1
|
Anver S, Sumit AF, Sun XM, Hatimy A, Thalassinos K, Marguerat S, Alic N, Bähler J. Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells. EMBO Rep 2024:10.1038/s44319-024-00265-9. [PMID: 39358553 DOI: 10.1038/s44319-024-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Genomes produce widespread long non-coding RNAs (lncRNAs) of largely unknown functions. We characterize aal1 (ageing-associated lncRNA), which is induced in quiescent fission yeast cells. Deletion of aal1 shortens the chronological lifespan of non-dividing cells, while ectopic overexpression prolongs their lifespan, indicating that aal1 acts in trans. Overexpression of aal1 represses ribosomal-protein gene expression and inhibits cell growth, and aal1 genetically interacts with coding genes functioning in protein translation. The aal1 lncRNA localizes to the cytoplasm and associates with ribosomes. Notably, aal1 overexpression decreases the cellular ribosome content and inhibits protein translation. The aal1 lncRNA binds to the rpl1901 mRNA, encoding a ribosomal protein. The rpl1901 levels are reduced ~2-fold by aal1, which is sufficient to extend lifespan. Remarkably, the expression of the aal1 lncRNA in Drosophila boosts fly lifespan. We propose that aal1 reduces the ribosome content by decreasing Rpl1901 levels, thus attenuating the translational capacity and promoting longevity. Although aal1 is not conserved, its effect in flies suggests that animals feature related mechanisms that modulate ageing, based on the conserved translational machinery.
Collapse
Affiliation(s)
- Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Ahmed Faisal Sumit
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Xi-Ming Sun
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Samuel Marguerat
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Singh M, Agarwal V, Pancham P, Jindal D, Agarwal S, Rai SN, Singh SK, Gupta V. A Comprehensive Review and Androgen Deprivation Therapy and Its Impact on Alzheimer's Disease Risk in Older Men with Prostate Cancer. Degener Neurol Neuromuscul Dis 2024; 14:33-46. [PMID: 38774717 PMCID: PMC11108066 DOI: 10.2147/dnnd.s445130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent malignancies affecting males worldwide. Despite reductions in mortality rates due to advances in early identification and treatment methods, PCa remains a major health concern. Recent research has shed light on a possible link between PCa and Alzheimer's disease (AD), which is a significant neurological ailment that affects older males all over the world. Androgen deprivation therapy (ADT), a cornerstone therapeutic method used in conjunction with radiation and palliative care in advanced metastatic PCa cases, is critical for disease management. Evidence reveals a relationship between ADT and cognitive impairment. Hormonal manipulation may cause long-term cognitive problems through processes such as amyloid beta (Aβ) aggregation and neurofibrillary tangles (NFTs). Fluctuations in basal androgen levels can upset the delicate balance of genes that are sensitive to androgen levels, contributing to cognitive impairment. This detailed review dives into the various aspects of PCa aetiology and its relationship with cognitive decline. It investigates the discovery of particular biomarkers, as well as microRNAs (miRNAs), which play important roles in pathogenic progression. The review attempts to identify potential biomarkers associated with ADT-induced cerebral changes, including Aβ oligomer buildup, NFT formation, and tauopathy, which can contribute to early-onset dementia and cognitive impairment. Besides it further aims to provide insights into innovative diagnostic and therapeutic avenues for alleviating PCa and ADT-related cognitive sequelae by unravelling these complicated pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Manisha Singh
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- Indian Institute of Technology Bombay Monash Research Academy, Mumbai, India
| | - Shriya Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Noida, Uttar Pradesh, India
- Department of Molecular Science, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery (CEMS), Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery (CEMS), Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Liu S, Zhuang Z, Liu F, Yuan X, Zhang Z, Liang X, Li X, Chen Y. Identification of potential biomarkers and infiltrating immune cells from scalp psoriasis. Gene 2024; 893:147918. [PMID: 37871808 DOI: 10.1016/j.gene.2023.147918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Scalp psoriasis seriously affects the appearance and psychological status of patients. The aim of this study was to investigate the effect and potential mechanism of RPL9 and TIFA in scalp psoriasis, so as to provide a precise and effective way for the clinical treatment of scalp psoriasis. METHODS The Gene Expression Omnibus (GEO) database was employed to download the GSE75343 dataset to search for differentially expressed genes (DEGs) in scalp psoriasis through Sangerbox. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) enrichment analysis, functional enrichment analysis, immune cell infiltration analysis, immune responses and correlation analysis with 12 hub genes were performed. Then, STRING was used to develop a protein-protein interaction (PPI) network, used Cytoscape to locate hub genes, and SVM-RFE and random forest were utilized to identified RPL9 as the targeted gene. TIFA-RPL9 interaction predictions were made viathe Open Targets Platform and Uniprot. Further, the RPL9 and TIFA expression, molecular mechanism, and function were assessed in scalp psoriasis. RESULTS Immunohistochemistry, qPCR, and western blotting verified that RPL9 and TIFA were highly expressed in lesional tissues of scalp psoriasis and IL17A-stimulated HaCaT cells. RPL9 knockdown effectively suppressed the proliferative capacity of IL17A-stimulated HaCaT cells in the CCK8 assay. The co-immunoprecipitation results revealed that RPL9 could interact with TIFA in IL17A-stimulated HaCaT cells. In qPCR and western blotting, RPL9 knockdown significantly inhibited TIFA at the mRNA and protein levels in IL17A-stimulated HaCaT cells. In ELISA, the secretion of TNF-α was markedly inhibited after downregulating RPL9 in IL17A-stimulated HaCaT cells. CONCLUSION To our knowledge, we have elucidated the expression and role of RPL9 and TIFA in scalp psoriatic skin and keratinocytes, and our findings confirm that RPL9 might act as a candidate therapeutic target for scalp psoriasis.
Collapse
Affiliation(s)
- Shougang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhe Zhuang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fanghua Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiuqing Yuan
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zeqiao Zhang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqian Liang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xinhui Li
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
5
|
Tian Y, Chen L, Jiang Y. LASSO-based screening for potential prognostic biomarkers associated with glioblastoma. Front Oncol 2023; 12:1057383. [PMID: 36733371 PMCID: PMC9888488 DOI: 10.3389/fonc.2022.1057383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/19/2022] [Indexed: 01/19/2023] Open
Abstract
Background Glioblastoma is the most common malignancy of the neuroepithelium, yet existing research on this tumor is limited. LASSO is an algorithm of selected feature coefficients by which genes associated with glioblastoma prognosis can be obtained. Methods Glioblastoma-related data were selected from the Cancer Genome Atlas (TCGA) database, and information was obtained for 158 samples, including 153 cancer samples and five samples of paracancerous tissue. In addition, 2,642 normal samples were selected from the Genotype-Tissue Expression (GTEx) database. Whole-gene bulk survival analysis and differential expression analysis were performed on glioblastoma genes, and their intersections were taken. Finally, we determined which genes are associated with glioma prognosis. The STRING database was used to analyze the interaction network between genes, and the MCODE plugin under Cytoscape was used to identify the highest-scoring clusters. LASSO prognostic analysis was performed to identify the key genes. Gene expression validation allowed us to obtain genes with significant expression differences in glioblastoma cancer samples and paracancer samples, and glioblastoma independent prognostic factors could be derived by univariate and multivariate Cox analyses. GO functional enrichment analysis was performed, and the expression of the screened genes was detected using qRT-PCR. Results Whole-gene bulk survival analysis of glioblastoma genes yielded 607 genes associated with glioblastoma prognosis, differential expression analysis yielded 8,801 genes, and the intersection of prognostic genes with differentially expressed genes (DEG) yielded 323 intersecting genes. PPI analysis of the intersecting genes revealed that the genes were significantly enriched in functions such as the formation of a pool of free 40S subunits and placenta development, and the highest-scoring clusters were obtained using the MCODE plug-in. Eight genes associated with glioblastoma prognosis were identified based on LASSO analysis: RPS10, RPS11, RPS19, RSL24D1, RPL39L, EIF3E, NUDT5, and RPF1. All eight genes were found to be highly expressed in the tumor by gene expression verification, and univariate and multivariate Cox analyses were performed on these eight genes to identify RPL39L and NUDT5 as two independent prognostic factors associated with glioblastoma. Both RPL39L and NUDT5 were highly expressed in glioblastoma cells. Conclusion Two independent prognostic factors in glioblastoma, RPL39L and NUDT5, were identified.
Collapse
Affiliation(s)
- Yin Tian
- Department of Pediatric Surgery, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Li’e Chen
- Department of Pathology, Sanya Central Hospital (Hainan Third People‘s Hospital), Sanya, Hainan Province, China
| | - Yun Jiang
- Department of Ultrasound Diagnosis, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei Province, China,*Correspondence: Yun Jiang,
| |
Collapse
|
6
|
Wu E, Fan X, Tang T, Li J, Wang J, Liu X, Zungar Z, Ren J, Wu C, Shen B. Biomarkers discovery for endometrial cancer: A graph convolutional sample network method. Comput Biol Med 2022; 150:106200. [PMID: 37859290 DOI: 10.1016/j.compbiomed.2022.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/20/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Endometrial carcinoma is the sixth most common cancer in women worldwide. Importantly, endometrial cancer is among the few types of cancers with patient mortality that is still increasing, which indicates that the improvement in its diagnosis and treatment is still urgent. Moreover, biomarker discovery is essential for precise classification and prognostic prediction of endometrial cancer. METHODS A novel graph convolutional sample network method was used to identify and validate biomarkers for the classification of endometrial cancer. The sample networks were first constructed for each sample, and the gene pairs with high frequencies were identified to construct a subtype-specific network. Putative biomarkers were then screened using the highest degrees in the subtype-specific network. Finally, simplified sample networks are constructed using the biomarkers for the graph convolutional network (GCN) training and prediction. RESULTS Putative biomarkers (23) were identified using the novel bioinformatics model. These biomarkers were then rationalised with functional analyses and were found to be correlated to disease survival with network entropy characterisation. These biomarkers will be helpful in future investigations of the molecular mechanisms and therapeutic targets of endometrial cancers. CONCLUSIONS A novel bioinformatics model combining sample network construction with GCN modelling is proposed and validated for biomarker discovery in endometrial cancer. The model can be generalized and applied to biomarker discovery in other complex diseases.
Collapse
Affiliation(s)
- Erman Wu
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuemeng Fan
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Computer Science and Information Technologies, Elviña Campus, University of A Coruña, A Coruña, Spain
| | - Jingjing Li
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyun Liu
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zayatta Zungar
- School of Medicine, University of New England, Armidale, NSW, 2351, Australia
| | - Jiaojiao Ren
- School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu, China
| | - Cong Wu
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Ribosome-Directed Therapies in Cancer. Biomedicines 2022; 10:biomedicines10092088. [PMID: 36140189 PMCID: PMC9495564 DOI: 10.3390/biomedicines10092088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
The human ribosomes are the cellular machines that participate in protein synthesis, which is deeply affected during cancer transformation by different oncoproteins and is shown to provide cancer cell proliferation and therefore biomass. Cancer diseases are associated with an increase in ribosome biogenesis and mutation of ribosomal proteins. The ribosome represents an attractive anti-cancer therapy target and several strategies are used to identify specific drugs. Here we review the role of different drugs that may decrease ribosome biogenesis and cancer cell proliferation.
Collapse
|
8
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
9
|
Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res 2022; 82:2344-2353. [PMID: 35303060 PMCID: PMC9256764 DOI: 10.1158/0008-5472.can-21-4087] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.
Collapse
Affiliation(s)
- Amr R. Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama.,Corresponding Author: Rajeev S. Samant, The University of Alabama at Birmingham, WTI 320E, 1824 6th Avenue South, Birmingham, AL 35233. Phone: 205-975-6262; E-mail:
| |
Collapse
|
10
|
Azevedo ALKD, Gomig THB, Giner IS, Batista M, Marchini FK, Lima RS, de Andrade Urban C, Sebastião APM, Cavalli IJ, Ribeiro EMDSF. Comprehensive analysis of the large and small ribosomal proteins in breast cancer: Insights on proteomic and transcriptomic expression patterns, regulation, mutational landscape, and prognostic significance. Comput Biol Chem 2022; 100:107746. [DOI: 10.1016/j.compbiolchem.2022.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
|
11
|
Zheng HC, Xue H, Jin YZ, Jiang HM, Cui ZG. The Oncogenic Effects, Pathways, and Target Molecules of JC Polyoma Virus T Antigen in Cancer Cells. Front Oncol 2022; 12:744886. [PMID: 35350574 PMCID: PMC8958009 DOI: 10.3389/fonc.2022.744886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyoma virus (JCPyV) is a ubiquitous polyoma virus that infects the individual to cause progressive multifocal leukoencephalopathy and malignancies. Here, we found that T-antigen knockdown suppressed proliferation, glycolysis, mitochondrial respiration, migration, and invasion, and induced apoptosis and G2 arrest. The reverse was true for T-antigen overexpression, with overexpression of Akt, survivin, retinoblastoma protein, β-catenin, β-transducin repeat-containing protein (TRCP), and inhibitor of growth (ING)1, and the underexpression of mammalian target of rapamycin (mTOR), phosphorylated (p)-mTOR, p-p38, Cyclin D1, p21, vascular endothelial growth factor (VEGF), ING2, and ING4 in hepatocellular and pancreatic cancer cells and tissues. In lens tumor cells, T antigen transcriptionally targeted viral carcinogenesis, microRNAs in cancer, focal adhesion, p53, VEGF, phosphoinositide 3 kinase-Akt, and Forkhead box O signaling pathways, fructose and mannose metabolism, ribosome biosynthesis, and choline and pyrimidine metabolism. At a metabolomics level, it targeted protein digestion and absorption, aminoacryl-tRNA biosynthesis, biosynthesis of amino acids, and the AMPK signal pathway. At a proteomic level, it targeted ribosome biogenesis in eukaryotes, citrate cycle, carbon metabolism, protein digestion and absorption, aminoacryl-tRNA biosynthesis, extracellular-matrix-receptor interaction, and biosynthesis of amino acids. In lens tumor cells, T antigen might interact with various keratins, ribosomal proteins, apolipoproteins, G proteins, ubiquitin-related proteins, RPL19, β-catenin, β-TRCP, p53, and CCAAT-enhancer-binding proteins in lens tumor cells. T antigen induced a more aggressive phenotype in mouse and human cancer cells due to oncogene activation, inactivation of tumor suppressors, and disruption of metabolism, cell adhesion, and long noncoding RNA-microRNA-target axes.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hang Xue
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yu-Zi Jin
- Department of Pediatrics, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hua-Mao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| |
Collapse
|
12
|
Zheng P, Wu Y, Chen Y, Chen Z, Zhang T, Chen Z, Zhang T. Novel insights into the mechanisms by which lncRNA HOTAIR regulates migration and invasion in HeLa cells. Cell Cycle 2022; 21:602-617. [PMID: 35090376 PMCID: PMC8942418 DOI: 10.1080/15384101.2022.2030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
HOTAIR, as one of the few well-studied oncogenic lncRNAs, is involved in human tumorigenesis and is dys-regulated in most human cancers. The transcription co-activator factor YAP1 is broadly expressed in many tissues, and promotes cancer metastasis and progression. However, the precise biological roles of HOTAIR and YAP1 in cancer cells remain unclear. In this study, we showed that HOTAIR regulates H3K27 histone modification in the promoter of miR-200a to mediate miR-200a expression by recruiting EZH2. YAP1, as a potential target gene of miR-200a, aggravated the effects of miR-200a on the migration and invasion of HeLa cells. YAP1 activated the transcription of RPL23, which is a novel downstream transcriptional-regulator of YAP1. Agreement with this, the expression of YAP1 and RPL23 was dramatically decreased after injecting HeLa cells transfected with siHOTAIR in a xenograft mouse model. Accordingly, we propose a novel model of the molecular mechanism by which HOTAIR promotes the migration and invasion of cancer cells involving the miR-200a-3p/YAP1/RPL23 axis.
Collapse
Affiliation(s)
- Peng Zheng
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China,College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China,CONTACT Peng Zheng Institute of Biology and Medicine, College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan430065, China
| | - Yaoqin Wu
- Third Institute of Oceanography State Administration, XiamenChina
| | - Ying Chen
- College of Life Science, Yangtze University, Jingzhou, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China,Zhuo Chen Shangdong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China,College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China,Tongcun Zhang Institute of Biology and Medicine, College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Downregulation of Methionine Cycle Genes MAT1A and GNMT Enriches Protein-Associated Translation Process and Worsens Hepatocellular Carcinoma Prognosis. Int J Mol Sci 2022; 23:ijms23010481. [PMID: 35008908 PMCID: PMC8745498 DOI: 10.3390/ijms23010481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
The major biological methyl donor, S-adenosylmethionine (adoMet) synthesis occurs mainly in the liver. Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are two key enzymes involved in the functional implications of that variation. We collected 42 RNA-seq data from paired hepatocellular carcinoma (HCC) and its adjacent normal liver tissue from the Cancer Genome Atlas (TCGA). There was no mutation found in MAT1A or GNMT RNA in the 42 HCC patients. The 11,799 genes were annotated in the RNA-Seq data, and their expression levels were used to investigate the phenotypes of low MAT1A and low GNMT by Gene Set Enrichment Analysis (GSEA). The REACTOME_TRANSLATION gene set was enriched and visualized in a heatmap along with corresponding differences in gene expression between low MAT1A versus high MAT1A and low GNMT versus high GNMT. We identified 43 genes of the REACTOME_TRANSLATION gene set that are powerful prognosis factors in HCC. The significantly predicted genes were referred into eukaryotic translation initiation (EIF3B, EIF3K), eukaryotic translation elongation (EEF1D), and ribosomal proteins (RPs). Cell models expressing various MAT1A and GNMT proved that simultaneous restoring the expression of MAT1A and GNMT decreased cell proliferation, invasion, as well as the REACTOME_TRANSLATION gene EEF1D, consistent with a better prognosis in human HCC. We demonstrated new findings that downregulation or defect in MAT1A and GNMT genes can enrich the protein-associated translation process that may account for poor HCC prognosis. This is the first study demonstrated that MAT1A and GNMT, the 2 key enzymes involved in methionine cycle, could attenuate the function of ribosome translation. We propose a potential novel mechanism by which the diminished GNMT and MAT1A expression may confer poor prognosis for HCC.
Collapse
|
14
|
Deregulation of ribosomal proteins in human cancers. Biosci Rep 2021; 41:230380. [PMID: 34873618 PMCID: PMC8685657 DOI: 10.1042/bsr20211577] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ribosome, the site for protein synthesis, is composed of ribosomal RNAs (rRNAs) and ribosomal proteins (RPs). The latter have been shown to have many ribosomal and extraribosomal functions. RPs are implicated in a variety of pathological processes, especially tumorigenesis and cell transformation. In this review, we will focus on the recent advances that shed light on the effects of RPs deregulation in different types of cancer and their roles in regulating the tumor cell fate.
Collapse
|
15
|
Furlan T, Kirchmair A, Sampson N, Puhr M, Gruber M, Trajanoski Z, Santer FR, Parson W, Handle F, Culig Z. MYC-Mediated Ribosomal Gene Expression Sensitizes Enzalutamide-resistant Prostate Cancer Cells to EP300/CREBBP Inhibitors. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1094-1107. [PMID: 33705753 DOI: 10.1016/j.ajpath.2021.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Patients with advanced prostate cancer are frequently treated with the antiandrogen enzalutamide. However, resistance eventually develops in virtually all patients, and various mechanisms have been associated with this process. The histone acetyltransferases EP300 and CREBBP are involved in regulation of cellular events in advanced prostate cancer. This study investigated the role of EP300/CREBBP inhibitors in enzalutamide-resistant prostate cancer. EP300/CREBBP inhibitors led to the same inhibition of androgen receptor activity in enzalutamide-resistant and -sensitive cells. However, enzalutamide-resistant cells were more sensitive to these inhibitors in viability assays. As indicated by the RNA-sequencing-based pathway analysis, genes related to the ribosome and MYC activity were significantly altered upon EP300/CREBBP inhibitor treatment. EP300/CREBBP inhibitors led to the down-regulation of ribosomal proteins RPL36 and RPL29. High-level ribosomal proteins amplifications and MYC amplifications were observed in castration-resistant prostate cancer samples of the publicly available Stand Up to Cancer data set. An inhibitor of RNA polymerase I-mediated transcription was used to evaluate the functional implications of these findings. The enzalutamide-resistant cell lines were more sensitive to this treatment. In addition, the migration rate of enzalutamide-resistant cells was strongly inhibited by this treatment. Taken together, the current data show that EP300/CREBBP inhibitors affect the MYC/ribosomal protein axis in enzalutamide-resistant cells and may have promising therapeutic implications.
Collapse
Affiliation(s)
- Tobias Furlan
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kirchmair
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Gruber
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Qian J, Xu L, Yu W, Gu X, Zuo Y, Chen Y, Xie F, Wei L. Ribosomal protein L34 is a potential prognostic biomarker and therapeutic target in hilar cholangiocarcinoma. Cell Biosci 2020. [DOI: 10.1186/s13578-020-00463-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ribosomal protein 34 (RPL34) is a highly conserved protein belonging to the 60S large subunit of mammalian ribosomes that has been found to be dysregulated in a variety of human tumors. However, there are limited results that illuminate the role and expression profiles of RPL34 in hilar cholangiocarcinoma (HCCA).
Methods
RPL34 expression was detected in human HCCA by immunohistochemistry. The relationship of RPL34 expression with clinical outcomes was evaluated by univariate and multivariate analyses. The effect of RPL34 on cell migration and tumor growth was detected after silencing endogenous RPL34 expression.
Results
RPL34 was overexpressed in HCCA compared with normal tissue samples and correlated significantly with regional lymph node metastasis and poorly/undifferentiated tumors. Patients with high RPL34 expression had a shorter time to recur and a poorer outcome than those without RPL34 expression. Silencing RPL34 inhibited cell proliferation and migration in vitro and upregulated E-cadherin. Silencing RPL34 also attenuated tumor growth in vivo.
Conclusions
Our findings suggested that RPL34 might serve as a promising prognostic biomarker and a potential therapeutic target for the treatment of HCCA.
Collapse
|
17
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
18
|
Identification of key regulators in prostate cancer from gene expression datasets of patients. Sci Rep 2019; 9:16420. [PMID: 31712650 PMCID: PMC6848149 DOI: 10.1038/s41598-019-52896-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Identification of key regulators and regulatory pathways is an important step in the discovery of genes involved in cancer. Here, we propose a method to identify key regulators in prostate cancer (PCa) from a network constructed from gene expression datasets of PCa patients. Overexpressed genes were identified using BioXpress, having a mutational status according to COSMIC, followed by the construction of PCa Interactome network using the curated genes. The topological parameters of the network exhibited power law nature indicating hierarchical scale-free properties and five levels of organization. Highest degree hubs (k ≥ 65) were selected from the PCa network, traced, and 19 of them was identified as novel key regulators, as they participated at all network levels serving as backbone. Of the 19 hubs, some have been reported in literature to be associated with PCa and other cancers. Based on participation coefficient values most of these are connector or kinless hubs suggesting significant roles in modular linkage. The observation of non-monotonicity in the rich club formation suggested the importance of intermediate hubs in network integration, and they may play crucial roles in network stabilization. The network was self-organized as evident from fractal nature in topological parameters of it and lacked a central control mechanism.
Collapse
|
19
|
Shen A, Chen Y, Liu L, Huang Y, Chen H, Qi F, Lin J, Shen Z, Wu X, Wu M, Li Q, Qiu L, Yu N, Sferra TJ, Peng J. EBF1-Mediated Upregulation of Ribosome Assembly Factor PNO1 Contributes to Cancer Progression by Negatively Regulating the p53 Signaling Pathway. Cancer Res 2019; 79:2257-2270. [PMID: 30862720 DOI: 10.1158/0008-5472.can-18-3238] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
The RNA-binding protein PNO1 is critical for ribosome biogenesis, but its potential role in cancer remains unknown. In this study, online data mining, cDNA, and tissue microarrays indicated that PNO1 expression was higher in colorectal cancer tissue than in noncancerous tissue, and its overexpression was associated with worse patient survival. Gain-of-function and loss-of-function studies demonstrated that PNO1 knockdown suppressed growth of colorectal cancer cells in vitro and in vivo, while PNO1 overexpression promoted colorectal cancer cell proliferation in vitro. In colorectal cancer cells expressing wild-type p53, PNO1 knockdown enhanced expression of p53 and its downstream gene p21, and reduced cell viability; these effects were prevented by p53 knockout and attenuated by the p53 inhibitor PFT-α. Moreover, PNO1 knockdown in HCT116 cells decreased levels of 18S rRNA, of 40S and 60S ribosomal subunits, and of the 80S ribosome. It also reduced global protein synthesis, increasing nuclear stress and inhibiting MDM2-mediated ubiquitination and p53 degradation. Overexpressing EBF1 suppressed PNO1 promoter activity and decreased PNO1 mRNA and protein, inhibiting cell proliferation and inducing cell apoptosis through the p53/p21 pathway. In colorectal cancer tissues, the expression of EBF1 correlated inversely with PNO1. Data mining of online breast and lung cancer databases showed increased PNO1 expression and association with poor patient survival; PNO1 knockdown reduced cell viability of cultured breast and lung cancer cells. Taken together, these findings indicate that PNO1 is overexpressed in colorectal cancer and correlates with poor patient survival, and that PNO1 exerts oncogenic effects, at least, in part, by altering ribosome biogenesis. SIGNIFICANCE: This study identifies the ribosome assembly factor PNO1 as a potential oncogene involved in tumor growth and progression of colorectal cancer.
Collapse
Affiliation(s)
- Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Youqin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China.,Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China.,Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yue Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Hongwei Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Fei Qi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Qiongyu Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Liman Qiu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Na Yu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Thomas J Sferra
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China. .,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
20
|
Li XM, Li ZY, Wang YD, Wang JQ, Yang PL. Quercetin Inhibits the Proliferation and Aflatoxins Biosynthesis of Aspergillus flavus. Toxins (Basel) 2019; 11:toxins11030154. [PMID: 30857280 PMCID: PMC6468572 DOI: 10.3390/toxins11030154] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 01/10/2023] Open
Abstract
In this work of quercetin’s anti-proliferation action on A. flavus, we revealed that quercetin can effectively hamper the proliferation of A. flavus in dose-effect and time-effect relationships. We tested whether quercetin induced apoptosis in A. flavus via various detection methods, such as phosphatidylserine externalization and Hoechst 33342 staining. The results showed that quercetin had no effect on phosphatidylserine externalization and cell nucleus in A. flavus. Simultaneously, quercetin reduced the levels of reactive oxygen species (ROS). For a better understanding of the molecular mechanism of the A. flavus response to quercetin, the RNA-Seq was used to explore the transcriptomic profiles of A. flavus. According to transcriptome sequencing data, quercetin inhibits the proliferation and aflatoxin biosynthesis by regulating the expression of development-related genes and aflatoxin production-related genes. These results will provide some theoretical basis for quercetin as an anti-mildew agent resource.
Collapse
Affiliation(s)
- Xiu-Mei Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- National Engineering Research Center of Biological Feed, Beijing 100081, China.
| | - Zhong-Yuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ya-Dong Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jin-Quan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Pei-Long Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- National Engineering Research Center of Biological Feed, Beijing 100081, China.
| |
Collapse
|
21
|
Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation. BMC Genomics 2018; 19:504. [PMID: 29954325 PMCID: PMC6027792 DOI: 10.1186/s12864-018-4884-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Background Radiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness. Results We investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the related mTOR and regulation of EIF4/p70S6K pathways were also significantly underrepresented in the exposures with a neutron component, but not in x-ray radiation. The majority of the changed genes in these pathways belonged to the ribosome biogenesis and translation machinery and included several translation initiation factors (e.g. Eif2ak4, Eif3f), as well as 40S and 60S ribosomal subunits (e.g. Rsp19, Rpl19, Rpl27). Many of the differentially downregulated ribosomal genes (e.g. RPS19, RPS28) have been causally associated with human bone marrow failure syndromes and hematologic malignancies. We also observed downregulation of transfer RNA processes, in the neutron-only exposure (p < 0.005). Ingenuity Pathway Analysis (p < 0.05) of differentially expressed genes predicted significantly suppressed activity of the upstream regulators c-Myc and Mycn, transcription factors known to control ribosome biogenesis. Conclusions We describe the gene expression profile of mouse blood following exposure to mixed field neutron/photon irradiation. We have discovered that pathways related to protein translation are significantly underrepresented in the exposures containing a neutron component. Our results highlight the significance of neutron exposures that even the smallest percentage can have profound biological effects that will affect medical management and treatment decisions in case of a radiological emergency. Electronic supplementary material The online version of this article (10.1186/s12864-018-4884-6) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Stefen H, Suchowerska AK, Chen BJ, Brettle M, Kuschelewski J, Gunning PW, Janitz M, Fath T. Tropomyosin isoforms have specific effects on the transcriptome of undifferentiated and differentiated B35 neuroblastoma cells. FEBS Open Bio 2018; 8:570-583. [PMID: 29632810 PMCID: PMC5881551 DOI: 10.1002/2211-5463.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
Tropomyosins, a family of actin‐associated proteins, bestow actin filaments with distinct biochemical and physical properties which are important for determining cell shape and regulating many cellular processes in eukaryotic cells. Here, we used RNA‐seq to investigate the effect of four tropomyosin isoforms on gene expression in undifferentiated and differentiated rat B35 neuroblastoma cells. In undifferentiated cells, overexpression of tropomyosin isoforms Tpm1.12, Tpm2.1, Tpm3.1, and Tpm4.2 differentially regulates a vast number of genes, clustering into several gene ontology terms. In differentiated cells, tropomyosin overexpression exerts a much weaker influence on overall gene expression. Our findings are particularly compelling because they demonstrate that tropomyosin‐dependent changes are attenuated once the cells are induced to follow a defined path of differentiation. Database Sequence data for public availability are deposited in the European Nucleotide Archive under the accession number PRJEB24136.
Collapse
Affiliation(s)
- Holly Stefen
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| | | | - Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences UNSW Sydney NSW Australia
| | - Merryn Brettle
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| | - Jennifer Kuschelewski
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| | - Peter William Gunning
- Cellular and Genetic Medicine Unit School of Medical Sciences UNSW Sydney NSW Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences UNSW Sydney NSW Australia
| | - Thomas Fath
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| |
Collapse
|
23
|
Evaluation of FOXC1 as a therapeutic target for basal-like breast cancer. Cancer Gene Ther 2018; 25:84-91. [DOI: 10.1038/s41417-018-0010-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023]
|
24
|
ITGB1-dependent upregulation of Caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer. Sci Rep 2018; 8:2338. [PMID: 29402961 PMCID: PMC5799174 DOI: 10.1038/s41598-018-20161-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Caveolin-1 (CAV1) is over-expressed in prostate cancer (PCa) and is associated with adverse prognosis, but the molecular mechanisms linking CAV1 expression to disease progression are poorly understood. Extensive gene expression correlation analysis, quantitative multiplex imaging of clinical samples, and analysis of the CAV1-dependent transcriptome, supported that CAV1 re-programmes TGFβ signalling from tumour suppressive to oncogenic (i.e. induction of SLUG, PAI-1 and suppression of CDH1, DSP, CDKN1A). Supporting such a role, CAV1 knockdown led to growth arrest and inhibition of cell invasion in prostate cancer cell lines. Rationalized RNAi screening and high-content microscopy in search for CAV1 upstream regulators revealed integrin beta1 (ITGB1) and integrin associated proteins as CAV1 regulators. Our work suggests TGFβ signalling and beta1 integrins as potential therapeutic targets in PCa over-expressing CAV1, and contributes to better understand the paradoxical dual role of TGFβ in tumour biology.
Collapse
|
25
|
Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene 2017; 37:277-285. [PMID: 28945227 DOI: 10.1038/onc.2017.343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Ribosomes, which are important sites for the synthesis of proteins related to expression and transmission of genetic information in humans, have a complex structure and diverse functions. They consist of a variety of ribosomal proteins (RPs), ribosomal RNAs (rRNAs) and small nucleolar RNAs. Owing to the involvement of ribosomes in many important biological processes of cells, their major components, rRNAs and RPs, have an important role in human diseases, including the initiation and evolvement of malignancies. However, the main mechanisms underlying the involvement of ribosomes in cancer remain unclear. This review describes the crucial role of ribosomes in various common malignant tumors; in particular, it examines the effects of RPs, including S6, the receptor for activated C-kinase and RPS15A, on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- X Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - P Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - H Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Y Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - G Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int J Mol Sci 2017; 18:ijms18010140. [PMID: 28085118 PMCID: PMC5297773 DOI: 10.3390/ijms18010140] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The nucleolus is the site of ribosome biogenesis, a complex process that requires the coordinate activity of all three RNA polymerases and hundreds of non-ribosomal factors that participate in the maturation of ribosomal RNA (rRNA) and assembly of small and large subunits. Nevertheless, emerging studies have highlighted the fundamental role of the nucleolus in sensing a variety of cellular stress stimuli that target ribosome biogenesis. This condition is known as nucleolar stress and triggers several response pathways to maintain cell homeostasis, either p53-dependent or p53-independent. The mouse double minute (MDM2)-p53 stress signaling pathways are activated by multiple signals and are among the most important regulators of cellular homeostasis. In this review, we will focus on the role of ribosomal proteins in p53-dependent and p53-independent response to nucleolar stress considering novel identified regulators of these pathways. We describe, in particular, the role of ribosomal protein uL3 (rpL3) in p53-independent nucleolar stress signaling pathways.
Collapse
|
27
|
Russo A, Saide A, Cagliani R, Cantile M, Botti G, Russo G. rpL3 promotes the apoptosis of p53 mutated lung cancer cells by down-regulating CBS and NFκB upon 5-FU treatment. Sci Rep 2016; 6:38369. [PMID: 27924828 PMCID: PMC5141482 DOI: 10.1038/srep38369] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
5-FU is a chemotherapy drug commonly used for the treatment of human cancers; however drug resistance represents a major challenge for its clinical application. In the present study, we reporte that rpL3 induced by 5-FU treatment in Calu-6 cells represses CBS transcription and reduces CBS protein stability leading to a decrease of CBS protein levels. rpL3 also regulates negatively the activation of NFκB by preventing NFκB nuclear translocation through IκB-α up-regulation. Furthermore, we demonstrate that rpL3 significantly enhances the apoptosis of 5-FU treated Calu-6 cells promoting the overexpression of the pro-apoptotic proteins Bax and the inhibition of the anti-apoptotic protein Bcl-2. We finally demonstrate that rpL3 potentiates 5-FU efficacy inhibiting cell migration and invasion. Our results suggest that combination of rpL3 and 5-FU is a promising strategy for chemotherapy of lung cancers lacking functional p53 that are resistant to 5-FU.
Collapse
Affiliation(s)
- Annapina Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Assunta Saide
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberta Cagliani
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Cantile
- Department of Pathology, Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS via Mariano Semmola, Napoli 80131, Italy
| | - Gerardo Botti
- Department of Pathology, Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS via Mariano Semmola, Napoli 80131, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
28
|
Baik IH, Jo GH, Seo D, Ko MJ, Cho CH, Lee MG, Lee YH. Knockdown of RPL9 expression inhibits colorectal carcinoma growth via the inactivation of Id-1/NF-κB signaling axis. Int J Oncol 2016; 49:1953-1962. [PMID: 27633352 DOI: 10.3892/ijo.2016.3688] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/25/2016] [Indexed: 11/06/2022] Open
Abstract
Ribosomal protein L9 (RPL9), a component of the 60S subunit for protein synthesis, is upregulated in human colorectal cancer. In the present study, we investigated whether RPL9 gained extraribosomal function during tumorigenesis and whether targeting of RPL9 with small interfering (si) RNA could alter the course of colorectal cancer progression. Our results showed that siRNA knockdown of RPL9 suppresses colorectal cancer (CRC) cell growth and long-term colony formation through an increase in sub-G1 cell population and a strong induction of apoptotic cell death. To obtain insights into the molecular changes in response to RPL9 knockdown, global changes in gene expression were examined using RNA sequencing. It revealed that RPL9-specific knockdown led to dysregulation of 918 genes in HCT116 and 3178 genes in HT29 cells. Among these, 296 genes showed same directional regulation (128 upregulated and 168 downregulated genes) and were considered as a common RPL9 knockdown signature. Particularly, we found through a network analysis that Id-1, which is functionally associated with activation of NF-κB and cell survival, was commonly downregulated. Subsequent western blot analysis affirmed that RPL9 silencing induced the decrease in the levels of Id-1 and phosphorylated IκBα in both HCT116 and HT29 cells. Also, the same condition decreased the levels of PARP-1 and pro-caspase-3, accelerating apoptosis. Furthermore, inhibition of RPL9 expression significantly suppressed the growth of human CRC xenografts in nude mice. These findings indicate that the function of RPL9 is correlated with Id-1/NF-κB signaling axis and suggest that targeting RPL9 could be an attractive option for molecular therapy of colorectal cancer.
Collapse
Affiliation(s)
- In Hye Baik
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Guk-Heui Jo
- Myunggok Eye Research Institute, Kim's Eye Hospital, Konyang University College of Medicine, Seoul, Republic of Korea
| | - Daekwan Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Ji Ko
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Chi Heum Cho
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yun-Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
29
|
Artero-Castro A, Perez-Alea M, Feliciano A, Leal JA, Genestar M, Castellvi J, Peg V, Ramón Y Cajal S, Lleonart MEL. Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy 2016; 11:1499-519. [PMID: 26176264 DOI: 10.1080/15548627.2015.1063764] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human ribosomal P complex, which consists of the acidic ribosomal P proteins RPLP0, RPLP1, and RPLP2 (RPLP proteins), recruits translational factors, facilitating protein synthesis. Recently, we showed that overexpression of RPLP1 immortalizes primary cells and contributes to transformation. Moreover, RPLP proteins are overexpressed in human cancer, with the highest incidence in breast carcinomas. It is thought that disruption of the P complex would directly affect protein synthesis, causing cell growth arrest and eventually apoptosis. Here, we report a distinct mechanism by which cancer cells undergo cell cycle arrest and induced autophagy when RPLP proteins are downregulated. We found that absence of RPLP0, RPLP1, or RPLP2 resulted in reactive oxygen species (ROS) accumulation and MAPK1/ERK2 signaling pathway activation. Moreover, ROS generation led to endoplasmic reticulum (ER) stress that involved the EIF2AK3/PERK-EIF2S1/eIF2α-EIF2S2-EIF2S3-ATF4/ATF-4- and ATF6/ATF-6-dependent arms of the unfolded protein response (UPR). RPLP protein-deficient cells treated with autophagy inhibitors experienced apoptotic cell death as an alternative to autophagy. Strikingly, antioxidant treatment prevented UPR activation and autophagy while restoring the proliferative capacity of these cells. Our results indicate that ROS are a critical signal generated by disruption of the P complex that causes a cellular response that follows a sequential order: first ROS, then ER stress/UPR activation, and finally autophagy. Importantly, inhibition of the first step alone is able to restore the proliferative capacity of the cells, preventing UPR activation and autophagy. Overall, our results support a role for autophagy as a survival mechanism in response to stress due to RPLP protein deficiency.
Collapse
Affiliation(s)
- Ana Artero-Castro
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Mileidys Perez-Alea
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Andrea Feliciano
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Jose A Leal
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Mónica Genestar
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Josep Castellvi
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Vicente Peg
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Santiago Ramón Y Cajal
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| | - Matilde E L Lleonart
- a Oncology and Pathology Group ; Pathology Department; Institut de Recerca Hospital Vall d'Hebron ; Barcelona , Spain
| |
Collapse
|
30
|
Xu HM, Deng HT, Liu CD, Chen YL, Zhang ZY. Phosphoproteomics Analysis of Endometrium in Women with or without Endometriosis. Chin Med J (Engl) 2016; 128:2617-24. [PMID: 26415800 PMCID: PMC4736851 DOI: 10.4103/0366-6999.166022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: The molecular mechanisms underlying the endometriosis are still not completely understood. In order to test the hypothesis that the approaches in phosphoproteomics might contribute to the identification of key biomarkers to assess disease pathogenesis and drug targets, we carried out a phosphoproteomics analysis of human endometrium. Methods: A large-scale differential phosphoproteome analysis, using peptide enrichment of titanium dioxide purify and sequential elution from immobilized metal affinity chromatography with linear trap quadrupole-tandem mass spectrometry, was performed in endometrium tissues from 8 women with or without endometriosis. Results: The phosphorylation profiling of endometrium from endometriosis patients had been obtained, and found that identified 516 proteins were modified at phosphorylation level during endometriosis. Gene ontology annotation analysis showed that these proteins were enriched in cellular processes of binding and catalytic activity. Further pathway analysis showed that ribosome pathway and focal adhesion pathway were the top two pathways, which might be deregulated during the development of endometriosis. Conclusions: That large-scale phosphoproteome quantification has been successfully identified in endometrium tissues of women with or without endometriosis will provide new insights to understand the molecular mechanisms of the development of endometriosis.
Collapse
Affiliation(s)
| | | | | | | | - Zhen-Yu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
31
|
Goudarzi KM, Lindström MS. Role of ribosomal protein mutations in tumor development (Review). Int J Oncol 2016; 48:1313-24. [PMID: 26892688 PMCID: PMC4777597 DOI: 10.3892/ijo.2016.3387] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, CCK R8:05, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells. Gene 2016; 576:421-8. [DOI: 10.1016/j.gene.2015.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 01/18/2023]
|
33
|
Kardos GR, Robertson GP. Therapeutic interventions to disrupt the protein synthetic machinery in melanoma. Pigment Cell Melanoma Res 2015; 28:501-19. [PMID: 26139519 PMCID: PMC4716672 DOI: 10.1111/pcmr.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/30/2015] [Indexed: 01/23/2023]
Abstract
Control of the protein synthetic machinery is deregulated in many cancers, including melanoma, to increase the protein production. Tumor suppressors and oncogenes play key roles in protein synthesis from the transcription of rRNA and ribosome biogenesis to mRNA translation initiation and protein synthesis. Major signaling pathways are altered in melanoma to modulate the protein synthetic machinery, thereby promoting tumor development. However, despite the importance of this process in melanoma development, involvement of the protein synthetic machinery in this cancer type is an underdeveloped area of study. Here, we review the coupling of melanoma development to deregulation of the protein synthetic machinery. We examine existing knowledge regarding RNA polymerase I inhibition and mRNA translation focusing on their inhibition for therapeutic applications in melanoma. Furthermore, the contribution of amino acid biosynthesis and involvement of ribosomal proteins are also reviewed as future therapeutic strategies to target deregulated protein production in melanoma.
Collapse
Affiliation(s)
- Gregory R. Kardos
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
| | - Gavin P. Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- Department of Surgery, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
| |
Collapse
|
34
|
Boccellino M, Alaia C, Misso G, Cossu AM, Facchini G, Piscitelli R, Quagliuolo L, Caraglia M. Gene interference strategies as a new tool for the treatment of prostate cancer. Endocrine 2015; 49:588-605. [PMID: 26049369 DOI: 10.1007/s12020-015-0629-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancer in men. It affects older men and the incidence increases with age; the median age at diagnosis is 67 years. The diagnosis of PCa is essentially based on three tools: digital rectal exam, serum concentration of prostate specific antigen, and transrectal ultrasound-guided biopsy. Currently, the therapeutic treatments of this cancer are different and range from the prostatectomy to hormonal therapy, to radiation therapy, to immunotherapy, and to chemotherapy. However, additional efforts are required in order to find new weapons for the treatment of metastatic setting of disease. The purpose of this review is to highlight new therapeutic strategies based on gene interference; in fact, numerous siRNA and miRNA in the therapeutic treatment of PCa are reported below.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio, 7, 80138, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
36
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
37
|
Hong M, Kim H, Kim I. Ribosomal protein L19 overexpression activates the unfolded protein response and sensitizes MCF7 breast cancer cells to endoplasmic reticulum stress-induced cell death. Biochem Biophys Res Commun 2014; 450:673-8. [PMID: 24950402 DOI: 10.1016/j.bbrc.2014.06.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/07/2014] [Indexed: 02/02/2023]
Abstract
Although first identified for their roles in protein synthesis, certain ribosomal proteins exert pleiotropic physiological functions in the cell. Ribosomal protein L19 is overexpressed in breast cancer cells by amplification and copy number variation. In this study, we examined the novel pro-apoptotic role of ribosomal protein L19 in the breast cancer cell line MCF7. Overexpression of RPL19 sensitized MCF7 cells to endoplasmic reticulum stress-induced cell death. RPL19 overexpression itself was not cytotoxic; however, cell death induction was enhanced when RPL19 overexpressing cells were incubated with endoplasmic reticulum stress-inducing agents, and this sensitizing effect was specific to MCF7 cells. Examination of the cell signaling pathways that mediate the unfolded protein response (UPR) revealed that overexpression of RPL19 induced pre-activation of the UPR, including phosphorylation of pERK-like ER kinase (PERK), phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α), and activation of p38 MAPK-associated stress signaling. Our findings suggest that upregulation of RPL19 induces ER stress, resulting in increased sensitivity to ER stress and enhanced cell death in MCF7 breast cancer cells.
Collapse
Affiliation(s)
- Mina Hong
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - HyungRyong Kim
- Department of Dental Pharmacology, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Republic of Korea.
| | - Inki Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea; Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Kardos GR, Dai MS, Robertson GP. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res 2014; 27:801-12. [PMID: 24807543 DOI: 10.1111/pcmr.12259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/29/2014] [Indexed: 12/26/2022]
Abstract
Ribosome biogenesis can modulate protein synthesis, a process heavily relied upon for cancer cell proliferation. In this study, involvement of large subunit ribosomal proteins (RPLs) in melanoma has been dissected and RPLs categorized based on modulation of cell proliferation and therapeutic targeting potential. Based on these results, two categories of RPLs were identified: the first causing negligible effects on cell viability, p53 expression, and protein translation, while the second category decreased cell viability and inhibited protein synthesis mediated with or without p53 protein stabilization. RPL13 represents the second category, where siRNA-mediated targeting inhibited tumor development through decreased cellular proliferation. Mechanistically, decreased RPL13 levels increased p53 stability mediated by RPL5 and RPL11 binding to and preventing MDM2 from targeting p53 for degradation. The consequence was p53-dependent cell cycle arrest and decreased protein translation. Thus, targeting certain category 2 RPL proteins can inhibit melanoma tumor development mediated through the MDM2-p53 pathway.
Collapse
Affiliation(s)
- Gregory R Kardos
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | |
Collapse
|
39
|
Li C, Chen D, Luo M, Ge M, Zhu J. Knockdown of ribosomal protein L39 by RNA interference inhibits the growth of human pancreatic cancer cells in vitro and in vivo. Biotechnol J 2014; 9:652-63. [PMID: 24799381 DOI: 10.1002/biot.201300321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/02/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer remains a major unsolved health problem lacking a potent therapeutic option. Our previous studies showed that the ribosomal protein L39 (RPL39) gene was up-regulated after long-term silencing of oncogenic KRAS in pancreatic cancer PANC-1 cells, which indicated that RPL39 may be important for pancreatic cancer development and survival. In the current study, small interfering RNA (siRNA) targeting of the RPL39 gene was performed to determine the effects of the RPL39 gene on growth of pancreatic cancer PANC-1 and BxPC-3 cells in vitro and in vivo. Results from in vitro experiments showed that knockdown of RPL39 expression with RPL39-siRNA suppressed cell proliferation and specifically enhanced cell apoptosis significantly in both PANC-1 and BxPC-3 cells. The increase of caspase-8 activities and the loss of mitochondrial membrane potential after RPL39 silencing indicated that the RPL39 gene may be involved in caspase-8-related mitochondrial apoptosis. Further, treatment with the RPL39-siRNA inhibited the growth of a human pancreatic cancer xenograft in BALB/c nude mice, accompanied by a decreased expression of RPL39. In the xenograft tumors with injection of RPL39-siRNA, the expressions of Ki-67 and CD31 were significantly down-regulated, and apoptosis was markedly induced. Our findings suggested that siRNA against the RPL39 gene may be of value for gene therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Chaodong Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Engineering Research Center for Cell Engineering and Therapeutic Antibody, SJTU, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Wong QWL, Li J, Ng SR, Lim SG, Yang H, Vardy LA. RPL39L is an example of a recently evolved ribosomal protein paralog that shows highly specific tissue expression patterns and is upregulated in ESCs and HCC tumors. RNA Biol 2013; 11:33-41. [PMID: 24452241 DOI: 10.4161/rna.27427] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosomal proteins (RPs) have been shown to be able to impart selectivity on the translating ribosome implicating them in gene expression control. Many ribosomal proteins are highly conserved and recently a number of ribosomal protein paralogs have been described in mammals. We examined the expression pattern of RPs in differentiating mouse Embryonic Stem Cells (ESCs), paying particular attention to the RP paralogs. We find the RP paralog Rpl39l is highly expressed in ESC and its expression strongly correlates with hepatocellular carcinoma tumor (HCC) samples with high tumor grading and alpha-fetoprotein level giving it diagnostic potential. We further screen the expression pattern of all RPs and their paralogs across 22 different tissues. We find that the more recently evolved RP paralogs show a much greater level of tissue-specific expression. We propose that these RP paralogs evolved more recently to provide a greater level of gene expression control to higher eukaryotes.
Collapse
Affiliation(s)
| | - Jia Li
- Cancer Science Institute; National University of Singapore; Singapore
| | - Sheng Rong Ng
- A*STAR Institute of Medical Biology; 8A Biomedical Grove; Immunos, Singapore
| | - Seng Gee Lim
- Department of Medicine; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Henry Yang
- Cancer Science Institute; National University of Singapore; Singapore
| | - Leah A Vardy
- A*STAR Institute of Medical Biology; 8A Biomedical Grove; Immunos, Singapore; School of Biological Sciences; Nanyang Technological University; Singapore
| |
Collapse
|
41
|
Wang Z, Hou J, Lu L, Qi Z, Sun J, Gao W, Meng J, Wang Y, Sun H, Gu H, Xin Y, Guo X, Yang G. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS One 2013; 8:e79117. [PMID: 24244431 PMCID: PMC3823983 DOI: 10.1371/journal.pone.0079117] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
Small ribosomal protein subunit S7 (RPS7) has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), JNK1/2 (Thr183/Tyr185), and P38 (Thr180/Tyr182) were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ziliang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Hou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lili Lu
- Life and Environment Science College, Shanghai Normal University, Shanghai, China
| | - Zihao Qi
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianmin Sun
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Gao
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huizhen Sun
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Gu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuhu Xin
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| |
Collapse
|
42
|
Han W, Shi M, Spivack SD. Site-specific methylated reporter constructs for functional analysis of DNA methylation. Epigenetics 2013; 8:1176-87. [PMID: 24004978 DOI: 10.4161/epi.26195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methods to experimentally alter and functionally evaluate cytosine methylation in a site-specific manner have proven elusive. We describe a site-specific DNA methylation method, using synthetically methylated primers and high fidelity PCR coupled with ligation of reporter constructs. We applied this method to introduce methylated cytosines into fragments of the respective DAPK and RASSF1A promoters that had been cloned into luciferase reporters. We found that methylation of 3-7 residue CpG clusters that were 5' adjacent to the transcription start site (TSS) of the DAPK gene produced up to a 54% decrease in promoter activity (p<0.01). Similarly, for RASSF1A promoter reporter constructs, the methylation of either of two clusters of four CpGs each, but not an intervening cluster, produced a 63% decrease in promoter activity (p<0.01), suggesting that precise mCpG position is crucial, and factors other than simple proximity to the TSS are at play. Chromatin immunoprecipitation analysis of these reporter constructs demonstrated that transcription factor Oct-1 and Sp1 preferentially bound the unmethylated vs. methylated DAPK or RASSF1A promoter reporter constructs at the functional CpG sites. Histone H1, hnRNP1, and MeCP2 showed preferential binding to methylated sequence at functional sites in these reporter constructs, as well as highly preferential (> 8-80-fold) binding to native methylated vs. unmethylated chromatin. These results suggest that: (1) site-specific, precision DNA methylation of a reporter construct can be used for functional analysis of commonly observed gene promoter methylation patterns; (2) the reporter system contains key elements of the endogenous chromatin machinery.
Collapse
Affiliation(s)
- Weiguo Han
- Pulmonary Medicine; Albert Einstein College of Medicine; Bronx, NY USA
| | - Miao Shi
- Pulmonary Medicine; Albert Einstein College of Medicine; Bronx, NY USA
| | - Simon D Spivack
- Pulmonary Medicine; Albert Einstein College of Medicine; Bronx, NY USA; Genetics; Albert Einstein College of Medicine; Bronx, NY USA
| |
Collapse
|
43
|
Guo J, Evans JC, O’Driscoll CM. Delivering RNAi therapeutics with non-viral technology: a promising strategy for prostate cancer? Trends Mol Med 2013; 19:250-61. [DOI: 10.1016/j.molmed.2013.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
|
44
|
Smolock EM, Korshunov VA, Glazko G, Qiu X, Gerloff J, Berk BC. Ribosomal protein L17, RpL17, is an inhibitor of vascular smooth muscle growth and carotid intima formation. Circulation 2012; 126:2418-27. [PMID: 23065385 DOI: 10.1161/circulationaha.112.125971] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Carotid intima-media thickening is associated with increased cardiovascular risk in humans. We discovered that intima formation and cell proliferation in response to carotid injury is greater in SJL/J (SJL) in comparison with C3HeB/FeJ (C3H/F) mice. The purpose of this study was to identify candidate genes contributing to intima formation. METHODS AND RESULTS We performed microarray and bioinformatic analyses of carotid arteries from C3H/F and SJL mice. Kyoto Encyclopedia of Genes and Genomes analysis showed that the ribosome pathway was significantly up-regulated in C3H/F in comparison with SJL mice. Expression of a ribosomal protein, RpL17, was >40-fold higher in C3H/F carotids in comparison with SJL. Aortic vascular smooth muscle cells from C3H/F grew slower in comparison to SJL. To determine the role of RpL17 in vascular smooth muscle cell growth regulation, we analyzed the relationship between RpL17 expression and cell cycle progression. Cultured vascular smooth muscle cells from mice, rats, and humans showed that RpL17 expression inversely correlated with growth as shown by decreased cells in S phase and increased cells in G(0)/G(1). To prove that RpL17 acted as a growth inhibitor in vivo, we used pluronic gel delivery of RpL17 small interfering RNA to C3H/F carotid arteries. This resulted in an 8-fold increase in the number of proliferating cells. Furthermore, following partial carotid ligation in SJL mice, RpL17 expression in the intima and media decreased, but the number of proliferating cells increased. CONCLUSIONS RpL17 acts as a vascular smooth muscle cell growth inhibitor (akin to a tumor suppressor) and represents a potential therapeutic target to limit carotid intima-media thickening.
Collapse
Affiliation(s)
- Elaine M Smolock
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Shenoy N, Kessel R, Bhagat TD, Bhattacharyya S, Yu Y, McMahon C, Verma A. Alterations in the ribosomal machinery in cancer and hematologic disorders. J Hematol Oncol 2012; 5:32. [PMID: 22709827 PMCID: PMC3438023 DOI: 10.1186/1756-8722-5-32] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/18/2012] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are essential components of the protein translation machinery and are composed of more than 80 unique large and small ribosomal proteins. Recent studies show that in addition to their roles in protein translation, ribosomal proteins are also involved in extra-ribosomal functions of DNA repair, apoptosis and cellular homeostasis. Consequently, alterations in the synthesis or functioning of ribosomal proteins can lead to various hematologic disorders. These include congenital anemias such as Diamond Blackfan anemia and Shwachman Diamond syndrome; both of which are associated with mutations in various ribosomal genes. Acquired uniallelic deletion of RPS14 gene has also been shown to lead to the 5q syndrome, a distinct subset of MDS associated with macrocytic anemia. Recent evidence shows that specific ribosomal proteins are overexpressed in liver, colon, prostate and other tumors. Ribosomal protein overexpression can promote tumorigenesis by interactions with the p53 tumor suppressor pathway and also by direct effects on various oncogenes. These data point to a broad role of ribosome protein alterations in hematologic and oncologic diseases.
Collapse
Affiliation(s)
- Niraj Shenoy
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10467, USA
| | | | | | | | | | | | | |
Collapse
|