1
|
Álvarez ÁL, Arboleya A, Abade dos Santos FA, García-Manso A, Nicieza I, Dalton KP, Parra F, Martín-Alonso JM. Highs and Lows in Calicivirus Reverse Genetics. Viruses 2024; 16:866. [PMID: 38932159 PMCID: PMC11209508 DOI: 10.3390/v16060866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an "infectious clone". This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones.
Collapse
Affiliation(s)
- Ángel L. Álvarez
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Aroa Arboleya
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Fábio A. Abade dos Santos
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Nacional de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal
| | - Alberto García-Manso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Inés Nicieza
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José M. Martín-Alonso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Georgana I, Hosmillo M, Jahun AS, Emmott E, Sorgeloos F, Cho KO, Goodfellow IG. Porcine Sapovirus Protease Controls the Innate Immune Response and Targets TBK1. Viruses 2024; 16:247. [PMID: 38400023 PMCID: PMC10892870 DOI: 10.3390/v16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Human sapoviruses (HuSaVs) and noroviruses are considered the leading cause of acute gastroenteritis worldwide. While extensive research has focused on noroviruses, our understanding of sapoviruses (SaVs) and their interactions with the host's immune response remains limited. HuSaVs have been challenging to propagate in vitro, making the porcine sapovirus (PSaV) Cowden strain a valuable model for studying SaV pathogenesis. In this study we show, for the first time, that PSaV Cowden strain has mechanisms to evade the host's innate immune response. The virus 3C-like protease (NS6) inhibits type I IFN production by targeting TBK1. Catalytically active NS6, both during ectopic expression and during PSaV infection, targets TBK1 which is then led for rapid degradation by the proteasome. Moreover, deletion of TBK1 from porcine cells led to an increase in PSaV titres, emphasizing its role in regulating PSaV infection. Additionally, we successfully established PSaV infection in IPEC-J2 cells, an enterocytic cell line originating from the jejunum of a neonatal piglet. Overall, this study provides novel insights into PSaV evasion strategies, opening the way for future investigations into SaV-host interactions, and enabling the use of a new cell line model for PSaV research.
Collapse
Affiliation(s)
- Iliana Georgana
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Edward Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| |
Collapse
|
3
|
Roy S, Guha Roy D, Bhushan A, Bharatiya S, Chinnaswamy S. Functional genetic variants of the IFN-λ3 (IL28B) gene and transcription factor interactions on its promoter. Cytokine 2021; 142:155491. [PMID: 33725487 PMCID: PMC7611124 DOI: 10.1016/j.cyto.2021.155491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Interferon lambda 3 (IFN-λ3 or IFNL3, formerly IL28B), a type III interferon, modulates immune responses during infection/inflammation. Several human studies have reported an association of single nucleotide polymorphisms (SNP) in the IFNL3 locus with expression level of IFNL3. Previous genetic studies, in the context of hepatitis C virus infections, had predicted three regulatory SNPs: rs4803219, rs28416813 and rs4803217 that could have functional/causal roles. Subsequent studies confirmed this prediction for rs28416813 and rs4803217. A dinucleotide TA-repeat variant (rs72258881) has also been reported to be regulating the IFN-λ3 promoter. In this study, we tested all these genetic variants using a sensitive reporter assay. We show that the minor/ancestral alleles of both rs28416813 and rs4803217, together have a strong inhibitory effect on reporter gene expression. We also show an interaction between the two principal transcription factors regulating IFNL3 promoter: IRF7 and NF-kB RelA/p65. We show that IRF7 and p65 physically interact with each other. By using a transient ChIP assay, we show that presence of p65 increases the promoter occupancy of IRF7, thereby leading to synergistic activation of the IFNL3 promoter. We reason that, in contrast to p65, a unique nature of IRF7 binding to its specific DNA sequence makes it more sensitive to changes in DNA phasing. As a result, we see that IRF7, but not p65-mediated transcriptional activity is affected by the phase changes introduced by the TA-repeat polymorphism. Overall, we see that three genetic variants: rs28416813, rs4803217 and rs72258881 could have functional roles in controlling IFNL3 gene expression.
Collapse
Affiliation(s)
- Subhajit Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Debarati Guha Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Anand Bhushan
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Seema Bharatiya
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India.
| |
Collapse
|
4
|
Urban C, Welsch H, Heine K, Wüst S, Haas DA, Dächert C, Pandey A, Pichlmair A, Binder M. Persistent Innate Immune Stimulation Results in IRF3-Mediated but Caspase-Independent Cytostasis. Viruses 2020; 12:v12060635. [PMID: 32545331 PMCID: PMC7354422 DOI: 10.3390/v12060635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 01/19/2023] Open
Abstract
Persistent virus infection continuously produces non-self nucleic acids that activate cell-intrinsic immune responses. However, the antiviral defense evolved as a transient, acute phase response and the effects of persistently ongoing stimulation onto cellular homeostasis are not well understood. To study the consequences of long-term innate immune activation, we expressed the NS5B polymerase of Hepatitis C virus (HCV), which in absence of viral genomes continuously produces immune-stimulatory RNAs. Surprisingly, within 3 weeks, NS5B expression declined and the innate immune response ceased. Proteomics and functional analyses indicated a reduced proliferation of those cells most strongly stimulated, which was independent of interferon signaling but required mitochondrial antiviral signaling protein (MAVS) and interferon regulatory factor 3 (IRF3). Depletion of MAVS or IRF3, or overexpression of the MAVS-inactivating HCV NS3/4A protease not only blocked interferon responses but also restored cell growth in NS5B expressing cells. However, pan-caspase inhibition could not rescue the NS5B-induced cytostasis. Our results underline an active counter selection of cells with prolonged innate immune activation, which likely constitutes a cellular strategy to prevent persistent virus infections.
Collapse
Affiliation(s)
- Christian Urban
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.U.); (D.A.H.)
| | - Hendrik Welsch
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Katharina Heine
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
| | - Sandra Wüst
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
| | - Darya A. Haas
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.U.); (D.A.H.)
| | - Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Aparna Pandey
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.U.); (D.A.H.)
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany
- Correspondence: (A.P.); (M.B.)
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
- Correspondence: (A.P.); (M.B.)
| |
Collapse
|
5
|
Crystal Structure of Classical Swine Fever Virus NS5B Reveals a Novel N-Terminal Domain. J Virol 2018; 92:JVI.00324-18. [PMID: 29720518 PMCID: PMC6026734 DOI: 10.1128/jvi.00324-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023] Open
Abstract
Classical swine fever virus (CSFV) is the cause of classical swine fever (CSF). Nonstructural protein 5B (NS5B) is an RNA-dependent RNA polymerase (RdRp) that is a key enzyme initiating viral RNA replication by a de novo mechanism. It is also an attractive target for the development of anti-CSFV drugs. To gain a better understanding of the mechanism of CSFV RNA synthesis, here, we solved the first crystal structure of CSFV NS5B. Our studies show that the CSFV NS5B RdRp contains the characteristic finger, palm, and thumb domains, as well as a unique N-terminal domain (NTD) that has never been observed. Mutagenesis studies on NS5B validated the importance of the NTD in the catalytic activity of this novel RNA-dependent RNA polymerase. Moreover, our results shed light on CSFV infection.IMPORTANCE Pigs are important domesticated animals. However, a highly contagious viral disease named classical swine fever (CSF) causes devastating economic losses. Classical swine fever virus (CSFV), the primary cause of CSF, is a positive-sense single-stranded RNA virus belonging to the genus Pestivirus, family Flaviviridae Genome replication of CSFV depends on an RNA-dependent RNA polymerase (RdRp) known as NS5B. However, the structure of CSFV NS5B has never been reported, and the mechanism of CSFV replication is poorly understood. Here, we solve the first crystal structure of CSFV NS5B and analyze the functions of the characteristic finger, palm, and thumb domains. Additionally, our structure revealed the presence of a novel N-terminal domain (NTD). Biochemical studies demonstrated that the NTD of CSFV NS5B is very important for RdRp activity. Collectively, our studies provide a structural basis for future rational design of anti-CSFV drugs, which is critically important, as no effective anti-CSFV drugs have been developed.
Collapse
|
6
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
7
|
Abstract
The persistence of West Nile virus (WNV) infections throughout the USA since its inception in 1999 and its continuous spread throughout the globe calls for an urgent need of effective treatments and prevention measures. Although the licensing of several WNV vaccines for veterinary use provides a proof of concept, similar efforts on the development of an effective vaccine for humans remain still unsuccessful. Increased understanding of biology and pathogenesis of WNV together with recent technological advancements have raised hope that an effective WNV vaccine may be available in the near future. In addition, rapid progress in the structural and functional characterization of WNV and other flaviviral proteins have provided a solid base for the design and development of several classes of inhibitors as potential WNV therapeutics. Moreover, the therapeutic monoclonal antibodies demonstrate an excellent efficacy against WNV in animal models and represent a promising class of WNV therapeutics. However, there are some challenges as to the design and development of a safe and efficient WNV vaccine or therapeutic. In this chapter, we discuss the current approaches, progress, and challenges toward the development of WNV vaccines, therapeutic antibodies, and antiviral drugs.
Collapse
|
8
|
Bessa LM, Launay H, Dujardin M, Cantrelle FX, Lippens G, Landrieu I, Schneider R, Hanoulle X. NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B. J Biol Chem 2017; 292:18024-18043. [PMID: 28912275 DOI: 10.1074/jbc.m117.813766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Non-structural protein 5B (NS5B) is the RNA-dependent RNA polymerase that catalyzes replication of the hepatitis C virus (HCV) RNA genome and therefore is central for its life cycle. NS5B interacts with the intrinsically disordered domain 2 of NS5A (NS5A-D2), another essential multifunctional HCV protein that is required for RNA replication. As a result, these two proteins represent important targets for anti-HCV chemotherapies. Despite this importance and the existence of NS5B crystal structures, our understanding of the conformational and dynamic behavior of NS5B in solution and its relationship with NS5A-D2 remains incomplete. To address these points, we report the first detailed NMR spectroscopic study of HCV NS5B lacking its membrane anchor (NS5BΔ21). Analysis of constructs with selective isotope labeling of the δ1 methyl groups of isoleucine side chains demonstrates that, in solution, NS5BΔ21 is highly dynamic but predominantly adopts a closed conformation. The addition of NS5A-D2 leads to spectral changes indicative of binding to both allosteric thumb sites I and II of NS5BΔ21 and induces long-range perturbations that affect the RNA-binding properties of the polymerase. We compared these modifications with the short- and long-range effects triggered in NS5BΔ21 upon binding of filibuvir, an allosteric inhibitor. We demonstrate that filibuvir-bound NS5BΔ21 is strongly impaired in the binding of both NS5A-D2 and RNA. NS5A-D2 induces conformational and functional perturbations in NS5B similar to those triggered by filibuvir. Thus, our work highlights NS5A-D2 as an allosteric regulator of the HCV polymerase and provides new insight into the dynamics of NS5B in solution.
Collapse
Affiliation(s)
- Luiza M Bessa
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Hélène Launay
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Marie Dujardin
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - François-Xavier Cantrelle
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Guy Lippens
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Isabelle Landrieu
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Robert Schneider
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Xavier Hanoulle
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| |
Collapse
|
9
|
Madhvi A, Hingane S, Srivastav R, Joshi N, Subramani C, Muthumohan R, Khasa R, Varshney S, Kalia M, Vrati S, Surjit M, Ranjith-Kumar CT. A screen for novel hepatitis C virus RdRp inhibitor identifies a broad-spectrum antiviral compound. Sci Rep 2017; 7:5816. [PMID: 28725041 PMCID: PMC5517564 DOI: 10.1038/s41598-017-04449-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a global pathogen and infects more than 185 million individuals worldwide. Although recent development of direct acting antivirals (DAA) has shown promise in HCV therapy, there is an urgent need for the development of more affordable treatment options. We initiated this study to identify novel inhibitors of HCV through screening of compounds from the National Cancer Institute (NCI) diversity dataset. Using cell-based assays, we identified NSC-320218 as a potent inhibitor against HCV with an EC50 of 2.5 μM and CC50 of 75 μM. The compound inhibited RNA dependent RNA polymerase (RdRp) activity of all six major HCV genotypes indicating a pan-genotypic effect. Limited structure-function analysis suggested that the entire molecule is necessary for the observed antiviral activity. However, the compound failed to inhibit HCV NS5B activity in vitro, suggesting that it may not be directly acting on the NS5B protein but could be interacting with a host protein. Importantly, the antiviral compound also inhibited dengue virus and hepatitis E virus replication in hepatocytes. Thus, our study has identified a broad-spectrum antiviral therapeutic agent against multiple viral infections.
Collapse
Affiliation(s)
- Abhilasha Madhvi
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Smita Hingane
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Rajpal Srivastav
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant Joshi
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
- Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Chandru Subramani
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Rajagopalan Muthumohan
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Renu Khasa
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Shweta Varshney
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Manjula Kalia
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Milan Surjit
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - C T Ranjith-Kumar
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
10
|
Miyamura T, Lemon SM, Walker CM, Wakita T. The HCV Replicase Complex and Viral RNA Synthesis. HEPATITIS C VIRUS I 2016. [PMCID: PMC7122888 DOI: 10.1007/978-4-431-56098-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Replication of hepatitis C virus (HCV) is tightly linked to membrane alterations designated the membranous web, harboring the viral replicase complex. In this chapter we describe the morphology and 3D architecture of the HCV-induced replication organelles, mainly consisting of double membrane vesicles, which are generated by a concerted action of the nonstructural proteins NS3 to NS5B. Recent studies have furthermore identified a number of host cell proteins and lipids contributing to the biogenesis of the membranous web, which are discussed in this chapter. Viral RNA synthesis is tightly associated with these membrane alterations and mainly driven by the viral RNA dependent RNA polymerase NS5B. We summarize our current knowledge of the structure and function of NS5B, the role of cis-acting replication elements at the termini of the genome in regulating RNA synthesis and the contribution of additional viral and host factors to viral RNA synthesis, which is still ill defined.
Collapse
Affiliation(s)
- Tatsuo Miyamura
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology , The University of North Carolina, Chapel Hill, North Carolina USA
| | - Christopher M. Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio USA
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| |
Collapse
|
11
|
Vegna S, Gregoire D, Moreau M, Lassus P, Durantel D, Assenat E, Hibner U, Simonin Y. NOD1 Participates in the Innate Immune Response Triggered by Hepatitis C Virus Polymerase. J Virol 2016; 90:6022-6035. [PMID: 27099311 PMCID: PMC4907226 DOI: 10.1128/jvi.03230-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) triggers innate immunity signaling in the infected cell. Replication of the viral genome is dispensable for this phenotype, and we along with others have recently shown that NS5B, the viral RNA-dependent RNA polymerase, synthesizes double-stranded RNA (dsRNA) from cellular templates, thus eliciting an inflammatory response, notably via activation of type I interferon and lymphotoxin β. Here, we investigated intracellular signal transduction pathways involved in this process. Using HepaRG cells, a model that largely recapitulates the in vivo complexities of the innate immunity receptor signaling, we have confirmed that NS5B triggered increased expression of the canonical pattern recognition receptors (PRRs) specific for dsRNA, namely, RIG-I, MDA5, and Toll-like receptor 3 (TLR3). Unexpectedly, intracellular dsRNA also led to accumulation of NOD1, a receptor classically involved in recognition of bacterial peptidoglycans. NOD1 activation, confirmed by analysis of its downstream targets, was likely due to its interaction with dsRNA and was independent of RIG-I and mitochondrial antiviral signaling protein (MAVS/IPS-1/Cardif/VISA) signaling. It is likely to have a functional significance in the cellular response in the context of HCV infection since interference with the NOD1 pathway severely reduced the inflammatory response elicited by NS5B. IMPORTANCE In this study, we show that NOD1, a PRR that normally senses bacterial peptidoglycans, is activated by HCV viral polymerase, probably through an interaction with dsRNA, suggesting that NOD1 acts as an RNA ligand recognition receptor. In consequence, interference with NOD1-mediated signaling significantly weakens the inflammatory response to dsRNA. These results add a new level of complexity to the understanding of the cross talk between different classes of pattern recognition receptors and may be related to certain complications of chronic hepatitis C virus infection.
Collapse
Affiliation(s)
- Serena Vegna
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Damien Gregoire
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Marie Moreau
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Patrice Lassus
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon, University of Lyon, Lyon, France
| | - Eric Assenat
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
- Service d'Oncologie Médicale, CHU St. Eloi, Montpellier, France
| | - Urszula Hibner
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Yannick Simonin
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Chinnaswamy S, Bhushan A, Behera AK, Ghosh S, Rampurkar V, Chandra V, Pandit B, Kundu TK. Roles for Transcription Factors Sp1, NF-κB, IRF3, and IRF7 in Expression of the Human IFNL4 Gene. Viral Immunol 2016; 29:49-63. [PMID: 26684959 DOI: 10.1089/vim.2015.0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The expression of a biologically active human IFNλ4 depends on the presence of a frameshift deletion polymorphism within the first exon of the interferon lambda 4 (IFNL4) gene. In this report, we use the lung carcinoma-derived cell line, A549, which is genetically viable to express a functional IFNλ4, to address transcriptional requirements of the IFNL4 gene. We show that the GC-rich DNA-binding transcription factor (TF) specificity protein 1 (Sp1) is recruited to the IFNL4 promoter and has a role in induction of gene expression upon stimulation with viral RNA mimic poly(I:C). By using RNAi and overexpression strategies, we also show key roles in IFNL4 gene expression for the virus-inducible TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), IFN regulatory factor 3 (IRF3), and IRF7. Interestingly, we also observe that overexpression of IFNλ4 influences IFNL4 promoter activity, which may further be dependent on the retinoic acid-inducible gene-I (RIG-I)-like receptor pathway. Together, our work for the first time reports on the functional characterization of the human IFNL4 promoter.
Collapse
Affiliation(s)
| | - Anand Bhushan
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Amit K Behera
- 2 Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India
| | - Sumona Ghosh
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Vijay Rampurkar
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Vikas Chandra
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Bhaswati Pandit
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Tapas K Kundu
- 2 Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India
| |
Collapse
|
13
|
Wen Y, Lin X, Fan B, Ranjith-Kumar CT, Kao CC. The juxtamembrane sequence of the Hepatitis C virus polymerase can affect RNA synthesis and inhibition by allosteric polymerase inhibitors. Virus Genes 2015; 51:1-11. [PMID: 25895103 DOI: 10.1007/s11262-015-1199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
The Hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), nonstructural protein 5B (NS5B), is anchored in the membrane through a C-terminal helix. A sequence of ca. 12 residues that connects the catalytically competent portion of the RdRp and the C-terminal helix, the juxtamembrane sequence (JMS), has a poorly defined role in RdRp function in a large part since it is translated from a cis-acting RNA element (CRE) that is essential for HCV replication. Using a HCV replicon that transposed a second copy of CRE to the 3' UTR of the HCV replicon, we demonstrate that amino acid substitutions in the JMS were detrimental for HCV replicon replication. Substitutions in the JMS also resulted in a defect in de novo-initiated RNAs synthesis in vitro and in a cell-based reporter assay. A nonnucleoside inhibitor of the NS5B that binds to the catalytic pocket was less potent in inhibiting NS5B in the presence of JMS mutations. The JMS mutants exhibit reduced stability in thermodenaturation assays, suggesting that the JMS helps confer a more stable conformation to NS5B that could impact RNA synthesis.
Collapse
Affiliation(s)
- Y Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | | | | | | |
Collapse
|
14
|
Kazakov T, Yang F, Ramanathan HN, Kohlway A, Diamond MS, Lindenbach BD. Hepatitis C virus RNA replication depends on specific cis- and trans-acting activities of viral nonstructural proteins. PLoS Pathog 2015; 11:e1004817. [PMID: 25875808 PMCID: PMC4395149 DOI: 10.1371/journal.ppat.1004817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 02/07/2023] Open
Abstract
Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.
Collapse
Affiliation(s)
- Teymur Kazakov
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Feng Yang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Harish N. Ramanathan
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
15
|
Wu MJ, Ke PY, Horng JT. RacGTPase-activating protein 1 interacts with hepatitis C virus polymerase NS5B to regulate viral replication. Biochem Biophys Res Commun 2014; 454:19-24. [PMID: 25305482 DOI: 10.1016/j.bbrc.2014.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) is a positive-strand RNA virus responsible for chronic liver disease and hepatocellular carcinoma (HCC). RacGTPase-activating protein 1 (RacGAP1) plays an important role during GTP hydrolysis to GDP in Rac1 and CDC42 protein and has been demonstrated to be upregulated in several cancers, including HCC. However, the molecular mechanism leading to the upregulation of RacGAP1 remains poorly understood. Here, we showed that RacGAP1 levels were enhanced in HCV cell-culture-derived (HCVcc) infection. More importantly, we illustrated that RacGAP1 interacts with the viral protein NS5B in mammalian cells. The small interfering RNA (siRNA)-mediated knockdown of RacGAP1 in human hepatoma cell lines inhibited replication of HCV RNA, protein, and production of infectious particles of HCV genotype 2a strain JFH1. Conversely, these were reversed by the expression of a siRNA-resistant RacGAP1 recombinant protein. In addition, viral protein NS5B polymerase activity was significantly reduced by silencing RacGAP1 and, vice versa, was increased by overexpression of RacGAP1 in a cell-based reporter assay. Our results suggest that RacGAP1 plays a crucial role in HCV replication by affecting viral protein NS5B polymerase activity and holds importance for antiviral drug development.
Collapse
Affiliation(s)
- Ming-Jhan Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Wen Y, Cheng Kao C. The hepatitis C virus core protein can modulate RNA-dependent RNA synthesis by the 2a polymerase. Virus Res 2014; 189:165-76. [PMID: 24874198 DOI: 10.1016/j.virusres.2014.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 01/06/2023]
Abstract
RNA replication enzymes are multi-subunit protein complexes whose activity can be modulated by other viral and cellular factors. For genotype 1b Hepatitis C virus (HCV), the RNA-dependent RNA polymerase (RdRp) subunit of the replicase, NS5B, has been reported to interact with the HCV Core protein to decrease RNA synthesis (Kang et al., 2009). Here we used a cell-based assay for RNA synthesis to examine the Core-NS5B interaction of genotype 2a HCV. Unlike the 1b NS5B, the activity of the 2a NS5B was stimulated by the Core protein. Using the bimolecular fluorescence complementation assay, the 2a Core co-localized with 2a NS5B when they were transiently expressed in cells. The two proteins can form a co-immunoprecipitable complex. Deletion analysis showed that the N-terminal 75 residues of 2a Core were required to contact 2a NS5B to modulate its activity. The C-terminal transmembrane helix of 2a NS5B also contributes to the interaction with the 2a Core. To determine the basis for the differential effects of the Core-RdRp interaction, we found that the 2a RdRp activity was enhanced by both the 1b Core and 2a Core. However, the 1b NS5B activity was slightly inhibited by either Core protein. The replication of the 2a JFH-1 replicon was increased by co-expressed 2a Core while the genotype 1b Con1 replicon was not significantly affected by the corresponding Core. Mutations in 2a NS5B that affected the closed RdRp structure were found to be less responsive to 2a Core. Finally, we determined that RNA synthesis by the RdRps from genotypes 2a, 3a and 4a HCV were increased by the Core proteins from HCV of genotypes 1-4. These results reveal another difference between RNA syntheses by the different genotype RdRps and add additional examples of a viral structural protein regulating viral RNA synthesis.
Collapse
Affiliation(s)
- Y Wen
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
17
|
Li W, Zhang Y, Kao CC. The classic swine fever virus (CSFV) core protein can enhance de novo-initiated RNA synthesis by the CSFV polymerase NS5B. Virus Genes 2014; 49:106-15. [DOI: 10.1007/s11262-014-1080-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 12/28/2022]
|
18
|
In vitro selection of the 3′-untranslated regions of the human liver mRNA that bind to the HCV nonstructural protein 5B. Virology 2014; 450-451:13-23. [DOI: 10.1016/j.virol.2013.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/12/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
|
19
|
Chinnaswamy S, Chatterjee S, Boopathi R, Mukherjee S, Bhattacharjee S, Kundu TK. A single nucleotide polymorphism associated with hepatitis C virus infections located in the distal region of the IL28B promoter influences NF-κB-mediated gene transcription. PLoS One 2013; 8:e75495. [PMID: 24116050 PMCID: PMC3792970 DOI: 10.1371/journal.pone.0075495] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 12/24/2022] Open
Abstract
Persistence of hepatitis C virus (HCV) infection is observed only in a subset of infected individuals and among them only some respond to treatment. Genome-wide association studies (GWAS) carried out around the world identified single nucleotide polymorphisms (SNPs) in the IL28B locus that are strongly associated with both HCV clearance and treatment response. The functional significance of these associations however, is not clear. In this report we show that an SNP rs28416813 in the distal promoter region of IL28B that is in close proximity to a non-consensus NF-κB-binding site affects downstream reporter gene expression. The effect is likely due to differential binding of NF-κB at the non-consensus site. The non-protective allele showed a reduction in luciferase reporter gene expression compared to the protective allele in HEK293T cells under different experimental conditions including treatment with tumor necrosis factor alpha (TNF-α) and 5' triphosphorylated dsRNA. Furthermore, the HCV RNA polymerase was able to induce transcription from the IL28B promoter in a RIG-I-dependent manner. This induction was influenced by the alleles present at rs28416813. We also demonstrate strong linkage disequilibrium between rs28416813 and another important SNP rs12979860 in two ethnic populations. These results suggest possible mechanisms by which SNPs at the IL28B locus influence spontaneous clearance and treatment response in chronic HCV infections.
Collapse
Affiliation(s)
- Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal, India
| | - Snehajyoti Chatterjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Ramachandran Boopathi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Shuvolina Mukherjee
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal, India
| | | | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
20
|
Park IW, Ndjomou J, Wen Y, Liu Z, Ridgway ND, Kao CC, He JJ. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4) through interaction with HCV NS5B and alteration of lipid droplet formation. PLoS One 2013; 8:e75648. [PMID: 24069433 PMCID: PMC3775767 DOI: 10.1371/journal.pone.0075648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/20/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) RNA replication involves complex interactions among the 3’x RNA element within the HCV 3’ untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3’ X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4), a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jean Ndjomou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yahong Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Ziqing Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Neale D. Ridgway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C. Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Johnny J. He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kalkeri G, Lin C, Gopilan J, Sloan K, Rijnbrand R, Kwong AD. Restoration of the activated Rig-I pathway in hepatitis C virus (HCV) replicon cells by HCV protease, polymerase, and NS5A inhibitors in vitro at clinically relevant concentrations. Antimicrob Agents Chemother 2013; 57:4417-26. [PMID: 23836176 PMCID: PMC3754339 DOI: 10.1128/aac.00399-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023] Open
Abstract
Development of persistent hepatitis C virus (HCV) infection may be mediated by HCV NS3 · 4A protease-dependent inhibition of host innate immunity. When double-stranded RNA (dsRNA) is detected in virus-infected cells, host innate immunity mounts an antiviral response by upregulating production of type I interferons (α/β interferon [IFN-α/β]); HCV counters by cleaving the IFN-β stimulator 1 (IPS-1) adaptor protein, decreasing synthesis of IFN-α/β. We evaluated HCV protease (telaprevir, boceprevir, and TMC435350), polymerase (HCV-796 and VX-222), and NS5A (BMS-790052) inhibitors for the ability to restore IPS-1-mediated Rig-I signaling by measuring Sendai virus-induced IFN-β promoter activation in HCV replicon cells after various exposure durations. All direct-acting HCV antivirals tested restored mitochondrial localization of IPS-1 and rescued Sendai virus-induced IRF3 signaling after 7 days by inhibiting HCV replication, thereby reducing the abundance of HCV NS3 · 4A protease. With 4-day treatment, HCV protease inhibitors, but not polymerase inhibitors, restored mitochondrial localization of IPS-1 and rescued IFN-β promoter activation in the presence of equivalent levels of NS3 protein in protease or polymerase inhibitor-treated cells. The concentrations of HCV protease and polymerase inhibitors needed to rescue IRF3-mediated signaling in vitro were in the range of those observed in vivo in the plasma of treated HCV patients. These findings suggest that (i) HCV protease, polymerase, and NS5A inhibitors can restore virus-induced IRF3 signaling by inhibiting viral replication, thereby reducing NS3 protease levels, and (ii) HCV protease inhibitors can restore innate immunity by directly inhibiting NS3 protease-mediated cleavage of IPS-1 at clinically achievable concentrations.
Collapse
Affiliation(s)
- Gururaj Kalkeri
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Non-encapsidation activities of the capsid proteins of positive-strand RNA viruses. Virology 2013; 446:123-32. [PMID: 24074574 PMCID: PMC3818703 DOI: 10.1016/j.virol.2013.07.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/11/2013] [Accepted: 07/20/2013] [Indexed: 02/08/2023]
Abstract
Viral capsid proteins (CPs) are characterized by their role in forming protective shells around viral genomes. However, CPs have additional and important roles in the virus infection cycles and in the cellular responses to infection. These activities involve CP binding to RNAs in both sequence-specific and nonspecific manners as well as association with other proteins. This review focuses on CPs of both plant and animal-infecting viruses with positive-strand RNA genomes. We summarize the structural features of CPs and describe their modulatory roles in viral translation, RNA-dependent RNA synthesis, and host defense responses. We review regulatory activities of the capsid proteins of (+)-strand RNA viruses. Activities of capsid proteins due to RNA binding and protein binding. Effects of capsid proteins on viral processes. Effects of capsid proteins on cellular processes. Regulatory activities of the capsid proteins are affected by capsid concentrations.
Collapse
|
23
|
Abstract
Genome replication is a crucial step in the life cycle of any virus. HCV is a positive strand RNA virus and requires a set of nonstructural proteins (NS3, 4A, 4B, 5A, and 5B) as well as cis-acting replication elements at the genome termini for amplification of the viral RNA. All nonstructural proteins are tightly associated with membranes derived from the endoplasmic reticulum and induce vesicular membrane alterations designated the membranous web, harboring the viral replication sites. The viral RNA-dependent RNA polymerase NS5B is the key enzyme of RNA synthesis. Structural, biochemical, and reverse genetic studies have revealed important insights into the mode of action of NS5B and the mechanism governing RNA replication. Although a comprehensive understanding of the regulation of RNA synthesis is still missing, a number of important viral and host determinants have been defined. This chapter summarizes our current knowledge on the role of viral and host cell proteins as well as cis-acting replication elements involved in the biogenesis of the membranous web and in viral RNA synthesis.
Collapse
Affiliation(s)
- Volker Lohmann
- Department of Infectious Diseases, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
24
|
Simonin Y, Vegna S, Akkari L, Grégoire D, Antoine E, Piette J, Floc'h N, Lassus P, Yu GY, Rosenberg AR, Karin M, Durantel D, Hibner U. Lymphotoxin signaling is initiated by the viral polymerase in HCV-linked tumorigenesis. PLoS Pathog 2013; 9:e1003234. [PMID: 23555249 PMCID: PMC3605200 DOI: 10.1371/journal.ppat.1003234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
Exposure to hepatitis C virus (HCV) typically results in chronic infection that leads to progressive liver disease ranging from mild inflammation to severe fibrosis and cirrhosis as well as primary liver cancer. HCV triggers innate immune signaling within the infected hepatocyte, a first step in mounting of the adaptive response against HCV infection. Persistent inflammation is strongly associated with liver tumorigenesis. The goal of our work was to investigate the initiation of the inflammatory processes triggered by HCV viral proteins in their host cell and their possible link with HCV-related liver cancer. We report a dramatic upregulation of the lymphotoxin signaling pathway and more specifically of lymphotoxin-β in tumors of the FL-N/35 HCV-transgenic mice. Lymphotoxin expression is accompanied by activation of NF-κB, neosynthesis of chemokines and intra-tumoral recruitment of mononuclear cells. Spectacularly, IKKβ inactivation in FL-N/35 mice drastically reduces tumor incidence. Activation of lymphotoxin-β pathway can be reproduced in several cellular models, including the full length replicon and HCV-infected primary human hepatocytes. We have identified NS5B, the HCV RNA dependent RNA polymerase, as the viral protein responsible for this phenotype and shown that pharmacological inhibition of its activity alleviates activation of the pro-inflammatory pathway. These results open new perspectives in understanding the inflammatory mechanisms linked to HCV infection and tumorigenesis. Hepatitis C affects nearly 200 million people worldwide. It results from the failure of the immune system to control the hepatitis C virus (HCV) replication and spread, leading to progressive liver disease that can culminate in fibrosis, cirrhosis and cancer. The inflammatory cells that infiltrate the diseased liver functionally contribute to fibrotic disease and cancer development by the release of potent soluble mediators that regulate cell survival and proliferation, angiogenesis, tissue remodelling, metabolism and genomic integrity. The goal of our work was to study the mechanisms of the initiation of the inflammatory process linked to HCV infection. We have shown that the presence of a single viral protein, namely NS5B, the RNA dependent RNA polymerase, promotes pro-inflammatory signaling. Moreover, inhibition of this pathway in HCV transgenic mice fully protects the animals from HCV-linked liver cancer. Our study contributes to a better understanding of the inflammatory mechanisms linked to HCV infection and thereby to tumorigenesis.
Collapse
Affiliation(s)
- Yannick Simonin
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
- * E-mail: (YS); (UH)
| | - Serena Vegna
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Leila Akkari
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Damien Grégoire
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Etienne Antoine
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Jacques Piette
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Nicolas Floc'h
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Patrice Lassus
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Guann-Yi Yu
- National Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | | | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon, Lyon, France
| | - Urszula Hibner
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
- * E-mail: (YS); (UH)
| |
Collapse
|
25
|
Gerold G, Pietschmann T. Hepatitis C virus NS5B polymerase primes innate immune signaling. Hepatology 2013; 57:1275-7. [PMID: 23426794 DOI: 10.1002/hep.26201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 11/22/2012] [Accepted: 12/04/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Gisa Gerold
- Institute of Experimental Virology Twincore-Center for Experimental and Clinical Infectious Disease Research Hannover, Germany
| | | |
Collapse
|
26
|
Waheed Y, Bhatti A, Ashraf M. RNA dependent RNA polymerase of HCV: a potential target for the development of antiviral drugs. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 14:247-57. [PMID: 23291407 DOI: 10.1016/j.meegid.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/07/2012] [Accepted: 12/11/2012] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma, cirrhosis and end stage liver disease. More than 200million people are living with HCV worldwide with high morbidity and mortality. There is no vaccine available for this virus; the approved treatment option for the majority of HCV genotypes is the combination of pegylated (Peg) interferon and ribavirin. The therapy has a different response rate on different HCV genotypes and has a number of side effects. Recently, as well as Peg interferon and ribavirin, two protease inhibitors have been introduced to treat patients with HCV genotype 1 infection. The protease inhibitors have rapid onset of resistance and are not approved for use for infections with other HCV genotypes. The HCV NS5B gene encodes RNA dependent RNA polymerase (RdRp), which is the key player in viral replication and is a promising target for the development of antiviral drugs. HCV NS5B has been studied in various biochemical assays, cell based assays and animal model systems. So far, a number of nucleoside and non-nucleoside inhibitors have been screened for effects on viral replication. This review presents a deep insight into the structure and function of HCV polymerase and the effect of various nucleoside and non-nucleoside inhibitors on viral replication.
Collapse
Affiliation(s)
- Yasir Waheed
- Atta ur Rahman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan.
| | | | | |
Collapse
|
27
|
Rosnoblet C, Fritzinger B, Legrand D, Launay H, Wieruszeski JM, Lippens G, Hanoulle X. Hepatitis C virus NS5B and host cyclophilin A share a common binding site on NS5A. J Biol Chem 2012; 287:44249-60. [PMID: 23152499 DOI: 10.1074/jbc.m112.392209] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nonstructural protein 5B (NS5B) is essential for hepatitis C virus (HCV) replication as it carries the viral RNA-dependent RNA polymerase enzymatic activity. HCV replication occurs in a membrane-associated multiprotein complex in which HCV NS5A and host cyclophilin A (CypA) have been shown to be present together with the viral polymerase. We used NMR spectroscopy to perform a per residue level characterization of the molecular interactions between the unfolded domains 2 and 3 of NS5A (NS5A-D2 and NS5A-D3), CypA, and NS5B(Δ21). We show that three regions of NS5A-D2 (residues 250-262 (region A), 274-287 (region B), and 306-333 (region C)) interact with NS5B(Δ21), whereas NS5A-D3 does not. We show that both NS5B(Δ21) and CypA share a common binding site on NS5A that contains residues Pro-306 to Glu-323. No direct molecular interaction has been detected by NMR spectroscopy between HCV NS5B(Δ21) and host CypA. We show that cyclosporine A added to a sample containing NS5B(Δ21), NS5A-D2, and CypA specifically inhibits the interaction between CypA and NS5A-D2 without altering the one between NS5A-D2 and NS5B(Δ21). A high quality heteronuclear NMR spectrum of HCV NS5B(Δ21) has been obtained and was used to characterize the binding site on the polymerase of NS5A-D2. Moreover these data highlight the potential of using NMR of NS5B(Δ21) as a powerful tool to characterize in solution the interactions of the HCV polymerase with all kinds of molecules (proteins, inhibitors, RNA). This work brings new insights into the comprehension of the molecular interplay between NS5B, NS5A, and CypA, three essentials proteins for HCV replication.
Collapse
|
28
|
Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation. J Hepatol 2012; 57:960-6. [PMID: 22796893 DOI: 10.1016/j.jhep.2012.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/14/2012] [Accepted: 07/05/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) requires host cellular proteins for its own propagation. To identify the cellular factors necessary for HCV propagation, we have recently screened the small interfering RNA (siRNA) library targeting cell cycle genes using cell culture grown HCV (HCVcc)-infected cells. In the current study, we have selected and characterized the gene encoding Cyclin A2 (CycA2). Deregulation of CycA2 has been implicated in many types of cancers, including hepatocellular carcinoma. METHODS The effects of CycA2 on HCV propagation were investigated by siRNA-mediated knockdown assay, in vitro and in vivo protein binding assays, luciferase reporter gene assay, and immunoblot assay. RESULTS We showed that siRNA-mediated depletion of CycA2 significantly inhibited HCV replication in both HCV subgenomic replicon cells and HCVcc-infected cells. Furthermore, HCV non-structural 5B (NS5B) specifically interacted with CycA2 in vitro and in vivo. Protein interaction was mediated through the cyclin box of CycA2 and the palm domain of NS5B. We further showed that R/HxL motif in the palm domain of HCV NS5B mediated protein interaction with CycA2 and this interaction was necessary for HCV replication. Moreover, we demonstrated that tylophorine, the natural plant product exerting a CycA2 inhibitory function, abrogated HCV replication. CONCLUSIONS HCV regulates CycA2 via NS5B protein for its own propagation. In addition, tylophorine may be a potential therapeutic agent for HCV.
Collapse
|
29
|
Hopkins S, Gallay P. Cyclophilin inhibitors: an emerging class of therapeutics for the treatment of chronic hepatitis C infection. Viruses 2012. [PMID: 23202494 PMCID: PMC3509662 DOI: 10.3390/v4112558] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The advent of the replicon system together with advances in cell culture have contributed significantly to our understanding of the function of virally-encoded structural and nonstructural proteins in the replication cycle of the hepatitis C virus. In addition, in vitro systems have been used to identify several host proteins whose expression is critical for supporting such diverse activities as viral entry, RNA replication, particle assembly, and the release of infectious virions. Among all known host proteins that participate in the HCV replication cycle, cyclophilins are unique because they constitute the only host target that has formed the basis of pharmaceutical drug discovery and drug development programs. The introduction of the nonimmunosuppressive cyclophilin inhibitors into clinical testing has confirmed the clinical utility of CsA-based inhibitors for the treatment of individuals with chronic hepatitis C infection and has yielded new insights into their mechanism(s) of action. This review describes the biochemical evidence for the potential roles played by cyclophilins in supporting HCV RNA replication and summarizes clinical trial results obtained with the first generation of nonimmunosuppressive cyclophilin inhibitors.
Collapse
Affiliation(s)
- Sam Hopkins
- Autoimmune Technologies, LLC, 1010 Common Street, Suite 1705, New Orleans, LA 70112, USA
- Authors to whom correspondence should be addressed; (S.M.); (P.G.); Tel.: +1-504-529-9944 (S.M.); +1-858-784-8180 (P.G.); Fax: +1-858-784-8831 (P.G.)
| | - Philippe Gallay
- Department of Immunology and Microbial Science, IMM-9, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
- Authors to whom correspondence should be addressed; (S.M.); (P.G.); Tel.: +1-504-529-9944 (S.M.); +1-858-784-8180 (P.G.); Fax: +1-858-784-8831 (P.G.)
| |
Collapse
|
30
|
Vaughan R, Fan B, You JS, Kao CC. Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase. RNA (NEW YORK, N.Y.) 2012; 18:1541-52. [PMID: 22736798 PMCID: PMC3404374 DOI: 10.1261/rna.031914.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/30/2012] [Indexed: 05/21/2023]
Abstract
Understanding how the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) interacts with nascent RNA would provide valuable insight into the virus's mechanism for RNA synthesis. Using a peptide mass fingerprinting method and affinity capture of peptides reversibly cross-linked to an alkyn-labeled nascent RNA, we identified a region below the Δ1 loop in the fingers domain of the HCV RdRp that contacts the nascent RNA. A modification protection assay was used to confirm the assignment. Several mutations within the putative nascent RNA binding region were generated and analyzed for RNA synthesis in vitro and in the HCV subgenomic replicon. All mutations tested within this region showed a decrease in primer-dependent RNA synthesis and decreased stabilization of the ternary complex. The results from this study advance our understanding of the structure and function of the HCV RdRp and the requirements for HCV RNA synthesis. In addition, a model of nascent RNA interaction is compared with results from structural studies.
Collapse
Affiliation(s)
- Robert Vaughan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Baochang Fan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Jin-Sam You
- Indiana University School of Medicine, IUPUI, Indianapolis, Indiana 46202, USA
| | - C. Cheng Kao
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
- Corresponding authorE-mail
| |
Collapse
|
31
|
Gupta G, Qin H, Song J. Intrinsically unstructured domain 3 of hepatitis C Virus NS5A forms a "fuzzy complex" with VAPB-MSP domain which carries ALS-causing mutations. PLoS One 2012; 7:e39261. [PMID: 22720086 PMCID: PMC3374797 DOI: 10.1371/journal.pone.0039261] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/22/2012] [Indexed: 01/26/2023] Open
Abstract
Hepatitis C virus (HCV) affects nearly 200 million people worldwide and is a leading factor for serious chronic liver diseases. For replicating HCV genome, the membrane-associated replication machinery needs to be formed by both HCV non-structural proteins including NS5A and human host factors. Recently NS5A has been identified to bind ER-anchored human VAP proteins and consequently this interaction may serve as a novel target for design of anti-HCV drugs. So far no biophysical characterization of this interaction has been reported. Here, we dissected the 243-residue VAPB into 4 and 447-residue NS5A into 10 fragments, followed by CD and NMR characterization of their structural properties. Subsequently, binding interactions between these fragments have been extensively assessed by NMR HSQC titration which is very powerful in detecting even very weak binding. The studies lead to three important findings: 1). a "fuzzy complex" is formed between the intrinsically-unstructured third domain (D3) of NS5A and the well-structured MSP domain of VAPB, with an average dissociation constant (Kd) of ~5 µM. 2). The binding-important residues on both NS5A-D3 and VAPB-MSP have been successfully mapped out, which provided experimental constraints for constructing the complex structure. In the complex, unstructured D3 binds to three surface pockets on one side of the MSP structure. Interestingly, two ALS-causing mutations T46I and P56S are also located on the D3-MSP interface. Moreover, NS5A-D3, FFAT-containing proteins and EphA4 appear to have overlapped binding interfaces on the MSP domain. 3). NS5A-D3 has been experimentally confirmed to competes with EphA4 in binding to the MSP domain, and T46I mutation of MSP dramatically abolishes its binding ability to D3. Our study not only provides essential foundation for further deciphering structure and function of the HCV replication machinery, but may also shed light on rationalizing a recent observation that a chronic HCV patient surprisingly developed ALS-like syndrome.
Collapse
Affiliation(s)
- Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
32
|
Qiu X, Yang J, Liu T, Jiang Y, Le Q, Lu Y. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells. PLoS One 2012; 7:e32612. [PMID: 22403680 PMCID: PMC3293838 DOI: 10.1371/journal.pone.0032612] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/31/2012] [Indexed: 12/18/2022] Open
Abstract
The development of a technique to induce the transformation of somatic cells to a pluripotent state via the ectopic expression of defined transcription factors was a transformational event in the field of regenerative medicine. The development of this technique also impacted ophthalmology, as patient-specific induced pluripotent stemcells (iPSCs) may be useful resources for some ophthalmological diseases. The lens is a key refractive element in the eye that focuses images of the visual world onto the retina. To establish a new model for drug screening to treat lens diseases and investigating lens aging and development, we examined whether human lens epithelial cells (HLECs) could be induced into iPSCs and if lens-specific differentiation of these cells could be achieved under defined chemical conditions. We first efficiently reprogrammed HLECs from age-related cataract patients to iPSCs with OCT-4, SOX-2, and KLF-4. The resulting HLEC-derived iPS (HLE-iPS) colonies were indistinguishable from human ES cells with respect to morphology, gene expression, pluripotent marker expression and their ability to generate all embryonic germ-cell layers. Next, we performed a 3-step induction procedure: HLE-iPS cells were differentiated into large numbers of lens progenitor-like cells with defined factors (Noggin, BMP and FGF2), and we determined that these cells expressed lens-specific markers (PAX6, SOX2, SIX3, CRYAB, CRYAA, BFSP1, and MIP). In addition, HLE-iPS-derived lens cells exhibited reduced expression of epithelial mesenchymal transition (EMT) markers compared with human embryonic stem cells (hESCs) and fibroblast-derived iPSCs. Our study describes a highly efficient procedure for generating lens progenitor cells from cataract patient HLEC-derived iPSCs. These patient-derived pluripotent cells provide a valuable model for studying the developmental and molecular biological mechanisms that underlie cell determination in lens development and cataract pathophysiology.
Collapse
Affiliation(s)
- Xiaodi Qiu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jin Yang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Tianjin Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy for Sciences, Shanghai, People's Republic of China
| | - Yongxiang Jiang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Qihua Le
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
33
|
RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase in human cells reveals requirements for de novo initiation and protein-protein interaction. J Virol 2012; 86:4317-27. [PMID: 22318148 DOI: 10.1128/jvi.00069-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brome mosaic virus (BMV) is a model positive-strand RNA virus whose replication has been studied in a number of surrogate hosts. In transiently transfected human cells, the BMV polymerase 2a activated signaling by the innate immune receptor RIG-I, which recognizes de novo-initiated non-self-RNAs. Active-site mutations in 2a abolished RIG-I activation, and coexpression of the BMV 1a protein stimulated 2a activity. Mutations previously shown to abolish 1a and 2a interaction prevented the 1a-dependent enhancement of 2a activity. New insights into 1a-2a interaction include the findings that helicase active site of 1a is required to enhance 2a polymerase activity and that negatively charged amino acid residues between positions 110 and 120 of 2a contribute to interaction with the 1a helicase-like domain but not to the intrinsic polymerase activity. Confocal fluorescence microscopy revealed that the BMV 1a and 2a colocalized to perinuclear region in human cells. However, no perinuclear spherule-like structures were detected in human cells by immunoelectron microscopy. Sequencing of the RNAs coimmunoprecipitated with RIG-I revealed that the 2a-synthesized short RNAs are derived from the message used to translate 2a. That is, 2a exhibits a strong cis preference for BMV RNA2. Strikingly, the 2a RNA products had initiation sequences (5'-GUAAA-3') identical to those from the 5' sequence of the BMV genomic RNA2 and RNA3. These results show that the BMV 2a polymerase does not require other BMV proteins to initiate RNA synthesis but that the 1a helicase domain, and likely helicase activity, can affect RNA synthesis by 2a.
Collapse
|
34
|
VPg-primed RNA synthesis of norovirus RNA-dependent RNA polymerases by using a novel cell-based assay. J Virol 2011; 85:13027-37. [PMID: 21994457 DOI: 10.1128/jvi.06191-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular studies of human noroviruses (NoV) have been hampered by the lack of a permissive cell culture system. We have developed a sensitive and reliable mammalian cell-based assay for the human NoV GII.4 strain RNA-dependent RNA polymerase (RdRp). The assay is based on the finding that RNAs synthesized by transiently expressed RdRp can stimulate retinoic acid-inducible gene I (RIG-I)-dependent reporter luciferase production via the beta interferon promoter. Comparable activities were observed for the murine norovirus (MNV) RdRp. RdRps with mutations at divalent metal ion binding residues did not activate RIG-I signaling. Furthermore, both NoV and MNV RdRp activities were stimulated by the coexpression of their respective VPg proteins, while mutations in the putative site of nucleotide linkage on VPg abolished most of their stimulatory effects. Sequencing of the RNAs linked to VPg revealed that the cellular trans-Golgi network protein 2 (TGOLN2) mRNA was the template for VPg-primed RNA synthesis. Small interfering RNA knockdown of RNase L abolished the enhancement of signaling that occurred in the presence of VPg. Finally, the coexpression of each of the other NoV proteins revealed that p48 (also known as NS1-2) and VP1 enhanced and that VP2 reduced the RdRp activity. The assay should be useful for the dissection of the requirements for NoV RNA synthesis as well as the identification of inhibitors of the NoV RdRp.
Collapse
|
35
|
Lai Y, Yi G, Chen A, Bhardwaj K, Tragesser BJ, Rodrigo A Valverde, Zlotnick A, Mukhopadhyay S, Ranjith-Kumar CT, Kao CC. Viral double-strand RNA-binding proteins can enhance innate immune signaling by toll-like Receptor 3. PLoS One 2011; 6:e25837. [PMID: 22016778 PMCID: PMC3189932 DOI: 10.1371/journal.pone.0025837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022] Open
Abstract
Toll-like Receptor 3 (TLR3) detects double-stranded (ds) RNAs to activate innate immune responses. While poly(I:C) is an excellent agonist for TLR3 in several cell lines and in human peripheral blood mononuclear cells, viral dsRNAs tend to be poor agonists, leading to the hypothesis that additional factor(s) are likely required to allow TLR3 to respond to viral dsRNAs. TLR3 signaling was examined in a lung epithelial cell line by quantifying cytokine production and in human embryonic kidney cells by quantifying luciferase reporter levels. Recombinant 1b hepatitis C virus polymerase was found to enhance TLR3 signaling in the lung epithelial BEAS-2B cells when added to the media along with either poly(I:C) or viral dsRNAs. The polymerase from the genotype 2a JFH-1 HCV was a poor enhancer of TLR3 signaling until it was mutated to favor a conformation that could bind better to a partially duplexed RNA. The 1b polymerase also co-localizes with TLR3 in endosomes. RNA-binding capsid proteins (CPs) from two positive-strand RNA viruses and the hepadenavirus hepatitis B virus (HBV) were also potent enhancers of TLR3 signaling by poly(I:C) or viral dsRNAs. A truncated version of the HBV CP that lacked an arginine-rich RNA-binding domain was unable to enhance TLR3 signaling. These results demonstrate that several viral RNA-binding proteins can enhance the dsRNA-dependent innate immune response initiated by TLR3.
Collapse
Affiliation(s)
- Yvonne Lai
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|