1
|
Singh Y, Ahmad R, Raza A, Warsi MS, Mustafa M, Khan H, Hassan MI, Khan R, Moinuddin, Habib S. Exploring the effects of 4-chloro-o-phenylenediamine on human fibrinogen: A comprehensive investigation via biochemical, biophysical and computational approaches. Int J Biol Macromol 2024; 280:135825. [PMID: 39313050 DOI: 10.1016/j.ijbiomac.2024.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Fibrinogen (Fg), an essential plasma glycoprotein involved in the coagulation cascade, undergoes structural alterations upon exposure to various chemicals, impacting its functionality and contributing to pathological conditions. This research article explored the effects of 4-Chloro-o-phenylenediamine (4-Cl-o-PD), a common hair dye component (IUPAC = 1-Chloro-3,4-diaminobenzene), on human fibrinogen through comprehensive computational, biophysical, and biochemical approaches. The formation of a stable ligand-protein complex is confirmed through molecular docking and molecular dynamics simulations, revealing possible interaction having a favorable -4.8 kcal/mol binding energy. Biophysical results, including UV-vis and fluorescence spectroscopies, corroborated with the computational findings, whereas Fourier transform infrared spectroscopy (FT-IR) and circular dichroism spectroscopy (CD) provide insights into the alterations of secondary structures upon interaction with 4-Cl-o-PD. Anilinonaphthalene-sulfonic acid (ANS) fluorescence showed a partially unfolded protein, with enhanced α to β-sheet transition as evidenced by thioflavin T (ThT) spectroscopy and microscopy. Moreover, biochemical assays confirmed the formation of carbonyl compounds that may be responsible for the oxidation of methionine residues in fibrinogen. Electrophoresis and electron microscopy confirmed the formation of aggregates. Our findings elucidate the interaction pattern of 4-Cl-o-PD with Fg, leading to structural perturbation, which may have potential implications for fibrinogen misfolding or its aggregation. Protein aggregation or its misfolded products affect peripheral tissues and the central nervous system. Many chronic progressive diseases, like type II diabetes mellitus, Alzheimer's disease, Parkison's disease, and Creutzfeldt-Jakob disease are associated with intrinsically aberrant disordered proteins. Understanding these interactions may offer new perspectives on the safety and biocompatibility of dye compounds, which may contribute to developing improved strategies for acquired amyloidogenesis.
Collapse
Affiliation(s)
- Yogendra Singh
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Ali Raza
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Hamda Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ruhi Khan
- Department of Medicine, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Newmeyer MN, Quirós-Alcalá L, Kavi LK, Louis LM, Prasse C. Implementing a suspect screening method to assess occupational chemical exposures among US-based hairdressers serving an ethnically diverse clientele: a pilot study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:566-574. [PMID: 36693958 PMCID: PMC10363568 DOI: 10.1038/s41370-023-00519-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND There are over 700,000 hairdressers in the United States, and it is estimated that >90% are female and 31% are Black or Hispanic/Latina. Racial and ethnic minorities in this workforce may be exposed to a unique mixture of potentially hazardous chemicals from products used and services provided. However, previous biomonitoring studies of hairdressers target a narrow list of compounds and few studies have investigated exposures among minority hairdressers. OBJECTIVE To assess occupational chemical exposures in a sample of US-based Black and Latina hairdressers serving an ethnically diverse clientele by analyzing urine specimens with a suspect screening method. METHODS Post-shift urine samples were collected from a sample of US female hairdressers (n = 23) and office workers (n = 17) and analyzed via reverse-phase liquid chromatography coupled to high-resolution mass spectrometry. Detected compounds were filtered based on peak area differences between groups and matching with a suspect screening list. When possible, compound identities were confirmed with reference standards. Possible exposure sources were evaluated for detected compounds. RESULTS The developed workflow allowed for the detection of 24 compounds with median peak areas ≥2x greater among hairdressers compared to office workers. Product use categories (PUCs) and harmonized functional uses were searched for these compounds, including confirmed compounds methylparaben, ethylparaben, propylparaben, and 2-naphthol. Most product use categories were associated with "personal use" and included 11 different "hair styling and care" product types (e.g., hair conditioner, hair relaxer). Functional uses for compounds without associated PUCs included fragrance, hair and skin conditioning, hair dyeing, and UV stabilizer. SIGNIFICANCE Our suspect screening approach detected several compounds not previously reported in biomonitoring studies of hairdressers. These results will help guide future studies to improve characterization of occupational chemical exposures in this workforce and inform exposure and risk mitigation strategies to reduce potential associated work-related health disparities.
Collapse
Affiliation(s)
- Matthew N Newmeyer
- Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lucy K Kavi
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Lydia M Louis
- Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Carsten Prasse
- Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Risk Sciences and Public Policy Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Alkandari AF, Alawadhi AA, Alawadhi FA, Mousa A, Madhyastha S. Erythematous Linear Lesion on the Course of Superficial Fibular Nerve After the Topical Application of Black Henna: A Case Report. Cureus 2023; 15:e36697. [PMID: 37113365 PMCID: PMC10128101 DOI: 10.7759/cureus.36697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Henna is commonly used in body arts, where it produces orange-brown color. It is often mixed with chemicals such as para-phenylenediamine (PPD) to fasten the dyeing process and produce a black color. However, PPD has many allergic and toxic effects. We present a case of henna-induced cutaneous neuritis, which is not reported before. A 27-year-old female presented to our hospital, complaining of pain in her left great toe after applying black henna. Upon examination, the proximal nail fold was inflamed, and an erythematous non-palpable tender lesion was noticed on the dorsum of the foot. The lesion had an inverted-Y shape that was confined to the course of the superficial fibular nerve. Cutaneous nerve inflammation was favored after excluding all the anatomical structures in the region. Black henna should be avoided since it contains PPD, which can be absorbed through the skin and affect the underlying cutaneous nerves.
Collapse
|
4
|
El-Sarnagawy GN, Ghonem MM, Abdelhameid MA, Ali OM, Ismail AM, El Shehaby DM. Accuracy of Rapid Emergency Medicine Score and Sequential Organ Failure Assessment Score in predicting acute paraphenylenediamine poisoning adverse outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32489-32506. [PMID: 36462082 PMCID: PMC10017625 DOI: 10.1007/s11356-022-24427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Paraphenylenediamine (PPD) is a commonly used xenobiotic in hair dying, causing deleterious outcomes in acute poisoning. Although many epidemiological studies and case reports explained their clinical presentations and fatal consequences, no studies have evaluated the early determinants of adverse outcomes. Therefore, the present study aimed to assess the initial predictors of acute PPD poisoning adverse outcomes, focusing on the discriminatory accuracy of the Rapid Emergency Medicine Score (REMS) and Sequential Organ Failure Assessment (SOFA) score. A retrospective cohort study included all acute PPD-poisoned patients admitted to three Egyptian emergency hospitals from January 2020 to January 2022. Data was gathered on admission, including demographics, toxicological, clinical, scoring systems, and laboratory investigations. Patients were categorized according to their outcomes (mortality and complications). Ninety-seven patients with acute PPD poisoning were included, with a median age of 23 years, female predominance (60.8%), and suicidal intention (95.9%). Out of all patients, 25.77% died, and 43.29% had complicated outcomes. Respiratory failure was the primary cause of fatalities (10.30%), while acute renal failure (38.14%) was a chief cause of complications. The delay time till hospitalization, abnormal electrocardiogram, initial creatine phosphokinase, bicarbonate level, REMS, and SOFA scores were the significant determinants for adverse outcomes. The REMS exhibited the highest odds ratio (OR = 1.91 [95% confidence interval (CI): 1.41-2.60], p < 0.001) and had the best discriminatory power with the area under the curve (AUC) = 0.918 and overall accuracy of 91.8% in predicting mortality. However, the SOFA score had the highest odds ratio (OR = 4.97 [95% CI: 1.16-21.21], p = 0.001) and only yielded a significant prediction for complicated sequels with AUC = 0.913 and overall accuracy of 84.7%. The REMS is a simple clinical score that accurately predicts mortality, whereas the SOFA score is more practicable for anticipating complications in acute PPD-poisoned patients.
Collapse
Affiliation(s)
- Ghada N. El-Sarnagawy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Al-Geish Street, Tanta City, Gharbia, 31527 Egypt
| | - Mona M. Ghonem
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Al-Geish Street, Tanta City, Gharbia, 31527 Egypt
| | - Marwa A. Abdelhameid
- Department of Internal Medicine, Faculty of Medicine, Aswan University, Aswan City, Egypt
| | - Omaima M. Ali
- Department of Internal Medicine, Faculty of Medicine, Aswan University, Aswan City, Egypt
| | - Asmaa M. Ismail
- Department of Pediatrics, Faculty of Medicine, Aswan University, Aswan City, Egypt
| | - Doaa M. El Shehaby
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut City, Egypt
| |
Collapse
|
5
|
de Souza JC, Irikura K, Mantilla HDR, Zanoni MVB, Salazar R. Using 3D printed magnetic platform as support for screen printed electrode applied for p-toluenediamine detection in biological fluid and water samples. Anal Chim Acta 2023; 1240:340745. [PMID: 36641154 DOI: 10.1016/j.aca.2022.340745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The present work reports the development and application of a new electrochemical sensor for the determination of low concentration levels of p-toluenediamine (PTD) in biological fluids and surface water samples. The proposed sensor was developed using a 3D-printed magnetic device as platform for carbon screen printed electrode (CSPE) modified by magnetic nanoparticles functionalized with carboxylic groups and l-cysteine (MNP-CA-CYS). The results obtained from the morphological and electrochemical characterizations of the sensing platform enabled us to confirm the success of the sensor functionalization with l-cysteine and to have a better understanding of the electrochemical behavior and preconcentration of PTD on the electrode surface. PTD oxidation occurred at 0.24V on MNP-CA-CYS and the mechanism recorded an increase of 51.0% in anodic peak current. Under optimized conditions, the square wave voltammograms obtained for the electrode modified by 40.0 μL MNP-CA-CYS suspension at 1.0 mg mL-1, with accumulation time of 3 min, presented an analytical curve with linear range of 8.00 × 10-7 to 8.00 × 10-5 mol L-1, represented by the equation Iap = (0.383 ± 0.011)[PTD] - (8.112 ± 0.07) × 10-8 (R2 = 0.9994), and detection and quantification limits of 8.53 × 10-8 and 2.56 × 10-7 mol L-1, respectively. Finally, the proposed method was validated through comparison with high performance liquid chromatography coupled to diode array detector (HPLC-DAD) technique and was successfully applied for PTD determination in samples of surface water, tap water, fetal bovine serum and artificial urine.
Collapse
Affiliation(s)
- João Carlos de Souza
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Agents (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil; University of Santiago of Chile (USACH), Faculty of Chemistry and Biology, Department of Chemistry of Materials, Environmental Electrochemistry Laboratory, Alameda Libertador Bernardo O'Higgins, 3363, Santiago - Box 40, Mail 33, Chile.
| | - Kallyni Irikura
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Agents (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil; University of Santiago of Chile (USACH), Faculty of Chemistry and Biology, Department of Chemistry of Materials, Environmental Electrochemistry Laboratory, Alameda Libertador Bernardo O'Higgins, 3363, Santiago - Box 40, Mail 33, Chile
| | - Hernán Dario Rojas Mantilla
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Agents (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil; University of Santiago of Chile (USACH), Faculty of Chemistry and Biology, Department of Chemistry of Materials, Environmental Electrochemistry Laboratory, Alameda Libertador Bernardo O'Higgins, 3363, Santiago - Box 40, Mail 33, Chile
| | - Maria Valnice Boldrin Zanoni
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Agents (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil
| | - Ricardo Salazar
- University of Santiago of Chile (USACH), Faculty of Chemistry and Biology, Department of Chemistry of Materials, Environmental Electrochemistry Laboratory, Alameda Libertador Bernardo O'Higgins, 3363, Santiago - Box 40, Mail 33, Chile
| |
Collapse
|
6
|
Yu L, Zhai J, Wang Y, Geng Y, Chen X, Wen Y, Tang H, Yu R, Zhang Y, Liu X. Exposure to N-monoacetyl-p-phenylenediamine impaired ovarian function in mice. J Appl Toxicol 2021; 41:2031-2041. [PMID: 34014586 DOI: 10.1002/jat.4183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023]
Abstract
p-Phenylenediamine (PPD) is the main constituent of permanent hair dye and is also widely used in the photographic and rubber industries. PPD and its metabolites have been shown to increase the risk of cancer (especially ovarian cancer); however, their effect on female reproduction is unclear. We investigated the effects of the PPD metabolite N-monoacetyl-PPD (MAPPD) on mouse blastocyst development and ovarian function. Sixty 8-week-old female Kunming mice were administered at 0-, 100-, and 300-mg/kg/day MPPD by gavage for 28 days. KGN (human ovarian granulosa cells) were treated with MAPPD at concentrations of 0, 50, 100, and 300 μg/ml for 48 h. The number of abnormal blastocysts increased on gestation day 3.5 in all treatment groups. Compared with the control group, in MAPPD exposed group, the number of antral follicles decreased, the levels of E2 and P4 decreased in ovarian tissue, the serum levels of E2 , P4 , luteinizing hormone (LH), and T decreased, and follicle-stimulating hormone (FSH) increased. The expression of FSH receptor (FSHR) and LH receptor (LHR) was significantly downregulated, and the level of oxidative stress was significantly increased. In KGN cells, the level of reactive oxygen species increased in a dose-dependent manner, and the mRNA levels of FSHR, LHR, and aromatase increased. These results suggest that MAPPD inhibits FSH- and LH-induced aromatase activity by causing oxidative stress, which decrease hormone levels, leading to abnormal follicle development. Meanwhile, MAPPD exposure could affect early embryonic development abnormalities by affecting the quality of ovum.
Collapse
Affiliation(s)
- Liliang Yu
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jingwei Zhai
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yixian Wen
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Hongyu Tang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Rao Yu
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yue Zhang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Guan QL, Sun Y, Huo R, Xin Y, Bai FY, Xing YH, Sun LX. Cu-MOF Material Constructed with a Triazine Polycarboxylate Skeleton: Multifunctional Identify and Microdetecting of the Aromatic Diamine Family ( o, m, p-Phenylenediamine) Based on the Luminescent Response. Inorg Chem 2021; 60:2829-2838. [PMID: 33501829 DOI: 10.1021/acs.inorgchem.0c03753] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic aromatic amines are widely used in various fields such as pharmaceuticals, pesticides, dyes, and tobacco smoke. The pollution of organic amines has become a problem that cannot be ignored, due to the extensive harmful effects on the environment and public health, which has become one of the most concerned frontier fields in the world. Identifying and microdetecting o-phenylenediamine (OPD), m-phenylenediamine (MPD), and p-phenylenediamine (PPD) using MOFs have rarely been reported. On the basis of the blue emission properties of Cu-TBDA constructed with 5,5'-((6-chloro-1,3,5-triazine-2,4-diyl)bis(azanediyl))diisophthalic acid (H4TBDA) ligand, Cu-TBDA was studied primarily to identify and detect aromatic diamine family as a multifunctional chemical sensor. Interestingly, Cu-TBDA has a very high selectivity and sensitivity to OPD and MPD with a low limit of detection (5.00 μM for OPD and 1.77 μM for MPD). Especially for OPD, Cu-TBDA has a unique switching function for it. When the concentration of OPD is less than 9.1 × 10-4 M, the fluorescence response of Cu-TBDA suspension exhibit enhanced. However, when the concentration of OPD is more than 9.1 × 10-4 M, the emission intensity displays quenching phenomenon. Therefore, Cu-TBDA as a chemical sensor not only has recognition and detection functions for organic aromatic amines but also first exhibits turn-on and -off sensing behavior toward OPD.
Collapse
Affiliation(s)
- Qing Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Ying Sun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Rong Huo
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Yu Xin
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Li Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, PR China
| |
Collapse
|
8
|
de Souza JC, Zanoni MVB, Oliveira-Brett AM. Reprint of "Genotoxic permanent hair dye precursors p-aminophenol and p-toluenediamine electrochemical oxidation mechanisms and evaluation in biological fluids". J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Genotoxic permanent hair dye precursors p-aminophenol and p-toluenediamine electrochemical oxidation mechanisms and evaluation in biological fluids. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Seydi E, Fatahi M, Naserzadeh P, Pourahmad J. The effects of para-phenylenediamine (PPD) on the skin fibroblast cells. Xenobiotica 2018; 49:1143-1148. [PMID: 30474463 DOI: 10.1080/00498254.2018.1541264] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Para-phenylenediamine (PPD) is the commonest and most well-known component of hair dyes. PPD is found in more than 1000 hair dye formulations and is the most frequently used permanent hair dye component in Europe, North America and East Asia. PPD containing hair dyes have been associated with cancer and mutagenicity. Apart from that, PPD has potential toxicity which includes acute toxicity such as allergic contact dermatitis and subacute toxicity. 2. In this study, we examined the effects of the PPD composition on the skin-isolated fibroblast cells. Fibroblast cells were isolated from the skin and cell viability, reactive oxygen species (ROS) production, the collapse of mitochondrial membrane potential (MMP), lipid peroxidation (LPO), damage to the lysosome release of lactate dehydrogenase (LDH) and finally release of cytochrome c were examined following the exposure to various concentrations of PPD. 3. Our results showed that exposure to PPD increased ROS generation, LPO, the collapse of MMP, LDH release and cytochrome c release. Our results suggest that PPD can induce damage to the lysosomal membrane. 4. These results showed that PPD composition has a selective toxicity on skin fibroblasts cell and mitochondria are considered one of the goals of its toxicity.
Collapse
Affiliation(s)
- Enayatollah Seydi
- a Department of Occupational Health and Safety Engineering School of Health , Alborz University of Medical Sciences , Karaj , Iran
| | - Mohsen Fatahi
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parvaneh Naserzadeh
- c Pharmaceutical Sciences Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Jalal Pourahmad
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
11
|
Abstract
Arylamines and nitroarenes are intermediates in the production of pharmaceuticals, dyes, pesticides, and plastics and are important environmental and occupational pollutants. N-Hydroxyarylamines are the toxic common intermediates of arylamines and nitroarenes. N-Hydroxyarylamines and their derivatives can form adducts with hemoglobin (Hb-adducts), albumin, DNA, and tissue proteins in a dose-dependent manner. Most of the arylamine Hb-adducts are labile and undergo hydrolysis in vitro, by mild acid or base, to form the arylamines. According to current knowledge of arylamine adduct-formation, the hydrolyzable fraction is derived from the reaction products of the arylnitroso derivatives that yield arylsulfinamide adducts with cysteine. Hb-adducts are markers for the bioavailability of N-hydroxyarylamines. Hb-adducts of arylamines and nitroarenes have been used for many biomonitoring studies for over 30 years. Hb-adducts reflect the exposure history of the last four months. Biomonitoring of urinary metabolites is a less invasive process than biomonitoring blood protein adducts, and urinary metabolites have served as short-lived biomarkers of exposure to these hazardous chemicals. However, in case of intermittent exposure, urinary metabolites may not be detected, and subjects may be misclassified as nonexposed. Arylamines and nitroarenes and/or their metabolites have been measured in urine, especially to monitor the exposure of workers. This review summarizes the results of human biomonitoring studies involving urinary metabolites and Hb-adducts of arylamines and nitroarenes. In addition, studies about the relationship between Hb-adducts and diseases are summarized.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology , Casella Postale 108, CH-6780 Airolo, Switzerland.,Alpine Institute of Chemistry and Toxicology , CH-6718 Olivone, Switzerland.,Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität , D-80336 München, Germany
| |
Collapse
|
12
|
Marín de Mas I, Marín S, Pachón G, Rodríguez-Prados JC, Vizán P, Centelles JJ, Tauler R, Azqueta A, Selivanov V, López de Ceraín A, Cascante M. Unveiling the Metabolic Changes on Muscle Cell Metabolism Underlying p-Phenylenediamine Toxicity. Front Mol Biosci 2017; 4:8. [PMID: 28321398 PMCID: PMC5338303 DOI: 10.3389/fmolb.2017.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
Rhabdomyolysis is a disorder characterized by acute damage of the sarcolemma of the skeletal muscle leading to release of potentially toxic muscle cell components into the circulation, most notably creatine phosphokinase (CK) and myoglobulin, and is frequently accompanied by myoglobinuria. In the present work, we evaluated the toxicity of p-phenylenediamine (PPD), a main component of hair dyes which is reported to induce rhabdomyolysis. We studied the metabolic effect of this compound in vivo with Wistar rats and in vitro with C2C12 muscle cells. To this aim we have combined multi-omic experimental measurements with computational approaches using model-driven methods. The integrative study presented here has unveiled the metabolic disorders associated to PPD exposure that may underlay the aberrant metabolism observed in rhabdomyolys disease. Animals treated with lower doses of PPD (10 and 20 mg/kg) showed depressed activity and myoglobinuria after 10 h of treatment. We measured the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) in rats after 24, 48, and 72 h of PPD exposure. At all times, treatment with PPD at higher doses (40 and 60 mg/kg) showed an increase of AST and ALT, and also an increase of lactate dehydrogenase (LDH) and CK after 24 h. Blood packed cell volume and hemoglobin levels, as well as organs weight at 48 and 72 h, were also measured. No significant differences were observed in these parameters under any condition. PPD induce cell cycle arrest in S phase and apoptosis (40% or early apoptotic cells) on mus musculus mouse C2C12 cells after 24 h of treatment. Incubation of mus musculus mouse C2C12 cells with [1,2-13C2]-glucose during 24 h, subsequent quantification of 13C isotopologues distribution in key metabolites of glucose metabolic network and a computational fluxomic analysis using in-house developed software (Isodyn) showed that PPD is inhibiting glycolysis, non-oxidative pentose phosphate pathway, glycogen turnover, and ATPAse reaction leading to a reduction in ATP synthesis. These findings unveil the glucose metabolism collapse, which is consistent with a decrease in cell viability observed in PPD-treated C2C12 cells and with the myoglubinuria and other effects observed in Wistar Rats treated with PPD. These findings shed new light on muscle dysfunction associated to PPD exposure, opening new avenues for cost-effective therapies in Rhabdomyolysis disease.
Collapse
Affiliation(s)
- Igor Marín de Mas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de BarcelonaBarcelona, Spain; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | - Silvia Marín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Gisela Pachón
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Juan C Rodríguez-Prados
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Pedro Vizán
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Josep J Centelles
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Consejo Superior de Investigaciones Científicas Barcelona, Spain
| | - Amaya Azqueta
- Departamento de Farmacología y Toxicología, Facultad de Farmacia y Nutrición, Universidad de Navarra Pamplona, Spain
| | - Vitaly Selivanov
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| | - Adela López de Ceraín
- Departamento de Farmacología y Toxicología, Facultad de Farmacia y Nutrición, Universidad de Navarra Pamplona, Spain
| | - Marta Cascante
- Departament de Bioquímica i Biologia Molecular, Facultat de Biología, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
13
|
Imran M, Usman HF, Shafi H, Sarwar M, Tahir MA. Development of Rapid and Economical Colorimetric Screening Method for p-Phenylenediamine in Variety of Biological Matrices and its Application to Eleven Fatal Cases of p-Phenylenediamine Poisoning. J Forensic Sci 2016; 62:483-487. [PMID: 27957731 DOI: 10.1111/1556-4029.13297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/03/2016] [Accepted: 05/15/2016] [Indexed: 12/01/2022]
Abstract
A rapid colorimetric method for detection of p-phenylenediamine (PPD) in various biological samples is developed. The o-cresol test for acetaminophen detection has been modified to detect PPD in blood, urine, gastric contents, and liver. After precipitating protein with trichloroacetic acid solution (2 mL, 10% w/v), biological specimens were required to convert PPD metabolites to PPD by acid hydrolysis. Finally, o-cresol solution (1 mL, 1% w/v), hydrogen peroxide (200 μL, 3%v/v), and concentrated ammonium hydroxide (0.5 mL) were added in the biological samples. The presence of PPD was indicated by formation of violet color which was turned to bluish green color within 10-15 min. The limit of detection was found to be 2 mg/L in blood, urine, and gastric contents and 2 mg/Kg in liver. This method is also free from any potential interference by p-aminophenol, acetaminophen, and other amine drugs under test conditions. This method was successfully employed to thirteen fatal cases of PPD poisoning.
Collapse
Affiliation(s)
- Muhammad Imran
- Forensic Toxicology department, Punjab Forensic Science Agency, Thokar Niaz Baig, Multan Road, Lahore, 53700, Pakistan
| | - Hafiz Faisal Usman
- Forensic Toxicology department, Punjab Forensic Science Agency, Thokar Niaz Baig, Multan Road, Lahore, 53700, Pakistan
| | - Humera Shafi
- Forensic Toxicology department, Punjab Forensic Science Agency, Thokar Niaz Baig, Multan Road, Lahore, 53700, Pakistan
| | - Muhammad Sarwar
- Forensic Toxicology department, Punjab Forensic Science Agency, Thokar Niaz Baig, Multan Road, Lahore, 53700, Pakistan
| | - Muhammad Ashraf Tahir
- Forensic Toxicology department, Punjab Forensic Science Agency, Thokar Niaz Baig, Multan Road, Lahore, 53700, Pakistan
| |
Collapse
|
14
|
Mohamed KM, Steenkamp V. Application of a LC-MS/MS method developed for the determination of p-phenylenediamine, N-acetyl- p-phenylenediamine and N, N-diacetyl- p-phenylenediamine in human urine specimens. Biomed Chromatogr 2016; 30:1922-1927. [DOI: 10.1002/bmc.3767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 04/25/2016] [Accepted: 05/20/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Khaled M. Mohamed
- Forensic Chemistry Department, College of Forensic Sciences; Naif Arab University for Security Sciences; Saudi Arabia
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences; University of Pretoria; Pretoria South Africa
| |
Collapse
|
15
|
Mohamed KM, Cromarty D, Steenkamp V. Development and validation of an LC–MS/MS method for determination of p-phenylenediamine and its metabolites in blood samples. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:1-6. [DOI: 10.1016/j.jchromb.2015.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/11/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
16
|
Cha HJ, Lee OK, Kim SY, Ko JM, Kim SY, Son JH, Han HJ, Li S, Kim SY, Ahn KJ, An IS, An S, Bae S. MicroRNA expression profiling of p-phenylenediamine treatment in human keratinocyte cell line. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0003-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Hudari FF, de Almeida LC, da Silva BF, Zanoni MVB. Voltammetric sensor for simultaneous determination of p-phenylenediamine and resorcinol in permanent hair dyeing and tap water by composite carbon nanotubes/chitosan modified electrode. Microchem J 2014. [DOI: 10.1016/j.microc.2014.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Balasubramanian D, Subramanian S, Thangaraju P, Shanmugam K. Right bundle branch block: an uncommon cardiotoxic manifestation of hair dye poisoning-a case report. J Clin Diagn Res 2014; 8:174-6. [PMID: 24596762 DOI: 10.7860/jcdr/2014/6966.3962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/23/2013] [Indexed: 11/24/2022]
Abstract
Hair dye poisoning has been rising in incidence in the recent years. Apart from the commoner manifestations of upper airway edema, rhabdomyolysis and acute renal failure, cardiac toxicity, convulsions and sudden cardiac death are relatively rare complications. We discuss a case of hair dye poisoning manifesting as oropharyngeal edema along with cardiac complication. The patient survived.
Collapse
Affiliation(s)
| | - Saravanan Subramanian
- Senior Assistant Professor, Department of Medicine, Thoothukudi Government Medical College , Thoothukudi
| | - Pugazhenthan Thangaraju
- Medical Officer, Central Leprosy Training and Re-search Institute , Chengal-pattu, Tamil Nadu, India
| | - Kani Shanmugam
- Professor, Department of Medicine, Thoothukudi Government Medical College , Thoothukudi, Tamil Nadu, India
| |
Collapse
|
19
|
Lee HY, Jeong YI, Kim DH, Choi KC. Permanent hair dye-incorporated hyaluronic acid nanoparticles. J Microencapsul 2012; 30:189-97. [PMID: 23088321 DOI: 10.3109/02652048.2012.714412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We prepared p-phenylenediamine (PDA)-incorporated nanoparticles using hyaluronic acid (HA). PDA-incorporated HA nanoparticles have spherical shapes and sizes were less than 300 nm. The results of FT-IR spectra indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation between amine group of PDA and carboxyl group of HA. Furthermore, powder-X-ray diffractogram (XRD) measurement showed that intrinsic crystalline peak of PDA disappeared by formation of nanoparticle with HA at XRD measurement. These results indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation. At drug release study, the higher PDA contents induced faster release rate from nanoparticles. PDA-incorporated nanoparticles showed reduced intrinsic toxicity against HaCaT human keratinocyte cells at MTT assay and apoptosis assay. We suggest that PDA-incorporated HA nanoparticles are promising candidates for novel permanent hair dye.
Collapse
Affiliation(s)
- Hye-Young Lee
- Department of Beauty Stylist, Yeonsung University, Gyeonggido, Korea
| | | | | | | |
Collapse
|
20
|
Lee HY, Jeong YI, Choi KC. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation. Int J Nanomedicine 2011; 6:2879-88. [PMID: 22131834 PMCID: PMC3224715 DOI: 10.2147/ijn.s26458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. Methods PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Results Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. Conclusion The authors suggest that these microparticles are ideal candidates for a vehicle for decreasing side effects of hair dye.
Collapse
Affiliation(s)
- Hye-Young Lee
- Anyang Science University, Anyang, Gyeonggi, South Korea
| | | | | |
Collapse
|