1
|
Kim LJY, Kundu B, Moretti P, Lozano AM, Rahimpour S. Advancements in surgical treatments for Huntington disease: From pallidotomy to experimental therapies. Neurotherapeutics 2024:e00452. [PMID: 39304438 DOI: 10.1016/j.neurot.2024.e00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreic movements, behavioral changes, and cognitive impairment. The pathogenesis of this process is a consequence of mutant protein toxicity in striatal and cortical neurons. Thus far, neurosurgical management of HD has largely been limited to symptomatic relief of motor symptoms using ablative and stimulation techniques. These interventions, however, do not modify the progressive course of the disease. More recently, disease-modifying experimental therapeutic strategies have emerged targeting intrastriatal infusion of neurotrophic factors, cell transplantation, HTT gene silencing, and delivery of intrabodies. Herein we review therapies requiring neurosurgical intervention, including those targeting symptom management and more recent disease-modifying agents, with a focus on safety, efficacy, and surgical considerations.
Collapse
Affiliation(s)
- Leo J Y Kim
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Bornali Kundu
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Paolo Moretti
- Department of Neurology, University of Utah, Salt Lake City, UT, USA; Department of Neurology, George E. Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Andres M Lozano
- Division of Neurosurgery and Toronto Western Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shervin Rahimpour
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
D'Egidio F, Castelli V, Lombardozzi G, Ammannito F, Cimini A, d'Angelo M. Therapeutic advances in neural regeneration for Huntington's disease. Neural Regen Res 2024; 19:1991-1997. [PMID: 38227527 DOI: 10.4103/1673-5374.390969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 01/17/2024] Open
Abstract
Huntington's disease is a neurodegenerative disease caused by the expansion mutation of a cytosine-adenine-guanine triplet in the exon 1 of the HTT gene which is responsible for the production of the huntingtin (Htt) protein. In physiological conditions, Htt is involved in many cellular processes such as cell signaling, transcriptional regulation, energy metabolism regulation, DNA maintenance, axonal trafficking, and antiapoptotic activity. When the genetic alteration is present, the production of a mutant version of Htt (mHtt) occurs, which is characterized by a plethora of pathogenic activities that, finally, lead to cell death. Among all the cells in which mHtt exerts its dangerous activity, the GABAergic Medium Spiny Neurons seem to be the most affected by the mHtt-induced excitotoxicity both in the cortex and in the striatum. However, as the neurodegeneration proceeds ahead the neuronal loss grows also in other brain areas such as the cerebellum, hypothalamus, thalamus, subthalamic nucleus, globus pallidus, and substantia nigra, determining the variety of symptoms that characterize Huntington's disease. From a clinical point of view, Huntington's disease is characterized by a wide spectrum of symptoms spanning from motor impairment to cognitive disorders and dementia. Huntington's disease shows a prevalence of around 3.92 cases every 100,000 worldwide and an incidence of 0.48 new cases every 100,000/year. To date, there is no available cure for Huntington's disease. Several treatments have been developed so far, aiming to reduce the severity of one or more symptoms to slow down the inexorable decline caused by the disease. In this context, the search for reliable strategies to target the different aspects of Huntington's disease become of the utmost interest. In recent years, a variety of studies demonstrated the detrimental role of neuronal loss in Huntington's disease condition highlighting how the replacement of lost cells would be a reasonable strategy to overcome the neurodegeneration. In this view, numerous have been the attempts in several preclinical models of Huntington's disease to evaluate the feasibility of invasive and non-invasive approaches. Thus, the aim of this review is to offer an overview of the most appealing approaches spanning from stem cell-based cell therapy to extracellular vesicles such as exosomes in light of promoting neurogenesis, discussing the results obtained so far, their limits and the future perspectives regarding the neural regeneration in the context of Huntington's disease.
Collapse
Affiliation(s)
- Francesco D'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
4
|
Esmaeili A, Eteghadi A, Landi FS, Yavari SF, Taghipour N. Recent approaches in regenerative medicine in the fight against neurodegenerative disease. Brain Res 2024; 1825:148688. [PMID: 38042394 DOI: 10.1016/j.brainres.2023.148688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Neurodegenerative diseases arise due to slow and gradual loss of structure and/or function of neurons and glial cells and cause different degrees of loss of cognition abilities and sensation. The little success in developing effective treatments imposes a high and regressive economic impact on society, patients and their families. In recent years, regenerative medicine has provided a great opportunity to research new innovative strategies with strong potential to treatleva these diseases. These effects are due to the ability of suitable cells and biomaterials to regenerate damaged nerves with differentiated cells, creating an appropriate environment for recovering or preserving existing healthy neurons and glial cells from destruction and damage. Ultimately, a better understanding and thus a further investigation of stem cell technology, tissue engineering, gene therapy, and exosomes allows progress towards practical and effective treatments for neurodegenerative diseases. Therefore, in this review, advances currently being developed in regenerative medicine using animal models and human clinical trials in neurological disorders are summarized.
Collapse
Affiliation(s)
- Ali Esmaeili
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Eteghadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Saeedi Landi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadnaz Fakhteh Yavari
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kim SG, George NP, Hwang JS, Park S, Kim MO, Lee SH, Lee G. Human Bone Marrow-Derived Mesenchymal Stem Cell Applications in Neurodegenerative Disease Treatment and Integrated Omics Analysis for Successful Stem Cell Therapy. Bioengineering (Basel) 2023; 10:bioengineering10050621. [PMID: 37237691 DOI: 10.3390/bioengineering10050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative diseases (NDDs), which are chronic and progressive diseases, are a growing health concern. Among the therapeutic methods, stem-cell-based therapy is an attractive approach to NDD treatment owing to stem cells' characteristics such as their angiogenic ability, anti-inflammatory, paracrine, and anti-apoptotic effects, and homing ability to the damaged brain region. Human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) are attractive NDD therapeutic agents owing to their widespread availability, easy attainability and in vitro manipulation and the lack of ethical issues. Ex vivo hBM-MSC expansion before transplantation is essential because of the low cell numbers in bone marrow aspirates. However, hBM-MSC quality decreases over time after detachment from culture dishes, and the ability of hBM-MSCs to differentiate after detachment from culture dishes remains poorly understood. Conventional analysis of hBM-MSCs characteristics before transplantation into the brain has several limitations. However, omics analyses provide more comprehensive molecular profiling of multifactorial biological systems. Omics and machine learning approaches can handle big data and provide more detailed characterization of hBM-MSCs. Here, we provide a brief review on the application of hBM-MSCs in the treatment of NDDs and an overview of integrated omics analysis of the quality and differentiation ability of hBM-MSCs detached from culture dishes for successful stem cell therapy.
Collapse
Affiliation(s)
- Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo Hwan Lee
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Provitera L, Tomaselli A, Raffaeli G, Crippa S, Arribas C, Amodeo I, Gulden S, Amelio GS, Cortesi V, Manzoni F, Cervellini G, Cerasani J, Menis C, Pesenti N, Tripodi M, Santi L, Maggioni M, Lonati C, Oldoni S, Algieri F, Garrido F, Bernardo ME, Mosca F, Cavallaro G. Human Bone Marrow-Derived Mesenchymal Stromal Cells Reduce the Severity of Experimental Necrotizing Enterocolitis in a Concentration-Dependent Manner. Cells 2023; 12:cells12050760. [PMID: 36899900 PMCID: PMC10000931 DOI: 10.3390/cells12050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gut disease in preterm neonates. In NEC animal models, mesenchymal stromal cells (MSCs) administration has reduced the incidence and severity of NEC. We developed and characterized a novel mouse model of NEC to evaluate the effect of human bone marrow-derived MSCs (hBM-MSCs) in tissue regeneration and epithelial gut repair. NEC was induced in C57BL/6 mouse pups at postnatal days (PND) 3-6 by (A) gavage feeding term infant formula, (B) hypoxia/hypothermia, and (C) lipopolysaccharide. Intraperitoneal injections of PBS or two hBM-MSCs doses (0.5 × 106 or 1 × 106) were given on PND2. At PND 6, we harvested intestine samples from all groups. The NEC group showed an incidence of NEC of 50% compared with controls (p < 0.001). Severity of bowel damage was reduced by hBM-MSCs compared to the PBS-treated NEC group in a concentration-dependent manner, with hBM-MSCs (1 × 106) inducing a NEC incidence reduction of up to 0% (p < 0.001). We showed that hBM-MSCs enhanced intestinal cell survival, preserving intestinal barrier integrity and decreasing mucosal inflammation and apoptosis. In conclusion, we established a novel NEC animal model and demonstrated that hBM-MSCs administration reduced the NEC incidence and severity in a concentration-dependent manner, enhancing intestinal barrier integrity.
Collapse
Affiliation(s)
- Livia Provitera
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Tomaselli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: (G.R.); (G.C.); Tel.: +39-(02)-55032234 (G.C.); Fax: +39-(02)-55032217 (G.R. & G.C.)
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Arribas
- Department of Pediatrics, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvia Gulden
- Neonatal Intensive Care Unit, Sant’Anna Hospital, 22042 Como, Italy
| | - Giacomo Simeone Amelio
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Cortesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesca Manzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gaia Cervellini
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jacopo Cerasani
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Camilla Menis
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicola Pesenti
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, 20126 Milan, Italy
- Revelo Datalabs S.R.L., 20142 Milan, Italy
| | - Matteo Tripodi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Caterina Lonati
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Samanta Oldoni
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Algieri
- Research and Development Unit, Postbiotica S.R.L., 20123 Milan, Italy
| | - Felipe Garrido
- Department of Pediatrics, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit, BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Maternal and Child Department, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: (G.R.); (G.C.); Tel.: +39-(02)-55032234 (G.C.); Fax: +39-(02)-55032217 (G.R. & G.C.)
| |
Collapse
|
7
|
Aslan A, Yuka SA. Stem Cell-Based Therapeutic Approaches in Genetic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:19-53. [PMID: 36735185 DOI: 10.1007/5584_2023_761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells, which can self-renew and differentiate into different cell types, have become the keystone of regenerative medicine due to these properties. With the achievement of superior clinical results in the therapeutic approaches of different diseases, the applications of these cells in the treatment of genetic diseases have also come to the fore. Foremost, conventional approaches of stem cells to genetic diseases are the first approaches in this manner, and they have brought safety issues due to immune reactions caused by allogeneic transplantation. To eliminate these safety issues and phenotypic abnormalities caused by genetic defects, firstly, basic genetic engineering practices such as vectors or RNA modulators were combined with stem cell-based therapeutic approaches. However, due to challenges such as immune reactions and inability to target cells effectively in these applications, advanced molecular methods have been adopted in ZFN, TALEN, and CRISPR/Cas genome editing nucleases, which allow modular designs in stem cell-based genetic diseases' therapeutic approaches. Current studies in genetic diseases are in the direction of creating permanent treatment regimens by genomic manipulation of stem cells with differentiation potential through genome editing tools. In this chapter, the stem cell-based therapeutic approaches of various vital genetic diseases were addressed wide range from conventional applications to genome editing tools.
Collapse
Affiliation(s)
- Ayça Aslan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Selcen Arı Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey.
| |
Collapse
|
8
|
Liang XS, Sun ZW, Thomas AM, Li S. Mesenchymal Stem Cell Therapy for Huntington Disease: A Meta-Analysis. Stem Cells Int 2023; 2023:1109967. [PMID: 37168444 PMCID: PMC10164866 DOI: 10.1155/2023/1109967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Objective Mesenchymal stem cell (MSC) therapy has been explored in Huntington disease (HD) as a potential therapeutic approach; however, a complete synthesis of these results is lacking. We conducted a meta-analysis to evaluate the effects of MSCs on HD. Method Eligible studies published before November 2022 were screened from Embase, PubMed, Web of Science, Medline, and Cochrane in accordance with PRISMA guidelines. ClinicalTrial.gov and the World Health Organization International Clinical Trials Registry Platform were also searched for registered clinical trials. The outcomes in rodent studies evaluated included morphological changes (striatal volume and ventricular volume), motor function (rotarod test, wire hang test, grip strength test, limb-clasping test, apomorphine-induced rotation test, and neuromuscular electromyography activity), cognition (Morris water maze test), and body weight. Result The initial search returned 362 records, of which 15 studies incorporating 346 HD rodents were eligible for meta-analysis. Larger striatal and smaller ventricular volumes were observed in MSC-treated animals compared to controls. MSCs transplanted before the occurrence of motor dysfunction rescued the motor incoordination of HD. Among different MSC sources, bone marrow mesenchymal stem cells were the most investigated cells and were effective in improving motor coordination. MSC therapy improved muscle strength, neuromuscular electromyography activity, cortex-related motor function, and striatum-related motor function, while cognition was not changed. The body weight of male HD rodents increased after MSC transplantation, while that of females was not affected. Conclusion Meta-analysis showed a positive effect of MSCs on HD rodents overall, as reflected in morphological changes, motor coordination, muscle strength, neuromuscular electromyography activity, cortex-related motor function, and striatum-related motor function, while cognition was not changed by MSC therapy.
Collapse
Affiliation(s)
- Xue-Song Liang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zheng-Wu Sun
- Department of Clinical Pharmacy, Dalian Municipal Central Hospital, Dalian, China
| | - Aline M. Thomas
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Garcia Jareño P, Bartley OJM, Precious SV, Rosser AE, Lelos MJ. Challenges in progressing cell therapies to the clinic for Huntington's disease: A review of the progress made with pluripotent stem cell derived medium spiny neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:1-48. [PMID: 36424090 DOI: 10.1016/bs.irn.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Huntington's disease (HD) is a hereditary, neurodegenerative disorder characterized by a triad of symptoms: motor, cognitive and psychiatric. HD is caused by a genetic mutation, expansion of the CAG repeat in the huntingtin gene, which results in loss of medium spiny neurons (MSNs) of the striatum. Cell replacement therapy (CRT) has emerged as a possible therapy for HD, aiming to replace those cells lost to the disease process and alleviate its symptoms. Initial pre-clinical studies used primary fetal striatal cells to provide proof-of-principal that CRT can bring about functional recovery on some behavioral tasks following transplantation into HD models. Alternative donor cell sources are required if CRT is to become a viable therapeutic option and human pluripotent stem cell (hPSC) sources, which have undergone differentiation toward the MSNs lost to the disease process, have proved to be strong candidates. The focus of this chapter is to review work conducted on the functional assessment of animals following transplantation of hPSC-derived MSNs. We discuss different ways that graft function has been assessed, and the results that have been achieved to date. In addition, this chapter presents and discusses challenges that remain in this field.
Collapse
Affiliation(s)
| | - Oliver J M Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sophie V Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; Cardiff University Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Issa SS, Shaimardanova AA, Valiullin VV, Rizvanov AA, Solovyeva VV. Mesenchymal Stem Cell-Based Therapy for Lysosomal Storage Diseases and Other Neurodegenerative Disorders. Front Pharmacol 2022; 13:859516. [PMID: 35308211 PMCID: PMC8924473 DOI: 10.3389/fphar.2022.859516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of approximately 50 genetic disorders caused by mutations in genes coding enzymes that are involved in cell degradation and transferring lipids and other macromolecules. Accumulation of lipids and other macromolecules in lysosomes leads to the destruction of affected cells. Although the clinical manifestations of different LSDs vary greatly, more than half of LSDs have symptoms of central nervous system neurodegeneration, and within each disorder there is a considerable variation, ranging from severe, infantile-onset forms to attenuated adult-onset disease, sometimes with distinct clinical features. To date, treatment options for this group of diseases remain limited, which highlights the need for further development of innovative therapeutic approaches, that can not only improve the patients' quality of life, but also provide full recovery for them. In many LSDs stem cell-based therapy showed promising results in preclinical researches. This review discusses using mesenchymal stem cells for different LSDs therapy and other neurodegenerative diseases and their possible limitations.
Collapse
Affiliation(s)
- Shaza S Issa
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Victor V Valiullin
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
11
|
Lima MN, Barbosa-Silva MC, Maron-Gutierrez T. New perspectives for mesenchymal stromal cells as an adjuvant therapy for infectious disease-associated encephalopathies. Neural Regen Res 2022; 17:48-52. [PMID: 34100426 PMCID: PMC8451575 DOI: 10.4103/1673-5374.314292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Knowledge of the mechanisms that trigger infection-related encephalopathies is still very limited and cell therapies are one of the most promising alternatives for neurodegenerative diseases, and its application in infectious diseases can be of great relevance. Mesenchymal stromal cells are cells with great immunomodulatory potential; therefore, their use in clinical and preclinical studies in a variety of diseases, including central nervous system diseases, increased in the last decade. Mesenchymal stromal cells can exert their beneficial effects through several mechanisms, such as direct cell contact, through surface receptors, and also through paracrine or endocrine mechanisms. The paracrine mechanism is widely accepted by the scientific community and involves the release of soluble factors, which include cytokines, chemokines and trophic factors, and extracellular vesicles. This mini review discusses mesenchymal stromal cells mechanisms of action in neurological disorders, the neuroinflammatory process that takes place in the brain as a result of peripheral inflammation and changes in the brain’s cellular scenario as a common factor in central nervous system diseases, and mesenchymal stromal cells therapy in encephalopathies. Mesenchymal stromal cells have been shown to act in neuroinflammation processes, leading to improved survival and mitigating behavioral damage. More recently, these cells have been tested in preclinical models of infectious diseases-associated encephalopathies (e.g., cerebral malaria and sepsis associated encephalopathy) and have shown satisfactory results.
Collapse
Affiliation(s)
- Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Maria C Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz; National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Kim IK, Park JH, Kim B, Hwang KC, Song BW. Recent advances in stem cell therapy for neurodegenerative disease: Three dimensional tracing and its emerging use. World J Stem Cells 2021; 13:1215-1230. [PMID: 34630859 PMCID: PMC8474717 DOI: 10.4252/wjsc.v13.i9.1215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative disease is a brain disorder caused by the loss of structure and function of neurons that lowers the quality of human life. Apart from the limited potential for endogenous regeneration, stem cell-based therapies hold considerable promise for maintaining homeostatic tissue regeneration and enhancing plasticity. Despite many studies, there remains insufficient evidence for stem cell tracing and its correlation with endogenous neural cells in brain tissue with three-dimensional structures. Recent advancements in tissue optical clearing techniques have been developed to overcome the existing shortcomings of cross-sectional tissue analysis in thick and complex tissues. This review focuses on recent progress of stem cell treatments to improve neurodegenerative disease, and introduces tissue optical clearing techniques that can implement a three-dimensional image as a proof of concept. This review provides a more comprehensive understanding of stem cell tracing that will play an important role in evaluating therapeutic efficacy and cellular interrelationship for regeneration in neurodegenerative diseases.
Collapse
Affiliation(s)
- Il-Kwon Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Jun-Hee Park
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
| | - Bomi Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea.
| |
Collapse
|
13
|
Matheakakis A, Batsali A, Papadaki HA, Pontikoglou CG. Therapeutic Implications of Mesenchymal Stromal Cells and Their Extracellular Vesicles in Autoimmune Diseases: From Biology to Clinical Applications. Int J Mol Sci 2021; 22:10132. [PMID: 34576296 PMCID: PMC8468750 DOI: 10.3390/ijms221810132] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are perivascular multipotent stem cells originally identified in the bone marrow (BM) stroma and subsequently in virtually all vascularized tissues. Because of their ability to differentiate into various mesodermal lineages, their trophic properties, homing capacity, and immunomodulatory functions, MSCs have emerged as attractive candidates in tissue repair and treatment of autoimmune disorders. Accumulating evidence suggests that the beneficial effects of MSCs may be primarily mediated via a number of paracrine-acting soluble factors and extracellular vesicles (EVs). EVs are membrane-coated vesicles that are increasingly being acknowledged as playing a key role in intercellular communication via their capacity to carry and deliver their cargo, consisting of proteins, nucleic acids, and lipids to recipient cells. MSC-EVs recapitulate the functions of the cells they originate, including immunoregulatory effects but do not seem to be associated with the limitations and concerns of cell-based therapies, thereby emerging as an appealing alternative therapeutic option in immune-mediated disorders. In the present review, the biology of MSCs will be outlined and an overview of their immunomodulatory functions will be provided. In addition, current knowledge on the features of MSC-EVs and their immunoregulatory potential will be summarized. Finally, therapeutic applications of MSCs and MSC-EVs in autoimmune disorders will be discussed.
Collapse
Affiliation(s)
- Angelos Matheakakis
- Department of Hematology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.M.); (H.A.P.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Helen A. Papadaki
- Department of Hematology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.M.); (H.A.P.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Charalampos G. Pontikoglou
- Department of Hematology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.M.); (H.A.P.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
14
|
Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, Koh B, How CW, Lee SH, Law JX. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int 2021; 2021:2616807. [PMID: 34422061 PMCID: PMC8378970 DOI: 10.1155/2021/2616807] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using these two modes of treatment in regenerative medicine are also critically reviewed.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Qi Hao Looi
- My Cytohealth Sdn Bhd, Bandar Seri Petaling, 57000 Kuala Lumpur, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hidayah Hassan
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000 Kajang, Selangor, Malaysia
| | - Genieve Ee Chia Yeo
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Ahani-Nahayati M, Shariati A, Mahmoodi M, Olegovna Zekiy A, Javidi K, Shamlou S, Mousakhani A, Zamani M, Hassanzadeh A. Stem cell in neurodegenerative disorders; an emerging strategy. Int J Dev Neurosci 2021; 81:291-311. [PMID: 33650716 DOI: 10.1002/jdn.10101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 01/28/2023] Open
Abstract
Neurodegenerative disorders are a diversity of disorders, surrounding Alzheimer's (AD), Parkinson's (PD), Huntington's diseases (HD), and amyotrophic lateral sclerosis (ALS) accompanied by some other less common diseases generally characterized by either developed deterioration of central or peripheral nervous system structurally or functionally. Today, with the viewpoint of an increasingly aging society, the number of patients with neurodegenerative diseases and sociomedical burdens will spread intensely. During the last decade, stem cell technology has attracted great attention for treating neurodegenerative diseases worldwide because of its unique attributes. As acknowledged, there are several categories of stem cells being able to proliferate and differentiate into various cellular lineages, highlighting their significance in the context of regenerative medicine. In preclinical models, stem cell therapy using mesenchymal stem/stromal cells (MSCs), hematopoietic stem cells (HSCs), and neural progenitor or stem cells (NPCs or NSCs) along with pluripotent stem cells (PSCs)-derived neuronal cells could elicit desired therapeutic effects, enabling functional deficit rescue partially. Regardless of the noteworthy progress in our scientific awareness and understanding of stem cell biology, there still exist various challenges to defeat. In the present review, we provide a summary of the therapeutic potential of stem cells and discuss the current status and prospect of stem cell strategy in neurodegenerative diseases, in particular, AD, PD, ALS, and HD.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ali Shariati
- Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Mahmoodi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kamran Javidi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Mousakhani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Neurosciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Sivandzade F, Cucullo L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int J Mol Sci 2021; 22:2153. [PMID: 33671500 PMCID: PMC7926761 DOI: 10.3390/ijms22042153] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells' capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
17
|
Yang Y, Zhu S, Li Y, Lu Q, Zhang Q, Su L, Zhang Q, Zhao Y, Luo Y, Liu Y. Human umbilical cord mesenchymal stem cells ameliorate skin fibrosis development in a mouse model of bleomycin-induced systemic sclerosis. Exp Ther Med 2020; 20:257. [PMID: 33199983 PMCID: PMC7664606 DOI: 10.3892/etm.2020.9387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) infusion has become a novel therapeutic strategy for complex autoimmune diseases; however, few detailed studies have been performed to investigate the benefit and mechanism of MSC treatment on systemic sclerosis (SSc). The present study aimed to evaluate the therapeutic effect of human umbilical cord derived-MSCs (UC-MSCs) on bleomycin-induced SSc in mice and explore the potential underlying mechanism. The murine SSc model was established by daily subcutaneous injection of bleomycin for 4 weeks, followed with two UC-MSC infusions every 7 days. Skin fibrosis was assessed by H&E and Masson staining. Flow cytometry was used to determine IL-17A, IFN-γ, tumor necrosis factor-β, IL-10 and IL-12 levels in serum samples and T cell subsets in murine spleen. Additionally, gene expression levels of cytokines and fibrosis markers in skin samples were measured by reverse transcription-quantitative PCR. Immunofluorescence staining was performed to track UC-MSC localization and lymphocyte cell infiltration in vivo. UC-MSC treatment exerted an anti-fibrotic role in bleomycin-induced SSc mice, as confirmed by histological improvement, decreased collagen synthesis, and reduced collagen-1α1, collagen-1α2, fibronectin-1 and α-smooth muscle actin gene expression levels. The results indicated that UC-MSC treatment only had a limited systematic effect on cytokine production in serum samples and T cell activation in the spleen. By contrast, T helper (Th)17 cell infiltration and activation in skin were efficiently inhibited after UC-MSC infusion, as evidenced by the decreased IL-17A and retinoic acid-related orphan receptor γt gene expression as well as IL-17A production. UC-MSC administration significantly ameliorated bleomycin-induced skin fibrosis and collagen formation primarily by eliminating local inflammation and Th17 cell activation in the skin; however, the systemic inhibitory effect of UM-MSCs on cytokines was less profound.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shuai Zhu
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanhong Li
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Qiuyi Zhang
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Linchong Su
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiuping Zhang
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Zhao
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yubin Luo
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Liu
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
18
|
Jia N, Chong J, Sun L. Application of stem cell biology in treating neurodegenerative diseases. Int J Neurosci 2020; 132:815-825. [PMID: 33081549 DOI: 10.1080/00207454.2020.1840376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The appropriate strategies are needed for stimulating the endogenous neurogenesis or introducing extrinsic neural progenitors, which could be harnessed as the regenerative resources for cueing the neurodegenerations. Adult neurogenesis is the endogenous continuing physiology in limited brain regions such as hippocampus, olfactory system, and hypothalamus. Besides adult neurogenesis, induced pluripotent stem cells (iPSCs) induced functional neurons could be another option for regenerative therapies. OBJECTIVE Current studies are trying to improve the adult neurogenesis and enable the iPSCs induced neurons into neural regeneration. Methods: Here in this review, we mainly introduced the recent progress in neural stem cell biology and its application in the treatment of the neurodegenerations. We main separated the strategy in summarizing the mediators and potential targets to promoting endogenous neural regeneration and transplantation of neural progenitors. CONCLUSION By collecting and comparing the advantages disadvantages between above-mentioned two strategies, we will offer the insight on future development of stem cell therapy in treating neurodegenerative patients.
Collapse
Affiliation(s)
- Na Jia
- Beijing University of Posts and Telecommunications, Beijing, China
| | - Jingping Chong
- Beijing University of Posts and Telecommunications, Beijing, China.,Shanghai University of Engineering Science, Shanghai, China
| | - Lina Sun
- Beijing University of Posts and Telecommunications, Beijing, China.,College of PE and Sport, Beijing Normal University, Beijing, China
| |
Collapse
|
19
|
Barros I, Marcelo A, Silva TP, Barata J, Rufino-Ramos D, Pereira de Almeida L, Miranda CO. Mesenchymal Stromal Cells' Therapy for Polyglutamine Disorders: Where Do We Stand and Where Should We Go? Front Cell Neurosci 2020; 14:584277. [PMID: 33132851 PMCID: PMC7573388 DOI: 10.3389/fncel.2020.584277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by the expansion of the cytosine-adenine-guanine (CAG) repeat. This mutation encodes extended glutamine (Q) tract in the disease protein, resulting in the alteration of its conformation/physiological role and in the formation of toxic fragments/aggregates of the protein. This group of heterogeneous disorders shares common molecular mechanisms, which opens the possibility to develop a pan therapeutic approach. Vast efforts have been made to develop strategies to alleviate disease symptoms. Nonetheless, there is still no therapy that can cure or effectively delay disease progression of any of these disorders. Mesenchymal stromal cells (MSC) are promising tools for the treatment of polyQ disorders, promoting protection, tissue regeneration, and/or modulation of the immune system in animal models. Accordingly, data collected from clinical trials have so far demonstrated that transplantation of MSC is safe and delays the progression of some polyQ disorders for some time. However, to achieve sustained phenotypic amelioration in clinics, several treatments may be necessary. Therefore, efforts to develop new strategies to improve MSC's therapeutic outcomes have been emerging. In this review article, we discuss the current treatments and strategies used to reduce polyQ symptoms and major pre-clinical and clinical achievements obtained with MSC transplantation as well as remaining flaws that need to be overcome. The requirement to cross the blood-brain-barrier (BBB), together with a short rate of cell engraftment in the lesioned area and low survival of MSC in a pathophysiological context upon transplantation may contribute to the transient therapeutic effects. We also review methods like pre-conditioning or genetic engineering of MSC that can be used to increase MSC survival in vivo, cellular-free approaches-i.e., MSC-conditioned medium (CM) or MSC-derived extracellular vesicles (EVs) as a way of possibly replacing the use of MSC and methods required to standardize the potential of MSC/MSC-derived products. These are fundamental questions that need to be addressed to obtain maximum MSC performance in polyQ diseases and therefore increase clinical benefits.
Collapse
Affiliation(s)
- Inês Barros
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,III-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Adriana Marcelo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Teresa P Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - João Barata
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Viravector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Catarina O Miranda
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,III-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
21
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
22
|
Sadatpoor SO, Salehi Z, Rahban D, Salimi A. Manipulated Mesenchymal Stem Cells Applications in Neurodegenerative Diseases. Int J Stem Cells 2020; 13:24-45. [PMID: 32114741 PMCID: PMC7119211 DOI: 10.15283/ijsc19031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/07/2019] [Accepted: 04/13/2019] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that have multilinear differentiation and self-renewal abilities. These cells are immune-privileged as they express no or low level of class-II major histocompatibility complex (MHC-II) and other costimulatory molecules. Having neuroprotective and regenerative properties, MSCs can be used to ameliorate several intractable neurodegenerative disorders by affecting both innate and adaptive immune systems. Several manipulations like pretreating MSCs with different conditions or agents, and using molecules derived from MSCs or genetically manipulating them, are the common and practical ways that can be used to strengthen MSCs survival and potency. Improved MSCs can have significantly enhanced impacts on diseases compared to MSCs not manipulated. In this review, we describe some of the most important manipulations that have been exerted on MSCs to improve their therapeutic functions and their applications in ameliorating three prevalent neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Seyyed omid Sadatpoor
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dariush Rahban
- Department of Nanomedicine, School of Advanced Medical Technologies, Tehran University of Medical Science, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Chohan MO. Deconstructing Neurogenesis, Transplantation and Genome-Editing as Neural Repair Strategies in Brain Disease. Front Cell Dev Biol 2020; 8:116. [PMID: 32232041 PMCID: PMC7082747 DOI: 10.3389/fcell.2020.00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Neural repair in injury and disease presents a pressing unmet need in regenerative medicine. Due to the intrinsically reduced ability of the brain to replace lost and damaged neurons, reversing long-term cognitive and functional impairments poses a unique problem. Over the years, advancements in cellular and molecular understanding of neurogenesis mechanisms coupled with sophistication of biotechnology tools have transformed neural repair into a cross-disciplinary field that integrates discoveries from developmental neurobiology, transplantation and tissue engineering to design disease- and patient-specific remedies aimed at boosting either native rehabilitation or delivering exogenous hypoimmunogenic interventions. Advances in deciphering the blueprint of neural ontogenesis and annotation of the human genome has led to the development of targeted therapeutic opportunities that have the potential of treating the most vulnerable patient populations and whose findings from benchside suggest looming clinical translation. This review discusses how findings from studies of adult neurogenesis have informed development of interventions that target endogenous neural regenerative machineries and how advances in biotechnology, including the use of new gene-editing tools, have made possible the development of promising, complex neural transplant-based strategies. Adopting a multi-pronged strategy that is tailored to underlying neural pathology and that encompasses facilitation of endogenous regeneration, correction of patient’s genomic mutations and delivery of transformed neural precursors and mature disease-relevant neuronal populations to replace injured or lost neural tissue remains no longer a fantasy.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, United States.,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| |
Collapse
|
24
|
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76:3323-3348. [PMID: 31055643 PMCID: PMC11105258 DOI: 10.1007/s00018-019-03125-1] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues-adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn's disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases.
Collapse
Affiliation(s)
- Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Benoit Favier
- CEA, DRF-IBFJ, IDMIT, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Deschaseaux
- STROMALab, Etablissement Français du Sang Occitanie, UMR 5273 CNRS, INSERM U1031, Université de Toulouse, Toulouse, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, IRSL, UMRS 976, Paris, France
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
25
|
Liu P, Li Y, Qi X, Xu J, Liu D, Ji X, Chi T, Liu H, Zou L. Protein kinase C is involved in the neuroprotective effect of berberine against intrastriatal injection of quinolinic acid-induced biochemical alteration in mice. J Cell Mol Med 2019; 23:6343-6354. [PMID: 31318159 PMCID: PMC6714207 DOI: 10.1111/jcmm.14522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Protein kinase C (PKC) shows a neuronal protection effect in neurodegenerative diseases. In this study, we test whether berberine has a positive effect on the activity of PKC in quinolinic acid (QA)‐induced neuronal cell death. We used intrastriatal injections of QA mice model to test the effect of berberine on motor and cognitive deficits, and the PKC signalling pathway. Treatment with 50 mg/kg b.w of berberine for 2 weeks significantly prevented QA‐induced motor and cognitive impairment and related pathologic changes in the brain. QA inhibited the phosphorylation of PKC and its downstream molecules, GSK‐3β, ERK and CREB, enhanced the glutamate level and release of neuroinflammatory cytokines; these effects were attenuated by berberine. We used in vivo infusion of Go6983, a PKC inhibitor to disturb PKC activity in mice brain, and found that the effect of berberine to reverse motor and cognitive deficits was significantly reduced. Moreover, inhibition of PKC also blocked the anti‐excitotoxicity effect of berberine, which is induced by glutamate in PC12 cells and BV2 cells, as well as anti‐neuroinflammatory effect in LPS‐stimulated BV2 cells. Above all, berberine showed neuroprotective effect against QA‐induced acute neurotoxicity by activating PKC and its downstream molecules.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinjie Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoxiao Qi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jia Xu
- Sanhome Pharmaceutical Limited Company, Nanjing, China
| | - Danyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuefei Ji
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianyan Chi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Han Liu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
26
|
Yu-Taeger L, Stricker-Shaver J, Arnold K, Bambynek-Dziuk P, Novati A, Singer E, Lourhmati A, Fabian C, Magg J, Riess O, Schwab M, Stolzing A, Danielyan L, Nguyen HHP. Intranasal Administration of Mesenchymal Stem Cells Ameliorates the Abnormal Dopamine Transmission System and Inflammatory Reaction in the R6/2 Mouse Model of Huntington Disease. Cells 2019; 8:E595. [PMID: 31208073 PMCID: PMC6628278 DOI: 10.3390/cells8060595] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Intrastriatal administration of mesenchymal stem cells (MSCs) has shown beneficial effects in rodent models of Huntington disease (HD). However, the invasive nature of surgical procedure and its potential to trigger the host immune response may limit its clinical use. Hence, we sought to evaluate the non-invasive intranasal administration (INA) of MSC delivery as an effective alternative route in HD. GFP-expressing MSCs derived from bone marrow were intranasally administered to 4-week-old R6/2 HD transgenic mice. MSCs were detected in the olfactory bulb, midbrain and striatum five days post-delivery. Compared to phosphate-buffered saline (PBS)-treated littermates, MSC-treated R6/2 mice showed an increased survival rate and attenuated circadian activity disruption assessed by locomotor activity. MSCs increased the protein expression of DARPP-32 and tyrosine hydroxylase (TH) and downregulated gene expression of inflammatory modulators in the brain 7.5 weeks after INA. While vehicle treated R6/2 mice displayed decreased Iba1 expression and altered microglial morphology in comparison to the wild type littermates, MSCs restored both, Iba1 level and the thickness of microglial processes in the striatum of R6/2 mice. Our results demonstrate significantly ameliorated phenotypes of R6/2 mice after MSCs administration via INA, suggesting this method as an effective delivering route of cells to the brain for HD therapy.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Janice Stricker-Shaver
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Katrin Arnold
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Patrycja Bambynek-Dziuk
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Arianna Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Elisabeth Singer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
| | - Claire Fabian
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Janine Magg
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, D-70376 Stuttgart, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Alexandra Stolzing
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany.
- Departments of Medical Chemistry and Biochemistry, Yerevan State Medical University, 0025 Yerevan, Armenia.
| |
Collapse
|
27
|
Stem cells in animal models of Huntington disease: A systematic review. Mol Cell Neurosci 2019; 95:43-50. [DOI: 10.1016/j.mcn.2019.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
|
28
|
Giampà C, Alvino A, Magatti M, Silini AR, Cardinale A, Paldino E, Fusco FR, Parolini O. Conditioned medium from amniotic cells protects striatal degeneration and ameliorates motor deficits in the R6/2 mouse model of Huntington's disease. J Cell Mol Med 2018; 23:1581-1592. [PMID: 30585395 PMCID: PMC6349233 DOI: 10.1111/jcmm.14113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammation significantly impacts the progression of Huntington's disease (HD) and the mutant HTT protein determines a pro‐inflammatory activation of microglia. Mesenchymal stem/stromal cells (MSC) from the amniotic membrane (hAMSC), and their conditioned medium (CM‐hAMSC), have been shown to possess protective effects in vitro and in vivo in animal models of immune‐based disorders and of traumatic brain injury, which have been shown to be mediated by their immunomodulatory properties. In this study, in the R6/2 mouse model for HD we demonstrate that mice treated with CM‐hAMSC display less severe signs of neurological dysfunction than saline‐treated ones. CM‐hAMSC treatment significantly delayed the development of the hind paw clasping response during tail suspension, reduced deficits in rotarod performance, and decreased locomotor activity in an open field test. The effects of CM‐hAMSC on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal atrophy and the formation of striatal neuronal intranuclear inclusions. In addition, while no significant increase was found in the expression of BDNF levels after CM‐hAMSC treatment, a significant decrease of microglia activation and inducible nitric oxide synthase levels were observed. These results support the concept that CM‐hAMSC could act by modulating inflammatory cells, and more specifically microglia.
Collapse
Affiliation(s)
- Carmela Giampà
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandra Alvino
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy
| | | | | | - Emanuela Paldino
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ornella Parolini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy.,Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy
| |
Collapse
|
29
|
Rafaiee R, Ahmadiankia N. Bone Marrow Derived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:69-79. [PMID: 30276162 PMCID: PMC6148505 DOI: 10.22088/ijmcm.bums.7.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 11/30/2022]
Abstract
The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on brain, specifically on the hippocampus. Emerging evidence has indicated that altered hippocampal neurogenesis is associated with the pathophysiology of neuropsychological disorders including addiction. The addictive drugs impair neurogenesis and undermine the function of neural stem/progenitor cells in hippocampus. This feature was claimed to be one of the underlying mechanisms of behavioral changes in patients with addiction. As the impairment of stem cells’ function has been proven to be the underlying cause of pathologic neuroadaptations in the brain, the administration of stem cell populations has shown promising results for re-modulating of neuronal status in the brain and especially in the hippocampus. Among the different types of stem cells, bone marrow derived mesenchymal stem cells are the most proper candidates for stem cell therapies. In this review article, the recent studies on the effects of addictive drugs on brain neurogenesis, and also the promising potential effects of stem cells in curing addiction related hippocampal damages are discussed.
Collapse
Affiliation(s)
- Raheleh Rafaiee
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | |
Collapse
|
30
|
Marofi F, Vahedi G, hasanzadeh A, Salarinasab S, Arzhanga P, Khademi B, Farshdousti Hagh M. Mesenchymal stem cells as the game‐changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol 2018; 234:1268-1288. [DOI: 10.1002/jcp.27152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Faroogh Marofi
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Ghasem Vahedi
- Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| | - Ali hasanzadeh
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Sadegh Salarinasab
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Bahareh Khademi
- Department of Medical Genetic Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
31
|
Human Umbilical Cord Matrix Stem Cells Reverse Oxidative Stress-Induced Cell Death and Ameliorate Motor Function and Striatal Atrophy in Rat Model of Huntington Disease. Neurotox Res 2018. [DOI: 10.1007/s12640-018-9884-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Shall G, Menosky M, Decker S, Nethala P, Welchko R, Leveque X, Lu M, Sandstrom M, Hochgeschwender U, Rossignol J, Dunbar G. Effects of Passage Number and Differentiation Protocol on the Generation of Dopaminergic Neurons from Rat Bone Marrow-Derived Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19030720. [PMID: 29498713 PMCID: PMC5877581 DOI: 10.3390/ijms19030720] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023] Open
Abstract
Multiple studies have demonstrated the ability of mesenchymal stem cells (MSCs) to differentiate into dopamine-producing cells, in vitro and in vivo, indicating their potential to be used in the treatment of Parkinson’s disease (PD). However, there are discrepancies among studies regarding the optimal time (i.e., passage number) and method for dopaminergic induction, in vitro. In the current study, we compared the ability of early (P4) and later (P40) passaged bone marrow-derived MSCs to differentiate into dopaminergic neurons using two growth-factor-based approaches. A direct dopaminergic induction (DDI) was used to directly convert MSCs into dopaminergic neurons, and an indirect dopaminergic induction (IDI) was used to direct MSCs toward a neuronal lineage prior to terminal dopaminergic differentiation. Results indicate that both early and later passaged MSCs exhibited positive expression of neuronal and dopaminergic markers following either the DDI or IDI protocols. Additionally, both early and later passaged MSCs released dopamine and exhibited spontaneous neuronal activity following either the DDI or IDI. Still, P4 MSCs exhibited significantly higher spiking and bursting frequencies as compared to P40 MSCs. Findings from this study provide evidence that early passaged MSCs, which have undergone the DDI, are more efficient at generating dopaminergic-like cells in vitro, as compared to later passaged MSCs or MSCs that have undergone the IDI.
Collapse
Affiliation(s)
- Gabrielle Shall
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Megan Menosky
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Sarah Decker
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Priya Nethala
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Ryan Welchko
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Xavier Leveque
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Ming Lu
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Michael Sandstrom
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Humanities and Social and Behavioral Sciences, Psychology Department, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Ute Hochgeschwender
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA.
- Field Neurosciences Institute, 4677 Towne Centre Rd. Suite 101, Saginaw, MI 48604, USA.
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA.
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Humanities and Social and Behavioral Sciences, Psychology Department, Central Michigan University, Mount Pleasant, MI 48859, USA.
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA.
| |
Collapse
|
33
|
Stem Cell-Based Therapies for Polyglutamine Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:439-466. [DOI: 10.1007/978-3-319-71779-1_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Connor B. Concise Review: The Use of Stem Cells for Understanding and Treating Huntington's Disease. Stem Cells 2017; 36:146-160. [PMID: 29178352 DOI: 10.1002/stem.2747] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
Abstract
Two decades ago, researchers identified that a CAG expansion mutation in the huntingtin (HTT) gene was involved in the pathogenesis of Huntington's disease (HD). However, since the identification of the HTT gene, there has been no advance in the development of therapeutic strategies to prevent or reduce the progression of HD. With the recent advances in stem cell biology and human cell reprogramming technologies, several novel and exciting pathways have emerged allowing researchers to enhance their understanding of the pathogenesis of HD, to identify and screen potential drug targets, and to explore alternative donor cell sources for cell replacement therapy. This review will discuss the role of compensatory neurogenesis in the HD brain, the use of stem cell-based therapies for HD to replace or prevent cell loss, and the recent advance of cell reprogramming to model and/or treat HD. These new technologies, coupled with advances in genome editing herald a promising new era for HD research with the potential to identify a therapeutic strategy to alleviate this debilitating disorder. Stem Cells 2018;36:146-160.
Collapse
Affiliation(s)
- Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Al-Gharaibeh A, Culver R, Stewart AN, Srinageshwar B, Spelde K, Frollo L, Kolli N, Story D, Paladugu L, Anwar S, Crane A, Wyse R, Maiti P, Dunbar GL, Rossignol J. Induced Pluripotent Stem Cell-Derived Neural Stem Cell Transplantations Reduced Behavioral Deficits and Ameliorated Neuropathological Changes in YAC128 Mouse Model of Huntington's Disease. Front Neurosci 2017; 11:628. [PMID: 29209158 PMCID: PMC5701605 DOI: 10.3389/fnins.2017.00628] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by neuronal loss and motor dysfunction. Although there is no effective treatment, stem cell transplantation offers a promising therapeutic strategy, but the safety and efficacy of this approach needs to be optimized. The purpose of this study was to test the potential of intra-striatal transplantation of induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) for treating HD. For this purpose, we developed mouse adenovirus-generated iPSCs, differentiated them into neural stem cells in vitro, labeled them with Hoechst, and transplanted them bilaterally into striata of 10-month old wild type (WT) and HD YAC128 mice. We assessed the efficiency of these transplanted iPS-NSCs to reduce motor deficits in YAC128 mice by testing them on an accelerating rotarod task at 1 day prior to transplantation, and then weekly for 10 weeks. Our results showed an amelioration of locomotor deficits in YAC128 mice that received iPS-NSC transplantations. Following testing, the mice were sacrificed, and their brains were analyzed using immunohistochemistry and Western blot (WB). The results from our histological examinations revealed no signs of tumors and evidence that many iPS-NSCs survived and differentiated into region-specific neurons (medium spiny neurons) in both WT and HD mice, as confirmed by co-labeling of Hoechst-labeled transplanted cells with NeuN and DARPP-32. Also, counts of Hoechst-labeled cells revealed that a higher proportion were co-labeled with DARPP-32 and NeuN in HD-, compared to WT- mice, suggesting a dissimilar differentiation pattern in HD mice. Whereas significant decreases were found in counts of NeuN- and DARPP-32-labeled cells, and for neuronal density measures in striata of HD vehicle controls, such decrements were not observed in the iPS-NSCs-transplanted-HD mice. WB analysis showed increase of BDNF and TrkB levels in striata of transplanted HD mice compared to HD vehicle controls. Collectively, our data suggest that iPS-NSCs may provide an effective option for neuronal replacement therapy in HD.
Collapse
Affiliation(s)
- Abeer Al-Gharaibeh
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Rebecca Culver
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Andrew N Stewart
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Bhairavi Srinageshwar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Kristin Spelde
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Laura Frollo
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Nivya Kolli
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Darren Story
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Leela Paladugu
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Sarah Anwar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Andrew Crane
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Robert Wyse
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, United States
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, United States
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,College of Medicine, Central Michigan University, Mt Pleasant, MI, United States
| |
Collapse
|
36
|
Lo Furno D, Mannino G, Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol 2017; 233:3982-3999. [PMID: 28926091 DOI: 10.1002/jcp.26192] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into not only cells of mesodermal lineages, but also into endodermal and ectodermal derived elements, including neurons and glial cells. For this reason, MSCs have been extensively investigated to develop cell-based therapeutic strategies, especially in pathologies whose pharmacological treatments give poor results, if any. As in the case of irreversible neurological disorders characterized by progressive neuronal death, in which behavioral and cognitive functions of patients inexorably decline as the disease progresses. In this review, we focus on the possible functional role exerted by MSCs in the treatment of some disabling neurodegenerative disorders such as Alzheimer's Disease, Amyotrophic Lateral Sclerosis, Huntington's Disease, and Parkinson's Disease. Investigations have been mainly performed in vitro and in animal models by using MSCs generally originated from umbilical cord, bone marrow, or adipose tissue. Positive results obtained have prompted several clinical trials, the number of which is progressively increasing worldwide. To date, many of them have been primarily addressed to verify the safety of the procedures but some improvements have already been reported, fortunately. Although the exact mechanisms of MSC-induced beneficial activities are not entirely defined, they include neurogenesis and angiogenesis stimulation, antiapoptotic, immunomodulatory, and anti-inflammatory actions. Most effects would be exerted through their paracrine expression of neurotrophic factors and cytokines, mainly delivered at damaged regions, given the innate propensity of MSCs to home to injured sites. Hopefully, in the near future more efficacious cell-replacement therapies will be developed to substantially restore disease-disrupted brain circuitry.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| |
Collapse
|
37
|
Stem cell transplantation for Huntington's diseases. Methods 2017; 133:104-112. [PMID: 28867501 DOI: 10.1016/j.ymeth.2017.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Therapeutic approaches based on stem cells have received considerable attention as potential treatments for Huntington's disease (HD), which is a fatal, inherited neurodegenerative disorder, caused by progressive loss of GABAergic medium spiny neurons (MSNs) in the striatum of the forebrain. Transplantation of stem cells or their derivatives in animal models of HD, efficiently improved functions by replacing the damaged or lost neurons. In particular, neural stem cells (NSCs) for HD treatments have been developed from various sources, such as the brain itself, the pluripotent stem cells (PSCs), and the somatic cells of the HD patients. However, the brain-derived NSCs are difficult to obtain, and the PSCs have to be differentiated into a population of the desired neuronal cells that may cause a risk of tumor formation after transplantation. In contrast, induced NSCs, derived from somatic cells as a new stem cell source for transplantation, are less likely to form tumors. Given that the stem cell transplantation strategy for treatment of HD, as a genetic disease, is to replace the dysfunctional or lost neurons, the correction of mutant genes containing the expanded CAG repeats is essential. In this review, we will describe the methods for obtaining the optimal NSCs for transplantation-based HD treatment and the differentiation conditions for the functional GABAergic MSNs as therapeutic cells. Also, we will discuss the valuable gene correction of the disease stem cells by the CRISPR/Cas9 system for HD treatment.
Collapse
|
38
|
Boroujeni ME, Gardaneh M. Umbilical cord: an unlimited source of cells differentiable towards dopaminergic neurons. Neural Regen Res 2017; 12:1186-1192. [PMID: 28852404 PMCID: PMC5558501 DOI: 10.4103/1673-5374.211201] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
Cell replacement therapy utilizing mesenchymal stem cells as its main resource holds great promise for ultimate treatment of human neurological disorders. Parkinson's disease (PD) is a common, chronic neurodegenerative disorder hallmarked by localized degeneration of a specific set of dopaminergic neurons within a midbrain sub-region. The specific cell type and confined location of degenerating neurons make cell replacement therapy ideal for PD treatment since it mainly requires replenishment of lost dopaminergic neurons with fresh and functional ones. Endogenous as well as exogenous cell sources have been identified as candidate targets for cell replacement therapy in PD. In this review, umbilical cord mesenchymal stem cells (UCMSCs) are discussed as they provide an inexpensive unlimited reservoir differentiable towards functional dopaminergic neurons that potentially lead to long-lasting behavioral recovery in PD patients. We also present miRNAs-mediated neuronal differentiation of UCMSCs. The UCMSCs bear a number of outstanding characteristics including their non-tumorigenic, low-immunogenic properties that make them ideal for cell replacement therapy purposes. Nevertheless, more investigations as well as controlled clinical trials are required to thoroughly confirm the efficacy of UCMSCs for therapeutic medical-grade applications in PD.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mossa Gardaneh
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
39
|
Oh SH, Lee SC, Kim DY, Kim HN, Shin JY, Ye BS, Lee PH. Mesenchymal Stem Cells Stabilize Axonal Transports for Autophagic Clearance of α-Synuclein in Parkinsonian Models. Stem Cells 2017; 35:1934-1947. [PMID: 28580639 DOI: 10.1002/stem.2650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 05/04/2017] [Accepted: 05/14/2017] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies have identified two loci, SNCA and the microtubule (MT)-associated protein tau, as common risk factors for Parkinson's disease (PD). Specifically, α-synuclein directly destabilizes MT via tau phosphorylation and induces axonal transport deficits that are the primary events leading to an abnormal accumulation of α-synuclein that causes nigral dopaminergic cell loss. In this study, we demonstrated that mesenchymal stem cells (MSCs) could modulate cytoskeletal networks and trafficking to exert neuroprotective properties in wild-type or A53T α-synuclein overexpressing cells and mice. Moreover, we found that eukaryotic elongation factor 1A-2, a soluble factor derived from MSCs, stabilized MT assembly by decreasing calcium/calmodulin-dependent tau phosphorylation and induced autophagolysosome fusion, which was accompanied by an increase in the axonal motor proteins and increased neuronal survival. Our data suggest that MSCs have beneficial effects on axonal transports via MT stability by controlling α-synuclein-induced tau phosphorylation, indicating that MSCs may exert a protective role in the early stages of axonal transport defects in α-synucleinopathies. Stem Cells 2017;35:1934-1947.
Collapse
Affiliation(s)
- Se Hee Oh
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Cheol Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea
| | - Dong Yeol Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ha Na Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea
| |
Collapse
|
40
|
Tartaglione AM, Popoli P, Calamandrei G. Regenerative medicine in Huntington's disease: Strengths and weaknesses of preclinical studies. Neurosci Biobehav Rev 2017; 77:32-47. [PMID: 28223129 DOI: 10.1016/j.neubiorev.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder, characterized by impairment in motor, cognitive and psychiatric domains. Currently, there is no specific therapy to act on the onset or progression of HD. The marked neuronal death observed in HD is a main argument in favour of stem cells (SCs) transplantation as a promising therapeutic perspective to replace the population of lost neurons and restore the functionality of the damaged circuitry. The availability of rodent models of HD encourages the investigation of the restorative potential of SCs transplantation longitudinally. However, the results of preclinical studies on SCs therapy in HD are so far largely inconsistent; this hampers the individuation of the more appropriate model and precludes the comparative analysis of transplant efficacy on behavioural end points. Thus, this review will describe the state of the art of in vivo research on SCs therapy in HD, analysing in a translational perspective the strengths and weaknesses of animal studies investigating the therapeutic potential of cell transplantation on HD progression.
Collapse
Affiliation(s)
- A M Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Popoli
- National Centre for Medicines Research and Preclinical/Clinical Evaluation, Rome, Italy
| | - G Calamandrei
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
41
|
Tsai YA, Liu RS, Lirng JF, Yang BH, Chang CH, Wang YC, Wu YS, Ho JHC, Lee OK, Soong BW. Treatment of Spinocerebellar Ataxia With Mesenchymal Stem Cells: A Phase I/IIa Clinical Study. Cell Transplant 2017; 26:503-512. [PMID: 28195034 DOI: 10.3727/096368916x694373] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ataxia is one of the most devastating symptoms of many neurodegenerative disorders. As of today, there is not any effective treatment to retard its progression. Mesenchymal stem cells (MSCs) have shown promise in treating neurodegenerative diseases. We hereby report the results of a phase I/IIa clinical study conducted in Taiwan to primarily evaluate the safety, tolerability, and, secondarily, the possible efficacy of intravenous administration of allogeneic adipose tissue-derived MSCs from healthy donors. Six patients with spinocerebellar ataxia type 3 and one with multiple system atrophy-cerebellar type were included in this open-label study with intravenous administration of 106 cells/kg body weight. The subjects were closely monitored for 1 year for safety (vital signs, complete blood counts, serum biochemical profiles, and urinalysis) and possible efficacy (scale for assessment and rating of ataxia and sensory organization testing scores, metabolite ratios on the brain magnetic resonance spectroscopy, and brain glucose metabolism of 18-fluorodeoxyglucose using positron emission tomography). No adverse events related to the injection of MSCs during the 1-year follow-up were observed. The intravenous administration of allogeneic MSCs seemed well tolerated. Upon study completion, all patients wished to continue treatment with the allogeneic MSCs. We conclude that allogeneic MSCs given by intravenous injection seems to be safe and tolerable in patients with spinocerebellar ataxia type 3, thus supporting advancement of the clinical development of allogeneic MSCs for the treatment of spinocerebellar ataxias (SCAs) in a randomized, double-blind, placebo-controlled phase II trials.
Collapse
|
42
|
Ma OKF, Chan KH. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells 2016; 8:268-78. [PMID: 27679683 PMCID: PMC5031888 DOI: 10.4252/wjsc.v8.i9.268] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T (Treg) and B (Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression.
Collapse
Affiliation(s)
- Oscar Ka-Fai Ma
- Oscar Ka-Fai Ma, Koon Ho Chan, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Koon Ho Chan
- Oscar Ka-Fai Ma, Koon Ho Chan, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival. Stem Cells Int 2016; 2016:4956063. [PMID: 27242906 PMCID: PMC4868914 DOI: 10.1155/2016/4956063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are very attractive for regenerative medicine due to their relatively easy derivation and broad range of differentiation capabilities, either naturally or induced through cell engineering. However, efficient methods of delivery to diseased tissues and the long-term survival of grafted cells still need improvement. Here, we review genetic engineering approaches designed to enhance the migratory capacities of MSCs, as well as extend their survival after transplantation by the modulation of prosurvival approaches, including prevention of senescence and apoptosis. We highlight some of the latest examples that explore these pivotal points, which have great relevance in cell-based therapies.
Collapse
|
44
|
André EM, Passirani C, Seijo B, Sanchez A, Montero-Menei CN. Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington's disease. Biomaterials 2016; 83:347-62. [DOI: 10.1016/j.biomaterials.2015.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 12/22/2022]
|
45
|
Stavely R, Robinson AM, Miller S, Boyd R, Sakkal S, Nurgali K. Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis. Stem Cell Res Ther 2015; 6:263. [PMID: 26718461 PMCID: PMC4697327 DOI: 10.1186/s13287-015-0254-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
Background The use of mesenchymal stem cells (MSCs) to treat inflammatory bowel disease (IBD) is of great interest because of their immunomodulatory properties. Damage to the enteric nervous system (ENS) is implicated in IBD pathophysiology and disease progression. The most commonly used model to study inflammation-induced changes to the ENS is 2,4,6-trinitrobenzene-sulfonate acid (TNBS)-induced colitis in guinea pigs; however, no studies using guinea pig MSCs in colitis have been performed. This study aims to isolate and characterise guinea pig MSCs and then test their therapeutic potential for the treatment of enteric neuropathy associated with intestinal inflammation. Methods MSCs from guinea pig bone marrow and adipose tissue were isolated and characterised in vitro. In in vivo experiments, guinea pigs received either TNBS for the induction of colitis or sham treatment by enema. MSCs were administered at a dose of 1 × 106 cells via enema 3 h after the induction of colitis. Colon tissues were collected 24 and 72 h after TNBS administration to assess the level of inflammation and damage to the ENS. The secretion of transforming growth factor-β1 (TGF-β1) was analysed in MSC conditioned medium by flow cytometry. Results Cells isolated from both sources were adherent to plastic, multipotent and expressed some human MSC surface markers. In vitro characterisation revealed distinct differences in growth kinetics, clonogenicity and cell morphology between MSC types. In an in vivo model of TNBS-induced colitis, guinea pig bone marrow MSCs were comparatively more efficacious than adipose tissue MSCs in attenuating weight loss, colonic tissue damage and leukocyte infiltration into the mucosa and myenteric plexus. MSCs from both sources were equally neuroprotective in the amelioration of enteric neuronal loss and changes to the neurochemical coding of neuronal subpopulations. MSCs from both sources secreted TGF-β1 which exerted neuroprotective effects in vitro. Conclusions This study is the first evaluating the functional capacity of guinea pig bone marrow and adipose tissue-derived MSCs and providing evidence of their neuroprotective value in an animal model of colitis. In vitro characteristics of MSCs cannot be extrapolated to their therapeutic efficacy. TGF-β1 released by both types of MSCs might have contributed to the attenuation of enteric neuropathy associated with colitis.
Collapse
Affiliation(s)
- Rhian Stavely
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Ainsley M Robinson
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Sarah Miller
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Richard Boyd
- Department of Anatomy and Developmental Biology, Monash University, 19 Innovation Walk, Clayton, 3800, Victoria, Australia.
| | - Samy Sakkal
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| |
Collapse
|
46
|
Kerkis I, Haddad MS, Valverde CW, Glosman S. Neural and mesenchymal stem cells in animal models of Huntington's disease: past experiences and future challenges. Stem Cell Res Ther 2015; 6:232. [PMID: 26667114 PMCID: PMC4678723 DOI: 10.1186/s13287-015-0248-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Huntington's disease (HD) is an inherited disease that causes progressive nerve cell degeneration. It is triggered by a mutation in the HTT gene that strongly influences functional abilities and usually results in movement, cognitive and psychiatric disorders. HD is incurable, although treatments are available to help manage symptoms and to delay the physical, mental and behavioral declines associated with the condition. Stem cells are the essential building blocks of life, and play a crucial role in the genesis and development of all higher organisms. Ablative surgical procedures and fetal tissue cell transplantation, which are still experimental, demonstrate low rates of recovery in HD patients. Due to neuronal cell death caused by accumulation of the mutated huntingtin (mHTT) protein, it is unlikely that such brain damage can be treated solely by drug-based therapies. Stem cell-based therapies are important in order to reconstruct damaged brain areas in HD patients. These therapies have a dual role: stem cell paracrine action, stimulating local cell survival, and brain tissue regeneration through the production of new neurons from the intrinsic and likely from donor stem cells. This review summarizes current knowledge on neural stem/progenitor cell and mesenchymal stem cell transplantation, which has been carried out in several animal models of HD, discussing cell distribution, survival and differentiation after transplantation, as well as functional recovery and anatomic improvements associated with these approaches. We also discuss the usefulness of this information for future preclinical and clinical studies in HD.
Collapse
Affiliation(s)
- Irina Kerkis
- Laboratório de Genética, Instituto Butantan, 1500 Av. Vital Brasil, São Paulo, 05503-900, Brazil.
| | - Monica Santoro Haddad
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Av. Dr. Arnaldao, São Paulo, 01246903, Brazil
| | | | - Sabina Glosman
- SoluBest Ltd, Weizmann Science Park, POB 4053 18 Einstein Street, Ness Ziona, 74140, Israel
| |
Collapse
|
47
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
48
|
D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015; 13:186. [PMID: 26265166 PMCID: PMC4534031 DOI: 10.1186/s12916-015-0426-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.
Collapse
Affiliation(s)
- Naomi D'souza
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Filippo Rossignoli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Satoru Osturu
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Fabio Catani
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Paolo Paolucci
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Edwin M Horwitz
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
49
|
Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B, Pfaffenseller B, Silva EG, Cirne-Lima EO, Quevedo J, Kapczinski F, Rosa AR. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. AN ACAD BRAS CIENC 2015; 87:1435-49. [PMID: 26247151 DOI: 10.1590/0001-3765201520140619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that have the capacity to differentiate into all lineages of mesodermal origin, e.g., cartilage, bone, and adipocytes. MSCs have been identified at different stages of development, including adulthood, and in different tissues, such as bone marrow, adipose tissue and umbilical cord. Recent studies have shown that MSCs have the ability to migrate to injured sites. In this regard, an important characteristic of MSCs is their immunomodulatory and anti-inflammatory effects. For instance, there is evidence that MSCs can regulate the immune system by inhibiting proliferation of T and B cells. Clinical interest in the use of MSCs has increased considerably over the past few years, especially because of the ideal characteristics of these cells for regenerative medicine. Therapies with MSCs have shown promising results neurodegenerative diseases, in addition to regulating inflammation, they can promote other beneficial effects, such as neuronal growth, decrease free radicals, and reduce apoptosis. Notwithstanding, despite the vast amount of research into MSCs in neurodegenerative diseases, the mechanism of action of MSCs are still not completely clarified, hindering the development of effective treatments. Conversely, studies in models of psychiatric disorders are scarce, despite the promising results of MSCs therapies in this field as well.
Collapse
Affiliation(s)
- Gabriela D Colpo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Center at Houston, Houston, TX, US
| | - Bruna M Ascoli
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Bianca Wollenhaupt-Aguiar
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Bianca Pfaffenseller
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Emily G Silva
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Elizabeth O Cirne-Lima
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - João Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Center at Houston, Houston, TX, US
| | - Flávio Kapczinski
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Adriane R Rosa
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| |
Collapse
|
50
|
Siska EK, Koliakos G, Petrakis S. Stem cell models of polyglutamine diseases and their use in cell-based therapies. Front Neurosci 2015; 9:247. [PMID: 26236184 PMCID: PMC4501170 DOI: 10.3389/fnins.2015.00247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine diseases are fatal neurological disorders that affect the central nervous system. They are caused by mutations in disease genes that contain CAG trinucleotide expansions in their coding regions. These mutations are translated into expanded glutamine chains in pathological proteins. Mutant proteins induce cytotoxicity, form intranuclear aggregates and cause neuronal cell death in specific brain regions. At the moment there is no cure for these diseases and only symptomatic treatments are available. Here, we discuss novel therapeutic approaches that aim in neuronal cell replacement using induced pluripotent or adult stem cells. Additionally, we present the beneficial effect of genetically engineered mesenchymal stem cells and their use as disease models or RNAi/gene delivery vehicles. In combination with their paracrine and cell-trophic properties, such cells may prove useful for the development of novel therapies against polyglutamine diseases.
Collapse
Affiliation(s)
| | - George Koliakos
- Biohellenika Biotechnology Company Thessaloniki, Greece ; Laboratory of Biochemistry, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece
| | | |
Collapse
|