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Helmar Waiczies
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Pavla Neumanova
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Daniela Hofmann
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Ralf Mekle
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
31
|
Waiczies S, Lepore S, Sydow K, Drechsler S, Ku MC, Martin C, Lorenz D, Schütz I, Reimann HM, Purfürst B, Dieringer MA, Waiczies H, Dathe M, Pohlmann A, Niendorf T. Anchoring dipalmitoyl phosphoethanolamine to nanoparticles boosts cellular uptake and fluorine-19 magnetic resonance signal. Sci Rep 2015; 5:8427. [PMID: 25673047 PMCID: PMC5389132 DOI: 10.1038/srep08427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/15/2015] [Indexed: 01/19/2023] Open
Abstract
Magnetic resonance (MR) methods to detect and quantify fluorine (19F) nuclei provide the opportunity to study the fate of cellular transplants in vivo. Cells are typically labeled with 19F nanoparticles, introduced into living organisms and tracked by 19F MR methods. Background-free imaging and quantification of cell numbers are amongst the strengths of 19F MR-based cell tracking but challenges pertaining to signal sensitivity and cell detection exist. In this study we aimed to overcome these limitations by manipulating the aminophospholipid composition of 19F nanoparticles in order to promote their uptake by dendritic cells (DCs). As critical components of biological membranes, phosphatidylethanolamines (PE) were studied. Both microscopy and MR spectroscopy methods revealed a striking (at least one order of magnitude) increase in cytoplasmic uptake of 19F nanoparticles in DCs following enrichment with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE). The impact of enriching 19F nanoparticles with PE on DC migration was also investigated. By manipulating the nanoparticle composition and as a result the cellular uptake we provide here one way of boosting 19F signal per cell in order to overcome some of the limitations related to 19F MR signal sensitivity. The boost in signal is ultimately necessary to detect and track cells in vivo.
Collapse
Affiliation(s)
- Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefano Lepore
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Karl Sydow
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Susanne Drechsler
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Min-Chi Ku
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Conrad Martin
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Dorothea Lorenz
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Irene Schütz
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Henning M Reimann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bettina Purfürst
- Electron Microscopy Core Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Matthias A Dieringer
- 1] Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany [2] Experimental and Clinical Research Center, Berlin, Germany
| | | | - Margitta Dathe
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
32
|
Abstract
Stem cell based-therapies are novel therapeutic strategies that hold key for developing new treatments for diseases conditions with very few or no cures. Although there has been an increase in the number of clinical trials involving stem cell-based therapies in the last few years, the long-term risks and benefits of these therapies are still unknown. Detailed in vivo studies are needed to monitor the fate of transplanted cells, including their distribution, differentiation, and longevity over time. Advancements in non-invasive cellular imaging techniques to track engrafted cells in real-time present a powerful tool for determining the efficacy of stem cell-based therapies. In this review, we describe the latest approaches to stem cell labeling and tracking using different imaging modalities.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, 217 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205-1832, USA
| | | |
Collapse
|
33
|
Waiczies H, Lepore S, Drechsler S, Qadri F, Purfürst B, Sydow K, Dathe M, Kühne A, Lindel T, Hoffmann W, Pohlmann A, Niendorf T, Waiczies S. Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI. Sci Rep 2013; 3:1280. [PMID: 23412352 PMCID: PMC3573344 DOI: 10.1038/srep01280] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/29/2013] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for 19F (fluorine) and 1H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged 19F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. 19F/1H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time.
Collapse
Affiliation(s)
- Helmar Waiczies
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dewitte H, Geers B, Liang S, Himmelreich U, Demeester J, De Smedt SC, Lentacker I. Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells. J Control Release 2013; 169:141-9. [DOI: 10.1016/j.jconrel.2013.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/30/2022]
|
35
|
Ahrens ET, Zhong J. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR IN BIOMEDICINE 2013; 26:860-71. [PMID: 23606473 PMCID: PMC3893103 DOI: 10.1002/nbm.2948] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/29/2013] [Accepted: 02/21/2013] [Indexed: 05/08/2023]
Abstract
This article presents a brief review of preclinical in vivo cell-tracking methods and applications using perfluorocarbon (PFC) probes and fluorine-19 ((19) F) MRI detection. Detection of the (19) F signal offers high cell specificity and quantification ability in spin density-weighted MR images. We discuss the compositions of matter, methods and applications of PFC-based cell tracking using ex vivo and in situ PFC labeling in preclinical studies of inflammation and cellular therapeutics. We also address the potential applicability of (19) F cell tracking to clinical trials.
Collapse
Affiliation(s)
- Eric T Ahrens
- Department of Biological Sciences and Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
36
|
Dekaban GA, Hamilton AM, Fink CA, Au B, de Chickera SN, Ribot EJ, Foster PJ. Tracking and evaluation of dendritic cell migration by cellular magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:469-83. [PMID: 23633389 DOI: 10.1002/wnan.1227] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 01/15/2023]
Abstract
Cellular magnetic resonance imaging (MRI) is a means by which cells labeled ex vivo with a contrast agent can be detected and tracked over time in vivo. This technology provides a noninvasive method with which to assess cell-based therapies in vivo. Dendritic cell (DC)-based vaccines are a promising cancer immunotherapy, but its success is highly dependent on the injected DC migrating to a secondary lymphoid organ such as a nearby lymph node. There the DC can interact with T cells to elicit a tumor-specific immune response. It is important to verify DC migration in vivo using a noninvasive imaging modality, such as cellular MRI, so that important information regarding the anatomical location and persistence of the injected DC in a targeted lymph node can be provided. An understanding of DC biology is critical in ascertaining how to label DC with sufficient contrast agent to render them detectable by MRI. While iron oxide nanoparticles provide the best sensitivity for detection of DC in vivo, a clinical grade iron oxide agent is not currently available. A clinical grade (19) Fluorine-based perfluorcarbon nanoemulsion is available but is less sensitive, and its utility to detect DC migration in humans remains to be demonstrated using clinical scanners presently available. The ability to quantitatively track DC migration in vivo can provide important information as to whether different DC maturation and activation protocols result in improved DC migration efficiency which will determine the vaccine's immunogenicity and ultimately the tumor immunotherapy's outcome in humans.
Collapse
Affiliation(s)
- Gregory A Dekaban
- BioTherapeutics Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Waiczies H, Guenther M, Skodowski J, Lepore S, Pohlmann A, Niendorf T, Waiczies S. Monitoring dendritic cell migration using 19F / 1H magnetic resonance imaging. J Vis Exp 2013:e50251. [PMID: 23542739 DOI: 10.3791/50251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Continuous advancements in noninvasive imaging modalities such as magnetic resonance imaging (MRI) have greatly improved our ability to study physiological or pathological processes in living organisms. MRI is also proving to be a valuable tool for capturing transplanted cells in vivo. Initial cell labeling strategies for MRI made use of contrast agents that influence the MR relaxation times (T1, T2, T2*) and lead to an enhancement (T1) or depletion (T2*) of signal where labeled cells are present. T2* enhancement agents such as ultrasmall iron oxide agents (USPIO) have been employed to study cell migration and some have also been approved by the FDA for clinical application. A drawback of T2* agents is the difficulty to distinguish the signal extinction created by the labeled cells from other artifacts such as blood clots, micro bleeds or air bubbles. In this article, we describe an emerging technique for tracking cells in vivo that is based on labeling the cells with fluorine ((19)F)-rich particles. These particles are prepared by emulsifying perfluorocarbon (PFC) compounds and then used to label cells, which subsequently can be imaged by (19)F MRI. Important advantages of PFCs for cell tracking in vivo include (i) the absence of carbon-bound (19)F in vivo, which then yields background-free images and complete cell selectivityand(ii) the possibility to quantify the cell signal by (19)F MR spectroscopy.
Collapse
Affiliation(s)
- Helmar Waiczies
- Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine
| | | | | | | | | | | | | |
Collapse
|
38
|
Srinivas M, Boehm-Sturm P, Figdor CG, de Vries IJ, Hoehn M. Labeling cells for in vivo tracking using 19F MRI. Biomaterials 2012; 33:8830-40. [DOI: 10.1016/j.biomaterials.2012.08.048] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 12/11/2022]
|
39
|
Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics. Ther Deliv 2012; 3:599-608. [PMID: 22834404 DOI: 10.4155/tde.12.41] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasma lipoproteins are transporters of lipids and other hydrophobic molecules in the mammalian circulation. Lipoproteins also have a strong potential to serve as drug-delivery vehicles due to their small size, long residence time in the circulation and high-drug payload. Consequently, lipoproteins and synthetic/reconstituted lipoprotein preparations have been evaluated with increasing interest towards clinical applications, particularly for cancer diagnostics/imaging and chemotherapy. In this review, past and current studies on lipoproteins and similar alternative drug carriers are discussed regarding their suitability as agents to deliver drugs, primarily to cancer cells and tumors. A lipoprotein-based delivery strategy may also provide a novel platform for improving the therapeutic efficacy of drugs that have previously been judged unsuitable or had only limited application due to poor solubility. An additional, and perhaps the most important aspect of the drug-delivery process via lipoprotein-type carriers, is the receptor-mediated uptake of the payload from the lipoprotein complex. Monitoring the expression of specific receptors prior to treatment could, thus, give rise to efficient selection of optimally responsive patients, resulting in a successful personalized therapy regimen.
Collapse
|
40
|
Fraker CA, Mendez AJ, Inverardi L, Ricordi C, Stabler CL. Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications. Colloids Surf B Biointerfaces 2012; 98:26-35. [PMID: 22652356 DOI: 10.1016/j.colsurfb.2012.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/28/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties.
Collapse
Affiliation(s)
- Christopher A Fraker
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | | | | | | | | |
Collapse
|
41
|
Stoll G, Basse-Lüsebrink T, Weise G, Jakob P. Visualization of inflammation using19F-magnetic resonance imaging and perfluorocarbons. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:438-47. [DOI: 10.1002/wnan.1168] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Temme S, Bönner F, Schrader J, Flögel U. 19
F magnetic resonance imaging of endogenous macrophages in inflammation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:329-43. [DOI: 10.1002/wnan.1163] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Boehm-Sturm P, Mengler L, Wecker S, Hoehn M, Kallur T. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One 2011; 6:e29040. [PMID: 22216163 PMCID: PMC3247235 DOI: 10.1371/journal.pone.0029040] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/18/2011] [Indexed: 01/17/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is a promising tool for monitoring stem cell-based therapy. Conventionally, cells loaded with ironoxide nanoparticles appear hypointense on MR images. However, the contrast generated by ironoxide labeled cells is neither specific due to ambiguous background nor quantitative. A strategy to overcome these drawbacks is 19F MRI of cells labeled with perfluorocarbons. We show here for the first time that human neural stem cells (NSCs), a promising candidate for clinical translation of stem cell-based therapy of the brain, can be labeled with 19F as well as detected and quantified in vitro and after brain implantation. Methodology/Principal Findings Human NSCs were labeled with perfluoropolyether (PFPE). Labeling efficacy was assessed with 19F MR spectroscopy, influence of the label on cell phenotypes studied by immunocytochemistry. For in vitro MRI, NSCs were suspended in gelatin at varying densities. For in vivo experiments, labeled NSCs were implanted into the striatum of mice. A decrease of cell viability was observed directly after incubation with PFPE, which re-normalized after 7 days in culture of the replated cells. No label-related changes in the numbers of Ki67, nestin, GFAP, or βIII-tubulin+ cells were detected, both in vitro and on histological sections. We found that 1,000 NSCs were needed to accumulate in one image voxel to generate significant signal-to-noise ratio in vitro. A detection limit of ∼10,000 cells was found in vivo. The location and density of human cells (hunu+) on histological sections correlated well with observations in the 19F MR images. Conclusion/Significance Our results show that NSCs can be efficiently labeled with 19F with little effects on viability or proliferation and differentiation capacity. We show for the first time that 19F MRI can be utilized for tracking human NSCs in brain implantation studies, which ultimately aim for restoring loss of function after acute and neurodegenerative disorders.
Collapse
Affiliation(s)
- Philipp Boehm-Sturm
- In-Vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Luam Mengler
- In-Vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | | | - Mathias Hoehn
- In-Vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
- * E-mail:
| | - Therése Kallur
- In-Vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| |
Collapse
|