1
|
Spokeviciute B, Kholia S, Brizzi MF. Chimeric antigen receptor (CAR) T-cell therapy: Harnessing extracellular vesicles for enhanced efficacy. Pharmacol Res 2024; 208:107352. [PMID: 39147005 DOI: 10.1016/j.phrs.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
A cutting-edge approach in cell-based immunotherapy for combating resistant cancer involves genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes. In recent years, these therapies have demonstrated effectiveness, leading to their commercialization and clinical application against certain types of cancer. However, CAR-T therapy faces limitations, such as the immunosuppressive tumour microenvironment (TME) that can render CAR-T cells ineffective, and the adverse side effects of the therapy, including cytokine release syndrome (CRS). Extracellular vesicles (EVs) are a diverse group of membrane-bound particles released into the extracellular environment by virtually all cell types. They are essential for intercellular communication, transferring cargoes such as proteins, lipids, various types of RNAs, and DNA fragments to target cells, traversing biological barriers both locally and systemically. EVs play roles in numerous physiological processes, with those from both immune and non-immune cells capable of modulating the immune system through activation or suppression. Leveraging this capability of EVs to enhance CAR-T cell therapy could represent a significant advancement in overcoming its current limitations. This review examines the current landscape of CAR-T cell immunotherapy and explores the potential role of EVs in augmenting its therapeutic efficacy.
Collapse
Affiliation(s)
| | - Sharad Kholia
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | |
Collapse
|
2
|
Rezaie J, Chodari L, Mohammadpour-Asl S, Jafari A, Niknam Z. Cell-mediated barriers in cancer immunosurveillance. Life Sci 2024; 342:122528. [PMID: 38408406 DOI: 10.1016/j.lfs.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Hao Y, Chen P, Guo S, Li M, Jin X, Zhang M, Deng W, Li P, Lei W, Liang A, Qian W. Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of CD19-specific CAR T-cells via TGF-β signaling. Front Med 2024; 18:128-146. [PMID: 37870681 DOI: 10.1007/s11684-023-1010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/19/2023] [Indexed: 10/24/2023]
Abstract
Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for refractory and relapsed hematological malignancies, but whether lymphoma TEXs have the same impact on CAR T-cell remains unclear. Here, we demonstrated that B-cell lymphoma-derived exosomes induce the initial activation of CD19-CAR T-cells upon stimulation with exosomal CD19. However, lymphoma TEXs might subsequently induce CAR T-cell apoptosis and impair the tumor cytotoxicity of the cells because of the upregulated expression of the inhibitory receptors PD-1, TIM3, and LAG3 upon prolonged exposure. Similar results were observed in the CAR T-cells exposed to plasma exosomes from patients with lymphoma. More importantly, single-cell RNA sequencing revealed that CAR T-cells typically showed differentiated phenotypes and regulatory T-cell (Treg) phenotype conversion. By blocking transforming growth factor β (TGF-β)-Smad3 signaling with TGF-β inhibitor LY2109761, the negative effects of TEXs on Treg conversion, terminal differentiation, and immune checkpoint expression were rescued. Collectively, although TEXs lead to the initial activation of CAR T-cells, the effect of TEXs suppressed CAR T-cells, which can be rescued by LY2109761. A treatment regimen combining CAR T-cell therapy and TGF-β inhibitors might be a novel therapeutic strategy for refractory and relapsed B-cell lymphoma.
Collapse
Affiliation(s)
- Yuanyuan Hao
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Panpan Chen
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shanshan Guo
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mengyuan Li
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xueli Jin
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Minghuan Zhang
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China.
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Ahmadi M, Abbasi R, Rezaie J. Tumor immune escape: extracellular vesicles roles and therapeutics application. Cell Commun Signal 2024; 22:9. [PMID: 38167133 PMCID: PMC10763406 DOI: 10.1186/s12964-023-01370-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Immune escape, a process by which tumor cells evade immune surveillance, remains a challenge for cancer therapy. Tumor cells produce extracellular vesicles (EVs) that participate in immune escape by transferring bioactive molecules between cells. EVs refer to heterogeneous vesicles that participate in intercellular communication. EVs from tumor cells usually carry tumor antigens and have been considered a source of tumor antigens to induce anti-tumor immunity. However, evidence also suggests that these EVs can accelerate immune escape by carrying heat shock proteins (HSPs), programmed death-ligand 1 (PD-L1), etc. to immune cells, suppressing function and exhausting the immune cells pool. EVs are progressively being evaluated for therapeutic implementation in cancer therapies. EVs-based immunotherapies involve inhibiting EVs generation, using natural EVs, and harnessing engineering EVs. All approaches are associated with advantages and disadvantages. The EVs heterogeneity and diverse physicochemical properties are the main challenges to their clinical applications. SHORT CONCLUSION Although EVs are criminal; they can be useful for overcoming immune escape. This review discusses the latest knowledge on EVs population and sheds light on the function of tumor-derived EVs in immune escape. It also describes EVs-based immunotherapies with a focus on engineered EVs, followed by challenges that hinder the clinical translation of EVs that are essential to be addressed in future investigations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Budginaite E, Kloft M, van Kuijk SMJ, Canao PA, Kooreman LFS, Pennings AJ, Magee DR, Woodruff HC, Grabsch HI. The clinical importance of the host anti-tumour reaction patterns in regional tumour draining lymph nodes in patients with locally advanced resectable gastric cancer: a systematic review and meta-analysis. Gastric Cancer 2023; 26:847-862. [PMID: 37776394 PMCID: PMC10640417 DOI: 10.1007/s10120-023-01426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND The status of regional tumour draining lymph nodes (LN) is crucial for prognostic evaluation in gastric cancer (GaC) patients. Changes in lymph node microarchitecture, such as follicular hyperplasia (FH), sinus histiocytosis (SH), or paracortical hyperplasia (PH), may be triggered by the anti-tumour immune response. However, the prognostic value of these changes in GaC patients is unclear. METHODS A systematic search in multiple databases was conducted to identify studies on the prognostic value of microarchitecture changes in regional tumour-negative and tumour-positive LNs measured on histopathological slides. Since the number of GaC publications was very limited, the search was subsequently expanded to include junctional and oesophageal cancer (OeC). RESULTS A total of 28 articles (17 gastric cancer, 11 oesophageal cancer) met the inclusion criteria, analyzing 26,503 lymph nodes from 3711 GaC and 1912 OeC patients. The studies described eight different types of lymph node microarchitecture changes, categorized into three patterns: hyperplasia (SH, FH, PH), cell-specific infiltration (dendritic cells, T cells, neutrophils, macrophages), and differential gene expression. Meta-analysis of five GaC studies showed a positive association between SH in tumour-negative lymph nodes and better 5-year overall survival. Pooled risk ratios for all LNs showed increased 5-year overall survival for the presence of SH and PH. CONCLUSIONS This systematic review suggests that sinus histiocytosis and paracortical hyperplasia in regional tumour-negative lymph nodes may provide additional prognostic information for gastric and oesophageal cancer patients. Further studies are needed to better understand the lymph node reaction patterns and explore their impact of chemotherapy treatment and immunotherapy efficacy.
Collapse
Affiliation(s)
- Elzbieta Budginaite
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
- The D-Lab: Decision Support for Precision Medicine, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Maximilian Kloft
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Pedro A Canao
- Anatomical Pathology Department, Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Loes F S Kooreman
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Alexander J Pennings
- Department of Surgery, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Henry C Woodruff
- The D-Lab: Decision Support for Precision Medicine, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Hosseini R, Hosseinzadeh N, Asef-Kabiri L, Akbari A, Ghezelbash B, Sarvnaz H, Akbari ME. Small extracellular vesicle TGF-β in cancer progression and immune evasion. Cancer Gene Ther 2023; 30:1309-1322. [PMID: 37344681 DOI: 10.1038/s41417-023-00638-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Transforming growth factor-β (TGF-β) is a well-known cytokine that controls various processes in normal physiology and disease context. Strong preclinical and clinical literature supports the crucial roles of the TGF-β in several aspects of cancer biology. Recently emerging evidence reveals that the release of TGF-β from tumor/immune/stromal cells in small extracellular vesicles (sEVs) plays an important part in tumor development and immune evasion. Hence, this review aims to address the packaging, release, and signaling pathways of TGF-β carried in sEVs (sEV-TGF-β) in cancer, and to explore its underpinning roles in tumor development, growth, progression, metastasis, etc. We also highlight key progresses in deciphering the roles of sEV-TGF-β in subverting anti-tumor immune responses. The paper ends with a focus on the clinical significance of TGF-β carried in sEVs and draws attention to its diagnostic, therapeutic, and prognostic importance.
Collapse
Affiliation(s)
- Reza Hosseini
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nashmin Hosseinzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Lee KW, Yam JWP, Mao X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells 2023; 12:2147. [PMID: 37681880 PMCID: PMC10486560 DOI: 10.3390/cells12172147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
In the emerging era of cancer immunotherapy, immune checkpoint blockades (ICBs) and adoptive cell transfer therapies (ACTs) have gained significant attention. However, their therapeutic efficacies are limited due to the presence of cold type tumors, immunosuppressive tumor microenvironment, and immune-related side effects. On the other hand, dendritic cell (DC)-based vaccines have been suggested as a new cancer immunotherapy regimen that can address the limitations encountered by ICBs and ACTs. Despite the success of the first generation of DC-based vaccines, represented by the first FDA-approved DC-based therapeutic cancer vaccine Provenge, several challenges remain unsolved. Therefore, new DC vaccine strategies have been actively investigated. This review addresses the limitations of the currently most adopted classical DC vaccine and evaluates new generations of DC vaccines in detail, including biomaterial-based, immunogenic cell death-inducing, mRNA-pulsed, DC small extracellular vesicle (sEV)-based, and tumor sEV-based DC vaccines. These innovative DC vaccines are envisioned to provide a significant breakthrough in cancer immunotherapy landscape and are expected to be supported by further preclinical and clinical studies.
Collapse
Affiliation(s)
- Kyu-Won Lee
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
8
|
Roux Q, Boiy R, De Vuyst F, Tkach M, Pinheiro C, de Geyter S, Miinalainen I, Théry C, De Wever O, Hendrix A. Depletion of soluble cytokines unlocks the immunomodulatory bioactivity of extracellular vesicles. J Extracell Vesicles 2023; 12:e12339. [PMID: 37548263 PMCID: PMC10405237 DOI: 10.1002/jev2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 08/08/2023] Open
Abstract
Despite an enormous interest in understanding the bioactivity of extracellular vesicles (EV) in physiology and disease for the development of therapeutic applications, the impact of EV preparation methods remains minimally explored. In this study, we implemented density gradient ultracentrifugation combined with size-exclusion chromatography (DG-SEC), differential ultracentrifugation (dUC) and/or stand-alone SEC (sSEC) to fractionate media conditioned by different cancer cells and/or cancer-associated fibroblasts (CAF). EV-enriched but protein-depleted versus EV-depleted but protein-enriched DG-SEC fractions, and EV-containing dUC and sSEC preparations were quality controlled for particle number, protein concentration, selected protein composition and ultrastructure, characterized for their cytokine content, and dose-dependently evaluated for monocyte-derived dendritic cell (MoDC) maturation by measuring surface marker expression and/or cytokine secretion. EV preparations obtained by DG-SEC from media conditioned by different cancer cell lines or CAF, were depleted from soluble immune suppressive cytokines such as VEGF-A and MCP-1 and potently stimulated MoDC maturation. In contrast, EV-containing dUC or sSEC preparations were not depleted from these soluble cytokines and were unable to mature MoDC. Subsequent processing of dUC EV preparations by SEC dose-dependently restored the immunomodulatory bioactivity. Overall, our results demonstrate that method-dependent off-target enrichment of soluble cytokines has implications for the study of EV immunomodulatory bioactivity and warrants careful consideration.
Collapse
Affiliation(s)
- Quentin Roux
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Robin Boiy
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Felix De Vuyst
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Mercedes Tkach
- Institute CuriePSL Research University, INSERM U932ParisFrance
| | - Claudio Pinheiro
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Sofie de Geyter
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | | | - Clotilde Théry
- Institute CuriePSL Research University, INSERM U932ParisFrance
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| |
Collapse
|
9
|
Extracellular Vesicles: New Classification and Tumor Immunosuppression. BIOLOGY 2023; 12:biology12010110. [PMID: 36671802 PMCID: PMC9856004 DOI: 10.3390/biology12010110] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.
Collapse
|
10
|
Tumor-Derived Extracellular Vesicles in Cancer Immunoediting and Their Potential as Oncoimmunotherapeutics. Cancers (Basel) 2022; 15:cancers15010082. [PMID: 36612080 PMCID: PMC9817790 DOI: 10.3390/cancers15010082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) within and around a tumor is a complex interacting mixture of tumor cells with various stromal cells, including endothelial cells, fibroblasts, and immune cells. In the early steps of tumor formation, the local microenvironment tends to oppose carcinogenesis, while with cancer progression, the microenvironment skews into a protumoral TME and the tumor influences stromal cells to provide tumor-supporting functions. The creation and development of cancer are dependent on escape from immune recognition predominantly by influencing stromal cells, particularly immune cells, to suppress antitumor immunity. This overall process is generally called immunoediting and has been categorized into three phases; elimination, equilibrium, and escape. Interaction of tumor cells with stromal cells in the TME is mediated generally by cell-to-cell contact, cytokines, growth factors, and extracellular vesicles (EVs). The least well studied are EVs (especially exosomes), which are nanoparticle-sized bilayer membrane vesicles released by many cell types that participate in cell/cell communication. EVs carry various proteins, nucleic acids, lipids, and small molecules that influence cells that ingest the EVs. Tumor-derived extracellular vesicles (TEVs) play a significant role in every stage of immunoediting, and their cargoes change from immune-activating in the early stages of immunoediting into immunosuppressing in the escape phase. In addition, their cargos change with different treatments or stress conditions and can be influenced to be more immune stimulatory against cancer. This review focuses on the emerging understanding of how TEVs affect the differentiation and effector functions of stromal cells and their role in immunoediting, from the early stages of immunoediting to immune escape. Consideration of how TEVs can be therapeutically utilized includes different treatments that can modify TEV to support cancer immunotherapy.
Collapse
|
11
|
Wang S, Sun J, Dastgheyb RM, Li Z. Tumor-derived extracellular vesicles modulate innate immune responses to affect tumor progression. Front Immunol 2022; 13:1045624. [PMID: 36405712 PMCID: PMC9667034 DOI: 10.3389/fimmu.2022.1045624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 04/23/2024] Open
Abstract
Immune cells are capable of influencing tumor progression in the tumor microenvironment (TME). Meanwhile, one mechanism by which tumor modulate immune cells function is through extracellular vesicles (EVs), which are cell-derived extracellular membrane vesicles. EVs can act as mediators of intercellular communication and can deliver nucleic acids, proteins, lipids, and other signaling molecules between cells. In recent years, studies have found that EVs play a crucial role in the communication between tumor cells and immune cells. Innate immunity is the first-line response of the immune system against tumor progression. Therefore, tumor cell-derived EVs (TDEVs) which modulate the functional change of innate immune cells serve important functions in the context of tumor progression. Emerging evidence has shown that TDEVs dually enhance or suppress innate immunity through various pathways. This review aims to summarize the influence of TDEVs on macrophages, dendritic cells, neutrophils, and natural killer cells. We also summarize their further effects on the progression of tumors, which may provide new ideas for developing novel tumor therapies targeting EVs.
Collapse
Affiliation(s)
- Siqi Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Sun
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Raha M. Dastgheyb
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Zhigang Li
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
12
|
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L, Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther 2022; 30:3133-3154. [PMID: 35405312 PMCID: PMC9552915 DOI: 10.1016/j.ymthe.2022.01.046] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Zijie Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingya Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lianghui Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Oncology, The Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211112, China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
13
|
El-Awady AR, Elashiry M, Morandini AC, Meghil MM, Cutler CW. Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontol 2000 2022; 89:41-50. [PMID: 35244951 DOI: 10.1111/prd.12428] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extensive research in humans and animal models has begun to unravel the complex mechanisms that drive the immunopathogenesis of periodontitis. Neutrophils mount an early and rapid response to the subgingival oral microbiome, producing destructive enzymes to kill microbes. Chemokines and cytokines are released that attract macrophages, dendritic cells, and T cells to the site. Dendritic cells, the focus of this review, are professional antigen-presenting cells on the front line of immune surveillance. Dendritic cells consist of multiple subsets that reside in the epithelium, connective tissues, and major organs. Our work in humans and mice established that myeloid dendritic cells are mobilized in periodontitis. This occurs in lymphoid and nonlymphoid oral tissues, in the bloodstream, and in response to Porphyromonas gingivalis. Moreover, the dendritic cells mature in situ in gingival lamina propria, forming immune conjugates with cluster of differentiation (CD) 4+ T cells, called oral lymphoid foci. At such foci, the decisions are made as to whether to promote bone destructive T helper 17 or bone-sparing regulatory T cell responses. Interestingly, dendritic cells lack potent enzymes and reactive oxygen species needed to kill and degrade endocytosed microbes. The keystone pathogen P. gingivalis exploits this vulnerability by invading dendritic cells in the tissues and peripheral blood using its distinct fimbrial adhesins. This promotes pathogen dissemination and inflammatory disease at distant sites, such as atherosclerotic plaques. Interestingly, our recent studies indicate that such P. gingivalis-infected dendritic cells release nanosized extracellular vesicles called exosomes, in higher numbers than uninfected dendritic cells do. Secreted exosomes and inflammasome-related cytokines are a key feature of the senescence-associated secretory phenotype. Exosomes communicate in paracrine with neighboring stromal cells and immune cells to promote and amplify cellular senescence. We have shown that dendritic cell-derived exosomes can be custom tailored to target and reprogram specific immune cells responsible for inflammatory bone loss in mice. The long-term goal of these immunotherapeutic approaches, ongoing in our laboratory and others, is to promote human health and longevity.
Collapse
Affiliation(s)
- Ahmed R El-Awady
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ana C Morandini
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mohamed M Meghil
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
14
|
Lian H, Zhong XS, Xiao Y, Sun Z, Shen Y, Zhao K, Ma X, Li Y, Niu Q, Liu M, Powell DW, Liu C, Li Q. Exosomal miR-29b of Gut Origin in Patients With Ulcerative Colitis Suppresses Heart Brain-Derived Neurotrophic Factor. Front Mol Biosci 2022; 9:759689. [PMID: 35274002 PMCID: PMC8902158 DOI: 10.3389/fmolb.2022.759689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/21/2022] [Indexed: 01/13/2023] Open
Abstract
Background and Aims: While the interplay between heart and gut in inflammatory bowel disease (IBD) has previously been noted, how the inflamed gut impairs heart function remain elusive. We hypothesized that exosomal miRNAs of gut origin induce cardiac remodeling in IBD. Our aim was to identify plasma exosomal miRNAs that not only are of diagnostic value but also contribute to cardiac remodeling in patients with ulcerative colitis (UC).Methods: Plasma exosomes were isolated from UC patients and healthy control subjects and exosomal miRNAs were profiled by next-generation sequencing. Exosomal miR-29b levels in CCD841 CoN colon epithelial cells were detected by RT-qPCR. Exosomes packaged with miR-29b were incubated with H9c2 cells or administered to live mice.Results: The plasma exosomal miRNA profiles of the UC patients were significantly different from that of the controls and 20 miRNAs including miR-29b were differentially expressed. In CCD841 CoN cells, TNFα, IL-1β, and H2O2 significantly elevated miR-29b in both the cells and their secreted exosomes (p < 0.01), suggesting that intestinal epithelium secrets exosomes rich in miR-29b in IBD. In H9c2 myoblast cells, miR-29b modulated multiple genes including brain-derived neurotrophic factor (BDNF). Epithelial cell-derived exosomes packaged with miR-29b also attenuated BDNF and increased cleaved caspase 3, suggestive of apoptosis. Furthermore, tail vein injection of engineered exosomes with high levels of miR-29b suppressed BDNF and augmented cleaved caspase 3 in the heart of adult mouse (p < 0.01).Conclusion: Plasma exosomal miRNA profile could be a novel diagnostic approach for IBD. Excessive plasma exosomal miR-29b suppresses critical proteins like BDNF in IBD, leading to cardiac impairment.
Collapse
Affiliation(s)
- Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Haifeng Lian, ; Qingjie Li,
| | - Xiaoying S. Zhong
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ying Xiao
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Sun
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Yuanyuan Shen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Kaile Zhao
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Xingbin Ma
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Yanmin Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Qiong Niu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Max Liu
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Don W. Powell
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Haifeng Lian, ; Qingjie Li,
| |
Collapse
|
15
|
Tumor-Derived Exosomes in Tumor-Induced Immune Suppression. Int J Mol Sci 2022; 23:ijms23031461. [PMID: 35163380 PMCID: PMC8836190 DOI: 10.3390/ijms23031461] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a class of small membrane-bound extracellular vesicles released by almost all cell types and present in all body fluids. Based on the studies of exosome content and their interactions with recipient cells, exosomes are now thought to mediate “targeted” information transfer. Tumor-derived exosomes (TEX) carry a cargo of molecules different from that of normal cell-derived exosomes. TEX functions to mediate distinct biological effects such as receptor discharge and intercellular cross-talk. The immune system defenses, which may initially restrict tumor progression, are progressively blunted by the broad array of TEX molecules that activate suppressive pathways in different immune cells. Herein, we provide a review of the latest research progress on TEX in the context of tumor-mediated immune suppression and discuss the potential as well as challenges of TEX as a target of immunotherapy.
Collapse
|
16
|
Elashiry M, Elsayed R, Cutler CW. Exogenous and Endogenous Dendritic Cell-Derived Exosomes: Lessons Learned for Immunotherapy and Disease Pathogenesis. Cells 2021; 11:cells11010115. [PMID: 35011677 PMCID: PMC8750541 DOI: 10.3390/cells11010115] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Immune therapeutic exosomes, derived exogenously from dendritic cells (DCs), the 'directors' of the immune response, are receiving favorable safety and tolerance profiles in phase I and II clinical trials for a growing number of inflammatory and neoplastic diseases. DC-derived exosomes (EXO), the focus of this review, can be custom tailored with immunoregulatory or immunostimulatory molecules for specific immune cell targeting. Moreover, the relative stability, small size and rapid uptake of EXO by recipient immune cells offer intriguing options for therapeutic purposes. This necessitates an in-depth understanding of mechanisms of EXO biogenesis, uptake and routing by recipient immune cells, as well as their in vivo biodistribution. Against this backdrop is recognition of endogenous exosomes, secreted by all cells, the molecular content of which is reflective of the metabolic state of these cells. In this regard, exosome biogenesis and secretion is regulated by cell stressors of chronic inflammation and tumorigenesis, including dysbiotic microbes, reactive oxygen species and DNA damage. Such cell stressors can promote premature senescence in young cells through the senescence associated secretory phenotype (SASP). Pathological exosomes of the SASP amplify inflammatory signaling in stressed cells in an autocrine fashion or promote inflammatory signaling to normal neighboring cells in paracrine, without the requirement of cell-to-cell contact. In summary, we review relevant lessons learned from the use of exogenous DC exosomes for immune therapy, as well as the pathogenic potential of endogenous DC exosomes.
Collapse
|
17
|
Deng Y, Tong J, Shi W, Tian Z, Yu B, Tang J. Thromboangiitis obliterans plasma-derived exosomal miR-223-5p inhibits cell viability and promotes cell apoptosis of human vascular smooth muscle cells by targeting VCAM1. Ann Med 2021; 53:1129-1141. [PMID: 34259105 PMCID: PMC8281010 DOI: 10.1080/07853890.2021.1949487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Exosomes-encapsulated microRNAs (miRNAs) have been established to be implicated in the pathogenesis of different diseases. Nevertheless, circulating exosomal miRNAs of thromboangiitis obliterans (TAO) remains poorly understood. This study aimed to explore the effects of exosomal miRNAs associated with TAO on human vascular smooth muscle cells (HVSMCs).Methods: The exosomes were isolated from the plasma of TAO patients and normal controls and then were sent for small RNA sequencing. Differentially expressed miRNAs (DE-miRNAs) were identified by bioinformatics analysis and were confirmed by RT-qPCR. After that, PKH67 staining was used to label exosomes and co-cultured with HVSMCs. Cell viability and apoptosis were, respectively, tested by CCK-8 assay and flow cytometry. Finally, dual-luciferase reporter assay was used to confirm the downstream targets of miR-223-5p.Results: A total of 39 DE-miRNAs were identified between TAO patients and normal controls, of which, miR-223-5p was one of the most significantly up-regulated miRNAs. TAO plasma-derived exosomes or miR-223-5p mimics inhibited cell viability of HVSMCs and promoted cell apoptosis. The pro-apoptotic effect of TAO plasma-derived exosomes was alleviated by miR-223-5p inhibitor. Additionally, the expressions of VCAM1 and IGF1R were down-regulated by exosomes and miR-223-5p mimics, and were abrogated by miR-223-5p inhibitor. Dual-luciferase report showed that VCAM1 was the target of miR-223-5p.Conclusions: Our findings imply that circulating exosomal miR-223-5p may play an essential role in the pathogenesis of TAO, and provide a basis for miR-6515-5p/VCAM1 as novel therapeutic targets and pathways for TAO treatment.
Collapse
Affiliation(s)
- Ying Deng
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Weijun Shi
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhongyi Tian
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jingdong Tang
- Department of Vascular Surgery, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
18
|
The Immunomodulation Potential of Exosomes in Tumor Microenvironment. J Immunol Res 2021; 2021:3710372. [PMID: 34616851 PMCID: PMC8490057 DOI: 10.1155/2021/3710372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Exosomes are lipid bilayer particles that originated from almost all types of cells and play an important role in intercellular communication. Tumor-derived exosomes contain large amounts of noncoding RNA, DNA, and proteins, which can be transferred into recipient cells as functional components in exosomes. These exosomal functional constituents depend on the originating cells, and it has been proved that types and numbers of exosomal components differ in cancer patients and healthy individuals. This review summarizes the role of tumor-derived exosomes in immunomodulation and discusses the application of exosomes in immunotherapy in cancers. Overall, exosomes isolated from cancer cells are turned out to promote immune evasion and interfere with immune responses in tumors through inducing apoptosis of CD8+ T cells, facilitating generation of Tregs, suppressing natural killer (NK) cell cytotoxicity, inhibiting maturation and differentiation of monocyte, and enhancing suppressive function of myeloid-derived suppressor cells (MDSCs). Mechanistically, exosomal functional components play a significant role in the immunomodulation in cancers. Moreover, based on the existing studies, exosomes could potentially serve as therapeutic delivery vehicles, noninvasive biomarkers, and immunotherapeutic vaccines for various types of cancers.
Collapse
|
19
|
Chen H, Chengalvala V, Hu H, Sun D. Tumor-derived exosomes: Nanovesicles made by cancer cells to promote cancer metastasis. Acta Pharm Sin B 2021; 11:2136-2149. [PMID: 34522581 PMCID: PMC8424275 DOI: 10.1016/j.apsb.2021.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine usually refers to nanoparticles that deliver the functional drugs and siRNAs to treat cancer. Recent research has suggested that cancer cells can also make nanoparticles that also deliver functional molecules in promoting cancer metastasis, which is the leading cause of various cancer mortalities. This nanoparticle is called tumor-derived vesicles, or better-known as tumor-derived exosomes (TEXs). TEXs are nanoscale membrane vesicles (30-140 nm) that are released continuously by various types of cancer cells and contain tumor-derived functional biomolecules, including lipids, proteins, and genetic molecules. These endogenous TEXs can interact with host immune cells and epithelial cells locally and systemically. More importantly, they can reprogram the recipient cells in favor of promoting metastasis through facilitating tumor cell local invasion, intravasation, immune evasion, extravasation, and survival and growth in distant organs. Growing evidence suggests that TEXs play a key role in cancer metastasis. Here, we will review the most recent findings of how cancer cells harness TEXs to promote cancer metastasis through modulating vascular permeability, suppressing systemic immune surveillance, and creating metastatic niches. We will also summarize recent research in targeting TEXs to treat cancer metastasis.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Venkata Chengalvala
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Zhao Y, Li X, Zhang W, Yu L, Wang Y, Deng Z, Liu M, Mo S, Wang R, Zhao J, Liu S, Hao Y, Wang X, Ji T, Zhang L, Wang C. Trends in the biological functions and medical applications of extracellular vesicles and analogues. Acta Pharm Sin B 2021; 11:2114-2135. [PMID: 34522580 PMCID: PMC8424226 DOI: 10.1016/j.apsb.2021.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Natural extracellular vesicles (EVs) play important roles in many life processes such as in the intermolecular transfer of substances and genetic information exchanges. Investigating the origins and working mechanisms of natural EVs may provide an understanding of life activities, especially regarding the occurrence and development of diseases. Additionally, due to their vesicular structure, EVs (in small molecules, nucleic acids, proteins, etc.) could act as efficient drug-delivery carriers. Herein, we describe the sources and biological functions of various EVs, summarize the roles of EVs in disease diagnosis and treatment, and review the application of EVs as drug-delivery carriers. We also assess the challenges and perspectives of EVs in biomedical applications.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhun Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ruonan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jinming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Shuli Liu
- Department of Clinical Laboratory, Peking University Civil Aviation School of Clinical Medicine, Beijing 100123, China
| | - Yun Hao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel./fax: +86 10 69156463.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Corresponding authors. Tel./fax: +86 10 69156463.
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Corresponding authors. Tel./fax: +86 10 69156463.
| |
Collapse
|
21
|
Han W, Sulidankazha Q, Nie X, Yilidan R, Len K. RETRACTED: Pancreatic cancer cells-derived exosomal long non-coding RNA CCAT1/microRNA-138-5p/HMGA1 axis promotes tumor angiogenesis. Life Sci 2021; 278:119495. [PMID: 33872661 DOI: 10.1016/j.lfs.2021.119495] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 2B and 5I+J, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). In addition, Fig. 4B appears to show a digital composition of xenografted tumors. The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Wei Han
- Department of Pancreatic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Municipality 830054, Xinjiang, China.
| | - Qiuman Sulidankazha
- Department of Pancreatic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Municipality 830054, Xinjiang, China
| | - Xiaohan Nie
- Department of Pancreatic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Municipality 830054, Xinjiang, China
| | - Reheman Yilidan
- Department of Pancreatic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Municipality 830054, Xinjiang, China
| | - Kunzeng Len
- Department of Pancreatic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Municipality 830054, Xinjiang, China
| |
Collapse
|
22
|
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci 2021; 22:ijms22126459. [PMID: 34208697 PMCID: PMC8235535 DOI: 10.3390/ijms22126459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse
|
23
|
Hosseini R, Asef-Kabiri L, Yousefi H, Sarvnaz H, Salehi M, Akbari ME, Eskandari N. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol Cancer 2021; 20:83. [PMID: 34078376 PMCID: PMC8170799 DOI: 10.1186/s12943-021-01376-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-derived exosomes (TDEs) have been shown to impede anti-tumor immune responses via their immunosuppressive cargo. Since dendritic cells (DCs) are the key mediators of priming and maintenance of T cell-mediated responses; thus it is logical that the exosomes released by tumor cells can exert a dominant influence on DCs biology. This paper intends to provide a mechanistic insight into the TDEs-mediated DCs abnormalities in the tumor context. More importantly, we discuss extensively how tumor exosomes induce subversion of DCs differentiation, maturation and function in separate sections. We also briefly describe the importance of TDEs at therapeutic level to help guide future treatment options, in particular DC-based vaccination strategy, and review advances in the design and discovery of exosome inhibitors. Understanding the exosomal content and the pathways by which TDEs are responsible for immune evasion may help to revise treatment rationales and devise novel therapeutic approaches to overcome the hurdles in cancer treatment.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
24
|
Hui WW, Emerson LE, Clapp B, Sheppe AE, Sharma J, del Castillo J, Ou M, Maegawa GHB, Hoffman C, Larkin, III J, Pascual DW, Ferraro MJ. Antigen-encapsulating host extracellular vesicles derived from Salmonella-infected cells stimulate pathogen-specific Th1-type responses in vivo. PLoS Pathog 2021; 17:e1009465. [PMID: 33956909 PMCID: PMC8101724 DOI: 10.1371/journal.ppat.1009465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
Salmonella Typhimurium is a causative agent of nontyphoidal salmonellosis, for which there is a lack of a clinically approved vaccine in humans. As an intracellular pathogen, Salmonella impacts many cellular pathways. However, the intercellular communication mechanism facilitated by host-derived small extracellular vesicles (EVs), such as exosomes, is an overlooked aspect of the host responses to this infection. We used a comprehensive proteome-based network analysis of exosomes derived from Salmonella-infected macrophages to identify host molecules that are trafficked via these EVs. This analysis predicted that the host-derived small EVs generated during macrophage infection stimulate macrophages and promote activation of T helper 1 (Th1) cells. We identified that exosomes generated during infection contain Salmonella proteins, including unique antigens previously shown to stimulate protective immune responses against Salmonella in murine studies. Furthermore, we showed that host EVs formed upon infection stimulate a mucosal immune response against Salmonella infection when delivered intranasally to BALB/c mice, a route of antigen administration known to initiate mucosal immunity. Specifically, the administration of these vesicles to animals stimulated the production of anti-Salmonella IgG antibodies, such as anti-OmpA antibodies. Exosomes also stimulated antigen-specific cell-mediated immunity. In particular, splenic mononuclear cells isolated from mice administered with exosomes derived from Salmonella-infected antigen-presenting cells increased CD4+ T cells secreting Th1-type cytokines in response to Salmonella antigens. These results demonstrate that small EVs, formed during infection, contribute to Th1 cell bias in the anti-Salmonella responses. Collectively, this study helps to unravel the role of host-derived small EVs as vehicles transmitting antigens to induce Th1-type immunity against Gram-negative bacteria. Understanding the EV-mediated defense mechanisms will allow the development of future approaches to combat bacterial infections.
Collapse
Affiliation(s)
- Winnie W. Hui
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lisa E. Emerson
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Beata Clapp
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Austin E. Sheppe
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Johanna del Castillo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Mark Ou
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Gustavo H. B. Maegawa
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Carol Hoffman
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Joseph Larkin, III
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - David W. Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mariola J. Ferraro
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
25
|
Abstract
Exosomes are nanoscale extracellular vesicles that can transport cargos of proteins, lipids, DNA, various RNA species and microRNAs (miRNAs). Exosomes can enter cells and deliver their contents to recipient cell. Owing to their cargo exosomes can transfer different molecules to the target cells and change the phenotype of these cells. The fate of the contents of an exosome depends on its target destination. Various mechanisms for exosome uptake by target cells have been proposed, but the mechanisms responsible for exosomes internalization into cells are still debated. Exosomes exposed cells produce labeled protein kinases, which are expressed by other cells. This means that these kinases are internalized by exosomes, and transported into the cytoplasm of recipient cells. Many studies have confirmed that exosomes are not only secreted by living cells, but also internalized or accumulated by the other cells. The "next cell hypothesis" supports the notion that exosomes constitute communication vehicles between neighboring cells. By this mechanism, exosomes participate in the development of diabetes and its associated complications, critically contribute to the spreading of neuronal damage in Alzheimer's disease, and non-proteolysed form of Fas ligand (mFasL)-bearing exosomes trigger the apoptosis of T lymphocytes. Furthermore, exosomes derived from human B lymphocytes induce antigen-specific major histocompatibility complex (MHC) class II-restricted T cell responses. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules. This process is defined as "exosome-immune suppression" concept. The interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma promote the transfer of oncogenes and onco-miRNAs from one cell to other. Circulating exosomes that are released from hypertrophic adipocytes are effective in obesity-related complications. On the other hand, the "inflammasome-induced" exosomes can activate inflammatory responses in recipient cells. In this chapter protein kinases-related checkpoints are emphasized considering the regulation of exosome biogenesis, secretory traffic, and their impacts on cell death, tumor growth, immune system, and obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
26
|
Pashazadeh M. The role of tumor-isolated exosomes on suppression of immune reactions and cancer progression: A systematic review. Med J Islam Repub Iran 2020; 34:91. [PMID: 33306056 PMCID: PMC7713497 DOI: 10.34171/mjiri.34.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Exosomes are extracellular cells (EVs) emancipated by various cell types and are involved in cell-to-cell transmission. In cancer diseases, exosomes emerge as local and systemic cells to cell mediators of oncogenic information and play a significant role in the advancement of cancer through the horizontal transfer of various molecules, such as proteins and miRNAs.
Methods: In this study, 66 articles from PubMed, MEDLINE, Science Direct, Cochrane, EMBASE, and Scopus were used as English sources.
Results: The biological distribution of cancer cell-derived exosomes in tumor tissue is an important factor in detecting their role in tumor increase; on the other hand, a limited number of studies have examined the biodistribution of exosomes in tumor tissues. While exosomes function as cancer biomarkers and support cancer treatment, we have a long way to improve the antitumor treatment of exosomes and develop exosome-based cancer diagnostic and therapeutic strategies.
Conclusion: This review describes the science and significance of cancer pathogenesis and exosomes relative to cancer treatment resistance.
Collapse
Affiliation(s)
- Mehrdad Pashazadeh
- Immunology Division, Department of Microbiology, Health Science Institute, Bursa Uludag University, Bursa, Turkey.,Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
27
|
Yin S, Jia F, Ran L, Xie L, Wu Z, Zhan Y, Zhang Y, Zhang M. Exosomes derived from idiopathic gingival fibroma fibroblasts regulate gingival fibroblast proliferation and apoptosis. Oral Dis 2020; 27:1789-1795. [PMID: 33140502 DOI: 10.1111/odi.13707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Exosomes have been proved to play an essential role in intercellular information transmission. However, few researches focused on exosomes derived from gingival fibroblasts (GFs) of IGF. The aim of this study is to investigate the effect of exosomes derived from GFs of IGF (IGF-GFs) on the proliferation and apoptosis of normal gingival fibroblasts (N-GFs). METHODS Gingival fibroblasts were cultured and identified using immunocytochemistry. Exosomes were isolated with exosomes extraction kit and characterized by transmission electron microscopy (TEM) and flow cytometry. PKH67 labeling was further used to trace the intracellular distribution of the exosomes. And MTS assay was used to test the effective concentration and time course of IGF-GFs-derived exosomes. Furthermore, the expression of PCNA, Ki67, Bcl-2, and Bax in N-GFs was analyzed by qRT-PCR and Western blot. RESULTS Exosomes were isolated from IGF-GFs; the identification of exosomes and gingival fibroblasts was successfully finished. Moreover, we found that N-GFs co-cultured with exosomes showed a great increase in PCNA and Bcl-2 levels, and a moderate increase in Ki67 levels. By contrast, the levels of Bax were significantly reduced. CONCLUSION These results suggest that exosomes derived from idiopathic gingival fibroma fibroblasts are involved in the regulation of gingival fibroblast proliferation and apoptosis.
Collapse
Affiliation(s)
- Shunhui Yin
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Fengmei Jia
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China.,Liu Zhou People's Hospital, Liuzhou City, China
| | - Liquan Ran
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Liangkun Xie
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Zhiyao Wu
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Yeming Zhan
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Yan Zhang
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Mingzhu Zhang
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
28
|
Ambattu LA, Ramesan S, Dekiwadia C, Hanssen E, Li H, Yeo LY. High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Commun Biol 2020; 3:553. [PMID: 33020585 PMCID: PMC7536404 DOI: 10.1038/s42003-020-01277-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are promising disease diagnostic markers and drug delivery vehicles, although their use in practice is limited by insufficient homogeneous quantities that can be produced. We reveal that exposing cells to high frequency acoustic irradiation stimulates their generation without detriment to cell viability by exploiting their innate membrane repair mechanism, wherein the enhanced recruitment of calcium ions from the extracellular milieu into the cells triggers an ESCRT pathway known to orchestrate exosomal production. Given the high post-irradiation cell viabilities (≈95%), we are able to recycle the cells through iterative irradiation and post-excitation incubation steps, which facilitate high throughput production of a homogeneous population of exosomes-a particular challenge for translating exosome therapy into clinical practice. In particular, we show that approximately eight- to ten-fold enrichment in the number of exosomes produced can be achieved with just 7 cycles over 280 mins, equivalent to a yield of around 1.7-2.1-fold/h.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, 3000, Australia
| | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Haiyan Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
29
|
Gargiulo E, Morande PE, Largeot A, Moussay E, Paggetti J. Diagnostic and Therapeutic Potential of Extracellular Vesicles in B-Cell Malignancies. Front Oncol 2020; 10:580874. [PMID: 33117718 PMCID: PMC7550802 DOI: 10.3389/fonc.2020.580874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EV), comprising microvesicles and exosomes, are particles released by every cell of an organism, found in all biological fluids, and commonly involved in cell-to-cell communication through the transfer of cargo materials such as miRNA, proteins, and immune-related ligands (e.g., FasL and PD-L1). An important characteristic of EV is that their composition, abundance, and roles are tightly related to the parental cells. This translates into a higher release of characteristic pro-tumor EV by cancer cells that leads to harming signals toward healthy microenvironment cells. In line with this, the key role of tumor-derived EV in cancer progression was demonstrated in multiple studies and is considered a hot topic in the field of oncology. Given their characteristics, tumor-derived EV carry important information concerning the state of tumor cells. This can be used to follow the outset, development, and progression of the neoplasia and to evaluate the design of appropriate therapeutic strategies. In keeping with this, the present brief review will focus on B-cell malignancies and how EV can be used as potential biomarkers to follow disease progression and stage. Furthermore, we will explore several proposed strategies aimed at using biologically engineered EV for treatment (e.g., drug delivery mechanisms) as well as for impairing the biogenesis, release, and internalization of cancer-derived EV, with the final objective to disrupt tumor–microenvironment communication.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Pablo Elías Morande
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
30
|
Gholipour E, Sarvarian P, Samadi P, Talebi M, Movassaghpour A, Motavalli R, Hojjat-Farsangi M, Yousefi M. Exosome: From leukemia progression to a novel therapeutic approach in leukemia treatment. Biofactors 2020; 46:698-715. [PMID: 32797698 DOI: 10.1002/biof.1669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as small vesicles, are released by tumor cells and tumor microenvironment (cells and function as key intercellular mediators and effects on different processes including tumorigenesis, angiogenesis, drug resistance, and evasion from immune system. These functions are due to exosomes' biomolecules which make them as efficient markers in early diagnosis of the disease. Also, exosomes have been recently applied in vaccination. The potential role of exosomes in immune response toward leukemic cells makes them efficient immunotherapeutic agents treating leukemia. Furthermore, variations in exosomes contents make them beneficial to be used in treating different diseases. This review introduces the role of exosomes in the development of hematological malignancies and evaluates their functional role in the treatment of these malignancies.
Collapse
Affiliation(s)
- Elham Gholipour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sarvarian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Samadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Immune and Gene Therapy Lab, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz university of Medical Sciences, Tabriz, Iran
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Myeloid Cell Modulation by Tumor-Derived Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21176319. [PMID: 32878277 PMCID: PMC7504548 DOI: 10.3390/ijms21176319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EV) can carry proteins, RNA and DNA, thus serving as communication tools between cells. Tumor cells secrete EV, which can be taken up by surrounding cells in the tumor microenvironment as well as by cells in distant organs. Tumor-derived EV (TEV) contain factors induced by tumor-associated hypoxia such as heat shock proteins or a variety of microRNA (miRNA). The interaction of TEV with tumor and host cells can promote cancer angiogenesis, invasion and metastasis. Myeloid cells are widely presented in tissues, comprise the majority of immune cells and play an essential role in immune reactions and tissue remodeling. However, in cancer, the differentiation of myeloid cells and their functions are impaired, resulting in tumor promotion. Such alterations are due to chronic inflammatory conditions associated with cancer and are mediated by the tumor secretome, including TEV. A high capacity of myeloid cells to clear EV from circulation put them in the central position in EV-mediated formation of pre-metastatic niches. The exposure of myeloid cells to TEV could trigger numerous signaling pathways. Progenitors of myeloid cells alter their differentiation upon the contact with TEV, resulting in the generation of myeloid-derived suppressor cells (MDSC), inhibiting anti-tumor function of T and natural killer (NK) cells and promoting thereby tumor progression. Furthermore, TEV can augment MDSC immunosuppressive capacity. Different subsets of mature myeloid cells such as monocytes, macrophages, dendritic cells (DC) and granulocytes take up TEV and acquire a protumorigenic phenotype. However, the delivery of tumor antigens to DC by TEV was shown to enhance their immunostimulatory capacity. The present review will discuss a diverse and complex EV-mediated crosstalk between tumor and myeloid cells in the context of the tumor type, TEV-associated cargo molecules and type of recipient cells.
Collapse
|
32
|
Morand S, Stanbery L, Walter A, Rocconi RP, Nemunaitis J. BRCA1/2 Mutation Status Impact on Autophagy and Immune Response: Unheralded Target. JNCI Cancer Spectr 2020; 4:pkaa077. [PMID: 33409454 PMCID: PMC7771003 DOI: 10.1093/jncics/pkaa077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
BRCA1 and possibly BRCA2 proteins may relate to the regulation of autophagy. Autophagy plays a key role in immune response from both a tumor and immune effector cell standpoint. In cells with BRCA mutations, increased autophagy leads to elevated expression of major histocompatibility complex class II but may cause subclonal neoantigen presentation, which may impair the immune response related to clonal neoantigen visibility. We review evidence of BRCA1/2 regulation of autophagy, immune response, and antigen presentation.
Collapse
Affiliation(s)
- Susan Morand
- Department of Internal Medicine, University of Toledo, Toledo, OH, USA
| | | | | | - Rodney P Rocconi
- University of South Alabama - Mitchell Cancer Institute, Mobile, AL, USA
| | | |
Collapse
|
33
|
Orally Administered Exosomes Suppress Mouse Delayed-Type Hypersensitivity by Delivering miRNA-150 to Antigen-Primed Macrophage APC Targeted by Exosome-Surface Anti-Peptide Antibody Light Chains. Int J Mol Sci 2020; 21:ijms21155540. [PMID: 32748889 PMCID: PMC7432818 DOI: 10.3390/ijms21155540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
We previously discovered suppressor T cell-derived, antigen (Ag)-specific exosomes inhibiting mouse hapten-induced contact sensitivity effector T cells by targeting antigen-presenting cells (APCs). These suppressive exosomes acted Ag-specifically due to a coating of antibody free light chains (FLC) from Ag-activated B1a cells. Current studies are aimed at determining if similar immune tolerance could be induced in cutaneous delayed-type hypersensitivity (DTH) to the protein Ag (ovalbumin, OVA). Intravenous administration of a high dose of OVA-coupled, syngeneic erythrocytes similarly induced CD3+CD8+ suppressor T cells producing suppressive, miRNA-150-carrying exosomes, also coated with B1a cell-derived, OVA-specific FLC. Simultaneously, OVA-immunized B1a cells produced an exosome subpopulation, originally coated with Ag-specific FLC, that could be rendered suppressive by in vitro association with miRNA-150. Importantly, miRNA-150-carrying exosomes from both suppressor T cells and B1a cells efficiently induced prolonged DTH suppression after single systemic administration into actively immunized mice, with the strongest effect observed after oral treatment. Current studies also showed that OVA-specific FLC on suppressive exosomes bind OVA peptides suggesting that exosome-coating FLC target APCs by binding to peptide-Ag-major histocompatibility complexes. This renders APCs capable of inhibiting DTH effector T cells. Thus, our studies describe a novel immune tolerance mechanism mediated by FLC-coated, Ag-specific, miRNA-150-carrying exosomes that act on the APC and are particularly effective after oral administration.
Collapse
|
34
|
Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology 2020; 9:1779991. [PMID: 32934883 PMCID: PMC7466856 DOI: 10.1080/2162402x.2020.1779991] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identification of immunogenic tumor antigens that are efficiently processed and delivered by dendritic cells to prime the immune system and to induce an appropriate immune response is a research hotspot in the field of cancer vaccine development. High biosafety is an additional demand. Tumor-derived exosomes (TEXs) are nanosized lipid bilayer encapsulated vesicles that shuttle bioactive information to the tumor microenvironment facilitating tumor progression. However, accumulating evidence points toward the capacity of TEXs to efficiently stimulate immune responses against tumors provided they are appropriately administered. After briefly describing the function of exosomes in cancer biology and their communication with immune cells, we summarize in this review in vitro and preclinical studies eliciting the potency of TEXs in inducing effective anti-tumor responses and recently modified strategies further improving TEX-vaccination efficacy. We interpret the available data as TEXs becoming a lead in cancer vaccination based on tumor antigen-selective high immunogenicity.
Collapse
Affiliation(s)
- Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Margot Zöller
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Nazimek K, Bryniarski K. Approaches to inducing antigen-specific immune tolerance in allergy and autoimmunity: Focus on antigen-presenting cells and extracellular vesicles. Scand J Immunol 2020; 91:e12881. [PMID: 32243636 DOI: 10.1111/sji.12881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Increasing prevalence of allergic and autoimmune diseases urges clinicians and researchers to search for new and efficient treatments. Strategies that activate antigen-specific immune tolerance and simultaneously maintain immune reactivity to all other antigens deserve special attention. Accordingly, antigen-presenting cells (APCs) seem to be the best suited for orchestrating these mechanisms by directing T cell immune responses towards a tolerant subtype. Recent advances in understanding cell-to-cell communication via extracellular vesicles (EVs) make the latter promising candidates for reprogramming APCs towards a tolerant phenotype, and for mediating tolerogenic APC function. Thus, comprehensive studies have been undertaken to describe the interactions of APCs and EVs naturally occurring during immune tolerance induction, as well as to develop EV-based manoeuvres enabling the induction of immune tolerance in an antigen-specific manner. In this review, we summarize the findings of relevant studies, with a special emphasis on future perspectives on their translation to clinical practice.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| | - Krzysztof Bryniarski
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| |
Collapse
|
36
|
Markov O, Oshchepkova A, Mironova N. Immunotherapy Based on Dendritic Cell-Targeted/-Derived Extracellular Vesicles-A Novel Strategy for Enhancement of the Anti-tumor Immune Response. Front Pharmacol 2019; 10:1152. [PMID: 31680949 PMCID: PMC6798004 DOI: 10.3389/fphar.2019.01152] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC)-based anti-tumor vaccines have great potential for the treatment of cancer. To date, a large number of clinical trials involving DC-based vaccines have been conducted with a view to treating tumors of different histological origins. However, DC-based vaccines had several drawbacks, including problems with targeted delivery of tumor antigens to DCs and prolong storage of cellular vaccines. Therefore, the development of other immunotherapeutic approaches capable of enhancing the immunogenicity of existing DC-based vaccines or directly triggering anti-tumor immune responses is of great interest. Extracellular vesicles (EVs) are released by almost all types of eukaryotic cells for paracrine signaling. EVs can interact with target cells and change their functional activity by delivering different signaling molecules including mRNA, non-coding RNA, proteins, and lipids. EVs have potential benefits as natural vectors for the delivery of RNA and other therapeutic molecules targeted to DCs, T-lymphocytes, and tumor cells; therefore, EVs are a promising entity for the development of novel cell-free anti-tumor vaccines that may be a favourable alternative to DC-based vaccines. In the present review, we discuss the anti-tumor potential of EVs derived from DCs, tumors, and other cells. Methods of EV isolation are systematized, and key molecules carried by EVs that are necessary for the activation of a DC-mediated anti-tumor immune response are analyzed with a focus on the RNA component of EVs. Characteristics of anti-tumor immune responses induced by EVs in vitro and in vivo are reviewed. Finally, perspectives and challenges with the use of EVs for the development of anti-tumor cell-free vaccines are considered.
Collapse
Affiliation(s)
- Oleg Markov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | | | | |
Collapse
|
37
|
Murdica V, Giacomini E, Alteri A, Bartolacci A, Cermisoni GC, Zarovni N, Papaleo E, Montorsi F, Salonia A, Viganò P, Vago R. Seminal plasma of men with severe asthenozoospermia contain exosomes that affect spermatozoa motility and capacitation. Fertil Steril 2019; 111:897-908.e2. [PMID: 31029245 DOI: 10.1016/j.fertnstert.2019.01.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To characterize in depth and investigate the role of exosomes present in seminal plasma in affecting parameters underlying sperm activity. DESIGN In vitro experimental study. SETTING Research hospital. PATIENT(S) Normozoospermic, severe asthenozoospermic, and post-vasectomy azoospermic men 18-55 years of age were considered for the study. Seminal plasma was collected and processed to separate spermatozoa and exosomes. INTERVENTION(S) None. MAIN OUTCOMES MEASURE(S) Exosomes from seminal plasma were isolated and characterized by means of nanoparticle tracking analysis, transmission electron microscopy and Western blot. Exosome uptake by spermatozoa was monitored by means of immunofluorescence and flow cytometry. The effect of exosomes on spermatozoa was determined by evaluating progressive motility and capacitation, the latter assessed by means of tyrosine phosphorylation and acrosome reaction. RESULT(S) We isolated and characterized exosomes from seminal plasma of normo-, astheno-, and azoospermic patients. They display similar features in terms of shape, size, expression of canonic exosome markers and proteins involved in spermatozoa maturation, and fertilization capacity. After ejaculation, sperm cells are still receptive and are able to take up exosomes in a time- and pH-dependent manner. Exosomes derived from normozoospermic but not from asthenozoospermic individuals improve spermatozoa motility and trigger capacitation. Transfer of cysteine-rich secretory protein 1 from exosomes to spermatozoa may have a role in these phenomena. CONCLUSION(S) These findings provide evidence that: 1) sperm can still receive vesicle-derived cargo after ejaculation; 2) sperm motility and ability to undergo capacitation can benefit from exosomal transfer; and 3) semen quality is affected by male tract exosomes.
Collapse
Affiliation(s)
- Valentina Murdica
- Urologic Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Elisa Giacomini
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Alteri
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Bartolacci
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Greta Chiara Cermisoni
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Enrico Papaleo
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Montorsi
- Urologic Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Urologic Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Riccardo Vago
- Urologic Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
38
|
Gargiulo E, Paggetti J, Moussay E. Hematological Malignancy-Derived Small Extracellular Vesicles and Tumor Microenvironment: The Art of Turning Foes into Friends. Cells 2019; 8:cells8050511. [PMID: 31137912 PMCID: PMC6562645 DOI: 10.3390/cells8050511] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
Small extracellular vesicles (small EVs) are commonly released by all cells, and are found in all body fluids. They are implicated in cell to cell short- and long-distance communication through the transfer of genetic material and proteins, as well as interactions between target cell membrane receptors and ligands anchored on small EV membrane. Beyond their canonical functions in healthy tissues, small EVs are strategically used by tumors to communicate with the cellular microenvironment and to establish a proper niche which would ultimately allow cancer cell proliferation, escape from the immune surveillance, and metastasis formation. In this review, we highlight the effects of hematological malignancy-derived small EVs on immune and stromal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| | - Jerome Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
39
|
Sharifi H, Shafiee A, Molavi G, Razi E, Mousavi N, Sarvizadeh M, Taghizadeh M. Leukemia-derived exosomes: Bringing oncogenic signals to blood cells. J Cell Biochem 2019; 120:16307-16315. [PMID: 31127656 DOI: 10.1002/jcb.29018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
Leukemia is a cancer, which is derived from leukocytes and precursors of leukocytes in the bone marrow. A large number of pivotal biological processes are linked to leukemia pathogenesis. More insights into these mechanisms can provide a better developing pharmacological platform for patients with leukemia. Among the different players in leukemia pathogenesis, exosomes have appeared as a new biological vehicle, which can transfer oncogenic signals to blood cells. Exosomes are nano-carriers, which enable transferring numerous cargos such as DNA fragments, RNAs, messenger RNAs, microRNAs, long noncoding RNA, and proteins. Targeting the contents of exosomes leads to the alteration of host cell behavior. Increasing evidence has indicated that leukemia-derived exosomes could be utilized as prognostic, diagnostic, and therapeutic biomarkers for individuals suffering from leukemia. In this regard, the importance of exosomes in terms of initiation and progression of leukemia was underlined in this study.
Collapse
Affiliation(s)
- Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
40
|
Bruno S, Chiabotto G, Favaro E, Deregibus MC, Camussi G. Role of extracellular vesicles in stem cell biology. Am J Physiol Cell Physiol 2019; 317:C303-C313. [PMID: 31091143 DOI: 10.1152/ajpcell.00129.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular vesicles (EVs) are membrane vesicles carrying proteins, nucleic acids, and bioactive lipids of the cell of origin. These vesicles released within the extracellular space and entering into the circulation may transfer their cargo to neighboring or distant cells and induce phenotypical and functional changes that may be relevant in several physiopathological conditions. In an attempt to define the biological properties of EVs, several investigations have focused on their cargo and on the effects elicited in recipient cells. EVs have been involved in modulation of tumor microenvironment and behavior, as well as in the immune and inflammatory response. In the present review, we address the paracrine action of EVs released by stem cells and their potential involvement in the activation of regenerative programs in injured cells.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Enrica Favaro
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
41
|
Jaiswal R, Sedger LM. Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes - Implications for Cancer Biology and Treatments. Front Oncol 2019; 9:125. [PMID: 30895170 PMCID: PMC6414436 DOI: 10.3389/fonc.2019.00125] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Intercellular communication is a normal feature of most physiological interactions between cells in healthy organisms. While cells communicate directly through intimate physiology contact, other mechanisms of communication exist, such as through the influence of soluble mediators such as growth factors, cytokines and chemokines. There is, however, yet another mechanism of intercellular communication that permits the exchange of information between cells through extracellular vesicles (EVs). EVs are microscopic (50 nm−10 μM) phospholipid bilayer enclosed entities produced by virtually all eukaryotic cells. EVs are abundant in the intracellular space and are present at a cells' normal microenvironment. Irrespective of the EV “donor” cell type, or the mechanism of EV biogenesis and production, or the size and EV composition, cancer cells have the potential to utilize EVs in a manner that enhances their survival. For example, cancer cell EV overproduction confers benefits to tumor growth, and tumor metastasis, compared with neighboring healthy cells. Herein, we summarize the current status of knowledge on different populations of EVs. We review the situations that regulate EV release, and the factors that instruct differential packaging or sorting of EV content. We then highlight the functions of cancer-cell derived EVs as they impact on cancer outcomes, promoting tumor progression, metastases, and the mechanisms by which they facilitate the creation of a pre-metastatic niche. The review finishes by focusing on the beneficial (and challenging) features of tumor-derived EVs that can be adapted and utilized for cancer treatments, including those already being investigated in human clinical trials.
Collapse
Affiliation(s)
- Ritu Jaiswal
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Lisa M Sedger
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li ITS. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng 2019; 3:011503. [PMID: 31069333 PMCID: PMC6481742 DOI: 10.1063/1.5087122] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes are small (∼30-140 nm) lipid bilayer-enclosed particles of endosomal origin. They are a subset of extracellular vesicles (EVs) that are secreted by most cell types. There has been growing interest in exosome research in the last decade due to their emerging role as intercellular messengers and their potential in disease diagnosis. Indeed, exosomes contain proteins, lipids, and RNAs that are specific to their cell origin and could deliver cargo to both nearby and distant cells. As a result, investigation of exosome cargo contents could offer opportunities for disease detection and treatment. Moreover, exosomes have been explored as natural drug delivery vehicles since they can travel safely in extracellular fluids and deliver cargo to destined cells with high specificity and efficiency. Despite significant efforts made in this relatively new field of research, progress has been held back by challenges such as inefficient separation methods, difficulties in characterization, and lack of specific biomarkers. In this review, we summarize the current knowledge in exosome biogenesis, their roles in disease progression, and therapeutic applications and opportunities in bioengineering. Furthermore, we highlight the established and emerging technological developments in exosome isolation and characterization. We aim to consider critical challenges in exosome research and provide directions for future studies.
Collapse
Affiliation(s)
- Xia Li
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Alexander L. Corbett
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Jonathan P. Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada, and Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada, and Department of Urologic Sciences, University of British Columbia, Vancouver, Vancouver, BC V5Z 1M9, Canada
| | - Emma Guns
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada, and Department of Urologic Sciences, University of British Columbia, Vancouver, Vancouver, BC V5Z 1M9, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Isaac T. S. Li
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
43
|
Paardekooper LM, Vos W, van den Bogaart G. Oxygen in the tumor microenvironment: effects on dendritic cell function. Oncotarget 2019; 10:883-896. [PMID: 30783517 PMCID: PMC6368231 DOI: 10.18632/oncotarget.26608] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Solid tumors grow at a high speed leading to insufficient blood supply to tumor cells. This makes the tumor hypoxic, resulting in the Warburg effect and an increased generation of reactive oxygen species (ROS). Hypoxia and ROS affect immune cells in the tumor micro-environment, thereby affecting their immune function. Here, we review the known effects of hypoxia and ROS on the function and physiology of dendritic cells (DCs). DCs can (cross-)present tumor antigen to activate naive T cells, which play a pivotal role in anti-tumor immunity. ROS might enter DCs via aquaporins in the plasma membrane, diffusion across the plasma membrane or via extracellular vesicles (EVs) released by tumor cells. Hypoxia and ROS exert complex effects on DCs, and can both inhibit and activate maturation of immature DCs. Furthermore, ROS transferred by EVs and/or produced by the DC can both promote antigen (cross-)presentation through phagosomal alkalinization, which preserves antigens by inhibiting proteases, and by direct oxidative modification of proteases. Hypoxia leads to a more migratory and inflammatory DC phenotype. Lastly, hypoxia alters DCs to shift the T- cell response towards a tumor suppressive Th17 phenotype. From numerous studies, the concept is emerging that hypoxia and ROS are mutually dependent effectors on DC function in the tumor micro-environment. Understanding their precise roles and interplay is important given that an adaptive immune response is required to clear tumor cells.
Collapse
Affiliation(s)
- Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Vos
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
Abstract
Exosomes are nanovesicles secreted by many cells, including cancer cells. Extensive research has been carried out to validate potential applications of exosomes and to evaluate their efficiency in a wide range of diseases, including cancer. The current knowledge on the origin, biogenesis and composition of exosomes is described. This review then focuses on the use of exosomes in cancer diagnostics and therapeutics.
Collapse
|
45
|
Zhao RT, Zhou J, Dong XL, Bi CW, Jiang RC, Dong JF, Tian Y, Yuan HJ, Zhang JN. Circular Ribonucleic Acid Expression Alteration in Exosomes from the Brain Extracellular Space after Traumatic Brain Injury in Mice. J Neurotrauma 2018; 35:2056-2066. [PMID: 29409384 DOI: 10.1089/neu.2017.5502] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Rui-ting Zhao
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ju Zhou
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin-long Dong
- Department of Neurosurgery, General Hospital, Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China
| | - Chong-wen Bi
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Rong-cai Jiang
- Department of Neurosurgery, General Hospital, Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China
| | - Jing-fei Dong
- Bloodworks Research Institute, Bloodworks Northwest, Seattle, Washington
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Ye Tian
- Department of Neurosurgery, General Hospital, Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China
| | - Heng-jie Yuan
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, General Hospital, Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China
| | - Jian-ning Zhang
- Department of Neurosurgery, General Hospital, Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China
| |
Collapse
|
46
|
Panagiotou N, Neytchev O, Selman C, Shiels PG. Extracellular Vesicles, Ageing, and Therapeutic Interventions. Cells 2018; 7:cells7080110. [PMID: 30126173 PMCID: PMC6115766 DOI: 10.3390/cells7080110] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
A more comprehensive understanding of the human ageing process is required to help mitigate the increasing burden of age-related morbidities in a rapidly growing global demographic of elderly individuals. One exciting novel strategy that has emerged to intervene involves the use of extracellular vesicles to engender tissue regeneration. Specifically, this employs their molecular payloads to confer changes in the epigenetic landscape of ageing cells and ameliorate the loss of functional capacity. Understanding the biology of extracellular vesicles and the specific roles they play during normative ageing will allow for the development of novel cell-free therapeutic interventions. Hence, the purpose of this review is to summarise the current understanding of the mechanisms that drive ageing, critically explore how extracellular vesicles affect ageing processes and discuss their therapeutic potential to mitigate the effects of age-associated morbidities and improve the human health span.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Ognian Neytchev
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Colin Selman
- College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr, Glasgow G12 8QQ, UK.
| | - Paul G Shiels
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
47
|
Brzozowski JS, Bond DR, Jankowski H, Goldie BJ, Burchell R, Naudin C, Smith ND, Scarlett CJ, Larsen MR, Dun MD, Skelding KA, Weidenhofer J. Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion. Sci Rep 2018; 8:8822. [PMID: 29891991 PMCID: PMC5995928 DOI: 10.1038/s41598-018-27180-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
To facilitate intercellular communication, cells release nano-sized, extracellular vesicles (EVs) to transfer biological cargo to both local and distant sites. EVs are enriched in tetraspanins, two of which (CD9 and CD151) have altered expression patterns in many solid tumours, including prostate cancer, as they advance toward metastasis. We aimed to determine whether EVs from prostate cells with altered CD9 and CD151 expression could influence cellular behaviour and increase the metastatic capabilities of non-tumourigenic prostate cells. EVs were isolated by ultrafiltration and characterised for their tetraspanin expression and size distribution. iTRAQ was used to identify differences between RWPE1 and tetraspanin-modified RWPE1 EV proteomes, showing an enrichment in protein degradation pathways. Addition of EVs from RWPE1 cells with reduced CD9 or increased CD151 abundance resulted in increased invasion of RWPE1 cells, and increased migration in the case of high CD151 abundance. We have been able to show that alteration of CD9 and CD151 on prostate cells alters the proteome of their resultant EVs, and that these EVs can enhance the migratory and invasive capabilities of a non-tumourigenic prostate cellular population. This work suggests that cellular tetraspanin levels can alter EVs, potentially acting as a driver of metastasis in prostate cancer.
Collapse
Affiliation(s)
- Joshua S Brzozowski
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Danielle R Bond
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Helen Jankowski
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Belinda J Goldie
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rachel Burchell
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Crystal Naudin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Emory University, Atlanta, Georgia, USA
| | - Nathan D Smith
- ABRF, Research Services, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher J Scarlett
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Matthew D Dun
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Kathryn A Skelding
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Judith Weidenhofer
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia. .,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
48
|
Mumford SL, Towler BP, Pashler AL, Gilleard O, Martin Y, Newbury SF. Circulating MicroRNA Biomarkers in Melanoma: Tools and Challenges in Personalised Medicine. Biomolecules 2018; 8:biom8020021. [PMID: 29701682 PMCID: PMC6022922 DOI: 10.3390/biom8020021] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022] Open
Abstract
Effective management of melanoma depends heavily on early diagnosis. When detected in early non-metastatic stages, melanoma is almost 100% curable by surgical resection, however when detected in late metastatic stages III and IV, 5-year survival rates drop to ~50% and 10–25%, respectively, due to limited efficacy of current treatment options. This presents a pressing need to identify biomarkers that can detect patients at high risk of recurrence and progression to metastatic disease, which will allow for early intervention and survival benefit. Accumulating evidence over the past few decades has highlighted the potential use of circulating molecular biomarkers for melanoma diagnosis and prognosis, including lactate dehydrogenase (LDH), S100 calcium-binding protein B (S100B) and circulating tumor DNA (ctDNA) fragments. Since 2010, circulating microRNAs (miRNAs) have been increasingly recognised as more robust non-invasive biomarkers for melanoma due to their structural stability under the harsh conditions of the blood and different conditions of sample processing and isolation. Several pre-analytical and analytical variables challenge the accurate quantification of relative miRNA levels between serum samples or plasma samples, leading to conflicting findings between studies on circulating miRNA biomarkers for melanoma. In this review, we provide a critical summary of the circulating miRNA biomarkers for melanoma published to date.
Collapse
Affiliation(s)
- Sophie L Mumford
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Benjamin P Towler
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Amy L Pashler
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Onur Gilleard
- Pathology and Pharmacy Building at The Royal London Hospital, 80 Newark Street, London E1 2ES, UK.
| | - Yella Martin
- Huxley Building, School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK.
| | - Sarah F Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| |
Collapse
|
49
|
Alipoor SD, Mortaz E, Varahram M, Movassaghi M, Kraneveld AD, Garssen J, Adcock IM. The Potential Biomarkers and Immunological Effects of Tumor-Derived Exosomes in Lung Cancer. Front Immunol 2018; 9:819. [PMID: 29720982 PMCID: PMC5915468 DOI: 10.3389/fimmu.2018.00819] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite considerable achievements in lung cancer diagnosis and treatment, the global control of the disease remains problematic. In this respect, greater understanding of the disease pathology is crucially needed for earlier diagnosis and more successful treatment to be achieved. Exosomes are nano-sized particles secreted from most cells, which allow cross talk between cells and their surrounding environment via transferring their cargo. Tumor cells, just like normal cells, also secrete exosomes that are termed Tumor-Derived Exosome or tumor-derived exosome (TEX). TEXs have gained attention for their immuno-modulatory activities, which strongly affect the tumor microenvironment and antitumor immune responses. The immunological activity of TEX influences both the innate and adaptive immune systems including natural killer cell activity and regulatory T-cell maturation as well as numerous anti-inflammatory responses. In the context of lung cancer, TEXs have been studied in order to better understand the mechanisms underlying tumor metastasis and progression. As such, TEX has the potential to act both as a biomarker for lung cancer diagnosis as well as the response to therapy.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Movassaghi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| | - Ian M Adcock
- Airways Disease Section, Imperial College London, National Heart & Lung Institute, London, United Kingdom.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
50
|
Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front Cell Dev Biol 2018. [PMID: 29515996 PMCID: PMC5826063 DOI: 10.3389/fcell.2018.00018] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased), ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.
Collapse
Affiliation(s)
- Joana Maia
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Sergio Caja
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Nuno Couto
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|